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Abstract

This paper presents a comparative evaluation of methods for automated voxel-based spatial 

mapping in diffusion tensor imaging studies. Such methods are an essential step in computational 

pipelines and provide anatomically comparable measurements across a population in atlas-based 

studies. To better understand their strengths and weaknesses, we tested a total of eight methods for 

voxel-based spatial mapping in two types of diffusion tensor templates. The methods were 

evaluated with respect to scan-rescan reliability and an application to normal aging. The methods 

included voxel-based analysis with and without smoothing, two types of region-based analysis, 

and combinations thereof with skeletonization. The templates included a study-specific template 

created with DTI-TK and the IIT template serving as a standard template. To control for other 

factors in the pipeline, the experiments used a common dataset, acquired at 1.5T with a single 

shell high angular resolution diffusion MR imaging protocol, and tensor-based spatial 

normalization with DTI-TK. Scan-rescan reliability was assessed using the coefficient of variation 

(CV) and intraclass correlation (ICC) in eight subjects with three scans each. Sensitivity to normal 

aging was assessed in a population of 80 subjects aged 25 to 65 years old, and methods were 

compared with respect to the anatomical agreement of significant findings and the R2 of the 

associated models of fractional anisotropy. The results show that reliability depended greatly on 

the method used for spatial mapping. The largest differences in reliability were found when adding 

smoothing and comparing voxel-based and region-based analyses. Skeletonization and template 

type were found to have either a small or negligible effect on reliability. The aging results showed 

agreement among the methods in nine brain areas, with some methods showing more sensitivity 

than others. Skeletonization and smoothing were not major factors affecting sensitivity to aging, 

but the standard template showed higher R2 in several conditions. A structural comparison of the 

templates showed that large deformations between them may be related to observed differences in 

patterns of significant voxels. Most areas showed significantly higher R2 with voxel-based 

analysis, particularly when clusters were smaller than the available regions-of-interest. Looking 

forward, these results can potentially help to interpret results from existing white matter imaging 

studies, as well as provide a resource to help in planning future studies to maximize reliability and 

sensitivity with regard to the scientific goals at hand.
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1. Introduction

Diffusion MR imaging enables the quantitative measurement of water molecule diffusion, 

which exhibits anisotropy in brain white matter due to axonal morphometry and coherence 

[1]. The diffusion tensor [2] is a commonly used model that reflects aggregate properties of 

tissue microstructure [3] that are relevant to the studies of brain white matter, such as normal 

differences in age, sex, and cognition [4] [5] [6], as well as neuropsychiatric conditions, such 

as schizophrenia, depression, and bipolar disorder [7] [8]. Diffusion tensor imaging studies 

typically make anatomically-comparable measurements across participants through spatial 

normalization [9] to a template using image registration [10]. Then, a spatial mapping step is 

used to probe features of white matter across the population, typically with either voxel-

based or tractography-based localization. Voxel-based analyses can either look at individual 

voxels or regions-of-interest (ROIs), while tractography-based analyses instead look at 

features of geometric models representing large-scale fiber bundle anatomy [11] [12]. While 

there are known limitations of tractography that warrant evaluation [13] [14], we restrict the 

scope of this paper to the evaluation of voxel-based methods.

This paper is motivated by the general need to better understand the computational tools 

used in voxel-based diffusion tensor imaging studies [15]. As there are numerous choices at 

each step of the standard population imaging pipeline, there is value in understanding their 

net effect on the results [16]. While much is known about how data acquisition, 

preprocessing, and image registration affect results, fewer studies have evaluated the spatial 

mapping step. In this study, we examine a wide range of choices for this step and evaluate 

them with respect to scan-rescan reliability and sensitivity to normal aging.

Prior Work

Numerous studies have thoroughly examined the relationship between reliability and 

imaging data acquisition parameters. For example, several works have looked at variation 

across scanner manufacturers and imaging units [17] [18] [19] and found acceptable 

reliability across sites with a common magnet strength. Furthermore, other studies have also 

shown reliability across magnet strengths ranging from 1.5T to 4T [20] [21] [22]. Studies 

that tested gradient strength have found reliable estimates of diffusion parameters in each of 

a variety of gradients encoding schemes [23]; however, there is evidence of possible bias in 

diffusion parameters when combining estimates from different voxel sizes and gradient 

encoding schemes [24], although bias correction [20] and covariate analysis [25] are 

possible solutions. Together, these results are especially important for conducting 

longitudinal and multi-center studies as well as accommodating scanner upgrades within an 

imaging unit.
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In addition, previous work has examined the effect of preprocessing and image registration 

algorithms on reliability. Robust preprocessing that includes denoising, motion correction, 

and outlier rejection has been shown to improve reliability across scanners [26] [27]. The 

choice of registration algorithm has also been shown to greatly affect reliability, specifically 

when comparing linear, deformable, and tensor-based registration [20] [21] [23]. 

Deformable tensor-based registration has been shown to perform better than registration 

with scalar maps, especially when used in combination with study-specific template 

construction [28]. Linear intra-subject registration has also been shown to improve reliability 

in longitudinal studies [26]. Overall, this indicates there is potential for significantly 

different outcomes based on the choice of preprocessing and registration, so it is important 

to have consistency in both applications and evaluations.

Each of these studies necessarily includes spatial mapping, either as a single method used in 

the pipeline or as part of a larger comparison of methods. The most common approaches are 

global histogram analysis [17], manually drawn ROIs [24] [23] [19], and standard atlas ROIs 

registered to each subject [18] [22] [29]. In addition to these studies, others have explicitly 

evaluated methods for spatial mapping, with a similar goal to this paper. For example, 

evaluations of manually drawn ROI approaches have tested the reliability of different ROI 

shapes [30] and drawing methods [31] [32], and compared to a variety of global histogram 

measures [25]. Voxel-based analysis has also been evaluated to quantify the effects of filter 

size [33], software package [34], and to compare results with ROI-based methods [35] [36]. 

There has also been extensive testing of skeleton-based analysis to understand its strengths 

and limitations [28] [26] [37] as well as comparing to voxel-based analysis and region-based 

analysis [20] [21]. Previous work has also evaluated the choice of template type, showing 

the advantages of study-specific and high-quality templates [38] [39] [40] [41]. This paper 

builds on these prior findings by expanding the range of methods simultaneously compared 

in evaluation.

Finally, the design of some of these studies not only included scan-rescan analysis, but also 

tested reliability in conjunction with applications to clinical and scientific studies. These 

studies have included populations consisting of aging adults and children [30] [24] [36], as 

well as patients with schizophrenia [33] [34], Alzheimer’s disease [28], and multiple 

sclerosis [25]. This kind of evaluation provides an additional benchmark for comparing the 

practical value of such methods, which is important, as a perfectly reliable measurement 

might still disregard anatomical features that are of scientific or clinical value. In this paper, 

we take a similar approach and test the sensitivity of each method to the anatomical effects 

of normal aging in an adult population.

Contributions

The main contribution of this paper is a comparative evaluation of spatial mapping in voxel-

based diffusion tensor imaging studies. To avoid confounding effects, these tests were 

conducted with a common dataset and state-of-the-art tensor-based spatial normalization 

using DTI-TK. The evaluation includes experiments that examined reliability across scans 

and sensitivity to normal aging in an adult population. The first experiment characterized 

scan-rescan reliability across eight subjects with three scans each using the coefficient of 
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variation and intraclass correlation. The second experiment characterized sensitivity to 

normal aging in a population of 80 adult subjects aged from 25 to 65 years old by examining 

the statistical relationship between age and diffusion parameters across the brain. Both 

experiments included a quantitative analysis of performance in the various methods and a 

qualitative analysis showing the results in relation to brain anatomy. The experimental 

conditions included eight methods for spatial mapping, four commonly used diffusion 

parameters, and two types of templates. The tested spatial mapping methods included voxel-

based with and without smoothing, two types of region-based analysis, and combinations of 

these with skeletonization-based analysis. The tested diffusion parameters included 

fractional anisotropy (FA), mean (MD), radial (RD), and axial (AD) diffusivity. The aging 

analysis presented in the paper only shows effects in FA due to space limitations; however, 

all results are available for download with the link provided at the end of the paper. The 

experiments were conducted using both a study-specific template and the IIT standard 

template. In total, this represents a total of 64 conditions examined in each experiment.

2. Materials and Methods

2.1. Data Acquisition

Under an IRB-approved protocol, diffusion-weighted MR images were acquired from a 

population of healthy volunteers, including a group of 80 normal aging healthy controls and 

eight from a scan-rescan cohort. The 80 subjects comprised a cross-sectional normal aging 

population, which consisted of nearly equal number of each sex and roughly uniformly 

distributed ages ranging from 25 to 65 years old. The data from the other eight subjects were 

acquired for scan-rescan analysis and included three repeats each, except for one subject that 

only had two repeats (i.e. 23 sessions). Imaging was conducted on a GE 1.5T scanner with 

2×2×2mm voxels and image resolution 128×128×72. For each diffusion scan, seven baseline 

volumes were acquired, and the diffusion-weighted images used a single-shell high angular 

resolution diffusion encoding scheme with 64 distinct gradient encoding directions at a b-

value of 1000 s/mm2.

2.2. Image Preprocessing

The diffusion-weighted MR images were preprocessed using FSL 5.0 [42]. The first step 

included motion and eddy current correction by arfine registration of each diffusion-

weighted volume to the baseline volume using FSL FLIRT with the mutual information 

criteria. Along with this step, the b-vectors were reoriented to account for rotation induced 

by each transformation [43]. Skull stripping was performed using FSL BET with a threshold 

of 0.3. For each dataset, diffusion tensors were fit using FSL DTIFIT.

2.3. Spatial Normalization and Template Construction

Following this, a study-specific template [44] was created from the 80 normal subjects. This 

was performed using the tensor-based deformable registration algorithm in DTI-TK [45] 

with finite strain tensor reorientation and the deviatoric tensor similarity metric. Each 

subject’s tensor image was transformed to atlas space using the associated deformation and 

resampled to 1 mm3 isotropic voxels using Log-Euclidean tensor interpolation. This process 

was applied to both the scan-rescan cohort and the normal aging cohort.
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In addition, the study examined the use of a standard template. The IIT DTI template version 

4.1 [46] [47] was used for this purpose due to its high quality and use in related evaluation 

studies [40]. The imaging data was downloaded from the publicly available distribution on 

NITRC [48]. To facilitate the joint visualization and quantitative comparison of results from 

both templates, an additional deformable registration was performed between the IIT and 

study-specific template using DTI-TK. The study-specific analysis was conducted solely 

with the study-averaged imaging data, and the statistical results were deformed for 

comparison using nearest-neighbor interpolation. As there were shape differences between 

the study-specific and standard templates, the logarithm of the Jacobian determinant 

(LogJacDet) of the deformation was computed to show the spatial pattern of these shape 

differences.

2.4. Spatial Mapping

Next, eight methods of spatial mapping were applied (Table 1 and Figure 1) using each of 

the two templates (study-specific and standard) and each of four diffusion parameters (FA, 

MD, RD, and AD), giving a total of 64 conditions. For consistency, the methods shared the 

same white matter mask in each template. The masks were created by applying a threshold 

of 0.2 to the FA volume of each template and removing all but the largest connected 

component. The details of each method are described as follows.

Voxel-based analysis was performed using the standard approach [49] [50] in all white 

matter voxels. This included processing without smoothing (denoted VBA) and with 

smoothing (denoted SMOOTH) using an isotropic Gaussian filter with σ = 2, FWHM = 4.7, 

which is comparable to a previous VBA evaluation [36]. Region-based analysis [51] was 

also performed by averaging diffusion parameters within ROIs. This included two types of 

region-based analysis, described as follows.

The first region-based method (denoted JHU) used manually defined regions from the Johns 

Hopkins University white matter atlas [52] included in FSL. For each template type, the 

ROIs were deformed to the template volume using FNIRT This was necessary as the JHU 

regions are defined in an FA atlas requiring scalar-based registration; however, the rest of the 

experiments used tensor-based registration between subject data and the templates.

The second region-based analysis (denoted SUPER) used automatically defined 

“supervoxel” ROIs that were computed for each template using a clustering algorithm [53]. 

The clustering algorithm includes parameters to control the relative contribution the voxel 

positions (α), fiber orientations (β), and number of clusters (λ) make to the overall 

optimization. The parameter settings were α = 1, β = 15, and λ = 20, resulting in a total of 

321 study-template regions and 318 standard template regions. In addition, the supervoxel 

ROIs were post-processed to assign distinct labels to topologically disconnected regions 

with the same clustering label, e.g. in the cingulum, and to remove outlier regions less than 

50 mm3 in volume.

These four methods were also each performed in conjunction with skeleton-based analysis 

using Tract-Based Spatial Statistics [54]. This was implemented in a custom VBA+TBSS 

pipeline modified to use the tensor-based registration algorithm in DTI-TK instead of the 
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default scalar-based registration with FNIRT [42] [55]. The standard template analysis used 

the associated skeleton available on NITRC, and the study-specific template analysis used a 

study-derived skeleton. Both template skeleton masks were created with an FA threshold of 

0.2. This resulted in four additional skeleton-based methods: voxel analysis without 

smoothing (denoted VBA+TBSS), voxel analysis with smoothing (denoted SMOOTH

+TBSS), JHU ROI analysis (denoted JHU+TBSS), and supervoxel ROI analysis (denoted 

SUPER+TBSS).

2.5. Scan-rescan Reliability

Next, reproducibility and reliability were tested for each condition with the scan-rescan 

dataset, which consisted of eight subjects with three repeated scans each. This included two 

statistical evaluation metrics: the coefficient-of-variation (CV) [56] and intra-class 

correlation (ICC) [57]. The CV is a nor-malized measure of percentage change in each 

measurement across scans and is considered acceptable below 10%. Given the within-

subject average µw and within-subject standard deviation σw, the CV is given by σw/µw. The 

ICC is a measure of reliability that gauges the fraction of variance between subjects. It is 

normalized between zero and one and is considered accept-able above 0.7. Given the 

between-subjects variance  and within-subjects variance , the ICC is given by 

. For each condition, CV and ICC were computed for individual voxels/regions 

and then aggregated across the whole brain to estimate mean performance and its 

uncertainty. All statistical analysis was implemented using R 3.1.1 [58], with the ggplot2 

package for plotting [59], and the ICC package from Wolack et al. [60].

2.6. Sensitivity to Normal Aging

Next, the methods were evaluated with respect to their sensitivity to normal aging in an adult 

population, a process which has been shown to include anatomical changes in white matter 

that are reflected in diffusion parameters [61] [62]. The experiments investigated the 

localization of age-related changes in specific areas of the brain. This was performed by 

fitting linear regression models in each voxel and region to relate the diffusion parameters to 

age. Sex and intracranial volume were included as covariates to control for changes not 

related to mi-crostructural decline due to aging. Specifically, this can potentially avoid 

attributing seemingly local changes in diffusion parameters to partial volume effects that can 

occur with global volumetric changes in brain size due to age. For each model, statistics of 

the regressions were retained for comparison, including the R2, as well as the coefficient 

estimate, standard error, t-statistic, and p-value associated with age variable. Because the 

methods differ largely in their dimensions (Table 1), they cannot be directly compared. To 

account for this, we used False Discovery Rate (FDR) with the Benjamini-Hochberg 

procedure [63] to correct for multiple comparisons within each method. This procedure 

transforms the p-values to q-values that can be more fairly compared across methods. 

Volumetric maps representing the model parameters were created to explore the differences 

between methods. These images were manually reviewed to identify brain areas with 

agreement among multiple methods. The comparison focused on FA only, which is the most 

commonly analyzed diffusion parameter; however, the results for MD, AD, and RD are 

included as supplementary material. When clusters of significant voxels were encountered, 
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the voxel with the lowest q-value was recorded to represent the result. This process resulted 

in a list of brain areas with significant results for each experimental condition. The results 

were also quantitatively analyzed to assess the performance across the conditions. All 

statistical analysis was implemented in R 3.1.1 [58], with the ggplot2 package for plotting 

[59].

3. Results

3.1. Scan-rescan Reproducibility

Quantitative results of the scan-rescan experiment are shown in Figure 2, and qualitative 

results showing the spatial distribution of scan-rescan reproducibility are shown in Figures 3 

and 4. For both CV and ICC, statistical tests were performed to assess performance 

characteristics of the methods, including groupings of methods by several factors: method 

type, region-based, skeleton-based, smoothed, and template type.

The results in CV show reliability varies significantly across methods (one-way ANOVA, p 
< 1 × 10−15, η2 = 0.78). Smoothing was found to have a significant effect on CV (t-test, p < 

1 × 10−15, d = 0.75, ΔCV = 3.3), with higher CV without smoothing (CV = 7.6 ± 1.0) than 

with smoothing (CV = 4.2 ± 0.5). Region-based analysis was also found to have a significant 

and large effect on CV (t-test, p < 1 × 10−8, d = 2.0, ΔCV = 3.4), with higher CV when 

analyzing single voxels (CV = 5.9 ± 0.8) compared to regions (CV = 2.5 ± 0.24). Template 

type was found to have a significant but small effect on CV (paired t-test, p < 1 × 10−7, d = 

0.18, ΔCV = 0.44) with higher CV in the standard template (CV = 4.4 ± 0.9) compared to 

the study template (CV = 4.0 ± 0.8). From additional tests within each method, JHU, VBA

+TBSS, and JHU+TBSS were not significantly different in CV between template types, 

unlike the main effect. Skeletonization was not found to have a significant effect on CV 

(paired t-test, p = 0.29). In reviewing the spatial distribution of CV across the brain, VBA 

and VBA+TBSS showed the greatest spatial variability, with better CV scores in deep white 

matter and worse CV in superficial and periventricular white matter. Smoothing tended to 

also smooth this spatial distribution of CV scores. Region-based analysis showed more 

spatially uniform CV results than voxel-based analysis, particularly in superficial white 

matter with supervoxel-based analysis.

The results in ICC also show reliability varies significantly across methods (one-way 

ANOVA, p < 1 × 10−15, η2 = 0.90). Smoothing was found to have a significant effect on ICC 

(t-test, p < 1 × 10−15, d = 0.61, ΔICC = 0.15), with lower ICC without smoothing (ICC = 

0.50 ± 0.04) than with smoothing (ICC = 0.66 ± 0.04). Region-based analysis was also 

found to have a significant and large effect on ICC (t-test, p < 1 × 10−9, d = 2.1, ΔICC = 

0.17), with lower ICC when analyzing single voxels (ICC = 0.58 ± 0.04) compared to 

regions (ICC = 0.74 ± 0.02). Template type was found to have a significant but small effect 

on ICC (paired t-test, p < 1 × 10−4, d = 0.17, ΔICC = 0.02) with lower ICC in the standard 

template (ICC = 0.65 ± 0.04) compared to the standard template (ICC = 0.67 ± 0.04). From 

additional tests within each method, JHU, VBA+TBSS, and JHU+TBSS were found not to 

have a significant difference in ICC between template types, unlike the main effect. 

Skeletonization was found to have a significant but small effect on ICC (paired t-test, p < 1 × 

10−12, d = 0.66, ΔICC = 0.07) with a lower ICC with skeletonization (ICC = 0.62 ± 0.04) 
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than without (ICC = 0.70 ± 0.03). In reviewing the spatial distribution of ICC across the 

brain, VBA and VBA+TBSS showed the greatest spatial variability, with a distinct pattern 

from CV and a more heterogeneous spatial distribution. Smoothing tended to also smooth 

this spatial distribution of ICC scores. Region-based analysis showed more spatially uniform 

ICC results than voxel-based analysis, particularly in superficial white matter with 

supervoxel-based analysis, although there was more variation than in CV.

3.2. Sensitivity to Normal Aging

The following nine brain areas were found to have a significant relationship between FA and 

age: right anterior pericallosal white matter (R_PERI), the fornix (FORN), the left superior 

cerebellar peduncle (L_SCP), left uncinate (L_UNC), middle cerebellar peduncle (MCP), 

splenium (SPLN), right posterior thalamic radiation (R_PTR), right superior frontal white 

matter (R_SUPF), and right inferior frontal white matter (R_INFF). To varying extents, there 

were bilateral effects in the superior cerebellar penduncles, inferior frontal white matter, and 

percal-losal white matter, but the hemisphere with the larger effect is reported for brevity.

Among these regions, the qualitative results (Figure 5) show agreement with respect to the 

general location of the effects, but some variation was found with respect to the fine 

anatomical differences. In pericallosal white matter, voxel-based analysis exhibited a cluster 

that extended into the genu, an aspect that was not typical of most TBSS conditions. In the 

fornix, the study-specific results tended to show significant effects along the length of the 

bundle; however, most standard template conditions instead showed distinct clusters located 

at anterior and posterior positions along the visible portion of the bundle. In the middle 

cerebellar peduncle, there was high anatomical variability across methods, where some 

methods showed lateral concentrations of significant results. In the uncinate, the models 

were less sensitive in the SUPER conditions, but the spatial patterns were similar across 

methods. Across all regions, smoothing was found to generally increase the size of the 

cluster of significant voxels. Regarding the direction of the change with age, the following 

areas showed decreased FA with age: R_PERI, FORN, R_PTR, RINFF, and the following 

areas showed increased FA with age: L_SCP, MCP, L_UNC, SPLN, R_SUPF.

A comparison of the study-specific and standard templates showed shape differences that 

varied with respect to anatomical location (Figure 6). The LogJacDet maps were reviewed to 

determine the magnitude of local volumetric changes, where a negative value indicates that a 

contraction was required to deform the standard template to the study template, and positive 

indicates that an expansion was required. The fornix showed the greatest difference between 

the template types, where the study-specific template had a substantially thinner fornix than 

the standard template (LogJacDet ≈ −1.5). The following regions also exhibited smaller 

local volumes in the study-specific template: genu of the corpus callosum (LogJacDet ≈ 
−1.0), splenium of the corpus callosum (LogJacDet ≈ −0.5), posterior limb of the internal 

capsule (LogJacDet ≈ −0.5), superior cerebellar peduncle (LogJacDet ≈ −0.5), and middle 

cerebellar peduncle (LogJacDet ≈ −0.4). Conversely, the following regions showed greater 

local volume in the study-specific template: body of the corpus callosum (LogJacDet ≈ 0.5) 

and palladium (LogJacDet ≈ 0.5).
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Statistical tests were performed to assess performance characteristics of the methods 

according to R2 with groupings by the following factors: method type, region-based, 

skeleton-based, smoothed, and template type (Figure 7, Table 2). The results show 

significant variation across methods (one-way ANOVA, p < 1 × 10−10, η2 = 0.38). 

Smoothing was not found to have a significant effect on R2 (t-test, p = 0.43). Region-based 

analysis was found to have a significant effect on R2 (t-test, p < 1 × 10−13, d = 1.50, ΔR2 = 

0.10), with higher R2 when analyzing single voxels (R2 = 0.22 ± 0.01) compared to regions 

(R2 = 0.11 ± 0.01). Template type was found to have a small but statistically significant 

effect on R2 (paired t-test, p = 0.01, d = 0.18, ΔR2 = 0.016). When compared across 

methods, the difference in template type was significant only in SMOOTH (paired t-test, p = 

0.02), VBA+TBSS (paired t-test, p = 0.05), and SMOOTH+TBSS (paired t-test, p = 0.01). 

When compared across anatomical region, the difference in template type was significant 

only in the superior cerebellar peduncle (paired t-test, p = 0.02) and left uncinate (paired t-
test, p = 0.02). Skeletonization was not found to have a significant effect on R2 (paired t-test, 

p = 0.60 d = 0.03, ΔR2 = 0.01).

4. Discussion

Scan-rescan Reliability

The first main finding in scan-rescan reliability was large variability in the overall reliability 

across methods despite using identical data, preprocessing steps, and registration. The most 

readily observed pattern was that methods looking at single voxels, e.g. VBA and VBA

+TBSS, were less reliable than region-based methods, e.g. JHU and SUPER, as measured 

with both CV and ICC. Previous work has demonstrated a trade-off in spatial specificity 

between these methods [36], and the results of this study further support a trade-off in 

reliability between voxel-based and region-based analysis. This difference is perhaps due to 

the voxelwise averaging used in region-based analysis, which could also tend to average out 

the effects of noise. Smoothing is perhaps another way to accomplish this, but it includes a 

greater risk of mixing different tissues. Past work has also found that the results of voxel-

based analysis depend greatly on the filter parameters and implementing package [34] [33], 

and the results of this study show related changes in reliability. Specifically, reliability in 

voxel-based and skeleton-based analysis tended to improve with smoothing, while 

performance depended on the particular diffusion parameter being tested, which supports 

previous findings [36]. Regarding region-based analysis, the results were also comparable to 

previous findings of intra-rater variability less than 3% in manually drawn ROIs [30] [17] 

[21], which is perhaps evidence that de-formable tensor-based registration is comparable in 

quality to anatomical matching of manually drawn region masks.

The second main result was that all methods exhibited spatial variability in CV and ICC 

estimates of reliability. This reinforces similar results demonstrated in prior work that 

examined the spatial distribution of reliability estimates [18] [22] [35], although these 

studies were typically limited to tests of only one or two methods for spatial mapping each. 

The results of this study show voxel-based methods tended to have the most spatial 

variability and had concentrated high reliability in deep white matter, similar to previous 

work [20]. This could be related to higher registration accuracy in deep white matter, as seen 
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in fiber coherence maps derived form population data [45]. However, it could also be that 

reliability is highest where the tensor model is most representative of the underlying 

diffusion process, i.e. predominantly single fiber regions in deep white matter [64]. This 

could be more thoroughly studied by examining reliability of multi-fiber extensions of TBSS 

[65], possibly with multi-compartment model smoothing [66]. Voxel-based analysis had low 

reproducibility in superficial and periventric-ular white matter, with CV above 7% and ICC 

below 0.5 in some cases; however, region-based analysis was found to have lower spatial 

variability and better performance in these areas. This is likely due to the variance reducing 

effects of averaging within each supervoxel, perhaps also indicating that the registration 

quality in these superficial areas is at least as accurate as the supervoxel size. In general, ICC 

had more spatial variability than CV with a different spatial distribution. This demonstrates 

how CV and ICC reflect different aspects of reliability, as CV directly represents error, while 

ICC depends on the variation across subjects. For this reason, results in ICC may be more 

specific to the populations and datasets used for evaluation.

Sensitivity to Normal Aging

The first main result in aging was a substantial agreement of significant effects among 

methods, despite the differences in reliability found in the previous experiment. However, 

there were differences in sensitivity between methods warranting discussion. The most 

prominent factor was whether individual voxels were analyzed, as most region-based 

conditions were less sensitive. An inspection of the spatial distribution of effects shows the 

significant clusters to be small and locally restricted effects not well characterized by the 

relatively larger ROIs available in the JHU atlas and supervoxels. This shows a major 

limitation of ROI analysis, as small local effects may be washed out by other voxels when 

the ROI is larger than the extent of the effect. One possible solution is to explore regions in a 

hierarchical way at varying levels of detail. Supervoxel-based analysis may offer a way to 

implement this by algorithmically varying the size of extracted regions. However, there were 

also brain areas in which region-based analysis performed best. These might represent 

anatomical changes that are more distributed and characteristic of disconnection [67].

Another main result was the negligible effect of skeletonization and smoothing. Previous 

evaluations have found skele-tonization to improve performance in deep white matter ROIs 

[37]; however, the improvement in models with FA here were not significant. This may 

support other results showing that high quality registration is as important as skeletonization 

in improving sensitivity [68] and related findings showing more heterogeneous results [37]. 

Smoothing tended to increase the size of the significant clusters, although the effect size did 

not change. Related to this, it is worth noting that the VBA and VBA+TBSS conditions still 

include smoothing to some extent, as the native data is interpolated to a considerably smaller 

template voxel resolution. While this may help to avoid possibly missing a small effect, it 

may also introduce further smoothing and spatial correlations of noise.

In relation to template type, the observed differences are of interest, as previous findings 

have shown that study-specific templates provide greater sensitivity and accuracy than 

standard templates [39]. The results in this study show a slight improvement in reliability 

when using a study-specific template; however, in three methods and two regions, age 
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modeling slightly improved with the standard template. This perhaps supports previous 

findings that a high quality standard template combined with low-artifact data can provide 

comparable results to a study-specific template [40], unless a disease group is being studied 

[41]. However, we also found that the standard template was much sharper than the study 

template, so the consequent differences in white matter masks may have also been a factor. 

Furthermore, there were significant structural differences between the template that may 

have influenced the results, for example, in the pattern of significant results in the fornix. 

The study template results in the fornix were perhaps more anatomically plausible, as they 

followed the trajectory of the bundle, while the standard template results were not significant 

in those voxels with the largest magnitude deformation.

The biological significance of the results can also be related to previous studies of white 

matter aging. The pattern of the results supports the anteroposterior gradient and 

frontocerebellar synergism hypotheses of aging [69]. The specific findings in the genu, 

anterior pericallosal white matter, fornix, and spelenium are consistent with previous work 

[70] [71] [72]. The results in the cerebellum also support recent findings in the superior 

cerebellar peduncles [73], perhaps adding related findings in the middle cerebellar peduncle. 

One general concern with the results, however, is the effect of partial voluming, which may 

confound microstructural changes with volumetric changes, particularly in the fornix [74] 

[75]. Another consideration is the limitations of the aging population, specifically, the 

maximum age of 65 years, which is less than some previous studies [69].

Limitations and Open Problems

It is also worth discussing the design of the study. In particular, the experiments were 

designed to control for a number of potential biases that could severely effect the results, 

such as dataset, preprocessing steps, and registration algorithm. This allows us to more 

certainly attribute the observed differences in reliability and predictive modeling to the 

choice of spatial mapping algorithm and not to other factors. This is a somewhat stronger 

result than could be gained by summarizing the results of multiple studies, which inevitably 

have major differences in data and implementation. However, the major limitation of this 

design is that only one factor of the pipeline was studied, and the results possibly depend on 

variation in these other factors, e.g. registration algorithm. A full factorial design is quite 

challenging due to the increasing number of choices available at each step of the pipeline; 

however, it is likely a fruitful avenue of research to pursue. Looking beyond voxel-based 

analysis, it would also be tremendously valuable to expand this kind of evaluation to include 

tractography-based spatial mapping. However, a similar challenge is posed by the vast 

number of methods currently in use, as each tractography reconstruction is a complex 

product of diffusion modeling, image interpolation, seed and selection masks, and 

termination criteria.

The results of this study are also somewhat limited with respect to the VBA smoothing step. 

Only a single bandwidth and smoothing technique were tested, but a variety of approaches 

can be found in the literature [76] [77] [78]. While the effect of smoothing bandwidth has 

been well studied [33] [34], a relatively less understood aspect is the effect of filter type and 

the filtering domain. For example, smoothing can be done with a variety of types of filters, 
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including Gaussian, median, and anisotropic filtering, and unlike some other modalities, 

there are several possible filtering domains, such as the diffusion-weighted signals, the 

diffusion models fitted to the signal, or scalar features derived from the models. Smoothing 

in the signal domain is attractive for the theoretical guarantees of linear systems and 

sampling theory, but it not commonly used in VBA, perhaps due to challenges inherent to 

reorienting q-space data after registration. Model-based smoothing of tensors can possibly 

preserve anisotropy and fiber orientation [79]; however, the most common approach is to 

smooth in the feature domain [80]. Previous work has also shown that anisotropic smoothing 

in particular can offer improved accuracy and sensitivity [81]. This study aimed to represent 

the most common technique of feature-domain Gaussian smoothing with a bandwidth that is 

comparable to previous studies with comparable voxel size [82] [83] and recommended in a 

previous evaluation [36]; however, there remain many questions to answer related to these 

aspects of smoothing in VBA.

5. Conclusion

In conclusion, this paper presented a comparative evaluation of methods for voxel-based 

spatial mapping as measured by scan-rescan reliability and sensitivity to normal aging. The 

results show reliability depends greatly on the method of spatial mapping, as well as 

anatomical location. The largest differences were found when adding smoothing and 

comparing single voxel and region-based methods. In contrast, skeletoniza-tion and template 

type were found to have either a small or negligible effect on reliability. The aging results 

showed agreement among the methods in nine brain areas, although some methods were 

more sensitive than others. Skeletonization and smoothing were not found to change 

sensitivity to aging; however, template type had a small but significant effect. In comparing 

templates, the results show how a standard template can provide acceptable performance 

compared to study-specific templates when analyzing a healthy population, but also, how 

structural differences between the them can may be reflected in the patterns of significant 

results. The results also show how sensitivity to aging is limited by the spatial extent of the 

method, and whether these effects are small and localized or distributed in nature. These 

reliability results may help in the design and interpretation of future studies, as they indicate 

care must be taken to establish baseline reliability and statistical power of a study based on 

the specific anatomical hypotheses and method of spatial mapping. The results of the aging 

application may also help to understand how the choice of spatial mapping method affects 

sensitivity in white matter imaging studies. To further this goal, the complete results of this 

study are available for download from the following link: https://doi.org/10.7301/

Z0ZC80SW
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Figure 1. 
The left panel shows an illustration of methods for spatial mapping compared in the 

experiments. Smoothing was included in voxel-based and skeleton-based analysis but is not 

depicted here. The right panel illustrates the two template types tested.
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Figure 2. 
Results from the scan-rescan experiment in Sec. 3.1 showing reliability across methods and 

between the major factors among the methods. Panel A shows the coefficient of variation 

(CV), which indicates the percentage of variation across scans of the same subject (smaller 

is better). Panel B shows the intraclass correlation, which indicates what proportion of 

variance is between subjects (larger is better). Panel C shows the relative performance of 

study-specific and standard templates in each of the tested methods. The results show high 

variation across methods. Among the major factors, smoothing and region-based analysis 
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had large effects related to reproducibility, while template type and skeletonization had 

smaller effects. Statistically significant differences (p ≤ 0.05) are marked with an asterisk.
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Figure 3. 
Results from the scan-rescan experiment in Sec. 3.1 showing the spatial distribution of the 

reliability an axial slice. The background image shows the template T1 -weighted map. The 

left panels show the coefficient of variation (CV), and the right panels show the intraclass 

correlation (ICC). Within each side, the slices are organized to show a different method in 

each row and a different template type in each column. The results generally show large 

spatial variation across methods, with higher variation in voxel-based than region-based 

methods. Voxel-based analysis tended to have higher reliability in deep white matter and 
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lower in superficial white matter. Region-based analysis tended to have more uniform error 

rates than methods analyzing individual voxels.
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Figure 4. 
Results from the scan-rescan experiment in Sec. 3.1 showing the spatial distribution of the 

reliability a sagittal slice. The background image shows the template T1-weighted map. The 

left panels show the coefficient of variation (CV), and the right panels show the intraclass 

correlation (ICC). Within each side, the slices are organized to show a different method in 

each row and a different template type in each column. The results generally show large 

spatial variation across methods, with higher variation in voxel-based than region-based 

methods. Voxel-based analysis tended to have higher reliability in deep white matter and 
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lower in superficial white matter. Region-based analysis tended to have more uniform error 

rates than methods analyzing individual voxels.
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Figure 5. 
Results from the aging analysis in Sec. 3.2 showing the spatial patterns of age-related 

change in FA for each method. The background shows the template FA map, and the 

foreground shows the FDR q-value. Four areas are shown: right anterior pericallosal white 

matter (R_PERI), the fornix (FORN), the superior and middle cerebellar penduncles (SCP/

MCP), and left uncinate fasciculus (L_NC). The plots are colored to show FDR q-value, 

with redness indicating greater significance. Note that there is transparency to show the FA 

map, which may slightly change the perceived q-value. The results show general agreement 
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among methods, although several differences can be noted. VBA, SMOOTH, and SUPER 

analysis of R_PERI showed a greater extent of significant voxels than other methods. The 

fornix showed distinct spatial patterns for each template type, namely a greater 

concentration of significant results in the anterior and posterior portions in the standard 

template conditions.
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Figure 6. 
Results from aging analysis in Sec. 3.2 showing the structural differences between the study 

and standard templates. Eight regions are shown: right anterior pericallosal white matter 

(R_PERI), the fornix (FORN), the superior and middle cerebellar penduncles (SCP/MCP), 

left uncinate fasciculus (L_UNC), splenium (SPLN), right superior frontal white matter 

(R_SUPF), right posterior thalamic radiation (R_PTR), and right inferior frontal white 

matter (R_INFF). The top row shows the standard template FA map, and the second row 

shows the study template FA map, which has been deformed to the standard template. The 

third row depicts the deformation field between the templates, with coloring to indicate the 

logarithm of the Jacobian determinant (LogJacDet). The LogJacDet measures the local 

volumetric changes induced by the deformation, where blueness indicates that contraction 

was required to match the standard template to the study template and redness indicates that 

expansion was required. The results show the greatest diiferences were in the region of the 

fornix, which was smaller in the study template.
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Figure 7. 
Results from the aging analysis in Sec. 3.2 showing a quantitative comparison of the 

methods. The plots show the R2 of linear regression models relating age to FA. The left plot 

shows results aggregated for each method and template type. The right plot shows results 

aggregated for each region and template type. Nine areas are shown: right anterior 

pericallosal white matter (R_PERI), the fornix (FORN), the superior and middle cerebellar 

penduncles (SCP/MCP), left uncinate fasciculus (LJJNC), splenium (SPLN), right superior 

frontal white matter (R_SUPF), right posterior thalamic radiation (R_PTR), and right 

inferior frontal white matter (RJNFF). Statistically significant diiferences (p ≤ 0.05) are 

marked with an asterisk. The results show that single voxel analysis performed better than 

region-based analysis. Skeletonization and smoothing did not significantly change 

performance, but the standard template performed better than the study template when used 

in conjuction with single voxel-based TBSS. There was moderate variability in performance 

across regions, and models of L_SCP and L_UNC were found to perform better with the 

standard template.
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Table 1

A summary of methods for spatial mapping that are compared in the experiments. The dimensionality of the 

methods in the study-specific template are listed, as well as the average volume of the voxels/regions 

representing each measurement.

Method Dimension Mean Volume

VBA 353903 1 mm3

SMOOTH 353903 1 mm3

JHU 48 2814 mm3

SUPER 321 1098 mm3

VBA+TBSS 76586 1 mm3

SMOOTH+TBSS 76586 1 mm3

JHU+TBSS 48 648 mm3

SUPER+TBSS 318 240 mm3
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 (
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ef
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at
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m
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e 
ce
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lla
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pe
du

nc
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 (
M

C
P)

, s
pl

en
iu

m
 (

SP
L

N
),

 r
ig

ht
 p

os
te

ri
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 th
al

am
ic

 r
ad

ia
tio

n 
(R

_P
T

R
),

 r
ig

ht
 s

up
er

io
r 

fr
on

ta
l w

hi
te
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at

te
r 

(R
_S

U
PF

),
 r

ig
ht

 in
fe

ri
or
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ro

nt
al

 w
hi

te
 m

at
te

r 
(R

_I
N

FF
).

 I
f 

a 
m

et
ho

d 
is

 

no
t s

ho
w

n 
or

 m
ar

ke
d 

(n
.s

.)
, i

t h
ad

 q
 >

 0
.2

. F
or
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om

pa
ri

so
n,

 e
ac

h 
te

st
 is

 r
ep

re
se

nt
ed

 b
y 

th
e 

R
2 ,

 t-
va

lu
e,

 a
nd

 F
D

R
 q

-v
al

ue
 o

f 
th

e 
re

gr
es

si
on

 w
ith

 a
ge

.
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