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Abstract

Electrocorticography (ECoG) based Brain-Computer Interfaces (BCIs) have been proposed as a 

way to restore and replace motor function or communication in severely paralyzed people. To date, 

most motor-based BCIs have either focused on the sensorimotor cortex as a whole or on the 

primary motor cortex (M1) as a source of signals for this purpose. Still, target areas for BCI are 

not confined to M1, and more brain regions may provide suitable BCI control signals. A logical 

candidate is the primary somatosensory cortex (S1), which not only shares similar somatotopic 

organization to M1, but also has been suggested to have a role beyond sensory feedback during 

movement execution. Here, we investigated whether four complex hand gestures, taken from the 

American sign language alphabet, can be decoded exclusively from S1 using both spatial and 

temporal information. For decoding, we used the signal recorded from a small patch of cortex with 

subdural high-density (HD) grids in five patients with intractable epilepsy. Notably, we introduce a 

new method of trial alignment based on the increase of the electrophysiological response, which 

virtually eliminates the confounding effects of systematic and non-systematic temporal differences 

within and between gestures execution. Results show that S1 classification scores are high (76%), 

similar to those obtained from M1 (74%) and sensorimotor cortex as a whole (85%), and 

significantly above chance level (25%). We conclude that S1 offers characteristic spatiotemporal 

neuronal activation patterns that are discriminative between gestures, and that it is possible to 

decode gestures with high accuracy from a very small patch of cortex using subdurally implanted 

HD grids. The feasibility of decoding hand gestures using HD-ECoG grids encourages further 

investigation of implantable BCI systems for direct interaction between the brain and external 

devices with multiple degrees of freedom.
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1 Introduction

The research of Brain-Computer Interface (BCI) systems for restoring and replacing motor 

function or communication in severely paralyzed people has increased significantly in the 

last decades (Daly and Wolpaw, 2008; Miller and Hatsopoulos, 2012). To date, most BCI 

studies have focused on the sensorimotor cortex (Brodmann areas, BA, 1-4) (Yuan and He, 

2014), which is known to have a direct relationship with movement execution, attempt and 

imagery (Hochberg et al., 2006; Leuthardt et al., 2004; Miller et al., 2009b, 2010; Pistohl et 

al., 2008). The sensorimotor cortex can be divided into the primary motor cortex (M1, BA4) 

and the primary somatosensory cortex (S1, BA1-3). Both areas are somatotopically 

organized (Penfield and Boldrey, 1937) and provide rich spatial detail that could be 

exploited for BCIs with multiple degrees-of-freedom. In particular, a distinct portion of M1 

denoted the “hand knob” has been proven to directly control hand movements (Yousry et al., 

1997) and there is strong evidence from micro-array and needle recordings from both non-

human primate (Georgopoulos et al., 1986) and human (Hochberg et al., 2006) studies that 

this region allows decoding of arm and hand motor movements.

Even though M1 has been the main target for motor-related BCI control studies, S1 would 

be a logical alternative candidate due to its somatotopic organization. On the one hand, S1 is 

known to be related to afferent signal processing in humans, mostly present during touch, 

proprioception and pain perception (Martuzzi et al., 2014; Stringer et al., 2014). On the other 

hand, there is evidence for a role of sensory information during movement execution and 

attempted movement (Cramer et al., 2005; Kikkert et al., 2016). Recent predictive and 

feedback models for voluntary control, for example, suggest that there may be driving 

connections from S1 to M1 (Adams et al., 2012; Scott, 2012), providing good reason to 

believe that S1 would encode similar topographical activation patterns as M1 during 

movement execution and attempted movement tasks, and thus be a potential target for future 

BCIs.

Several studies in humans have shown successful decoding of hand related tasks from the 

sensorimotor cortex (M1 and S1 combined) using subdurally implanted electrodes 

(electrocorticography, ECoG) (Chestek et al., 2013; Kubánek et al., 2009; Miller et al., 

2009b; Pistohl et al., 2011; Schalk et al., 2007), but so far, only one study (Chestek et al., 

2013) has indicated that S1 alone may provide informative signals for BCI purposes. In 

these studies, standard clinical grids were used, which cover a relatively large area of cortex 

with spatial resolution of one electrode (or small clusters of microelectrodes) per cm2. 

Notably, we have previously shown that motor representations of the different fingers are 

located within an area of about 1 cm2 (Siero et al., 2014), meaning that standard clinical 

grids fail to capitalize on the spatial detail of this cortical feature. Additionally, decoding 

from large regions of cortex that extend widely beyond the topographical representation 

associated with the movement of interest (e.g., “hand knob” for hand movements), makes it 

unclear what cortical functions are involved in decoding.

In the present study, we specifically address the question whether hand movements can be 

decoded from the S1 hand region alone. We investigate whether four complex hand gestures, 

previously shown by our group to be spatially decodable from the sensorimotor cortex as a 
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whole (Bleichner et al., 2014), can be decoded exclusively from S1 using both spatial and 
temporal information. Additionally, in order to investigate whether the S1 discriminative 

neuronal information is decoupled from sensory feedback, we analyzed the spatiotemporal 

response prior to movement onset. To prevent spatial undersampling, we used grids with a 

high-density of electrodes (9/cm2). We focus on the high-frequency broadband or gamma-

band power change of the ECoG signal (70-125 Hz) (Crone et al., 1998; K. Miller et al., 

2009a; Miller et al., 2009b), which has been shown to have a time-locked response to motor 

execution, is commonly spatially specific (Buzsáki and Wang, 2012; Hermes et al., 2012; 

Siero et al., 2014), and allows for optimal decoding of hand gestures (Bleichner et al., 2014). 

In short, in the current study, we compare the classification scores based on spatiotemporal 

gamma-band features between high-density-ECoG electrodes localized over S1, M1 and 

both M1 and S1 (sensorimotor cortex). Additionally, we introduce a new method for trial re-

alignment that minimizes confounding effects caused by the temporal differences in the 

electrophysiological response to the task.

2 Materials and Methods

2.1 Subjects

Subjects of the study were five patients (mean age 31, range 19-45; see Table 1) with 

intractable epilepsy who were implanted with subdural ECoG grids to localize the seizure 

focus. This study was approved by the Medical Ethical Committee of the Utrecht University 

Medical Center. All patients signed informed consent according to the Declaration of 

Helsinki (2008).

Both standard clinical ECoG and high-density ECoG grids were implanted. Standard ECoG 

grids had an inter-electrode distance center-to-center of 1 cm and 2.3 mm exposed surface 

diameter (AdTech, Racine, USA). High-density grids had either 32 or 64 channels, with 1.3 

mm exposed surface diameter and an inter-electrode distance of 3 mm center to center 

(AdTech, Racine, USA). The 32-channel grid covered an area of 2.5 cm2 (4x8 electrode 

layout), whereas the 64-channel grid covered an area of 5.2 cm2 (8x8 electrode layout).

The current study focuses only on the high-density grids that covered (parts of) the 

sensorimotor cortex (see Table 1 for details), including the hand knob region. Some 

electrodes were excluded from the analysis due to technical problems (e.g., a broken lead, 

causing flat or unstable signals) or high power-line noise level. Notably, for none of the 

patients, the epileptic focus overlapped with the hand knob region. For each subject, the 

electrodes (Table 1) were localized using co-registration between a high resolution post-

implantation Computerized Tomography (CT) scan (Philips Tomoscan SR7000, Best, the 

Netherlands) and a pre-operative T1-weighed anatomical scan on a 3T Magnetic Resonance 

system (Philips 3T Achieva, Best, the Netherlands) with algorithms published in (Hermes et 

al., 2010) and displayed on a cortex surface rendering (Figure 1). By visual inspection, the 

projected electrodes anterior to central sulcus were labeled as M1 electrodes, whereas the 

ones posterior to central sulcus were labeled S1 electrodes. Electrodes over the central 

sulcus were labeled according to the closest gyrus.
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2.2 Task

The task (Figure 2), as described in (Bleichner et al., 2014), involved the execution of four 

different hand gestures (G1, G2, G3 and G4), which were taken from the American Sign 

Language finger spelling alphabet (‘D’, ‘F’, ‘V’ and ‘Y’, respectively). The participants 

were asked to copy the gesture presented on the screen using the hand contralateral to grid 

implantation and hold it for 6 seconds. The trials were interleaved with a rest condition (6 

seconds), where the subject was asked to place their hand in a relaxed open hand position. 

Each run consisted of 40 gesture trials of randomly presented gestures (10 times per gesture) 

and 41 rest trials. Participant 5 performed two (equal) runs. All subjects had their gestures 

recorded by a data glove (5DT Inc., Irvine, USA) for performance verification, based on 

which incongruent or erroneous trials (i.e., performing an incorrect or no gesture, moving 

additional fingers or correcting the gesture) were excluded from the analysis.

2.3 ECoG acquisition and preprocessing

ECoG signals were continuously recorded using a 128 channel Micromed system (Treviso, 

Italy; 22 bits, hardware band-pass filter 0.15-134.4 Hz) with 512 Hz sampling frequency. 

The data was analyzed offline and preprocessed using the open source FieldTrip® toolbox 

(Oostenveld et al., 2010) for MATLAB® (MathWorks Inc.) as follows: first, the continuous 

data were filtered using a notch filter (center at 50 and 100 Hz) and re-referenced using the 

common average reference (CAR) of all included high-density electrodes facing the surface 

of the brain  second, the data were divided into trials that 

were aligned using an electrophysiology marker, as described in section 2.5

2.4 Feature extraction

The gamma-band power trace was extracted using a Morlet wavelet dictionary, with 

multiplication in the frequency domain (length equal to 3 standard deviations of the implicit 

Gaussian kernel and width 7 cycles), as implemented in FieldTrip® Toolbox. The power was 

extracted with a temporal resolution of one sample every 0.01 s and subsequently smoothed 

using a moving average filter with a window size of 0.5 s. For each trial, the mean power 

over the gamma-band frequency bins (70-125 Hz) was calculated per channel, for a time 

window of -1 to 2.6 s (see Supplementary Figure 1 for the effect of different time windows 

on the classification scores) around an electrophysiology marker (see following section for 

more details). The resulting feature space is a three-dimensional matrix (channels x time x 

trials) per gesture. Notably, the intrinsic wavelet duration per time sample for the frequency 

range we used (70-125 Hz) varies between 18 ms (for 125 Hz) and 32 ms (for 70 Hz). 

Therefore, the maximum expected temporal “leakage” is 16 ms.

2.5 Trial alignment

The alignment of trials is a crucial step for classification of labeled events using not only 

spatial, but also temporal features. There are two potential sources of error when considering 

temporal (mis)alignment. First, jitter across trials for a given gesture causes blurring of 

spatiotemporal patterns used for classification (based on the averaged gamma-band power 

trace) leading to an underestimation of classification. Second, systematic differences 
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between gestures in finger movement order or in speed of movement may inflate 

classification by introducing differences in gamma-band responses onsets (see 

Supplementary Figure 2). Here, we developed a method of trial alignment that virtually 

eliminates these confounding effects by using the broadband gamma-band 

electrophysiological response to the task. The method detects the averaged gamma-band 

electrophysiological response to the task across channels (i.e., not specific to channels) and 

is described in detail below.

The implemented method is subject-specific and consists of three steps. First, we identified 

the channels that were involved in performing the task, more specifically, we selected the 

channels with a significant response to the task (i.e., that responded to all four gestures). A 

channel was considered to have significant activity when the mean power across trials was 

significantly different between task and rest periods (independent t-test, p < 0.05 

uncorrected). The task period was manually centered on the gamma-band peak, while the 

rest period was taken before the gesture’s cue. Note that this step does not bias the 

classification measures in the subsequent analysis since all gestures are included and it is 

only used to select channels used for the extraction of the new marker.

Second, we applied an algorithm for extracting a marker (t0) based on the slope of the 

gamma-band power response. To do so, the gamma-band power trace was calculated per 

trial by averaging over the channels with significant response (previous step) and 

provisionally smoothed until the response revealed a peak with a clear rising slope (Figure 

3A). Subsequently, the horizontal distance between a sliding line segment S(k) and the 

epoched trace F(n) was calculated for every position ni of the line segment (Figure 3B). The 

line segment S(k) is a unique set of amplitude values of F(n), with n denoting the discrete 

time points in the epoched interval, defined as:

(1)

where m is the slope of S(k), k is the set of domain values such that S(k) is limited by the 

range [smin, smax] of the trace F(n), and ni is the x-intercept of S(k). The line segment’s 

slope, m, is subject-specific (constant parameter) and was determined so that it fitted the 

subject’s average response. The horizontal distance, dni(k), between S(k) and F(n) was 

calculated for every point of S(k) by subtracting the abscissa values of points with equal 

ordinate (2). The overall distance between the line segment and the trace for a given ni, D(ni) 

(Figure 3C), was defined by the summation across all distances dni(k) which were smaller 

than a threshold εni (3). This value was also subject-specific and defined according to the 

domain of S(k).

(2)

Branco et al. Page 5

Neuroimage. Author manuscript; available in PMC 2018 February 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(3)

The gamma-slope marker (GSM) t0 (Figure 3D) was, then, mathematically calculated by 

extracting the midpoint of the line segment Sb(k) that best fits the trace F(n) using:

(4)

(5)

(6)

where b is the position where the trace best matches the line segment, smin and smax are the 

minimum and maximum values of the line segment, respectively, and the marker t0 is the 

midpoint of the line segment. In this step, three empirical parameters were defined per 

subject, the power trace smoothing, the slope m and the threshold value εni. Both the 

smoothing value and threshold were defined through visual inspection, while the slope was 

determined as a fraction of the maximum amplitude of the trace.

Third, we aligned all (unsmoothed) trials using the new GSM t0 = 0 s (Figure 4). The 

aligned trials were epoched into segments of 3.6 s around t0 (-1 to 2.6 s; see section 2.4). 

Since the alignment was based on the mean gamma-band trace over all significant channels 

as opposed to separate channels, any time differences between channels were preserved. The 

gamma-band power trial alignment method was performed only once and considered all 

included channels of each subject, and was therefore not dependent on the electrode M1/S1 

grouping.

2.6 Feature Classification

Gesture data were classified using a spatiotemporal template matching correlation with a 

leave-one-out cross-validation scheme. This straightforward classification method has 

previously yielded robust results when used to discriminate spatial patterns (Bleichner et al., 

2014). In fact, it showed similar results as other frequently used state-of-the-art classifiers, 

such as the regularized latent discriminant analysis method (Bleichner et al., 2014), but is 

computationally easier to use. Here we extended this method to spatiotemporal patterns.

As already described above, the feature space consisted of a three-dimensional matrix per 

gesture, where channels, time and trials were the three dimensions. For each gesture the 

average activation pattern (hereafter referred to as spatiotemporal template, Figure 5) was 

computed by averaging the feature space over trials, excluding the single trial that was to be 
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classified. This resulted in one 2D (i.e., channels x time) spatiotemporal template per 

gesture. The single trial spatiotemporal feature was then compared with the four templates 

(one per gesture) by mean of Pearson Correlation (between each spatiotemporal template 

feature and each trial feature) and labeled as the gesture (spatiotemporal template) with 

which it had the highest correlation score. The classification accuracy was defined as the 

percentage of correctly labeled trials. In order to compare classification scores between 

electrodes on the primary motor cortex (M1), electrodes on the primary somatosensory 

cortex (S1) and the combination thereof, the classification step was repeated using all 

(sensorimotor) electrodes, only M1 electrodes and only S1 electrodes (Figure 1). The most 

informative electrodes were estimated by calculating the contribution of each individual 

electrode for classification. For this purpose, the classification accuracy was re-computed 

using combinations of increasing number of electrodes. The set sizes varied from an 

individual electrode to all electrodes. For each set size the classification accuracy was 

computed using up to 1000xN random combinations of electrodes, where N is total number 

of electrodes. Note that for the set sizes with less than 1000xN possible combinations, all 

possible electrode combinations were used. The contribution of each individual electrode 

was then computed based on the average classification achieved when that electrode was 

part of the combination.

Lastly, the classification chance level was computed both by randomly permuting the 

observations across classes (as many times as possible permutations) and by feeding the 

classifier with generated zero-mean Gaussian white noise (Combrisson and Jerbi, 2015). The 

former resulted in a chance level of 23.68±0.84% and the latter in 25.01±1.30%. The 

statistical significance level of decoding (mean across subjects 39.17±1.17%) was 

determined by the 95th percentile (p < 0.05) of the empirical distribution obtained by 

randomly permuting the data (Combrisson and Jerbi, 2015). Hence, for the purpose of the 

present study the theoretical chance level of 25% (for four classes) and the significance level 

of 40% are adequate and will be used.

Notably, since subject 5 performed two runs, we could also assess the reproducibility of the 

results. This was tested by using one of the two runs as a template in the cross-validation 

step. Both combinations (template run 1, test run 2 and template run 2, test run 1) were 

performed using each of the three electrode selections, i.e., all sensorimotor, only M1 and 

only S1 electrodes.

2.7 Timing of M1 and S1 responses

In order to understand the basis of the discriminative information comprised in the primary 

motor and somatosensory cortices, and to investigate whether S1 comprises pertinent 

neuronal information decoupled from the movement-induced sensory feedback, we 

performed an extra analysis in which we analyzed the increase in broadband activity prior to 

movement onset. For this particular purpose, epoched data were re-aligned using movement 

onset markers. The latter were determined, per trial, by visual inspection, as being the time 

point preceding the one of the first finger to move in the data glove traces.
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3 Results

3.1 Task performance and gamma-band response

Overall, the task performance, as measured by the data glove traces, of the five subjects was 

quite reliable. Per individual, only a maximum 7 trials out of a total of 40 trials (Table 2) 

were excluded, due to the execution of an incorrect gesture, either by moving additional 

fingers or correcting the gesture. In most subjects, changes in the data glove traces occurred 

shortly after the gamma slope marker (Figure 6 and Supplementary Figure 3). Inspection of 

the timing of the mean gamma-band response, the cue and movement onset indeed revealed 

that the movement onset occurred consistently after the cortical activity onset – 

approximately one second after the cue, half a second after the gamma-band activity onset 

and shortly after the gamma-band peak in activity (Supplementary Figure 4).

Spatiotemporal gamma-band traces per gesture aligned using the GSM (Figure 7A), show 

different spatial and temporal signatures per gesture, which could allow for decoding. In 

particular, when zooming in into two visibly responsive channels over M1 and S1 areas 

(Figure 7B), one can appreciate the fact that the temporal features provide additional 

valuable information for decoding besides spatial features (i.e., difference between 

channels).

3.2 Classification results

All classification scores (Figure 8A) were significantly above chance level (p < 0.05). 

Subjects who had sufficient coverage of M1 and S1 (subject 2, 3 and 5) showed accurate 

classification for each region individually. The average classification over the sensorimotor 

cortex (all electrodes of subjects 2, 3 and 5) was 85.0%, over S1 (subjects 1, 2, 3 and 5) 

76.25% and over M1 (subjects 2, 3, 4 and 5) 74.63% (Figure 8B). There was no significant 

difference between the scores of the three conditions (sensorimotor, M1 and S1 electrodes; 

N = 3, subject 2, 3 and 5) as assessed by a Friedman’s test for one-way repeated measures 

with non-parametric data, χ2(2) = 3.20, ns. The variation in scores between subjects can be 

mostly explained from the grid coverage of M1 and S1 (Figure 1), since the lowest M1 

(subject 5) and S1 (subject 2) scores were from the patients with the lowest number of 

electrodes over M1 (11 electrodes, compared with 15 or more in all other cases) and S1 (9 

electrodes, compared with 15 or more in all other cases), respectively (Table 1).

Reproducibility of the classification results for the three electrode selections (sensorimotor, 

M1 and S1) was tested using the two runs of subject 5. Two combinations of test and 

experimental datasets were used: 1) derive the template from run 1 and classify run 2, and 2) 

derive the template from run 2 and classify run 1. Results (Table 3) show good 

reproducibility of the classification across runs of the same subject, suggesting that the 

gestures pattern encoded in the sensorimotor cortex can be well discriminated across 

sessions using high-density ECoG grids.

For the subjects with sensorimotor (both M1 and S1) coverage (subjects 2, 3 and 5) the most 

informative electrodes (Figure 9) appeared to be distributed over both the M1 and S1 areas, 

indicating that S1 may offer discrimination features as good as M1 to distinguish between 

the four gestures on this spatial-temporal scale. In particular, subject 3, who had the most 
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extensive hand knob coverage and the highest performance, showed four ‘most informative’ 

electrodes, two over M1 and two other over S1. Note that, even when a single electrode 

cannot be considered ‘most informative’, it still may be essential for accurate classification. 

Indeed, the decoding accuracy has been shown to increase with the number of electrodes 

used for classification (Bleichner et al., 2014).

3.3 Timing of M1 and S1 responses

The results above indicate that S1 contains sufficient neuronal information to discriminate 

between four hand gestures. However, the nature of this S1 neural information also plays an 

important role, especially for BCI applications, where end-users may lack sensory feedback. 

Hence, we further investigated the temporal dynamics of the signal of S1 (and M1), in 

relation to movement onset. For this purpose, we analyzed the temporal signatures of the 

signals in the following three steps and show the results for a representative subject (subject 

3).

Firstly, the two representative channels shown in Figure 7 with clear response over both S1 

and M1 were re-aligned with respect to movement onset markers. Indeed, in these two 

channels all gamma-band power traces (Figure 10B) showed an increase in activity before 

movement onset. Secondly, to investigate whether the same trend was common to all S1 

channels, time-frequency plots (Figure 10C) of the mean over S1 channels with significant 

response during the task (p < 0.05, Figure 10A) were computed per gesture. This analysis 

revealed a clear broadband (~50-130 Hz) increase in S1 channels prior to movement onset 

combined with a decrease in the beta frequency band starting between one to half a second 

before movement onset (t0 = 0 s). Thirdly, we investigated whether the broadband increase 

in activity is significantly different from baseline prior to movement. For this purpose, 

normalized z-score traces in the gamma-band (Figure 10D) of each gesture were calculated 

by subtracting and dividing the real amplitude trace by the mean and standard deviation, 

respectively, of a surrogate ensemble of mean amplitude values, where the stimuli onsets are 

shifted randomly in time 10000 times (Canolty et al., 2007). These traces were used to 

determine the uncorrected two-tailed probability that the deviation seen in the real amplitude 

trace at a given time is due to chance (p < 0.05). Results (Figure 10D) confirmed that a 

significant power increase occurs before movement onset for each gesture individually, 

when using the mean trace over S1 channels with significant response (Figure 10A).

Similar results were found across subjects, where the mean time-point corresponding to a 

significant power increase (-99.75±36.96 ms, mean ± standard error) was significantly lower 

than zero (one-sample t-test, p < 0.05, N=4). Altogether, these results indicate that there is 

information over S1 hand area that is decoupled from sensory feedback. Notably, an 

alternative strategy to investigate the nature of S1 responses could be to decode the gestures 

prior to movement onset. Following this analysis, however, decoding accuracies for both M1 

and S1 coverages were on average not significantly above chance level (p < 0.05), indicating 

that this method would be inconclusive. Failure to decode prior to movement onset may be 

due to the limited time window with significant power increase before movement onset.
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4 Discussion

In this study we have shown that the primary somatosensory cortex (S1) offers characteristic 

spatiotemporal discriminative patterns during executed hand gestures, providing 

classification rates similar to that obtained for primary motor cortex (M1) only and the 

sensorimotor cortex as a whole (M1 and S1 together). All five subjects achieved 

classification scores significantly (p < 0.05) above chance level, ranging from 59 to 100%. 

This indicates that S1 can be used as a source of signals for implantable BCI systems with 

multiple degrees-of-freedom. Further, regardless of the grid position, a mean (over subjects) 

classification accuracy of 80% was achieved when using a patch of cortex as small as 2 cm2, 

suggesting that decoding sign language using high-density ECoG grids is a potential strategy 

to increase the degrees-of-freedom of implantable BCI systems.

Previous articles from our group showed that decoding four hand gestures can be 

successfully achieved in a subset of patients by only considering spatial features (Bleichner 

et al., 2014). Notably, the execution of sign language gestures is not instantaneous, in that 

fingers are flexed/extended in sequence (albeit quite rapid) to obtain the gesture. 

Accordingly, one may expect to observe differences in the onset of a gamma-band response 

across electrodes, assuming that different electrodes record from somatotopically different 

cortical patches. Therefore, in the current study, we performed a reanalysis of the data of 

Bleichner and colleagues (Bleichner and Ramsey, 2014; Bleichner et al., 2014) and 

classified the four gestures using spatial and temporal features combined. Results showed 

that, even though the grid location for some subjects might not be optimal, high 

classification scores are achieved, not only in sensorimotor cortex as a whole (40-97% in the 

previous analysis compared to 59-100% in the current study), but also separately for M1 and 

S1. In order to understand the spatial-temporal pattern, which characterizes each single 

gesture, the trials had to be temporally aligned. Standard methods of alignment (such as 

relative to the cue or movement onset) may result in temporal jitter and/or bias, which may 

artificially alter the classification results (either positively or negatively). We introduced a 

new method of aligning trials, using the gamma-slope marker (GSM), which is based on the 

robust rise in gamma-band power following each cue. The use of the GSM method was 

introduced for the single purpose of classification by allowing a correct assessment of the 

temporal signature of each gesture. Indeed, with this approach, the (spatio)temporal 

differences between the gamma-band power traces of the four gestures can be safely 

interpreted to be from neuronal origin, and not due to different movement speed responses or 

the order in which the fingers are moved. Therefore, it allowed for minimization of both 

classification inflation due to systematic temporal differences in onset between gestures, and 

classification deflation caused by temporal jitter between trials.

4.1 Subjects’ performance

Overall, the subjects’ performance, as recorded with the data glove, was robust across trials. 

Notably, hand movement onset occurred consistently half a second after the cortical activity 

onset, approximately one second after the cue and shortly after the gamma-band peak in 

activity. The delay between the cue and hand movement onset was larger than the typical 

reaction time (around 400 ms) between visual cues and muscle response in humans (Thorpe 
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et al., 1996). This can be attributed to the fact that, despite a brief practice period before the 

experiments, the sign language gestures were not trained enough to be automatic, thereby 

requiring some cognitive processing (notably to process the visual cue) before they were 

executed. In addition, reaction times may have been slowed due to the medical procedure 

and medication. The delay between gamma-band activity onset and hand movement onset 

was also larger than we would expect for automated responses, which agrees with the notion 

of a deliberate preparation and execution of gestures involving cognitive processes.

4.2 Source of classification scores variance

Due to the limited number of subjects in this study, the source of variance in classification 

scores between subjects is difficult to account for. Two issues are worth mentioning, 

however. A first source of variance is the coverage of the hand knob. From the classification 

results of the three subjects with coverage over sensorimotor cortex (both M1 and S1), and 

the location of the most informative electrodes, we conclude that M1 and S1 are both good 

options for BCI control. On average, the classification scores for the combination of the two 

were slightly higher than for S1 or M1 separately, but this difference did not reach statistical 

significance. It has to be noted that statistics over the relatively small number of patients in 

our study is of limited value and a larger sample size will be needed to compare S1, M1 and 

the combination of the two in more detail. Two subjects had only one type of coverage 

(either S1 or M1) and both showed high classification scores for the four hand gestures. 

Although the subject with M1 coverage appeared to have a better classification score, the 

subject with only S1 coverage had the least hand knob coverage. Not surprisingly, the 

subject with best grid position over sensorimotor cortex (subject 3) was also the one 

reporting the highest scores. Indeed, Bleichner and colleagues (Bleichner et al., 2014) 

already suggested that the optimal location of the high-density grid over the hand knob 

might be essential for good classification results.

Second, the quality of the gesture performance likely affects classification, as suggested in 

an fMRI study in decoding gestures (Bleichner et al., 2013). Indeed, the subject with the 

100% classification accuracy presented, besides the best grid position, the least excluded 

trials and the best gestures performance, as recorded with the data glove, with equal training 

time as the other subjects. This subject not only performed the gestures very consistently, but 

also displayed a consistent reaction time (Figure 7), indicating that accurate and consistent 

performance of the gestures may lead to better classification. In future applications, this 

level of performance may often require somewhat more intensive practice and training than 

our current subjects received.

4.3 Role of S1 in motor execution and attempt

The results of the current study agree to some extent with those of Chestek and colleagues 

(Chestek et al., 2013), who showed above-chance level classification of nine different 

isometric hand motions using electrodes over M1, S1, mesial and parietal areas in three 

epileptic patients with low resolution sensorimotor coverage. In their study, M1 

classification outperforms S1 classification most of the times, although there was substantial 

variation in the results. Here, we show that when using optimal spatial resolution and 

Branco et al. Page 11

Neuroimage. Author manuscript; available in PMC 2018 February 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



employing the temporal information of the recorded signals, S1 decoding can be as accurate 

as M1 decoding.

Although ECoG-based BCIs aim to replace motor output for completely paralyzed patients, 

who can only attempt movement, the current study used able-bodied epilepsy patients who 

performed the actual movements. Chestek and colleagues (Chestek et al., 2013) argued that 

actual movement may inflate S1 decoding accuracy due to sensory feedback from the 

movements. However, even though S1 is correctly identified to integrate sensory feedback 

information, spinal cord injury fMRI studies have indicated activation of both M1 and S1 

during attempted movements (Cramer et al., 2005; Hotz-Boendermaker et al., 2011, 2008), 

suggesting that S1 activation also occurs without direct sensory feedback. Furthermore, a 

recent 7T fMRI study shows that S1 topography remains intact after amputation, and 

presents a detailed representation of individual fingers upon attempted digit movement 

(Kikkert et al., 2016). Similarly interesting ECoG results have been obtained by Wang et al. 

(Wang et al., 2013) and Gharabaghi et al. (Gharabaghi et al., 2014) in individuals with 

tetraplegia and amputees, respectively. The former showed that attempted movement could 

be used to control 3D cursor movement with a success rate of 87% with a grid that was 

positioned entirely over S1, while the latter indicated high R2 values (in gamma-band) 

during phantom hand movement mostly over the post-central gyrus. Also the significant rise 

of S1 activity before movement onset in the present study supports the notion that sensory 

feedback is not necessary for S1 to be activated and that the area plays a role beyond only 

sensory feedback. However, a more convincing approach would be to record 

electromyographic signals (starting before movement onset) to exclude sensory feedback 

before movement. Yet, a role beyond only sensory feedback has been similarly supported in 

the last decades by data derived from anatomy, cortical stimulation and neurophysiological 

recordings (Cramer et al., 2005). Particularly interesting are cortical stimulation studies with 

subchronically implanted epilepsy patients showing that electrocortical stimulation in M1, 

but also in S1, results in isolated and complex hand motor responses (Haseeb et al., 2007; 

Nii et al., 1996).

Even though S1 seems to clearly play an important role during motor output (Cramer et al., 

2005; Kikkert et al., 2016), the role of S1 during movement execution and its interaction 

with M1 are far from being understood. Besides a reflection of the proprioceptive feedback 

from muscle and joint receptors (Ashe, 2005; Miller and Hatsopoulos, 2012) the movement-

related activation over the somatosensory cortex may relate, for example, to a predictive 

driving connection from S1 to M1 (Adams et al., 2012; Scott, 2012), or modulation by a top-

down mechanism involved in motor preparation (Christensen et al., 2007) or even execution. 

Interestingly, predictive theories of motor control have recently hypothesized that S1 may 

play a role in generating an efference copy, which is an internal prediction of sensory 

consequence of a volitional movement (Adams et al., 2012). In fact, Sun and colleagues 

(Sun et al., 2015) presented the first evidence of an efference copy in humans using standard 

ECoG grids during cued finger movements. A logical step would be to further investigate the 

information delay between M1 and S1 using high-density ECoG grids. Another possible 

theory for the role of S1 is one in top-down attentional control (Hopfinger et al., 2001), 

which is a higher-order mechanism that regulates sensory areas. This phenomenon has been 

described in detail for visual (Brefczynski and DeYoe, 1999) and auditory cortex (Fritz et 
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al., 2007), where presentation of a cue predicting an ensuing stimulus leads to an increase in 

neural activity before arrival of the stimulus, and even when the stimulus is withheld. 

Similar phenomena are described for the somatosensory system with 

magnetoencephalography (e.g., Haegens et al., 2011). In addition, covert attention to the 

thumb proved to increase functional MRI activity in the somatosensory contralateral cortex 

(Bauer et al., 2014). Given that the somatosensory cortex, like the visual and auditory cortex 

is topographically organized, it is to be expected that attempting to execute specific gestures 

may give rise to decodable patterns of elevations in neural activity in S1. Clearly, further 

research is necessary in order to assess in detail what role is played by S1 in movement 

preparation, execution and, especially during attempted movement.

5 Conclusion

In conclusion, this study shows that S1 may be as good of a target as M1 (or the two 

combined) for motor-based ECoG-BCIs, and contains sufficient somatotopic information to 

distinguish between four hand gestures. Although promising, the exact mechanisms leading 

to S1 activation and its exact role in executed (and attempted) hand movements are yet to be 

determined. The current study also indicates that optimal hand knob coverage and consistent 

gesture execution are essential for accurate decoding. Moreover, it encourages the use of 

both spatiotemporal information and high-density subcortical grids as a robust and reliable 

BCI platform for fine movement decoding.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Position of the electrode grids of all individual subjects.
The central sulcus (CS, black line) separates the primary motor cortex (M1, in blue) from 

the primary somatosensory cortex (S1, in orange). Dashed yellow lines indicate the hand 

knob region as determined with pre-surgical functional MRI. Electrodes over the blue areas 

were labeled as M1 electrodes, electrodes over orange areas were labeled as S1 electrodes 

and electrodes in black were excluded from the analysis.
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Figure 2. Task paradigm.
A) Four hand gestures (G1, G2, G3 and G4), taken from the American Sign Language finger 

spelling alphabet (‘D’, ‘F’, ‘V’ and ‘Y’, respectively), were executed during the task. B) The 

task paradigm comprised 10 trials per gesture, presented in the screen for 6 seconds, 

interleaved with 6 seconds of rest trials (open relaxed hand). The gestures were recorded 

using a data glove device, which measured the flexion of each finger. The figure shows the a 

representative data glove trace for gesture D, where the light blue line is the thumb, the 

orange line is the index finger, the yellow line is the middle finger, the purple line is the ring 

finger and the green line the little finger.
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Figure 3. Gamma-slope method for alignment of the trials.
A) Representative example of an epoched gamma-band trace F(n) for one trial (e.g., subject 

3 G1, trial 1), for n discrete time points. B) The horizontal distance dni(k) between all points 

k in the line segment, S(k), and F(n), was calculated for every ni in the domain of F(n). As 

an example, the figure shows the line segment in three representative time ni points (ni = 

2286, 3499 and 5208). The line segment’s slope is subject-specific and constant. C) The 

overall distance, D(ni), between S(k) and F(n) was calculated by summing the distances, 

between all points in S(k) and the points in F(n) with the same amplitude, which were 

inferior to εni. The argument which minimized the D(ni) curve, b, identified the line segment 

which best fitted the trace. In this example, b was 3499. D) The gamma-slope marker (GSM) 

t0 was calculated as the midpoint of the line segment Sb(k) which best fitted the trace.
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Figure 4. Trial alignment for a representative dataset of subject 4 (G2).
After having identified the gamma-slope-markers over smoothed traces all unsmoothed trials 

were aligned to each other, such that all markers were coincident. For that, the first trial 

(blue trace) was kept unchanged, while the remaining trials (orange traces) were aligned to 

it. In this figure power amplitude is given in μV2 and t0 = 0 s corresponds to the movement 

onset.
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Figure 5. Representative feature space and spatiotemporal template for classification of the four 
gestures for subject 3.
A) The three-dimensional feature space used for classification consisted, per gesture, of a 

3D matrix of included channels (32) by included trials (9, 8, 9, 10 for G1-4, respectively) 

and by time points (-1 to 2.6 s around gamma-band activity onset). B) Spatiotemporal 

template derived from the mean gamma-band power over trials per gesture. The color code 

displayed on the left of each template graph indicates the location of the electrode: the M1 

electrodes in blue and the S1 electrodes in orange. The time reference (t0 = 0 s) is the 

gamma-slope marker (GSM). The color bar on the right of the figure indicates the power 

over the gamma-band in μV2.
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Figure 6. Representative examples of data glove traces for each gesture (G1-G4) of subject 3.
The average finger position over trials is represented in an interval -2 to 2 s around the 

gamma-slope marker (t0 = 0 s, dashed gray line). The mean cue time and corresponding 

standard deviation (relative to the gamma-slope marker) is indicated by the solid gray line 

and gray shaded area. For each trace, a dashed line with the same color of the respective 

finger trace indicates the error. The movement response is seen to consistently occur half a 

second after the gamma-band activity onset and approximately 1 second after the cue. This 

pattern in response timing is representative for the remaining subjects (see Supplementary 

Figure 3). Note that, due to the device calibration, the thumb movement is inverted when 

compared to the remaining fingers.
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Figure 7. Representative gamma-band traces per channel of subject 3.
A) Gamma-band power (average over trials) in the time window -1 to 5 s around the 

gamma-slope marker (t0 = 0 s). Each gesture is represented with a different line color. The 

standard deviation across trials is represented by the shaded region with the color 

corresponding to the respective gesture. Power amplitudes were normalized (arbitrary units, 

a.u.) to all channels, in order to visualize differences between them. B) Two representative 

channels from M1 (solid black square) and S1 (dashed black square) areas, respectively. The 

mean power amplitude (arbitrary units, a.u.) over trials per gesture is plotted over a time 
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window -1 to 5 s around movement onset. As in A) standard deviations are shown using the 

shaded regions with respective gesture color. CS – Central Sulcus; A – Anterior; P – 

Posterior.
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Figure 8. Classification scores for the five subjects (subject 1-5).
A) For each subject one to three bars show the classification scores, by means of leave-one-

out cross-validation, for the different electrode coverages: sensorimotor cortex in gray, M1 

in blue and S1 in orange. Subject 1 and subject 4 had partial sensorimotor coverage (i.e., 

only S1 or M1, respectively), while the remaining subjects had electrodes over both the 

precentral and postcentral parts of the sensorimotor cortex. B) Mean classification scores 

across subjects for sensorimotor (N=3), M1 (N=4) and S1 (N=4) coverage. For both panels, 
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the theoretical chance level is 25% (dashed gray line) for classification of four classes and 

the significance level is 40% (solid gray line).
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Figure 9. Most informative electrodes.
The most informative electrodes for each subject were determined by calculating the 

contribution of each individual electrode for classification. The classification accuracy was 

re-computed using combinations of increasing number of electrodes. The set sizes varied 

from an individual electrode to all electrodes. The contribution of each individual electrode 

was then computed based on the average classification achieved when that electrode was 

part of the combination (c.f. the color bar on the right, in which yellow (smallest radius) 

corresponds to the least informative electrode and blue (biggest radius) to the most 

informative electrode). CS – Central Sulcus; A – Anterior; P – Posterior.
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Figure 10. Representative gamma-band traces of subject 3 aligned to movement onset.
A) Schematic of the ECoG grid for subject 3, with two channels highlighted with squared 

boxes and S1 channels with significant response during the task highlighted in orange. CS - 

Central sulcus; A - Anterior; P - Posterior. B) Two representative channels are selected from 

M1 and S1 areas. The gamma-band traces of each channel were aligned with respect to 

movement onset (t0 = 0 s) and the mean power amplitude (arbitrary units, a.u.) over trials per 

gesture is plotted here over a time window -1 to 5 s around movement onset. The standard 

deviation across trials is represented by the shaded region with the color corresponding to 

Branco et al. Page 27

Neuroimage. Author manuscript; available in PMC 2018 February 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the respective gesture. C) Average time-frequency power plots (baseline correction in dB 

using -2 to -1 time window) across S1 channels (highlighted in orange) for each gesture 

(G1-G4). Movement onset (t0 = 0 s) is indicated with a vertical black line, while broadband 

(~50-130 Hz) activity is indicated with a dashed line. For all gestures there is an increase in 

broadband power, which starts before movement onset, coupled with a decrease in the beta 

band (~10-30 Hz). D) Normalized z-score (a.u.) traces used to determine the uncorrected 

two-tailed probability that the deviation seen in the real amplitude trace at a given time is 

due to chance. For each gesture, the dashed gray line indicates the first time point 

correspondent to a significant power increase (p < 0.05), while the solid gray line indicates 

the movement onset (t0 = 0 s).
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Table 1
Patient characteristics and high-density grid information.

Patient No. Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Age 29 42 19 19 45

Gender Male Male Female Male Female

Handedness Right Right Right Right Left

Implanted hemisphere Left Left Left Left Right

Epileptic resected area Posterior high parietal Temporal lobe 
(including 

amygdala and 
hippocampus)

Posterior 
medial 

frontal gyrus 
until pre-

central gyrus

Anterior 
temporal lobe 

(including 
amygdala and 
hippocampus)

Frontal-para-sagittal

High-density grid location Hand knob (post-central) Hand knob (pre-
central and 

superior post-
central

Hand knob 
(pre- and 

post-central)

Hand knob 
(superior pre-

central)

Hand knob (primarily 
post-central)

Total number of included 
electrodes

29/32 24/32 32/32 31/32 59/64

Number of electrodes over 
M1

- 15 16 31 11

Number of electrodes over 
S1

29 9 16 - 48
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Table 2
Included trials per subject.

Number of included trials

Patient No. G1 G2 G3 G4

  Subject 1 8 10 10 6

  Subject 2 5 10 10 9

  Subject 3 9 8 9 10

  Subject 4 9 7 8 10

  Subject 5 – run 1 5 10 8 10

  Subject 5 – run2 5 10 10 10
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Table 3
Reproducibility of classification results for subject 5 using two independent runs.

Decoding Accuracy

Sensorimotor cortex M1 S1

Template run1 - classify run 2 80% 51% 80%

Template run2 - classify run 1 85% 53% 82%
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