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Abstract

Decision-making processes rarely occur in isolation. Rather, representations are updated 

constantly based on feedback to past decisions and actions. However, previous research has 

focused on the reaction to feedback receipt itself, instead of examining how feedback information 

is integrated into future decisions. In the current study, we examined differential neural sensitivity 

during risk decisions following positive versus negative feedback in a risk-taking context, and how 

this differential sensitivity is linked to adolescent risk behavior. Fifty-eight adolescents (ages 13–

17 years) completed the Balloon Analogue Risk Task (BART) during an fMRI session and 

reported on their levels of risk-taking behavior. Results show that reduced medial PFC (mPFC) 

response following negative versus positive feedback is associated with fewer reductions in task-

based risky decisions following negative feedback, as well as increased self-reported risk-taking 

behavior. These results suggest that reduced neural integration of negative feedback into during 

future decisions supports risky behavior, perhaps by discounting negative relative to positive 

feedback information when making subsequent risky decisions.

Introduction

1.1

Decision-making processes almost never occur in isolation; rather individuals’ 

representations are constantly being updated based on internal and external information. 

Feedback, either positive or negative, can be used to update decision-making in real time, 

affecting subsequent behavior in complex ways (Gold & Shadlen, 2007). Successful 

monitoring of decision-making performance involves both the ability to extract relevant 

information from feedback stimuli and then adjust behavioral strategies in appropriate ways. 

However, these abilities are not uniform across development. Rather, different phases of 

development show differential susceptibility to the wide array of feedback available in the 
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environment. Adolescence is a time when sensitivity to positive and negative feedback 

undergoes significant changes, which have important implications for adolescents’ real-

world risk behavior (Somerville et al., 2010).

Theoretical and empirical work has explored how sensitivity to positive and negative 

feedback changes during the adolescent phase of development. Some models of adolescence 

have focused primarily on adolescent sensitivity to positive feedback (i.e., rewards), 

suggesting that increased approach motivation prompts adolescents to seek out risky 

situations and behavior (Casey et al., 2008, Steinberg, 2010). The rewarding nature of 

engaging in these behaviors can serve as an intrinsic form of positive feedback, supporting 

further risk behavior. A large body of empirical work has supported these suggestions, with 

adolescents demonstrating greater sensitivity than adults or children to a wide range of 

rewarding stimuli (e.g., Steinberg et al., 2008; Cauffman et al., 2010; Spear, 2011). On the 

neural level, adolescent reward circuitry (e.g., ventral striatum) shows hypersensitivity to 

rewards relative to both children and adults (e.g., Galván, 2013; see Telzer, 2016), and this 

neural reward sensitivity has been linked with increased engagement in risk-taking behaviors 

(Galván et al., 2007; Telzer et al., 2013; Braams et al., 2015; Qu et al., 2015). These findings 

support the idea that adolescence is a period of sensitivity to positive feedback, and that this 

sensitivity is an important contributor to increased risk behavior

Other models have proposed that adolescent sensitivity to negative feedback also contributes 

to increases in risk taking (Ernst et al., 2006). Specifically, decreased sensitivity to negative 

feedback results in low avoidance motivation, such that adolescents are less likely to 

subjectively experience negative outcomes related to their risky behavior, and are less likely 

to weigh potentially negative consequences into their decision-making representations 

compared with adults and children (Ernst et al., 2006). Empirical evidence for decreased 

sensitivity to negative feedback in adolescence has been sparse. On the behavioral level, 

there does appear to be a developmental decrease in sensitivity to negative feedback. 

However, this decrease continues through adolescence and into adulthood; that is, it is not 

unique to adolescents (van Duijvenvoorde et al., 2008; Cauffman et al., 2010; Humphreys et 

al., 2016). Neural evidence for a unique adolescent reduction in sensitivity to negative 

feedback is considerably more sparse (but see Ernst et al., 2005).

While there is little evidence for a decrease in sensitivity to negative feedback in 

adolescence, there is some accumulating evidence for adolescence as a transitional period in 

how positive and negative feedback are used in relation to one another during decision-

making. During reversal learning, for instance, children show greater reward learning and 

adults show greater punishment learning, while adolescents show fewer distinctions in how 

feedback type relates to behavioral performance (van der Schaaf et al., 2011; van den Bos et 

al., 2012). Additionally, during risk taking, adolescents’ risk behavior is more likely to be 

unchanged after receiving negative feedback, while children tend to increase and adults tend 

to decrease their risk behavior (Humphreys et al., 2016). Moreover, decreases in sensitivity 

to negative feedback interact with increased rates of learning during adolescence to promote 

behavioral advantages over adults and children during high, but not low or medium, risk 

situations (Humphreys et al., 2016). These patterns of results may reflect changes in how 

positive and negative information are integrated together and differentially weighted.
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Although subcortical regions are most often implicated in sensitivity to positive and negative 

feedback (the ventral striatum and amygdala, respectively), integration of multiple forms of 

feedback likely relies on higher-order regulatory regions, such as the prefrontal cortex 

(PFC). Initial evidence suggests that transitions in PFC activity and connectivity might play 

a role in changing sensitivity to feedback observed during adolescence. For instance, 

regulatory (e.g., DLPFC and superior parietal lobule) activity during feedback learning 

mimics a transition in how positive versus negative feedback affects participant learning (van 

Duijvenvoorde et al., 2008). However, other regions such as the pre-SMA/ACC and caudate 

do not show these adolescent transitions (van Duijvenvoorde et al., 2008), suggesting that 

neural systems may exhibit differential trajectories in their responses to positive and negative 

feedback. Additionally, medial PFC (mPFC) connectivity between both the amygdala (Gee 

et al., 2013; Gabard-Durman et al., 2014) and ventral striatum (van den Bos et al., 2012) 

show transitions (albeit in opposite directions) during adolescence, with neural coupling 

flipping in the direction of association during this period. The mPFC distinguishes between 

positive and negative feedback, and mPFC sensitivity to reward versus loss receipt relates to 

adolescents’ frequency of risk engagement (van Duijvenvoorde et al., 2014). This is 

consistent with adult work showing that the mPFC is involved in action-outcome evaluation 

(van Noordt & Segalowitz, 2012) and indexing of the relative risk of actions (Xue et al., 

2009; van Leijenhorst, Moor, et al., 2010). These data suggest that the mPFC may play an 

important role in feedback integration and action evaluation, which impacts an individual’s 

propensity to both engage in risk initially, but also to modulate on-going behavioral 

strategies as feedback is received.

The majority of studies examining adolescent sensitivity to feedback focus on the actual 

receipt of reward or punishment (e.g. van Duijvenvoorde et al., 2014; Hauser et al., 2014). 

While an important first step, further examination of how adolescents continue to process 

feedback information and integrate it into future decision-making requires greater attention. 

Examining down-stream processes of feedback integration and neural adaptation offers 

additional insight into risky decision-making above looking solely at momentary reactivity 

to feedback. While certainly related, feedback reactivity and integration likely also involve 

different neural systems, which may be sensitive to unique individual differences. An 

understanding of how feedback information is integrated into decision making processes 

over time can give us new insights into how feedback processing relates to adolescents’ risky 

behavior. To address this question, we examined adolescents’ differential neural reactivity to 

positive and negative feedback in the context of risk and reward. During an fMRI session, 

adolescents completed the Balloon Analog Risk Task (BART; Lejuez et al., 2002), a well-

established paradigm that gives both positive and negative feedback following participants’ 

risk behavior. In contrast to previous examinations of feedback processing, we focused on 

subsequent decisions adolescents made following positive (e.g., receipt of reward) or 

negative (loss of potential reward) feedback. We first examined differences in decision-

making made in these separate contexts. Because these events (i.e., pump decisions) are 

otherwise identical, any observed differences could be linked to adolescents’ sensitivity to 

the differential contexts created by the previous trials’ feedback. Secondly, we characterized 

the consequences of individual differences in feedback processing during risk taking by 

examining associations between neural signatures of feedback integration and risky 
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behavior, both from the task and adolescents’ self-reported real-world behavior. Importantly, 

examining these brain-behavior relationships not only allows us to explore how adolescents 

incorporate feedback information into future decisions, but also the impact of this 

differential neural processing on real-world behavior. We hypothesized that adolescents 

would show differential neural activation when making decisions made after negative 

relative to positive feedback. In particular, regions involved in feedback integration, such as 

the mPFC, should be sensitive to the context of different feedback conditions. Given 

previous work relating mPFC to risky behavior, we hypothesize that reduced mPFC 

integration of negative, relative to positive, feedback into decision-making processes would 

be associated with increases in risk-taking behavior during adolescence.

Methods

2.1 Participants

Sixty adolescent participants completed an fMRI scan. Subjects were recruited from the 

community through a variety of methods, including flyers, recruiting from a pool of 

subjects, and through local schools. One participant was excluded for excessive head motion 

(> 2.0 mm inter-slice movement on ≥10% of slices), another for lacking sufficient trial types 

for modeling functional events, and two participants were excluded for being on medication 

for ADD/ADHD; leaving a final sample of fifty-eight adolescents (30 female; Mage=15.62 

years, SD=1.38, range=12.3–17.7 years; 40 European-American, 14 African-American, 2 

Latin-American, 1 Asian-American, and 3 mixed/multiple ethnicity). Adolescents provided 

written consent and assent in accordance with the University of Illinois’ Institutional Review 

Board.

2.2 Self-Reported Risk Taking

In order to examine real-world behaviors associated with neural sensitivity to feedback, 

adolescents reported on their risk-taking behavior using a modified version of the 

Adolescent Risk-Taking Scale (Alexander et al., 1990; Telzer, Fuligni, Lieberman, & Galván 

2013). Participants completed 12 questions indicating how frequently (1= Never to 4= Many 
Times) they engaged in a variety of risky behaviors (e.g., “I have gotten high or drunk at a 

party,” and “I have slipped out at night while my parents thought I was asleep.”). The scale 

had excellent reliability (α = .91).

2.3 Pubertal Development

Adolescents completed the self-report Peterson Pubertal Development Scale (PDS; Peterson 

et al., 1988) which is used to assess the development of secondary sexual characteristics. 

The PDS is composed of 5 general questions which capture information related to physical 

growth, changes in body hair, and changes in the skin. Adolescents also completed 

additional sex-specific questions; 2 for boys related to changes in the voice and facial hair, 

and 3 for girls related to breast development and menstruation. For each question, 

adolescents indicated on a 4-point scale whether that aspect of development: (1) had not yet 

started, (2) had barely started, (3) had definitely started, or (4) seemed completed. 

Participants’ responses were averaged to calculate a pubertal development score which was 

used in analyses.
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2.4 Behavioral Paradigm

Adolescents completed a variant of the Balloon Analog Risk Task (BART) during an fMRI 

scan. The BART is a widely-used paradigm to measure risk taking (Lejuez et al., 2002; 

Telzer et al., 2015) and provides positive and negative feedback following participants’ risk 

decisions. Prior to the scan, participants were shown a box filled with age-appropriate prizes 

and were told they could choose prizes from the box based on how many points they earned 

during the scan; however, in reality all participants were able to choose 3 prizes at the end of 

the scan session regardless of how many points they earned.

During the scan session, adolescents were shown a series of 24 balloons, which they could 

choose to pump up in order to earn points. Each pump increased the likelihood that the 

balloon would explode, which resulted in the participant losing all the points they had 

earned on that balloon. Participants could choose to cash-out their points at any point after 

the first pump, which saved the points they earned on that balloon to their total score. 

Participants’ running total of points were presented in a points meter on the left side of the 

screen, and participants were instructed to try to earn as many points as possible during the 

task. Depending on their choices during each balloon, participants received either negative 

(i.e., explosion) or positive (i.e., point receipt) feedback. Cash-out events (i.e., positive 

feedback) involved the display of the points that the participant earned on that balloon, 

accompanied by a positive, cash tone which was played through speakers in the scan bore. 

Explosion events (i.e., negative feedback) were accompanied by an aversive, loud tone. 

Participants’ decisions on the different balloons were categorized by the type of feedback 

that was received on the previous trial (Figure 1). In particular, balloons were categorized as 

either (1) post-explosion trials (i.e., following negative feedback) or (2) post-cash-out trials 

(i.e., following positive feedback). Each decision and outcome were separated by a jitter 

(500–4000 ms), and the task only advanced when participants made the decision to either 

pump or save their points. Participants were informed that after each decision, there would 

be a brief delay where further responses would not advance the task. During the delay, the 

on-screen decisions “pump” and “cash-out” disappeared. These periods corresponded to the 

jittered interval between pump decisions and/or outcomes. By not allowing the task to 

advance during the jitter period, we ensured that the hemodynamic function of each decision 

could be modeled successfully. Balloons were presented in a fixed order (pseudo-randomly 

selected), such that each participant was shown the same sequence of balloons, and each 

balloon exploded at a set level (range=3–10 pumps). The probability of explosion was 

equally distributed across explosion levels (i.e., each explosion level appeared 3 times). 

Participants were not made aware at any point of the rules of the task, or the pump levels at 

which point balloons could explode. Rather, they were only instructed to earn as many 

points as they could, and were only able to learn about task parameters through completing 

the task.

After the scan, adolescents reported on a 4-point scale (1=Not at All, 4=Definitely) their 

level of motivation to earn the available prizes. Adolescents reported being moderately 

motivated by the prizes, although there was individual variation (M=2.74, SD=.99, range=1–

4). Adolescents’ motivation to earn prizes was not related to any of our behavioral or neural 
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variables of interest. Furthermore, controlling for motivation in our analyses does not alter 

the effects.

2.5 fMRI Data Acquisition and Analysis

Imaging data were collected using a 3 Tesla Siemens Trio MRI scanner. Structural scans 

consisted of a T1* magnetization-prepared rapid-acquisition gradient echo (MPRAGE; 

TR=1.9sec; TE=2.3msec; FOV=230; matrix=256×256; sagittal plane; slice thickness=1mm; 

192 slices) and a T2*weighted, matched-bandwidth (MBW), high-resolution, anatomical 

scan (TR=4sec; TE=64msec; FOV=230; matrix=192×192; slice thickness=3mm; 38 slices). 

During the BART, T2*-weighted echoplanar images (EPI) (slice thickness=3 mm; 38 slices; 

TR=2sec; TE=25msec; matrix=92×92; FOV=230 mm; voxel size 2.5×2.5×3mm3) were 

acquired. MBW and EPI scans were obtained using an oblique axial orientation in order to 

maximize brain coverage.

fMRI data were analyzed using Statistical Parametric Mapping software package (SPM8; 

Wellcome Department of Cognitive Neurology, Institute of Neurology, London, UK). 

Preprocessing involved spatial realignment to correct for head motion (adolescents included 

in the final sample had no motion in excess of 1.5mm inter-slice motion; average framewise 

displacement per TR = 0.15 mm), coregistration of all images to the high-resolution T1* 

MPRAGE structural scan, and segmentation into grey matter, white matter, and 

cerebrospinal fluid. MBW and EPI images were warped into the standard stereotactic space 

defined by the Montreal Neurological Institute (MNI) and the International Consortium for 

Brain Mapping by applying the transformation matrices used in MPRAGE segmentation. An 

8mm Gaussian kernel, full-width-at-half maximum was used to smooth EPI images to 

increase the signal-to-noise ratio. Each trial was convolved with a canonical hemodynamic 

response function. A high-pass temporal filter with a 128s cutoff was applied to remove low-

frequency drift in the time series, and a restricted maximum likelihood algorithm with an 

autoregressive model order of 1 was used to estimate serial autocorrelations.

In each person’s fixed effects model, a general linear model (GLM) was created with seven 

regressors of interest, modeled as events. Our primary conditions of interest included pumps 

on balloons following explosions (i.e., risk taking post negative feedback) and pumps on 

balloons following successful cash-outs (i.e., risk taking post positive feedback). The first 

balloon of the task was modeled separately and was excluded from analysis because 

decisions during this trial lacked any previous feedback information. Similarly, outcome 

events (i.e., cash-outs and explosions) were modeled separately from both types of risk 

decisions and from one another, but were not included in the current analyses, as our focus 

was not on sensitivity to the feedback event itself but instead to decisions adolescents made 

following positive (e.g., receipt of reward) or negative (loss of potential reward) feedback. 

Thus, risk decisions were categorized by the feedback adolescents’ received immediately 

prior and modeled separately in order to compare differential neural sensitivity to positive 

and negative feedback on future risk-taking decisions. To help ensure lower levels of noise 

in our estimation of the BOLD signal during the task, we excluded participants who had 

fewer than five balloons for either condition (following positive or negative feedback). 

Because each pump decision was modeled for each balloon, all participants had over 15 
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individual decision events following both positive and negative feedback (M=27.61, 

SD=11.43, range=15–67). The jittered inter-trial periods between decision events were not 

modeled explicitly and therefore served as the implicit baseline. Within a balloon trial, each 

pump decision was modeled separately such that the number of events per balloon was equal 

to the number of times participants pumped that balloon. A parametric modulator (PM) was 

included for the two conditions of interest and corresponded to the number of pumps at each 

pump decision. The PM was included as a control to ensure that the observed effects were 

not simply due to differences in neural processing of the progressively-larger balloons within 

a trial. Individual contrasts were then computed for each condition of interest.

Random effects, group-level analyses were run on all individual subject contrasts using 

GLMFlex, which removes outliers and sudden activation changes in the brain, corrects for 

variance-covariance inequality, partitions error terms, and analyzes all voxels containing 

data (http://mrtools.mgh.harvard.edu/index.php/GLM_Flex). Our group level fMRI analyses 

contrasted risk-taking decisions (i.e., pumping behavior) on post-explosion versus post-cash-

out trials. To examine the consequences of differential sensitivity to negative versus positive 

feedback, we examined links between neural activation and both task behavior and 

adolescent self-report risk taking. For our task-based behavioral measure of sensitivity to 

negative feedback, we computed a difference score representing the average number of 

pumps on balloons following negative feedback (i.e., an explosion) and the average number 

of pumps on balloons following positive feedback (i.e., cash-out). The resultant score 

(negative – positive) reflects adolescents’ differential risk behavior following feedback, with 

greater negative values reflecting greater reductions in pumping following an explosion 

relative to a cash-out. We hypothesized that adolescents who showed reduced neural 

reactivity to negative versus positive feedback would show less sensitivity to negative 

feedback behaviorally (i.e., would show less reduction in pumping behavior after receiving 

negative feedback) as well as report greater frequency of engaging in risk-taking behaviors. 

To help control for differences in maturation between our subjects, we ran whole-brain 

regressions with age, pubertal development, and gender, as well as the interactions between 

age/puberty and gender. Furthermore, we included these variables as covariates in our 

analyses of interest, both in whole-brain regressions and mediation analyses. Age, gender, 

and their interaction were not associated with neural activation during decisions following 

positive relative to negative feedback. Moreover, including age, gender, and pubertal 

development as covariates did not change the effects in any of our regressions of interest. As 

such, we removed these controls for parsimony.

Correction for multiple comparisons was run using a Monte Carlo simulation through the 

3dFWHMx and 3dClustSim packages from the AFNI software package (Ward, 2000; 

updated April 2016) using the group-level brain mask generated through GLMFlex. Group-

level brain masks included all voxels in functional space containing functional information 

that were included in our analyses. Separate simulations were run for each analysis using the 

analysis-specific group-level mask. To determine the overall cluster threshold, we selected 

the largest threshold from each individual simulation and applied it for all analyses. 

Simulations resulted in a voxel-wise threshold of p<.005 and a minimum cluster size of 51 

contiguous voxels for the whole brain, corresponding to p<.05, Family-Wise Error (FWE) 
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corrected. All results are available on Neurovault (http://neurovault.org/collections/1985/; 

Gorgolewski et al., 2015).

Results

3.1 Behavioral Results

Consistent with prior research (Rao et al., 2008;Telzer et al., 2015) and adolescents’ goals 

for the task, adolescents were more likely to cash-out than pump until balloons exploded 

(Cash-outs: M=18.05, SD=1.19; Explosions: M=5.95, SD=1.19; t(57)=21.25, p<.001). 

Furthermore, adolescents showed differential pumping behavior on balloons after positive 

versus negative feedback, such that they pumped more on average following a cashed-

balloon (M=7.25, SD=0.86) than an exploded balloon (M=5.83, SD=0.83; t(57)=14.22, p<.

001). Furthermore, when examining behavior on a trial-by-trial basis, adolescents tend to 

reduce their pumping following negative feedback and increase their pumping following 

positive feedback (B= −1.25, SE = .08, t(55) = −14.91, p< .001), controlling for both trial 

number and how much they pumped on the previous trial. Differences in pumping behavior 

after negative versus positive feedback was not significantly related to adolescents’ self-

reported risk-taking behavior (r=.087, p=.524) or to the total number of points earned during 

the task (r=−.192, p=.157).

3.2 fMRI Main Effects

3.2.1.Risk-related neural responses following positive feedback—We first 

examined neural activity during risk decisions after participants received positive feedback 

(i.e., following cash-out trials). In other words, what neural patterns of activation do 

adolescents show when making risky choices on a balloon after receiving a reward? 

Adolescents demonstrated heightened activation in the dorsal anterior cingulate cortex 

(dACC), bilateral insula, bilateral ventral striatum (VS), bilateral dorsolateral PFC (DLPFC), 

and bilateral amygdala. We also found decreased activation in the bilateral inferior frontal 

gyrus (IFG) and bilateral superior temporal gyrus (STG; Table 1).

3.2.2 Risk-related neural responses following negative feedback—We then 

examined neural activity during risk decisions following negative feedback (i.e., explosion). 

In other words, what neural patterns of activation do adolescents show when making risky 

choices on a balloon after receiving a punishment? Adolescents demonstrated heightened 

activation in the dACC, bilateral anterior insula, bilateral VS, bilateral caudate, and bilateral 

DLPFC as well as decreased activation in regions of the subgenual ACC, orbitofrontal 

cortex (OFC), bilateral STG, bilateral occipital cortex, and left motor cortex (Table 1).

3.2.3 Differential responses following negative and positive feedback—Next, 

we examined differences in neural activation during risk decisions after receiving negative 

relative to positive feedback. Adolescents demonstrated heightened activation to negative 

feedback in the mPFC, right superior frontal gyrus (SFG), and right middle temporal gyrus 

(MTG). Regions showing greater activation after positive feedback included the VS, OFC, 

bilateral inferior temporal gyrus (ITG), bilateral occipital cortex, and left motor cortex 

(Figure2; Table 1).
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3.3 Associations between Neural Activation and Behavior

3.3.1 Behavioral sensitivity to negative versus positive feedback—To examine 

how behavioral sensitivity to feedback is related to neural sensitivity to feedback, we entered 

our metric of differential behavioral sensitivity to negative versus positive feedback (i.e., 

pump behavior post-explosions minus pump behavior post-cash-outs) as a regressor in a 

whole-brain regression analysis on the contrast of interest (risk taking following negative 

feedback > positive feedback). We found that adolescents who showed fewer reductions in 

pump behavior post-explosions relative to post-cash-outs showed reduced sensitivity to 

negative (vs. positive) feedback in the mPFC, left DLPFC, bilateral posterior insula, and 

bilateral caudate (Figure 3; Table 2). This suggests that reduced neural sensitivity to negative 

feedback is associated with sustained risk taking (i.e., greater pumping behavior) after 

negative feedback.

To unpack which components of our contrasts were driving this effect, we decomposed our 

findings in two ways. First we examined risk taking following positive and negative 

feedback separately. We found that behavioral sensitivity to negative versus positive 

feedback is associated with reduced mPFC processing following negative but not positive 

feedback (see Table 3 for full results). Secondly, we split our behavioral metric of 

differential sensitivity into its two component parts (i.e. average pumps following positive 

feedback and average pumps following negative feedback). We then correlated each of these 

indices with neural activation during risk taking following positive and negative feedback 

respectively. Results indicate that our effects are being driven by the association between the 

average number of pumps following negative feedback and reduced mPFC activation 

following negative feedback (see Table 3 for full results). Average pumps following positive 

feedback is not associated with neural activation in the mPFC during risk taking following 

positive feedback These results indicate that reduced mPFC integration of negative feedback 

into future behavior has an important role in the maintenance of risky behavior following 

negative feedback.

3.3.2 Real-world risk taking—We next investigated how differential neural responding 

following negative versus positive feedback is associated with real-world risk-taking 

behavior in adolescents. To do this, we entered self-reported risk-taking behavior as a 

regressor in a whole-brain regression analysis on the contrast of interest (risk taking 

following negative feedback > positive feedback). Adolescents who engaged in greater risk-

taking behavior showed less activation to negative versus positive feedback in the mPFC, 

right caudate, and pre-SMA (Figure 4; Table 2), suggesting that reduced neural sensitivity to 

negative feedback is related greater risk-taking behavior. Furthermore, when we decompose 

our contrast of interest (risk taking following positive and negative feedback separately), we 

find that these effects are driven by the association between self-reported risk-taking 

behavior and a decrease in mPFC activation following negative feedback but not positive 

feedback (see Table 3 for full results). Importantly, reduced mPFC sensitivity to negative 

feedback was linked to both task-based behavior and real-world risk-taking, suggesting that 

these processes depend on similar underlying neural processes.1
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3.3.3 Links between task-based sensitivity to negative feedback and risk 
taking—Because of the overlapping regions found in the mPFC for both task-based 

sensitivity to negative feedback and real-world risk taking, we wanted to see if differential 

mPFC feedback sensitivity might link task and real-world behavior. We extracted parameter 

estimates of signal intensity from the mPFC from the voxels that showed overlap in the two 

sets of independent analyses. We then standardized our behavioral measures of interest in 

order to test for the indirect effect, using the methods outlined by Hayes (Hayes, 2013). We 

used 1000 sample bootstrapping to calculate the significance and magnitude of the indirect 

effect, in order to construct a bias-corrected confidence interval (CI). We tested whether our 

behavioral measure of sensitivity to negative feedback was associated with adolescents’ self-

reported risk-taking behavior through a shared effect of dampened mPFC activation during 

risk taking following negative feedback relative to positive feedback. Results indicated a 

significant indirect effect (B=.09 SE=.05; 95% CI = [.02, .21]), relating reduced behavioral 

sensitivity to negative feedback and risk-taking behavior through reduced mPFC sensitivity 

to negative feedback, suggesting that adolescent’s blunted sensitivity to negative feedback 

contributes positively to increased risky behavior via blunted mPFC sensitivity to negative 

feedback.

3.3.4. Associations between neural sensitivity to feedback and adaptive task 
performance—Finally, we wanted to examine whether differential mPFC activation 

following negative versus positive feedback was related to adolescents’ earnings during the 

task. We extracted parameter estimates of signal intensity from the mPFC region showing 

differential sensitivity to negative > positive feedback, and correlated it with the total 

number of points adolescents earned during the task. We found a significant association 

between differential mPFC activation and total points earned (r=−.293, p=.03), such that 

adolescents who showed reduced mPFC activation following negative feedback were more 

likely to earn a higher number of points in the task. Thus, differential sensitivity to negative 

feedback contributes to both risk taking but also adaptive outcomes in the form of point 

acquisition.

Discussion

4.1

A majority of research on adolescent neurodevelopment and risk-taking behavior has 

focused on adolescent-specific increases in sensitivity to positive feedback (e.g., rewards; 

see Telzer, 2016). However, possible links between changes in sensitivity to negative 

feedback during adolescence and risk taking have received comparatively little attention. 

Moreover, previous research examining adolescent feedback sensitivity and risk taking has 

focused on neural responsivity to feedback receipt (e.g., van Duijvenvoorde et al., 2014). We 

took a novel approach by modeling risk decisions made after positive or negative feedback 

in order to examine how feedback information is integrated into on-going decision-making 

representations. We present the first evidence that blunted mPFC sensitivity to negative 

1To control for differences between the number of post-positive and post-negative feedback, main effect and regression analyses were 
also run including each participants’ number of post-negative feedback trials as a covariate. Results were unchanged with this 
addition, so we removed the covariate for parsimony.
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feedback supports risk-taking behavior during adolescence. This suggests that blunted 

sensitivity to negative feedback is an important component supporting increases in risk-

taking seen during adolescence.

Our findings indicate that adolescents display neural sensitivity to differential forms of 

feedback. Adolescents showed robust neural differences when making decisions following 

negative versus positive feedback in regions involved in performance monitoring, reward 

evaluation, and cognitive regulation, suggesting that on-going risky decision-making 

representations take into account an individual’s history of reward and punishment. In 

particular, regions that showed greater sensitivity to positive feedback during subsequent 

decisions included the OFC and ventral striatum, which have been implicated in reward 

sensitivity and learning (Galvan et al., 2005; see Telzer, 2016; O’Doherty et al., 2001; 

Schoenbuam & Roesch, 2005; McCormick & Telzer, in press). This suggests that receiving 

positive feedback can potentiate future risky decisions by activating reward-related regions, 

perhaps increasing approach behaviors. In contrast, regions showing greater sensitivity to 

negative feedback during risky decision-making included the mPFC and SFG, which are 

involved in regulating decision-making processes. The mPFC is involved in integrating 

feedback information (van Noordt & Segalowitz, 2012; van Duijvenvoorde et al., 2014) and 

the SFG is involved in higher-level regulatory processes, including goal maintenance and 

behavioral regulation (Ridderinkhof et al., 2004; Braver et al., 2009). This suggests that 

decisions made after receiving negative feedback recruit greater neural regulation than those 

made after receiving positive feedback. Negative feedback may be signaling to the 

adolescents that a change in behavioral strategy is necessary to avoid future negative 

feedback, engaging regions important for implementing new behavioral patterns.

Our results reveal that adolescents who choose to reduce their pumping less after receiving 

negative feedback also show reduced neural sensitivity to negative feedback in a region of 

the mPFC that has been previously implicated in aspects of feedback integration and risk 

monitoring (Xu et al., 2009; van Noordt & Segalowitz, 2012; van Duijvenvoorde et al., 

2014). This suggests that adolescents who show blunted mPFC and concomitant blunted 

behavioral sensitivity to negative feedback in subsequent decisions do so because they do 

not integrate the negative feedback into decision-making representations to the same degree. 

While adolescents who show more mPFC sensitivity to negative feedback during risky 

decision-making reliably reduce their pump behavior after explosion events, adolescents 

who show more-blunted mPFC sensitivity to negative feedback show relatively smaller 

reductions in their pump behaviors. This link between mPFC sensitivity and reductions in 

pumping behavior following negative feedback might represent an unconscious reduced 

sensitivity, whereby individual differences in intrinsic sensitivity to negative feedback drive 

differences in adolescents’ risky behavior. Adolescents showing reduced mPFC activation 

following negative feedback may also be less able to detect and adapt to error messages 

signaled by the negative feedback. Alternatively, adolescents may be consciously 

suppressing their sensitivity to negative feedback in order to pursue goal-directed behavior, 

namely pumping in order to earn more points. Future research should explore potential 

differences between adolescents’ intrinsic and goal-directed suppression of reaction to 

feedback.
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We also found that reduced sensitivity to negative feedback in the mPFC was related to 

adolescents’ self-reported risk-taking behavior. Adolescents who showed reduced mPFC 

sensitivity to negative feedback reported increased engagement in real-world risk-taking 

behaviors. While considerable research has explored the role of positive feedback sensitivity 

in adolescent risky behavior (e.g., van Leijenhorst, Zanolie, et al., 2010; van Duijvenvoorde 

et al., 2014, see Telzer, 2016), we report the first data showing that reduced mPFC 

sensitivity to negative feedback also promotes risk taking. These data complement and 

extend previous research relating increased mPFC sensitivity to reward (versus loss) receipt 

with increased engagement in risk (van Duijvenvoorde et al., 2014). While prior work 

showed that greater mPFC reactivity to reward receipt promotes risk engagement (van 

Duijvenvoorde et al., 2014), we found that reduced mPFC sensitivity during risk decisions 

following negative feedback promotes risk taking behaviors. One difference may be in the 

negative stimuli used in the two studies; explosions in the current study were especially 

aversive, with loss of points being accompanied by a loud and sudden blast of noise. 

Additionally, van Duijvenvoorde and colleagues examined neural sensitivity to feedback 

events (i.e., reward and loss) themselves, while the current study examined neural sensitivity 

during risky decisions following different forms of feedback events, where adolescents could 

apply information they gleaned from the different forms of feedback. Despite these 

differences, both studies point to the fact that individuals who show reduced sensitivity to 

negative feedback, either in the moment or in subsequent decisions, are more likely to 

engage in risk-taking behaviors. Importantly, this discounting of negative feedback 

information likely interacts with increases in sensitivity to positive feedback adolescents 

may receive (e.g., peer-approval, positive sensations) to promote risk behavior. Increased 

sensitivity to positive feedback likely prompts increased adolescent approach motivation 

while decreased sensitivity to negative feedback then reduces motivation to avoid potential 

negative consequences. As such, changes in sensitivity to both types of feedback may create 

a feedback loop that works to escalate risk-taking and sensation-seeking behaviors during 

adolescence.

Finally, we found that reduced behavioral sensitivity to negative feedback is related to 

adolescent’s self-reported risk taking through reduced neural sensitivity to negative feedback 

in the mPFC. This association between risk-taking and reduced sensitivity to negative 

feedback implies that adolescents who engage in more risky behavior may be insensitive to 

potential negative outcomes they experience as a result of their risky decisions. Thus, when 

these adolescents make subsequent risky decisions, they may weigh negative feedback (e.g., 

parent/authority disapproval, health consequences) less in their decision-making 

representations (Ernst et al., 2006). While previous research focused on amygdala reactivity 

to negative feedback in the form of reward omission (Ernst et al., 2005), we found no 

differences in amygdala activation in decisions made after adolescents received negative 

feedback relative to after they received positive feedback. Instead, we found that differential 

mPFC sensitivity to negative versus positive feedback during decision-making predicted 

adolescent risk-taking behavior. This difference may be on account of the role of feedback 

for informing future behavior. While participants in Ernst and colleagues (2005) made 

choices and received feedback on a series of independent trials, adolescents in the current 
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study made sequential decisions, where feedback on a given balloon transmitted important 

information for future risk behavior.

Our results offer a new insight into how adolescents integrate feedback information into 

future decisions. Adolescence is a developmental window during which feedback processing 

can have important implications for health and achievement outcomes. Our results offer a 

new insight into how adolescents integrate feedback information into future decisions. 

However, additional work should investigate whether sensitivity to negative feedback is 

limited to adolescence by examining feedback-related changes in risky decision-making and 

links to real-work risk behavior in both children and adults. This extension of the current 

study will help to clarify the specificity of these feedback-related processes to adolescence. 

Additionally, while the current study focused on feedback sensitivity during risk-taking 

behavior, we did not have information on some important individual difference measures 

(e.g., IQ, SES, clinical psychopathology, etc.) that may interact with these feedback-related 

processes in risky decision-making. Furthermore, given the important role of social context 

(i.e., peers, parents) in adolescent risk taking (e.g. Chein et al., 2011; Telzer et al., 2015), 

future work should build on the current study by examining the effect of social information 

on these feedback-related processes. Finally, due to the nature of participants’ behavior on 

the BART, the number of trials in each condition (i.e., post-positive and post-negative 

feedback) are not balanced. While controlling for each participants’ number of post-negative 

feedback trials does not change the reported findings, future research examining these 

processes should take steps to make these conditions more-equal.

In summary, we took a novel approach by examining how adolescents integrate feedback to 

inform their risky decisions in real time, and how differential neural sensitivity following 

negative versus positive feedback promotes risky behavior. We found that blunted sensitivity 

to negative feedback in a region of mPFC previously implicated in outcome evaluation (van 

Duijvenvoorde et al., 2014) and risk indexing (van Leijenhorst, Moor, et al., 2010) was 

related to greater risky behavior in the face of negative feedback and engagement in more 

real-world risk taking. While reward (i.e., positive feedback) sensitivity has received much 

attention in the study of adolescent risk taking, results from the current study highlight the 

fact that the emergence and maintenance of risky behavior likely involves complex changes 

in how adolescents react to both positive and negative feedback. Additionally, the current 

study points to the importance of not simply examining neural reactivity to the delivery of 

positive or negative feedback, but how individuals integrate and implement those neural 

representations into future decision-making processes.
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Figure 1. 
The outcome of the previous trial (i.e. cash-out or explosion) was used to group subsequent 

pump decisions into conditions of interest. The first trial was excluded from analyses but 

was used to group pump decisions in trial 2.
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Figure 2. 
Adolescents showed A) greater mPFC and R SFG activation to negative feedback and B) 

greater VS and OFC activation to positive feedback.
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Figure 3. 
Adolescents who showed reduced mPFC sensitivity to negative versus positive feedback, 

also showed blunted behavioral sensitivity to negative feedback. (i.e., smaller reductions in 

pumping following an explosions compared to pumping after a cash-out).
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Figure 4. 
Adolescents who showed reduced mPFC sensitivity to negative versus positive feedback, 

reported greater frequency of real-world risk-taking behaviors.
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