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Abstract	

	
In	the	primary	visual	cortex	of	many	mammals,	ocular	dominance	columns	segregate	information	from	the	

two	eyes.	Yet	under	controlled	conditions,	most	human	observers	are	unable	to	correctly	report	the	eye	to	

which	a	stimulus	has	been	shown,	indicating	that	this	information	is	lost	during	subsequent	processing.	This	

study	 investigates	 whether	 eye-of-origin	 information	 is	 available	 in	 the	 pattern	 of	 electrophysiological	

activity	 evoked	 by	 visual	 stimuli,	 recorded	 using	 EEG	 and	 decoded	 using	 multivariate	 pattern	 analysis.	

Observers	(N=24)	viewed	sine-wave	grating	and	plaid	stimuli	of	different	orientations,	shown	to	either	the	

left	or	right	eye	(or	both).	Using	a	support	vector	machine,	eye-of-origin	could	be	decoded	above	chance	at	

around	140	and	220ms	post	 stimulus	onset,	 yet	observers	were	at	 chance	 for	 reporting	 this	 information.	

Other	stimulus	 features,	 such	as	binocularity,	orientation,	 spatial	pattern,	and	 the	presence	of	 interocular	

conflict	(i.e.	rivalry),	could	also	be	decoded	using	the	same	techniques,	though	all	of	these	were	perceptually	

discriminable	 above	 chance.	 A	 control	 analysis	 found	 no	 evidence	 to	 support	 the	 possibility	 that	 eye	

dominance	was	responsible	for	the	eye-of-origin	effects.	These	results	support	a	structural	explanation	for	

multivariate	 decoding	 of	 electrophysiological	 signals	 –	 information	 organised	 in	 cortical	 columns	 can	 be	

decoded,	even	when	observers	are	unaware	of	this	information.	

	
Keywords:	MVPA;	cortical	columns;	awareness;	binocular	vision.	

	

1	Introduction	

	
Signals	 from	 the	 left	 and	 right	 eyes	 remain	

anatomically	 segregated	 throughout	 the	

early	 stages	 of	 visual	 processing.	 In	 the	

primary	visual	cortex	of	most	primates,	cells	

that	 preferentially	 respond	 to	 signals	 from	

one	 or	 other	 eye	 are	 organised	 into	 ocular	

dominance	 columns	 (Adams	 et	 al.,	 2007;	

Horton	 and	 Hocking,	 1996;	 Hubel	 and	

Wiesel,	 1969).	 This	 striking	 columnar	

structure	is	lost	at	later	stages	of	processing,	

when	 signals	 are	 combined	 binocularly	 to	

give	a	cyclopean	percept	of	the	world.	When	

a	 visual	 stimulus	 is	 presented	 to	 only	 one	

eye	 under	 controlled	 conditions,	 humans	

generally	 lack	 explicit	 conscious	 awareness	

of	 which	 eye	 was	 stimulated	 ('utrocular	

discrimination’,	or	more	properly	'utrocular	

identification';	 Ono	 and	 Barbeito,	 1985).	

This	 loss	 of	 information	 is	 distinct	 from	

other	 visual	 cues,	 such	 as	 spatial	 position	

and	 orientation,	 that	 are	 also	 segregated	

anatomically,	 yet	 remain	 perceptually	

available	to	conscious	awareness.	

	

Recently,	 studies	 using	 electro-	 and	

magneto-encephalography	 (EEG	 and	 MEG)	

have	 shown	 that	 both	 simple	 (Cichy	 et	 al.,	

2015;	Ramkumar	et	al.,	2013;	Wardle	et	al.,	

2016)	 and	 more	 complex	 (Carlson	 et	 al.,	

2013,	2011;	Cichy	et	al.,	2014;	Coggan	et	al.,	

2016;	 Nemrodov	 et	 al.,	 2016)	 image	

properties	can	be	decoded	from	the	pattern	

of	 electromagnetic	 activity	 evoked	 by	 a	

visual	 stimulus.	 One	 study	 investigating	

orientation	decoding	(Cichy	et	al.,	2015)	has	

suggested	 that	 any	 information	 encoded	 in	

cortical	 columns	 should	 produce	 distinct	

spatial	patterns	of	electrical	activity	that	can	

be	 recovered	 using	 machine	 learning	

algorithms	(multivariate	pattern	classifiers).	

Given	 the	 columnar	 representation	 of	 eye-

of-origin	 in	 the	 early	 stages	 of	 cortical	

processing,	 this	 should	 extend	 to	

information	 about	 which	 eye	 (or	

combination	of	eyes)	was	stimulated,	as	has	

been	 demonstrated	 using	 fMRI	

(Schwarzkopf	 et	 al.,	 2010).	 Conversely,	

another	 recent	 study	 (Wardle	 et	 al.,	 2016)	

has	 claimed	 that	 the	 more	 perceptually	

distinct	 two	 stimuli	 are,	 the	 more	 easily	

their	 evoked	 responses	 can	 be	 dissociated	

using	 the	 same	 analysis	 techniques.	 This	

account	 would	 predict	 that	 eye-of-origin	

information	 should	 not	 be	 available	 in	 the	

electrophysiological	 evoked	 response,	 since	

it	cannot	be	perceptually	discriminated.	

	



Baker	(2017),	Neuroimage,	147:	89-96	

doi:	10.1016/j.neuroimage.2016.12.008	

This	post-print	version	was	created	for	open	access	dissemination	through	institutional	repositories	

Here,	 sine-wave	 grating	 and	 plaid	 stimuli	

were	 presented	 to	 the	 left	 or	 right	 eye,	 as	

well	as	to	both	eyes	together,	whilst	evoked	

responses	 were	 measured	 using	 EEG.	 For	

comparison	 with	 previous	 work,	 stimulus	

orientation	 was	 also	 manipulated,	 and	

conditions	 involving	 interocular	 conflict	

were	 included	 to	 probe	 the	mechanisms	 of	

interocular	 suppression.	 To	 test	 the	

predictions	 of	 the	 two	 accounts	 of	 neural	

encoding	described	above,	a	support	vector	

machine	 algorithm	 was	 trained	 to	

discriminate	between	the	responses	evoked	

by	different	combinations	of	the	stimuli.	The	

classifier	 achieved	 above-chance	 decoding	

accuracy	 for	 ocularity,	 orientation	 and	

pattern	type,	a	finding	not	inconsistent	with	

the	idea	that	the	cortical	columnar	structure	

for	 these	 cues	 results	 in	 different	 spatial	

patterns	 of	 evoked	 response	 that	 are	

apparent	 at	 the	 scalp.	 Observers	were	 able	

to	 accurately	 report	 orientation,	 but	 not	

eye-of-origin,	 demonstrating	 that	

perceptual	discriminability	does	not	predict	

decoding	 accuracy	 across	 these	 ocular	 and	

spatial	cues.		

	

2	Methods	

	

2.1	Observers	

	

Written	 informed	 consent	 was	 obtained	

from	 24	 adults	 (8	 male)	 with	 normal	

binocular	 vision.	 All	 observers	 wore	 their	

normal	 optical	 correction	 during	 testing	 if	

required.	 Experimental	 procedures	 were	

approved	 by	 the	 ethics	 committee	 of	 the	

Department	of	Psychology	at	the	University	

of	York.	

	

2.2	Apparatus	and	stimuli	

	

Stimuli	 were	 constructed	 from	 patches	 of	

sine-wave	grating	with	a	contrast	of	50%,	a	

spatial	 frequency	of	2c/deg	and	a	diameter	

of	 10	 degrees.	 Stimuli	 were	 in	 sine	 phase	

with	 the	 centre	 of	 the	 display.	 Two	

orientations	 (±45°)	 were	 presented	 either	

in	isolation,	or	superimposed	to	form	a	plaid	

pattern.	All	stimuli	were	spatially	windowed	

by	a	raised	cosine	envelope	and	had	a	small	

hole	 (1	 degree	 in	 diameter)	 in	 the	 centre	

that	 was	 also	 blurred	 by	 a	 cosine	 ramp.	

Example	stimuli	are	shown	in	Figure	1.		

	

Stimuli	 were	 presented	 using	 a	 gamma	

corrected	 ViewPixx	 3D	 display	 (VPixx	

Technologies,	Canada).	Binocular	separation	

with	 minimal	 crosstalk	 was	 achieved	 by	

synchronising	the	refresh	rate	of	the	display	

with	 the	 toggling	 of	 a	 pair	 of	 active	 stereo	

shutter	 goggles	 (Nvidia	 Corp.,	 California,	

USA)	using	an	infra-red	signal.	The	monitor	

refresh	 rate	was	120Hz,	meaning	 that	 each	

eye	was	updated	at	60Hz.	

	

EEG	 signals	 were	 recorded	 from	 64	 scalp	

locations	 from	 the	 10-20	 system	 using	 a	

WaveGuard	 cap	 and	 the	 ASAlab	 system	

(ANT	Neuro,	Netherlands).	The	ground	was	

placed	 posterior	 to	 electrode	 FPz,	 and	 all	

channels	 were	 referenced	 to	 a	 whole-head	

average.	 Eye-blinks	 were	 recorded	 using	

vertical	 electro-oculogram	 electrodes.	

Stimulus	 onset	 was	 recorded	 on	 the	 EEG	

trace	 via	 low-latency	 digital	 triggers	 from	

the	 display	 device.	 Electrode	 impedances	

were	 typically	 kept	 below	 10kΩ	 during	

testing,	 and	 signals	were	 recorded	 at	 1kHz	

and	then	stored	for	offline	analysis.	
	

2.3	Procedures	

	

Stimuli	 were	 presented	 in	 5	 blocks,	 each	

comprising	 220	 trials	 (20	 repetitions	 for	

each	 of	 the	 11	 conditions	 illustrated	 in	

Figure	1),	and	taking	around	6	minutes.	The	

stimulus	duration	was	100ms,	and	stimulus	

order	 was	 randomly	 determined	 in	 each	

block	for	each	observer.	After	each	stimulus	

presentation,	 observers	 indicated	 their	

percept	 using	 a	 two-button	 mouse,	

according	to	one	of	five	different	tasks	(one	

task	per	block).	In	the	first	block,	observers	

reported	the	stimulus	orientation	(tilted	left	

or	right).	In	the	second	block,	they	reported	

whether	 they	 saw	one	 stimulus	 component	

(i.e.	a	single	grating)	or	two	components	(i.e.	

a	 plaid	 or	 interocular	 conflict	 stimulus).	 In	

the	third	block,	they	reported	whether	they	

had	seen	the	interocular	conflict	stimulus	or	

another	 stimulus.	 In	 the	 final	 two	 blocks,	

observers	 were	 asked	 to	 indicate	 whether	

they	 believed	 one	 or	 two	 eyes	 had	 been	

stimulated	 (block	 four),	 and	 whether	 they	

believed	 the	 left	 or	 right	 eye	 had	 been	

stimulated	 (block	 five).	 Most	 observers	

found	 these	 final	 two	 tasks	 very	 difficult,	

and	 subsequently	 indicated	 that	 they	 were	

largely	guessing	throughout	these	blocks.	In	

addition,	 they	 were	 instructed	 to	 guess	

when	the	stimulus	did	not	clearly	map	onto	

the	 task	 (i.e.	 reporting	 the	 orientation	 of	 a	

plaid).	Following	each	response,	there	was	a	

variable	length	blank	period	(mean	duration	

1000ms,	 SD	 of	 200ms)	 before	 the	 next	

stimulus	 was	 displayed.	 A	 central	 fixation	

cross	was	presented	throughout.	
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Figure	1:	Example	stimuli	and	averaged	ERP	waveforms	for	each	condition.	Panel	(a)	shows	left	eye	stimuli	

and	evoked	responses,	panel	(b)	shows	right	eye	stimuli	and	evoked	responses,	panel	(c)	shows	binocular	

stimuli	and	evoked	responses,	and	panel	(d)	shows	stimuli	and	evoked	responses	for	the	interocular	conflict	

conditions.	 In	 each	graph,	 the	 grey	 trace	 shows	 the	 grand	average	waveform	across	 all	 11	 conditions	 for	

comparison.	 Each	 waveform	 is	 the	 average	 across	 10	 parieto-occipital	 electrode	 sites,	 100	 trials	 per	

observer,	 and	 24	 observers.	 The	 grey	 shaded	 rectangles	 in	 the	 lower	 left	 of	 each	 ERP	 plot	 indicate	 the	

period	during	which	the	stimulus	was	displayed.	

	
EEG	 data	 were	 analysed	 offline.	 The	 data	

from	 each	 block	 were	 bandpass	 filtered	

between	 0.01	 and	 30Hz,	 and	 trials	 were	

aggregated	across	blocks	 for	each	of	 the	11	

conditions	 (see	 Figure	 1;	 100	 trials	 per	

condition	 per	 observer).	 To	 calculate	 the	

ERPs	in	Figures	1	&	2,	waveforms	in	the	first	

500ms	 following	 stimulus	 onset	 were	

normalized	 by	 the	 mean	 voltage	 in	 the	

200ms	 time	window	before	stimulus	onset,	

and	 then	 averaged	 across	 ten	 occipito-

parietal	electrodes	(Oz,	O1,	O2,	POz,	PO3-8),	

and	 then	 across	 trials	 and	 observers.	 No	

downsampling	 or	 artifact	 rejection	 was	

performed.	

	

A	 support	vector	machine	algorithm	with	a	

radial	basis	function	kernel	(Chang	and	Lin,	

2011)	 was	 then	 trained	 to	 discriminate	

between	the	spatial	patterns	(i.e.	the	pattern	

of	 voltages	 across	 electrodes)	 of	 EEG	

response	 evoked	 by	 different	 combinations	

of	stimuli,	 independently	at	each	time	point	

and	 for	 each	 observer.	 The	 classifier	 was	

trained	 on	 averages	 of	 random	 subsets	 of	

trials	 (means	 across	 50	 trials)	 from	

conditions	 of	 interest	 (see	 Figures	 2	 &	 3),	

and	 its	 discrimination	 performance	 tested	

on	 the	 average	 of	 the	 remaining	 trials	 not	

included	in	the	training.	There	were	at	least	

three	 examples	 for	 each	 condition	 in	 a	

comparison	(depending	on	the	total	number	
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of	 conditions	 included	 in	 that	 comparison),	

and	 one	 example	 per	 condition	 for	 testing.	

The	procedure	was	repeated	1000	times	for	

each	comparison	(using	different	subsets	of	

trials	 each	 time).	 The	 discrimination	

performance	 was	 then	 averaged	 across	

observers,	 and	 95%	 confidence	 intervals	

were	derived	using	bootstrap	resampling	to	

produce	the	timecourses	in	Figure	3b-d.	The	

classifier	was	 also	 trained	 and	 tested	using	

the	waveform	across	a	time	window	(either	

100-300ms	in	Figure	4,	or	in	100ms	epochs	

for	 Figure	 S1)	 at	 each	 electrode	

independently	 to	 produce	 the	 scalp	

distributions	in	Figure	4.	

	

A	 non-parametric	 cluster	 correction	

procedure	 (Maris	 and	 Oostenveld,	 2007)	

was	 applied	 to	 determine	 significant	

clusters	 (either	 across	 time	 or	 across	 scalp	

locations)	 whilst	 controlling	 for	 multiple	

comparisons.	 For	 comparing	 ERP	

waveforms,	 summed	 t-values	 (from	 paired	

t-tests)	 across	 consecutive	 time	 points	 or	

adjacent	electrode	locations	were	compared	

with	 a	 null	 distribution	 generated	 by	

switching	the	condition	labels	for	half	of	the	

observers.	For	assessing	classifier	accuracy,	

one-sample	 t-tests	 were	 used	 to	 compare	

accuracy	to	baseline	(50%	correct),	and	the	

null	distribution	was	generated	by	reflecting	

half	of	the	data	points	about	the	baseline	(a	

procedure	 equivalent	 to	 changing	 the	

condition	 labels	 in	 a	 paired	 t-test).	 The	

cluster	 forming	 threshold	was	 t>2.069,	 and	

the	 cluster	 significance	 threshold	 was	

p<0.0083	 (i.e.	p<0.05,	 Bonferroni	 corrected	

across	 the	 six	 comparisons	 under	

investigation).	The	entire	cluster	correction	

procedure	 was	 repeated	 for	 1000	

resampled	 data	 sets	 to	 derive	 confidence	

intervals	 for	 the	 onset	 and	 offset	 of	

significant	 clusters.	 Where	 resampled	

clusters	 did	 not	 overlap	 with	 significant	

clusters	 from	 the	 main	 data	 set	 they	 were	

discarded.	 Where	 multiple	 resampled	

clusters	 corresponded	 to	 a	 single	 original	

cluster,	 the	 onset	 of	 the	 first	 resampled	

cluster	 and	 the	offset	 of	 the	 last	 resampled	

cluster	 were	 included	 in	 the	 resampled	

populations.	

	

3	Results	

	

All	stimulus	arrangements	produced	typical	

event-related	potentials.	Examples	averaged	

across	 ten	 occipito-parietal	 electrodes	 (Oz,	

O1,	 O2,	 POz,	 PO3-8)	 are	 shown	 in	 Figure	 1	

for	each	condition,	along	with	depictions	of	

the	 stimulus	 arrangements.	 There	 were	

slight	 differences	 in	 the	 evoked	 potential	

across	 different	 conditions,	 with	 plaids	

(blue	 traces)	 producing	 earlier	 negative	

deflections	than	individual	gratings	(red	and	

green	 traces),	 and	 binocular	 presentations	

(Figure	1c)	evoking	more	generally	positive	

responses	 than	 monocular	 presentations	

(Figure	 1a,b).	 The	 interocular	 conflict	

conditions	 (Figure	 1d)	 produced	 more	

generally	 negative	 responses	 than	 other	

conditions	from	around	150ms	onwards.	

	

The	 ERP	 waveforms	 for	 various	

combinations	 of	 conditions	 were	 averaged	

and	 compared	 statistically	 using	 cluster	

corrected	 paired	 t-tests.	 Comparing	 ERPs	

for	 stimuli	 (both	 gratings	 and	 plaids)	

presented	 to	 the	 left	and	right	eyes	 (Figure	

2a)	 revealed	 a	 very	 brief	 significant	

difference	 from	 198–206ms	 post	 stimulus	

onset,	and	no	significant	clusters	across	the	

scalp	 in	 the	 100-300ms	 time	 window.	

Comparing	 monocular	 and	 binocular	

presentation	 (Figure	 2b)	 revealed	 that	

monocular	 stimuli	 evoked	 more	 negative	

voltages,	 with	 significant	 clusters	 from	

around	150-440ms,	 and	 across	most	 of	 the	

scalp	 (with	 differences	 strongest	 at	

posterior	 electrodes).	 Comparing	 left-	 and	

right-tilted	stimuli	 (Figure	2c)	produced	no	

significant	differences.	The	remaining	 three	

comparisons	 (gratings	 vs	 plaids,	 Fig	 2d;	

rivalry	 vs	monocular	 plaids,	 Fig	 2e;	 rivalry	

vs	 binocular	 gratings,	 Fig	 2f)	 produced	

significant	 differences	 starting	 as	 early	 as	

100ms,	 and	 persisting	 to	 around	 400-

500ms.	
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Figure	 2:	 Comparison	 of	 stimulus-evoked	 potentials	 for	 different	 combinations	 of	 conditions	 during	 the	

500ms	following	stimulus	onset	(curves,	averaged	across	ten	occipito-parietal	electrodes)	and	 in	the	time	

window	from	100-300ms	post	stimulus	onset	(scalp	plots).	Black	horizontal	lines	plotted	at	-4.5μV	indicate	

cluster-corrected	significant	differences,	with	grey	shaded	regions	indicating	bootstrapped	95%	confidence	

intervals.	 Red	 and	 green	 shaded	 regions	 give	 bootstrapped	95%	 confidence	 intervals	 of	 the	mean	 across	

observers	(N=24).	Grey	shaded	rectangles	along	the	x-axis	indicate	the	time	period	when	the	stimulus	was	

presented.	 In	 the	 scalp	 plots,	 intensity	 indicates	 the	 absolute	 t-statistic,	 scaled	 from	black	 (t=0)	 to	white	

(t=13),	and	green	points	highlight	electrodes	producing	a	cluster-corrected	significant	difference.	

	
A	support	vector	machine	was	then	trained	

to	 discriminate	 between	 the	 patterns	 of	

electrical	activity	across	the	scalp	produced	

by	 the	 same	 subsets	 of	 stimuli	 that	 were	

compared	 in	 Figure	 2.	 The	 classifier	 was	

able	 to	 discriminate	 between	 stimuli	 (both	

gratings	 and	 plaids)	 shown	 to	 the	 left	 vs	

right	eye	(i.e.	stimuli	in	Figure	1a	compared	

with	Figure	1b)	at	levels	above	chance	from	

134-148ms	 and	 206-240ms	 following	

stimulus	presentation	 (these	 time	windows	

do	 not	 overlap	 with	 the	 significant	 cluster	

from	 Figure	 2a).	 The	 maximum	

performance	 was	 62%	 correct	 (solid	 red	

curve	 in	 Figure	 3b).	 In	 contrast,	 the	

observers	themselves	were	unable	to	report	

this	 information	 during	 the	 experiment,	

with	 left/right	 eye	 discrimination	 at	 49%	

correct	 (where	 chance	 is	 50%).	 Observers	

were	 slightly	 better	 (though	 by	 no	 means	

perfect)	 at	 reporting	 whether	 a	 stimulus	

was	 shown	 to	 one	 eye	 or	 two,	 averaging	

64%	correct	 for	this	task	(see	Figure	3a	for	

a	 summary	 of	 the	 psychophysical	

responses).	 The	 classifier	 made	 this	

discrimination	 (i.e.	 stimuli	 in	 Figure	 1a,b	

compared	with	 Figure	 1c)	 at	 above-chance	

levels	 from	 90-345ms	 following	 stimulus	

onset,	 peaking	 at	 80%	 correct	 (dashed	

green	curve	in	Figure	3b).	
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Figure	 3:	 Summary	 of	 human	 and	machine	 discrimination	 between	 different	 stimuli.	 Panel	 (a)	
shows	a	summary	of	psychophysical	responses	for	five	different	discrimination	tasks.	Bonferroni-corrected	

one-sample	 t-tests	 revealed	 that	 eye-of-origin	 discrimination	 performance	was	 not	 significantly	 different	

from	chance,	but	all	other	discriminations	were	above	chance	(all	t>5,	all	p<0.01,	df=23).	Panel	(b)	shows	

classifier	 performance	 for	 discriminating	 eye-of-origin	 (solid	 red	 curve),	 or	 monocular	 versus	 binocular	

presentation	(dashed	green	curve).	Panel	(c)	shows	classifier	performance	for	orientation	(solid	blue	curve)	

and	for	discriminating	gratings	from	plaids	(dashed	orange	curve).	Panel	(d)	shows	classifier	performance	

for	 discriminating	 the	 interocular	 conflict	 conditions	 from	 either	 a	 monocularly	 presented	 plaid	 (solid	

purple	 curve)	 or	 a	 binocularly	 presented	 grating	 (dashed	 pink	 curve).	 Error	 bars	 and	 coloured	 shaded	

regions	 in	 each	 panel	 give	 bootstrapped	 95%	 confidence	 intervals	 (with	 10000	 resamples)	 of	 the	mean	

across	observers	(N=24).	Horizontal	lines	at	the	foot	of	each	plot	in	panels	b-d	indicate	periods	of	time	when	

cluster-corrected	 t-tests	were	 significantly	 above	 chance,	 with	 paler	 shaded	 regions	 giving	 bootstrapped	

confidence	 intervals.	Grey	 shaded	 rectangles	 in	panels	b-d	 indicate	 the	period	during	which	 the	 stimulus	

was	displayed.	

	
Since	previous	studies	have	reported	above-

chance	 decoding	 of	 pattern	 using	 similar	

techniques	 (Cichy	 et	 al.,	 2015),	 the	 data	

were	 then	 interrogated	 to	 assess	 how	well	

spatial	 patterns	 could	 be	 discriminated.	

Human	 observers	 were	 able	 to	 report	

grating	orientation	(left/right	tilt)	with	95%	

accuracy,	 and	 discriminate	 gratings	 from	

plaids	with	95%	accuracy	(blue	and	orange	

bars	 in	 Figure	 3a).	 The	 classifier	 was	

relatively	 poor	 at	 decoding	 orientation,	 but	

did	reach	above-chance	levels	between	125-

175ms	and	240-290ms	post	stimulus	onset,	

peaking	at	around	59%	correct	 (blue	curve	

in	 Figure	 3c).	 Discriminating	 plaids	 from	

gratings	 was	 more	 successful,	 with	

performance	above	chance	(peaking	at	86%	

correct)	 in	 the	 time	 window	 from	 100-

450ms	(orange	dashed	curve	in	Figure	3c).	

	

Finally,	the	presence	of	a	neural	signature	of	

interocular	 conflict	 was	 sought.	 The	

dichoptic	 conditions	 (Figure	 1d)	 were	

compared	with	either	a	binocular	grating	(a	

comparison	 that	 holds	 constant	 the	 energy	

shown	 to	 the	 two	 eyes,	 and	 changes	 the	

orientation	of	one	eye)	or	a	monocular	plaid	

(keeping	 the	 number	 of	 components	 fixed,	

and	varying	only	eye	of	presentation	for	one	

component).	 Both	 of	 these	 comparisons	



Baker	(2017),	Neuroimage,	147:	89-96	

doi:	10.1016/j.neuroimage.2016.12.008	

This	post-print	version	was	created	for	open	access	dissemination	through	institutional	repositories	

produced	 strong	 classifier	 performance	

(reaching	maxima	of	87%	and	88%	correct	

respectively)	 from	 110ms	 until	 beyond	 the	

500ms	window	used	for	the	analysis	(Figure	

3d).	 Observers	 were	 able	 to	 discriminate	

interocular	 conflict	 from	 binocular	 and	

monocular	 plaids	 at	 87%	 accuracy	 (purple	

bar	in	Figure	3a).	

	

To	 determine	 which	 electrodes	 were	 most	

informative,	 further	 analyses	 were	

conducted	 in	 which	 the	 classifier	 was	

trained	across	a	 range	of	 time	points	 (from	

100-300ms)	 for	 each	 individual	 electrode	

separately.	 Figure	 4	 shows	 classifier	

accuracy	for	this	analysis	plotted	across	the	

scalp.	 It	 is	 clear	 that	 for	most	 comparisons	

the	 strongest	 contribution	 was	 from	

posterior	 electrodes	 near	 to	 early	 visual	

areas.	 This	 is	 consistent	 with	 the	

expectation	 that	 differences	 in	 the	 early	

visual	 evoked	 responses	 across	 conditions	

are	able	 to	support	discrimination	between	

stimuli.	The	 interocular	conflict	and	grating	

vs	 plaid	 conditions	 additionally	 produced	

strong	 decoding	 accuracy	 at	 more	 fronto-

central	 electrodes,	 perhaps	 reflecting	 the	

longer	 timecourse	over	which	 classification	

was	possible	with	 these	 stimuli	 (see	Figure	

3d),	 and	 the	 salient	 perceptual	 differences	

they	 elicit	 (purple	 bar	 in	 Figure	 3a).	

Expanding	 the	analysis	 time	window	to	 the	

full	 500ms	 post	 stimulus	 onset	 resulted	 in	

slightly	 lower	 classifier	 accuracy	 (as	 more	

noise	was	 included),	but	approximately	 the	

same	 spatial	 pattern	 (not	 shown).	 The	

temporal	evolution	of	scalp	topographies	in	

100ms	 steps	 is	 shown	 in	 Supplementary	

Figure	S1.	

	
3.1	Influence	of	eye	dominance	

	

One	 possibility	 is	 that	 differences	 in	 ERP	

amplitude	 arising	 from	 eye	 dominance	 are	

responsible	for	the	classifier	performance	in	

the	eye-of-origin	discrimination.	If	this	were	

so,	 individuals	 with	 more	 extreme	 eye	

dominance	should	produce	better	decoding	

for	 this	 comparison	 because	 the	 dominant	

eye	will	evoke	larger	responses	(Seyal	et	al.,	

1981).	 To	 derive	 a	 measure	 of	 eye	

dominance	 independently	 of	 the	 EEG	 data	

(thus	 avoiding	 ‘double	 dipping’),	

psychophysical	 performance	 in	 the		

	

	
Figure	4:	Scalp	distribution	of	classifier	accuracy	

from	 100-300ms	 post	 stimulus	 onset,	 averaged	

across	 observers	 (N=24).	 Black	 regions	 reflect	

chance	 classifier	 accuracy	 (50%	 correct),	 white	

regions	 reflect	 perfect	 accuracy	 (100%	 correct).	

Green	 points	 indicate	 electrode	 locations	where	

classifier	 performance	 remained	 significantly	

above	chance	following	cluster	correction.	

	

orientation	 discrimination	 task	 for	 the		

interocular	 conflict	 conditions	 was	 used	

(Figure	 1d).	 Individuals	 with	 a	 strong	

preference	 for	 the	 right	 eye	 will	 tend	 to	

perceive	the	stimulus	presented	to	that	eye	

more	 frequently	 than	 the	 stimulus	

presented	 to	 the	 left	 eye	 (e.g.	 Carter	 and	

Cavanagh,	 2007;	 Mamassian	 and	 Goutcher,	

2005),	 and	 therefore	 report	 seeing	 its	

orientation	on	the	majority	of	trials.	An	eye	

dominance	 index	 was	 calculated	 for	 each	

observer	 using	 these	 data,	 and	 is	 shown	 in	

Figure	 5a.	 The	 absolute	 value	 of	 this	 index	

(with	 values	 near	 0	 indicating	 good	

binocular	 balance,	 and	 values	 near	 1	

indicating	 strong	 eye	dominance)	was	 then	

correlated	 with	 individual	 classifier	

accuracy	at	each	time	point	(Figure	5b).	The	

lower	bound	of	the	bootstrapped	confidence	

interval	 of	 this	 correlation	 did	 not	 exceed	

zero	during	 the	 time	window	during	which	

eye-of-origin	could	be	decoded	(red	shaded	

regions).	 It	 is	 therefore	 unlikely	 that	 eye	

dominance	 is	 responsible	 for	 driving	

classifier	performance.	
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Figure	5:	Eye	dominance	index	(a)	and	correlation	between	eye	dominance	and	classifier	performance	(b).	

In	 panel	 (a)	 each	 point	 represents	 an	 individual	 observer,	 sorted	 by	 eye	 dominance.	 Negative	 values	

indicate	 a	 preference	 for	 the	 left	 eye,	 positive	 values	 a	 preference	 for	 the	 right	 eye,	with	 the	majority	 of	

individuals	 being	 right	 eye	 dominant.	 Panel	 (b)	 shows	 the	 Pearson	 correlation	 coefficient	 between	

individual	observers’	 absolute	eye	dominance	 index	with	 their	 classifier	performance	 in	 the	eye-of-origin	

discrimination	at	each	time	point.	The	grey	shaded	region	gives	bootstrapped	95%	confidence	intervals	of	

this	correlation	(10000	bootstrap	resamples	with	replacement	across	observers).	The	red	shaded	regions	

indicate	 times	at	which	eye-of-origin	discrimination	was	significantly	above	chance	(lower	red	 lines	 from	

Figure	3b).	

	

4	Discussion	
	

Using	 multivariate	 pattern	 classification,	

eye-of-origin,	 binocularity	 and	 interocular	

conflict	were	 all	 successfully	 decoded	 from	

EEG	responses	to	simple	visual	stimuli.	The	

observers	 performed	 at	 chance	 levels	 for	

discriminating	 eye-of-origin	

psychophysically,	 and	 were	 relatively	 poor	

(64%	 correct)	 at	 discriminating	monocular	

from	 binocular	 presentation.	 Thus,	 the	

information	 encoding	 eye-of-origin	

(perhaps	 through	 anatomical	 organisation,	

such	 as	 cortical	 columns)	 that	 is	 available	

from	 electrophysiological	 responses	 must	

be	 subsequently	 lost	 to	 perception	 and	

consciousness.	It	was	not	possible	to	explain	

the	 classifier	 performance	 by	 considering	

the	 extent	 of	 eye	 dominance	 for	 individual	

observers,	 or	 from	 an	 amplitude	 difference	

in	the	ERP	waveforms.	

	

Classifier	 accuracy	 for	 eye-of-origin	 and	

orientation	 discrimination	 was	 markedly	

lower	 than	 for	 the	 other	 comparisons	

(Figures	3	&	4).	These	two	comparisons	also	

lacked	 significant	 differences	 between	 the	

mean	ERP	waveforms	(Figure	2a,c;	note	that	

the	 significant	 cluster	 for	 the	 left	 vs	 right	

eye	comparison	occurred	at	a	different	time		

	

from	 the	 above-chance	 classifier	 accuracy).	

It	 is	 therefore	 likely	 that	classifier	accuracy	

in	 these	 conditions	was	 not	 due	 to	 a	mean	

univariate	 voltage	 difference,	 but	 instead	

represents	differences	in	the	detailed	spatial	

pattern	 of	 electrical	 activity.	 The	 increased	

classifier	 performance	 for	 other	 conditions	

may	be	due	to	coarser	amplitude	differences	

between	 the	 waveforms	 (see	 Figure	

2b,d,e,f).	 Interestingly,	 accuracy	 for	

discriminating	 orientation	 was	 lower	 than	

has	 been	 previously	 reported	 in	 studies	

using	MEG	instead	of	EEG	(i.e.	>90%	correct,	

Cichy	 et	 al.,	 2015).	 This	 difference	 may	 be	

due	to	the	increased	signal-to-noise	ratio	of	

MEG	 compared	 with	 EEG,	 or	 the	 larger	

number	 of	 trials	 typically	 collected	 in	

previous	 studies	 (i.e.	 ~500	 trials	 per	

condition,	 Cichy	 et	 al.,	 2015).	 Nevertheless,	

orientation	discrimination	performance	was	

significantly	 above	 chance	 within	 the	 time	

window	 reported	 in	 previous	 studies,	 with	

comparable	peak	accuracy	(59%	correct)	to	

other	 reports	 using	 similar	 numbers	 of	

trials	 (i.e.	 67%	 correct	 with	 100	 trials	 per	

condition	 using	 MEG,	 Ramkumar	 et	 al.,	

2013).	
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Although	 observers	 in	 the	 present	 study	

were	 unable	 to	 accurately	 report	 eye-of-

origin	 (red	 bar	 in	 Figure	 3a),	 other	 studies	

have	 reported	 above-chance	 utrocular	

discrimination.	 However,	 there	 are	 often	

methodological	problems	that	could	explain	

this	 performance.	 For	 example,	 many	

studies	 used	 mirror	 stereoscopes	 and/or	

different	 displays	 for	 the	 two	 eyes.	 It	 is	

conceivable	 that	 alignment	 problems	 or	

luminance	differences	between	the	displays	

might	 provide	 spurious	 cues	 to	 eye-of-

origin.	 Templeton	 &	 Green	 (1968)	 showed	

experimentally	 that	 proper	 control	 of	

convergence	 prevented	 above-chance	

utrocular	 discrimination	 performance.	 Ono	

and	 Barbeito	 (1985)	 performed	

experiments	 demonstrating	 that	 several	

spurious	 cues	 underpinning	 utrocular	

discrimination	 could	 be	 rendered	

unreliable,	resulting	in	poor	performance.	In	

particular,	 introducing	 a	 luminance	 cue	 in	

the	 non-target	 eye	 reduces	 utrocular	

discrimination	to	chance	(or	below)	in	both	

stereo-normal	 and	 stereo-deficient	

observers	(Barbeito	et	al.,	1985).	

	

In	 light	 of	 these	 potentially	 spurious	 cues,	

positive	 results	 can	 be	 viewed	 with	 some	

skepticism.	 For	 example,	 Blake	 &	 Cormack	

(1979)	 report	 differences	 across	 spatial	

frequency,	 with	 discrimination	 impossible	

at	 high	 frequencies	 (>4c/deg),	 but	 possible	

at	 lower	 frequencies	 for	 some	 observers.	

One	 explanation	 for	 this	 is	 that	 at	 lower	

frequencies	 a	 monocular	 luminance	 cue	

provides	 the	 eye-of-origin	 information.	

Schwarzkopf	 et	 al.	 (2010).	 reported	

accuracies	 of	 57%	 correct	 at	 0.5c/deg	 and	

66%	at	4c/deg,	but	observers	were	required	

to	free-fuse	the	display,	meaning	that	lapses	

in	fusion	would	provide	a	spatial	offset	that	

cued	 eye-of-origin	 (Templeton	 and	 Green,	

1968).	In	the	present	study,	the	stimuli	were	

in	 sine-phase	 so	 were	 DC	 balanced	 (i.e.	 no	

luminance	 cue),	 and	 were	 displayed	 on	 a	

single	monitor	using	shutter	goggles,	so	that	

binocular	fusion	and	vergence	were	natural.	

This	 arrangement	 produced	 chance	

performance	 on	 the	 utrocular	

discrimination	 task,	 implying	 that	 eye-of-

origin	information	was	lost	to	awareness.	

	

Although	 utrocular	 discrimination	 under	

controlled	 conditions	 is	 not	 generally	

possible,	 it	 has	 been	 shown	 that	 eye-of-

origin	 singletons	 can	be	 identified	 in	 visual	

search	 experiments	 (Zhaoping,	 2012).	 This	

suggests	 that	 information	 regarding	

salience,	 or	 perhaps	 information	 about	

relative	 eye-of-origin	 (same	 or	 different),	

could	 persist	 beyond	 the	 stage	 at	 which	 a	

‘labelled	 detector’	 (Watson	 and	 Robson,	

1981)	 for	explicit	ocularity	 is	 lost.	 It	 is	also	

apparent	that	observers	had	some	ability	to	

report	 whether	 a	 stimulus	 was	 monocular	

or	 binocular	 (64%	 correct,	 green	 bar	 in	

Figure	3a),	even	though	these	high	contrast	

stimuli	 would	 likely	 appear	 identical	 in	

contrast	 (Baker	 et	 al.,	 2007).	 It	 therefore	

appears	that	humans	have	conscious	access	

to	 information	 from	 their	 binocular	 visual	

system	 besides	 a	 mandatory	 binocular	

fusion	 of	 the	 two	 eyes’	 inputs.	 This	

information	could	include	stereo	depth	from	

occlusion	 (McLoughlin	 and	 Grossberg,	

1998),	 a	 binocular	 differencing	 channel	 (Li	

and	 Atick,	 1994;	 May	 et	 al.,	 2012),	 or	 a	

‘lustre	 channel’	 that	 codes	 differences	 in	

luminance	 polarity	 across	 the	 eyes	

(Georgeson	et	al.,	2016).	

	

Decoding	 performance	 for	 the	 interocular	

conflict	 conditions	 was	 extremely	 good	

(>85%	 correct)	 and	 began	 around	 110ms.	

The	 conflict	 conditions	 (in	 which	 the	 left	

and	 right	 eyes	 viewed	 gratings	 of	 different	

orientations)	 were	 compared	 to	 either	 a	

monocular	 plaid	 (where	 the	 number	 of	

components	 was	 the	 same,	 but	 both	 were	

shown	 to	 the	 same	 eye	 instead	 of	 different	

eyes)	and	to	a	binocular	grating	(where	the	

number	 of	 eyes	 stimulated	 was	 the	 same,	

but	 both	 eyes	 saw	 the	 same	 orientation),	

with	 classifier	 performance	 being	 equally	

good	for	both	comparison	conditions.	This	is	

consistent	 with	 previous	 studies	 that	 have	

shown	 unique	 signatures	 of	 binocular	

rivalry	 in	 the	 ERP	 response	 over	 a	 similar	

time	window	(Jack	et	al.,	2015;	O’Shea	et	al.,	

2013).	 Interestingly,	 results	 using	 a	

different	 ERP	 paradigm	 (visual	 mismatch	

negativity)	 have	 been	 interpreted	 as	

evidence	 that	 eye-of-origin	 information	

persists	 during	 rivalry	 from	 around	 100	 to	

approximately	 300ms	 (van	 Rhijn	 et	 al.,	

2013).	 This	 is	 consistent	 with	 the	 time	

window	within	which	eye-of-origin	could	be	

decoded	 using	 monocular	 stimuli	 in	 the	

present	 study.	 However,	 it	 is	 possible	 that	

the	 ERP	 differences	 in	 the	 mismatch	

paradigm	 were	 due	 to	 a	 release	 from	

adaptation	 (because	 in	 the	 mismatch	

condition	 the	 orientations	 were	 switched	

between	 the	 eyes),	 and	 therefore	 be	 only	

incidentally	 encoding	 eye-of-origin.	 The	

paradigm	 used	 here	 provides	 a	 balanced	

design	 in	which	 differences	 in	 the	 ERP	 are	
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due	 to	 differences	 in	 the	 response	 to	

identical	 stimuli	 shown	to	one	or	other	eye	

(and	 not	 encoding	 a	 change	 in	 eye	 of	

presentation	 in	 a	 repeating	 stimulus	

sequence).	

	

The	 source	 of	 the	 information	 used	 to	

decode	 orientation	 with	 MRI	 or	 MEG	

measures	 has	 provoked	 lively	 debate	

(Kamitani	 and	 Tong,	 2005;	 Pratte	 et	 al.,	

2016;	 Swisher	 et	 al.,	 2010;	 summarised	 by	

Maloney,	 2015).	 It	 has	 been	 suggested	 that	

decoding	 performance	 could	 be	 due	 to	

coarse-scale	 effects	 such	 as	 radial	 biases	

(Mannion	et	al.,	2010),	edge	effects	(Carlson,	

2014),	or	differential	allocation	of	attention	

(Alink	 et	 al.,	 2013).	 Some	 of	 these	

possibilities	 for	 orientation	 decoding	 using	

MEG	have	been	ruled	out	by	careful	control	

experiments	 (Cichy	 et	 al.,	 2015),	 but	might	

there	 be	 similar	 confounds	 for	 decoding	

eye-of-origin?	 In	 general	 there	 are	 fewer	

possible	 artifacts	 for	 eye-of-origin	 than	 for	

orientation,	 since	 the	 stimuli	 being	

discrminated	are	spatially	identical.	Coarser	

differences	 in	 the	cortical	 representation	of	

stimuli	 from	 the	 two	 eyes	 cannot	 be	 ruled	

out,	 but	 are	 not	 apparent	 histologically	 in	

the	central	15°	of	the	visual	field	(Adams	et	

al.,	2007)	(the	most	obvious	asymmetry,	the	

blind	 spot,	 was	 far	 outside	 of	 the	 stimulus	

area).	 The	 presentation	 duration	 of	 100ms	

is	 too	 brief	 for	 observers	 to	 plan	 and	

execute	distinct	eye	movements	to	different	

stimuli,	 and	 eye-movement	 artefacts	would	

likely	be	evident	at	anterior	rather	than	the	

posterior	 electrodes	 that	 showed	 the	

strongest	 classifier	 performance	 (Figure	

4a).	 Problems	 with	 accommodation,	

vergence	and	eye	alignment	might	occur	 in	

some	observers,	but	would	likely	be	related	

to	eye	dominance	effects	that	appear	not	to	

influence	 classifier	 performance	 (Figure	 5).	

Regarding	attention,	 the	author	 is	 aware	of	

no	 evidence	 that	 humans	 are	 able	 to	

deliberately	 allocate	 attention	 to	 one	 or	

other	eye	(apart	from	by	winking).		

	

Other	studies	have	used	MVPA	of	MEG	data	

to	 explore	 how	 the	 neural	 response	 to	 a	

stimulus	changes	as	a	 function	of	conscious	

awareness.	 Using	 a	 masking	 paradigm	 to	

suppress	some	stimuli	from	awareness,	Salti	

et	 al.	 (2015)	 showed	 that	 visible	 and	

invisible	 stimuli	 are	 processed	 in	 the	 same	

way	 for	 the	 first	 270ms,	 but	 additional	

responses	 then	 occur	 for	 visible	 stimuli	 in	

parietal	 and	 frontal	 regions.	 By	 masking	

numerical	 stimuli,	 Charles	 et	 al.	 (2014)	

demonstrated	that	perceptual	responses	did	

not	 depend	 on	 conscious	 awareness,	 but	

decoding	 of	 response	 accuracy	 was	 only	

possible	 for	 consciously	 perceived	 stimuli.	

The	present	study	extends	the	use	of	MVPA	

beyond	 decoding	 stimuli	 that	 are	

suppressed	from	awareness,	and	shows	that	

even	 for	 salient	 stimuli,	 some	 information	

that	 is	 lost	 to	 conscious	 awareness	 is	 still	

processed	 by	 the	 brain	 sufficiently	 to	 be	

decodable	by	MVPA.	

	

Single	 unit	 work	 in	 macaque	 has	

demonstrated	 that	 the	 responses	 of	 most	

neurons	 in	 early	 visual	 areas	 during	

binocular	 rivalry	 are	 determined	 by	 the	

properties	 of	 the	 visual	 stimulus,	 rather	

than	 by	 the	 current	 percept	 (Leopold	 and	

Logothetis,	 1996),	 whereas	 neurons	 in	

higher	areas	 increasingly	 reflect	perception	

(Logothetis	and	Schall,	1989).	This	suggests	

that	 responses	 in	 areas	 after	 binocular	

convergence	 still	 code	 information	 about	

monocular	 stimuli,	 and	 indeed	 this	 can	 be	

decoded	 from	 fMRI	 signals	 (Haynes	 and	

Rees,	 2005).	 However	 in	 these	 paradigms	

there	are	always	two	stimuli	in	competition,	

and	 so	 the	 neural	 representation	 that	 is	

decoded	 might	 relate	 to	 stimulus	

characteristics	 (such	 as	 orientation	 or	

motion	direction)	that	are	merely	correlated	

with	 eye-of-origin.	 In	 the	 present	 study,	 a	

single	 set	 of	 stimuli	 was	 displayed,	 and	

differed	only	in	terms	of	the	eye	(or	eyes)	to	

which	 they	were	presented.	Therefore,	 it	 is	

eye-of-origin,	 and	 not	 other	 aspects	 of	 the	

spatial	pattern,	that	is	being	decoded.	

	

4.1	Conclusions	

	

This	 study	 has	 demonstrated	 that	

multivariate	analysis	of	electrophysiological	

data	 can	 decode	 information	 about	 eye-of-

origin	 that	 is	 not	 available	 to	 conscious	

perception.	 These	 findings	 are	 consistent	

with	 the	 recent	 claim	 (Cichy	 et	 al.,	 2015)	

that	 multivariate	 discrimination	

performance	using	 such	 techniques	 reflects	

the	 brain’s	 organisational	 structure,	 rather	

than	 perception	 (Wardle	 et	 al.,	 2016).	 The	

results	 also	 demonstrate	 that	 aspects	 of	

binocular	 processing,	 such	 as	 interocular	

conflict,	evoke	distinct	patterns	of	electrical	

activity	at	the	scalp.	

	

	

	

	



Baker	(2017),	Neuroimage,	147:	89-96	

doi:	10.1016/j.neuroimage.2016.12.008	

This	post-print	version	was	created	for	open	access	dissemination	through	institutional	repositories	

5	Acknowledgements	

	
Supported	 in	 part	 by	 the	 Wellcome	 Trust	

(ref:	 #105624)	 through	 the	 Centre	 for	

Chronic	 Diseases	 and	 Disorders	 (C2D2)	 at	

the	University	of	York.	

	

6	References	

	
Adams,	 D.L.,	 Sincich,	 L.C.,	 Horton,	 J.C.,	 2007.	

Complete	 Pattern	 of	 Ocular	 Dominance	

Columns	 in	Human	 Primary	 Visual	 Cortex.	 J.	

Neurosci.	 27,	 10391–10403.	

doi:10.1523/JNEUROSCI.2923-07.2007	

Alink,	 A.,	 Krugliak,	 A.,	Walther,	 A.,	 Kriegeskorte,	

N.,	 2013.	 fMRI	 orientation	 decoding	 in	 V1	

does	 not	 require	 global	 maps	 or	 globally	

coherent	 orientation	 stimuli.	 Front.	 Psychol.	

4.	doi:10.3389/fpsyg.2013.00493	

Baker,	 D.H.,	 Meese,	 T.S.,	 Georgeson,	 M.A.,	 2007.	

Binocular	 interaction:	contrast	matching	and	

contrast	 discrimination	 are	 predicted	 by	 the	

same	 model.	 Spat.	 Vis.	 20,	 397–413.	

doi:10.1163/156856807781503622	

Barbeito,	R.,	Levi,	D.,	Klein,	S.,	Loshin,	D.,	Ono,	H.,	

1985.	 Stereo-deficients	 and	 stereoblinds	

cannot	 make	 utrocular	 discriminations.	

Vision	Res.	25,	1345–1348.	

Blake,	 R.,	 Cormack,	 R.H.,	 1979.	 On	 utrocular	

discrimination.	Percept.	Psychophys.	 26,	53–

68.	doi:10.3758/BF03199861	

Carlson,	 T.A.,	 2014.	 Orientation	 Decoding	 in	

Human	 Visual	 Cortex:	 New	 Insights	 from	 an	

Unbiased	Perspective.	 J.	 Neurosci.	 34,	 8373–

8383.	doi:10.1523/JNEUROSCI.0548-14.2014	

Carlson,	T.A.,	Hogendoorn,	H.,	Kanai,	R.,	Mesik,	J.,	

Turret,	 J.,	 2011.	 High	 temporal	 resolution	

decoding	 of	 object	 position	 and	 category.	 J.	

Vis.	11(10),	art	9.	doi:10.1167/11.10.9	

Carlson,	T.,	Tovar,	D.A.,	Alink,	A.,	Kriegeskorte,	N.,	

2013.	 Representational	 dynamics	 of	 object	

vision:	The	first	1000	ms.	J.	Vis.	13(10),	art	1.	

doi:10.1167/13.10.1	

Carter,	O.,	Cavanagh,	P.,	2007.	Onset	rivalry:	brief	

presentation	 isolates	 an	 early	 independent	

phase	of	perceptual	competition.	PloS	One	2,	

e343.	doi:10.1371/journal.pone.0000343	

Chang,	 C.-C.,	 Lin,	 C.-J.,	 2011.	 LIBSVM:	 A	 Library	

for	 Support	 Vector	 Machines.	 ACM	 Trans	

Intell	 Syst	 Technol	 2,	 27:1–27:27.	

doi:10.1145/1961189.1961199	

Charles,	 L.,	 King,	 J.-R.,	 Dehaene,	 S.,	 2014.	

Decoding	 the	 Dynamics	 of	 Action,	 Intention,	

and	 Error	 Detection	 for	 Conscious	 and	

Subliminal	 Stimuli.	 J.	 Neurosci.	 34,	 1158–

1170.	doi:10.1523/JNEUROSCI.2465-13.2014	

Cichy,	R.M.,	Pantazis,	D.,	Oliva,	A.,	2014.	Resolving	

human	object	 recognition	 in	 space	and	 time.	

Nat.	 Neurosci.	 17,	 455–462.	

doi:10.1038/nn.3635	

Cichy,	R.M.,	Ramirez,	F.M.,	Pantazis,	D.,	2015.	Can	

visual	 information	 encoded	 in	 cortical	

columns	 be	 decoded	 from	

magnetoencephalography	 data	 in	 humans?	

NeuroImage	 121,	 193–204.	

doi:10.1016/j.neuroimage.2015.07.011	

Coggan,	 D.D.,	 Baker,	 D.H.,	 Andrews,	 T.J.,	 2016.	

The	role	of	visual	and	semantic	properties	in	

the	 emergence	 of	 category-specific	 patterns	

of	 neural	 response	 in	 the	 human	 brain.	

eNeuro	3(4):	e0158-16.2016.	1-10.	

Georgeson,	 M.A.,	Wallis,	 S.A.,	 Meese,	 T.S.,	 Baker,	

D.H.,	2016.	Contrast	and	 lustre:	a	model	 that	

accounts	 for	 eleven	 different	 forms	 of	

contrast	 discrimination	 in	 binocular	 vision.	

Vision	Res.	129:	98-118.	

Haynes,	 J.-D.,	 Rees,	 G.,	 2005.	 Predicting	 the	

Stream	 of	 Consciousness	 from	 Activity	 in	

Human	 Visual	 Cortex.	 Curr.	 Biol.	 15,	 1301–

1307.	doi:10.1016/j.cub.2005.06.026	

Horton,	 J.C.,	 Hocking,	 D.R.,	 1996.	 Anatomical	

demonstration	of	ocular	dominance	columns	

in	 striate	 cortex	 of	 the	 squirrel	 monkey.	 J.	

Neurosci.	16,	5510–5522.	

Hubel,	 D.H.,	 Wiesel,	 T.N.,	 1969.	 Anatomical	

demonstration	 of	 columns	 in	 the	 monkey	

striate	cortex.	Nature	221,	747–750.	

Jack,	B.N.,	Roeber,	U.,	O’Shea,	R.P.,	2015.	We	make	

predictions	 about	 eye	 of	 origin	 of	 visual	

input:	 Visual	 mismatch	 negativity	 from	

binocular	 rivalry.	 J.	 Vis.	 15(13),	 art	 9.	

doi:10.1167/15.13.9	

Kamitani,	Y.,	Tong,	F.,	 2005.	Decoding	 the	visual	

and	 subjective	 contents	 of	 the	 human	 brain.	

Nat.	 Neurosci.	 8,	 679–685.	

doi:10.1038/nn1444	

Leopold,	 D.A.,	 Logothetis,	 N.K.,	 1996.	 Activity	

changes	 in	 early	 visual	 cortex	 reflect	

monkeys’	 percepts	 during	 binocular	 rivalry.	

Nature	 379,	 549–553.	

doi:10.1038/379549a0	

Li,	 Z.,	 Atick,	 J.J.,	 1994.	 Efficient	 stereo	 coding	 in	

the	multiscale	representation.	Netw.	Comput.	

Neural	 Syst.	 5,	 157–174.	 doi:10.1088/0954-

898X_5_2_003	

Logothetis,	 N.K.,	 Schall,	 J.D.,	 1989.	 Neuronal	

correlates	 of	 subjective	 visual	 perception.	

Science	245,	761–763.	

Maloney,	 R.T.,	 2015.	 The	 basis	 of	 orientation	

decoding	 in	 human	 primary	 visual	 cortex:	

fine-	 or	 coarse-scale	 biases?	 J.	 Neurophysiol.	

113,	1–3.	doi:10.1152/jn.00196.2014	

Mamassian,	 P.,	 Goutcher,	 R.,	 2005.	 Temporal	

dynamics	 in	 bistable	 perception.	 J.	 Vis.	 5,	

361–375.	doi:10.1167/5.4.7	

Mannion,	 D.J.,	 McDonald,	 J.S.,	 Clifford,	 C.W.G.,	

2010.	 Orientation	 Anisotropies	 in	 Human	

Visual	 Cortex.	 J.	 Neurophysiol.	 103,	 3465–

3471.	doi:10.1152/jn.00190.2010	

Maris,	 E.,	 Oostenveld,	 R.,	 2007.	 Nonparametric	

statistical	 testing	 of	 EEG-	 and	 MEG-data.	 J.	

Neurosci.	 Methods	 164,	 177–190.	

doi:10.1016/j.jneumeth.2007.03.024	

May,	 K.A.,	 Zhaoping,	 L.,	 Hibbard,	 P.B.,	 2012.	

Perceived	Direction	of	Motion	Determined	by	

Adaptation	 to	 Static	 Binocular	 Images.	 Curr.	

Biol.	 22,	 28–32.	

doi:10.1016/j.cub.2011.11.025	



Baker	(2017),	Neuroimage,	147:	89-96	

doi:	10.1016/j.neuroimage.2016.12.008	

This	post-print	version	was	created	for	open	access	dissemination	through	institutional	repositories	

McLoughlin,	 N.P.,	 Grossberg,	 S.,	 1998.	 Cortical	

computation	 of	 stereo	 disparity.	 Vision	 Res.	

38,	91–99.	

Nemrodov,	 D.,	 Niemeier,	 M.,	 Mok,	 J.N.Y.,	 Nestor,	

A.,	 2016.	 The	 time	 course	 of	 individual	 face	

recognition:	A	pattern	analysis	of	ERP	signals.	

NeuroImage	 132,	 469–476.	

doi:10.1016/j.neuroimage.2016.03.006	

Ono,	 H.,	 Barbeito,	 R.,	 1985.	 Utrocular	

discrimination	 is	 not	 sufficient	 for	 utrocular	

identification.	Vision	Res.	25,	289–299.	

O’Shea,	 R.P.,	 Kornmeier,	 J.,	 Roeber,	 U.,	 2013.	

Predicting	 Visual	 Consciousness	

Electrophysiologically	 from	 Intermittent	

Binocular	 Rivalry.	 PLoS	 ONE	 8,	 e76134.	

doi:10.1371/journal.pone.0076134	

Pratte,	M.S.,	 Sy,	 J.L.,	 Swisher,	 J.D.,	Tong,	F.,	 2016.	

Radial	 bias	 is	 not	 necessary	 for	 orientation	

decoding.	 NeuroImage	 127,	 23–33.	

doi:10.1016/j.neuroimage.2015.11.066	

Ramkumar,	 P.,	 Jas,	 M.,	 Pannasch,	 S.,	 Hari,	 R.,	

Parkkonen,	 L.,	 2013.	 Feature-Specific	

Information	 Processing	 Precedes	 Concerted	

Activation	 in	 Human	 Visual	 Cortex.	 J.	

Neurosci.	 33,	 7691–7699.	

doi:10.1523/JNEUROSCI.3905-12.2013	

Salti,	 M.,	 Monto,	 S.,	 Charles,	 L.,	 King,	 J.-R.,	

Parkkonen,	 L.,	 Dehaene,	 S.,	 2015.	 Distinct	

cortical	 codes	 and	 temporal	 dynamics	 for	

conscious	and	unconscious	percepts.	 eLife	4.	

doi:10.7554/eLife.05652	

Schwarzkopf,	 D.S.,	 Schindler,	 A.,	 Rees,	 G.,	 2010.	

Knowing	 with	 which	 eye	 we	 see:	 utrocular	

discrimination	 and	 eye-specific	 signals	 in	

human	 visual	 cortex.	 PloS	 One	 5,	 e13775.	

doi:10.1371/journal.pone.0013775	

Seyal,	M.,	 Sato,	 S.,	White,	 B.G.,	 Porter,	 R.J.,	 1981.	

Visual	evoked	potentials	and	eye	dominance.	

Electroencephalogr.	 Clin.	 Neurophysiol.	 52,	

424–428.	

Swisher,	 J.D.,	Gatenby,	 J.C.,	Gore,	 J.C.,	Wolfe,	B.A.,	

Moon,	 C.-H.,	 Kim,	 S.-G.,	 Tong,	 F.,	 2010.	

Multiscale	 Pattern	 Analysis	 of	 Orientation-

Selective	 Activity	 in	 the	 Primary	 Visual	

Cortex.	 J.	 Neurosci.	 30,	 325–330.	

doi:10.1523/JNEUROSCI.4811-09.2010	

Templeton,	 W.B.,	 Green,	 F.A.,	 1968.	 Chance	

results	 in	 utrocular	 discrimination.	Q.	 J.	 Exp.	

Psychol.	 20,	 200–203.	

doi:10.1080/14640746808400150	

van	Rhijn,	M.,	Roeber,	U.,	O’Shea,	R.P.,	2013.	Can	

eye	 of	 origin	 serve	 as	 a	 deviant?	 Visual	

mismatch	 negativity	 from	 binocular	 rivalry.	

Front.	 Hum.	 Neurosci.	 7.	

doi:10.3389/fnhum.2013.00190	

Wardle,	 S.G.,	 Kriegeskorte,	 N.,	 Grootswagers,	 T.,	

Khaligh-Razavi,	 S.-M.,	 Carlson,	 T.A.,	 2016.	

Perceptual	 similarity	 of	 visual	 patterns	

predicts	 dynamic	 neural	 activation	 patterns	

measured	 with	 MEG.	 NeuroImage	 132,	 59–

70.	doi:10.1016/j.neuroimage.2016.02.019	

Watson,	 A.B.,	 Robson,	 J.G.,	 1981.	 Discrimination	

at	 threshold:	 labelled	 detectors	 in	 human	

vision.	Vision	Res.	21,	1115–1122.	

Zhaoping,	L.,	2012.	Gaze	capture	by	eye-of-origin	

singletons:	 interdependence	with	awareness.	

J.	Vis.	12,	17.	doi:10.1167/12.2.17	

	

	 	



Baker	(2017),	Neuroimage,	147:	89-96	

doi:	10.1016/j.neuroimage.2016.12.008	

This	post-print	version	was	created	for	open	access	dissemination	through	institutional	repositories	

7	Supplementary	materials	

	

	

	
Figure	S1:	Scalp	distributions	of	classifier	accuracy	in	100ms	epochs	for	discriminating	(a)	eye	of	origin,	(b)	

monocular	vs	binocular	presentation,	(c)	orientation,	(d)	gratings	vs	plaids,	(e)	rivalry	vs	monocular	plaids,	

(f)	rivalry	vs	binocular	gratings.	Green	points	indicate	electrodes	that	gave	classifier	performance	that	was	

significantly	above	chance	following	cluster	correction.	
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