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Abstract

A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD 

responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical 

analysis can lead to significant errors in signal detection and characterization and alter the 

neurobiological interpretation. However, to date it is not clear that, out of a large number of 

options, which methods are robust against variability in the temporal dynamics of BOLD 

responses in block-design studies. Here, we used rodent optogenetic fMRI data with 

heterogeneous BOLD responses and simulations guided by experimental data as a means to 

investigate different analysis methods’ performance against heterogeneous BOLD responses. 

Evaluations are carried out within the general linear model (GLM) framework and consist of 

standard basis sets as well as independent component analysis (ICA). Analyses show that, in the 

presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set 

leads to considerable errors in the detection and characterization of BOLD responses. Our results 

suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response 

(FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets 

are optimal for good balance between detection and characterization, while the 1st order Fourier 

basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has 

mostly good detection and characterization capabilities, but detects a large volume of spurious 

activation with the control fMRI data.
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1. Introduction

Reliable detection of evoked blood oxygenation level dependent (BOLD) responses is 

critical to estimate the brain activation maps in fMRI studies. In addition, there has been an 

increasing interest in characterizing temporal features such as onset and duration to 

investigate activation timing of BOLD responses across brain regions and experimental 

conditions (Byers et al., 2015; Handwerker et al., 2012; Lindquist et al., 2009; Liu et al., 

2015; Weitz et al., 2014). However, accurate detection and characterization remain 

challenging in scenarios where BOLD responses exhibit a large variability in the temporal 

dynamics (Aguirre et al., 1998; Gonzalez-Castillo et al., 2012; Handwerker et al., 2004), 

such as in studies of disease states (Amemiya et al., 2012; Matthews et al., 2006), and in 

small animal studies with anesthesia (Schlegel et al., 2015; Schroeter et al., 2014; Williams 

et al., 2010). In these cases, commonly used general linear model (GLM) (Friston et al., 

1994) with a canonical hemodynamic response function (HRF) is often not the best choice. 

For example, in an fMRI study of motor control in human ischemic patients, GLM with a 

canonical HRF failed to detect motor cortex activation (Amemiya et al., 2012). It also failed 

to estimate temporal features of the BOLD responses (Calhoun et al., 2004; Lindquist et al., 

2009). In these studies, onset and duration differences between experimental conditions 

were misinterpreted as differences in the amplitudes of evoked BOLD responses. These 

substantial detection and characterization errors stress the importance of proper choice of 

analysis methods.

Nevertheless, it is currently not clear which methods are optimal in scenarios of 

heterogeneous BOLD responses. This is partially due to the large set of analysis approaches 

available, yet few comprehensive evaluations have been conducted, especially in block-

design studies. Over the past decades, dozens of methods have been proposed. Among the 

most accessible ones are those implemented in widely available software packages, such as 

GLM with the canonical basis set (Calhoun et al., 2004; Friston et al., 1998; Henson et al., 

2002; Steffener et al., 2010), the gamma basis set, the Fourier basis set, the finite impulse 

response (FIR) basis set, and the B-spline basis set (Genovese, 2000). Likewise, optimized 

methods for specific datasets have been considered. For example, colleagues have developed 

specific basis sets to estimate onset delays (Liao et al., 2002), implemented transient plus 

sustained models to detect transient responses in block-design experiments (Giraud et al., 

2000; Harms and Melcher, 2002; Seifritz et al., 2002), and designed basis sets that 

incorporate prior information of BOLD responses (Woolrich et al., 2004). Additionally, 

data-driven methods are employed as they place few assumptions on the hemodynamic 

responses. Commonly used methods include independent component analysis (ICA) 

(Beckmann and Smith, 2004; Esposito et al., 2002; McKeown et al., 1998a; McKeown et al., 

1998b), principal component analysis (PCA) (Backfrieder et al., 1996; Sychra et al., 1994), 

and fuzzy clustering analysis (Baumgartner et al., 2000; Chuang et al., 1999; Wismüller et 

al., 2002).

In block-design studies, only data-driven methods, such as ICA, PCA, and unsupervised 

clustering, have been compared on their detection and characterization performance 

(Baumgartner et al., 2000; Erhardt et al., 2011; Meyer-Baese et al., 2004), but not the more 

widely-used model-based approaches. In contrast, another study assessed several HRF 
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models’ ability to estimate HRF parameters from a block-design experiment, but did not 

examine detection performance (Shan et al., 2014). More often, comparisons were not 

conducted as the main purpose of the study, but to support the introduction of new 

approaches to analyze fMRI data (Calhoun et al., 2001a; Harms and Melcher, 2003; 

McKeown et al., 1998b; Moritz et al., 2003), or to highlight the heterogeneity of the 

observed BOLD responses (Amemiya et al., 2012; Gonzalez-Castillo et al., 2012; Pujol et 

al., 2009; Schlegel et al., 2015). As a result, it is difficult to derive a comprehensive 

evaluation from the literature, due to the limited range of statistical methods employed 

and/or assessment conducted in each study.

Here, we investigate the robustness of six widely available methods against heterogeneous 

BOLD responses in block-design studies. Given the fact that the vast majority of methods 

already incorporate information about the shape of evoked hemodynamic responses during 

the detection stage, we focused not only on each method’s detection performance, but also 

on their characterization power (Degras and Lindquist, 2014; Makni et al., 2008). A detailed 

comparison of state-of-the-art methods for analyses of heterogeneous BOLD responses is 

presented. Evaluations are carried out in the GLM framework and include standard basis sets 

as well as ICA. In order to evaluate each methods’ performance against fMRI data with 

heterogeneous BOLD responses, we use data from a recently published optogenetic fMRI 

(ofMRI) study of dynamic control of forebrain by central thalamus (Liu et al., 2015). To 

further validate each method’s performance, we also use simulated data with varying 

temporal dynamics. Advantages and shortcomings of each approach are quantified using 

receiver operating characteristic (ROC) analysis and root-mean-square error (RMSE) of fit. 

Together, our results aim to provide practical recommendations on proper methods selection 

for analyzing block-design fMRI data with heterogeneous BOLD responses.

2. Methods

2.1 fMRI analysis methods

In this study, a set of six different approaches including model-based and data-driven 

methods was evaluated. The same block-design paradigm was used across methods. It 

consisted of 30 s baseline, followed by six 60 s cycles, each consisting of 20 s stimulation 

and 40 s rest, unless otherwise noted. To enable comparison across methods, a single 

statistical analysis platform is needed. Therefore, the linear regression platform in Statistical 

Parametric Mapping (SPM, Wellcome Trust Center for Neuroimaging) was employed for 

statistical analysis. All methods were evaluated by using different sets of regressors within 

the same GLM framework. The detailed description of each method is included as follows:

(i) The canonical basis set was selected from the SPM toolbox as one of the most commonly 

used methods. Model orders up to 3 were included in the evaluation. In the present study, 

GLM with a single canonical HRF as basis function is referred to as the 1st order canonical 

basis set. GLM with a canonical HRF and its temporal derivative as basis functions is 

referred to as the 2nd order canonical basis set. GLM with a canonical HRF and its temporal 

and dispersion derivatives as basis functions is referred to as the 3rd order canonical basis 

set. The canonical basis functions were first convolved with the stimulation paradigm before 

being used as regressors for the canonical basis set.
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(ii) The gamma basis set was selected from the SPM toolbox as another widely available 

method. Model orders up to 4 were investigated. Each order includes a set of K gamma 

functions of increasing dispersions as basis functions, where K denotes the model order. 

Similar with the canonical basis set, the gamma basis functions were first convolved with the 

stimulation paradigm before being used as regressors for the gamma basis set.

(iii) The FIR basis set was included as one of the most flexible basis sets. The model order 

of 3 to 10 was investigated. Each order includes a set of K contiguous boxcar functions, in 

which the bin width of each boxcar function equals T/K, where K denotes the model order, 

and T represents the length of each stimulation cycle (60 seconds). For simplicity, only 

results from the odd numbers (e.g., model order of 3, 5, 7, and 9) are shown in figures. 

Additionally, we investigated the model order of 20, in which the bin width of each boxcar 

function equals our image acquisition interval (3 seconds), a common practice when 

employing the FIR basis set. Unlike the canonical and gamma basis sets, the FIR basis set 

was not convolved with the stimulation paradigm before being used as regressors.

(iv) The B-spline basis set was selected as another popular analysis method (Genovese, 

2000; Schlegel et al., 2015). The model order of 3 to 10 was included in the evaluation. Each 

order includes a set of K cubic spline functions created using the program 3dDeconvolve in 

the AFNI software package (Cox, 1996; Ward, 2006), where K denotes the model order. 

Similar with the FIR basis set, only results from the odd numbers are shown for simplicity 

(e.g., model order of 3, 5, 7, and 9), and the B-spline basis set was not convolved with the 

stimulation paradigm before being used as regressors.

(v) The Fourier basis set was selected due to its capability to exploit the periodic nature of 

the experimental paradigm and evoked responses (Bullmore et al., 1996; Pinto et al., 2016). 

Model orders up to 5 were investigated. Each order includes a set of K sine and K cosine 

functions at harmonic frequencies: f1, 2 f1, …, K f1 Hz, where K denotes the model order, 

and f1 represents the frequency of repeated stimulation cycles (1/60 Hz). Similar with the 

FIR and B-spline basis sets, the Fourier basis set was not convolved with the stimulation 

paradigm before being used as regressors.

It is worth noting that, GLM with the 1st order Fourier basis set is mathematically equivalent 

with coherence analysis, a frequency-domain analysis method that is widely used in periodic 

block-design studies (Amemiya et al., 2012; Bandettini et al., 1993; Engel et al., 1997; Lee 

et al., 2010), including the ofMRI datasets we utilized in the present study (Liu et al., 2015). 

A coherence value was defined as a ratio of the magnitude of each time series’ Fourier 

transform (F) at the frequency of repeated stimulation cycles (f1, 1/60 Hz) and the total 

energy of all frequency components:

(1)

According to Engel et al., the coherence value is equivalent to the Pearson's correlation 

coefficient of the target time series with the best fitted sinusoid waveform at f1 in the least-
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squares sense (Engel et al., 1997). Therefore, coherence analysis is equivalent to GLM with 

the 1st order Fourier basis set, according to:

(2)

when β1 = β0 · cos(θ) and β2 = β0 · sin(θ). In Eq. 2, β0, β1, and β2 are the coefficients of the 

model, t denotes time, and θ represents the phase shift of the best fitted sinusoidal 

waveform.

(vi) Spatial ICA was chosen as one of the most commonly used data-driven approaches 

(Calhoun et al., 2001b). GIFT ICA algorithm (Calhoun et al., 2001a) with the Infomax 

approach (Bell and Sejnowski, 1995) was used to extract the spatially independent 

components. Since there has been no consensus on the optimal method for estimating the 

number of independent components, the default setting in the GIFT software package (20 

components) was used. After ICA decomposition, the independent components representing 

the signal of interest, which we refer to as signal components, were selected. In the present 

study, we assumed that their time courses share similar periodicity as the stimulation 

paradigm. Selection was achieved using the following two steps.

First, we ranked all components’ associated time courses based on their power spectrum. In 

the study by Moritz et al., the frequency power spectrum of each independent component 

time courses were ranked by their magnitude contributions at the frequency of repeated 

stimulation cycles (Moritz et al., 2003). Here, we quantified this ranking by calculating the 

coherence value for the time series of each component. In addition, we incorporated the time 

series’ Fourier transform magnitude at the second harmonic (f2, 1/30 Hz) to maximize the 

separation between signal and noise components (Ngan et al., 2009). Here we refer to the 

modified coherence value as coherencem:

(3)

Then, we used hierarchical agglomerative clustering (Johnson, 1967) to separate the 

extracted components into two groups: one group with signal components and the other 

group with noise components. Here, we assumed that the signal components exhibited 

distinctly higher coherencem values than the noise components. Therefore, if we separated 

the extracted signal components into two groups based on their coherencem values, the 

cluster with higher coherencem values should predominately contain signal components, 

while the other cluster with lower coherencem values should primarily contain noise 

components. Based on these assumptions, we used hierarchical agglomerative clustering to 

group the obtained coherencem values into a hierarchical cluster tree, as shown in the 

dendrogram in Figure S1. We then cut the hierarchical tree to yield two clusters that have the 

largest inter-cluster distance. The cluster with higher coherencem values was used as the 

group with signal components (Fig. S1). The time series of all the signal components were 
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employed as a set of regressors, resembling a unified GLM-ICA approach (Hu et al., 2005; 

Pujol et al., 2009).

The above separation was conducted without a predefined number of signal components and 

was solely based on each component’s coherencem value. In other words, the number of 

signal components was determined by the inherent structure of the data, thus avoiding 

biasing the results by using fixed numbers of signal components. We also did not use a 

predefined coherencem threshold during the separation, as such threshold may only be 

selected in an arbitrary fashion.

2.2 Performance metrics

We evaluated the aforementioned methods based on their detection and characterization 

performance. For the ofMRI data, since the ground truth is unknown, detection volume and 

modified ROC curves (Nandy and Cordes, 2003) were used as detection metrics. The 

modified ROC curve was created by plotting the fraction of detected voxels in each subject 

with ChR2-containing virus injection (experimental group) against the fraction of detected 

voxels averaged across subjects with saline injection (control group) at varying thresholds. 

The fraction was calculated as a ratio of the number of detected voxels and the number of 

brain-masked voxels in each dataset. To quantify the modified ROC curve, area under the 

ROC curve (AUC) was calculated using a small fraction of the modified ROC curve 

(fraction of control positive < 0.05) instead of the entire curve, since this region is more 

relevant for fMRI analysis (Nandy and Cordes, 2003). For the simulated data, where the 

ground truth is known, we used true positive rate (TPR), false positive rate (FPR), and AUC 

as detection metrics. TPR was defined as the percentage of ground truth positive voxels that 

were correctly detected as activated. FPR was defined as the percentage of simulated noise 

voxels that were incorrectly detected as activated. ROC was used to characterize TPR and 

FPR at varying thresholds (Skudlarski et al., 1999). As before, AUC was calculated using a 

small fraction of the ROC curve (FPR < 0.05) instead of the entire curve.

The characterization performance metrics included temporal parameter estimation accuracy 

and RMSE of fit. Two standard parameters, onset and duration, were used for temporal 

parameter estimation. Onset was defined as the time to half-peak (Hunter et al., 2003; 

Weilke et al., 2001), and duration was defined as full-width at half-peak (Lindquist et al., 

2009). These parameters were used to characterize time series without assuming any specific 

shape. The estimated value was calculated from a single period. For the model-based 

methods, the temporal structure of the fitted time series is the same over each stimulation 

cycle. However, it is not the case for ICA, therefore we averaged fitted time series across 

cycles and estimated values from the averaged period. With the ofMRI data, since the 

ground truth is not available, we calculated the temporal parameter estimation error as the 

difference between the estimated value and the value measured from the observed time 

course. As before, since the temporal structure of the observed time series is not the same 

over each stimulation cycle, we averaged the observed time series across cycles and 

measured onset and duration from the averaged period. With the simulated data, since the 

ground truth is available, we calculated the temporal parameter estimation error as the 

difference between the estimated value and the ground truth. In addition to the temporal 
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parameter estimation, RMSE of fit was used to evaluate each method’s capability to estimate 

the time course of the BOLD responses for the ofMRI and simulated data:

(4)

where  is the fitted data and n is the number of time points. With the ofMRI data, since the 

ground truth is not available, we used observed data for yi. For the simulated data, we used 

the ground truth signal for yi instead.

As described above, AUC and RMSE were calculated differently for the ofMRI datasets and 

the simulated datasets. Specifically, for the ofMRI datasets, AUC was calculated using the 

modified ROC curve that plots the fractions of detected voxels with the experimental group 

against those with the control group, while for the simulated datasets, AUC was calculated 

using the ROC curve that plots TPR against FPR. Similarly, RMSE was calculated relative 

to the observed data for the ofMRI datasets, but was calculated relative to the ground truth 

for the simulated datasets. With such differences, the values of the corresponding 

performance metrics can be very different in the ofMRI datasets and the simulated datasets, 

especially for AUC, where up to one order of magnitude difference was observed (Table 1). 

Therefore, to enable a direct comparison between the performance of each method across 

ofMRI and simulated datasets, we standardized the AUC and RMSE values according to the 

following formulas:

(5)

(6)

To eliminate the influence of extreme values, the second highest value and the second lowest 

value were used in the above formulas. In this case, the method with the second highest 

AUC or RMSE was assigned a value of 1, while the method with the second lowest AUC or 

RMSE was assigned a value of 0. The method with the highest AUC or RMSE was assigned 

a value of larger than 1, while the method with the lowest AUC or RMSE was assigned a 

negative value.

2.3 Image analysis

For the ofMRI datasets, custom written software in MATLAB (MathWorks, Inc.) was used 

for image reconstruction, motion correction (Fang and Lee, 2013), and registration. The 

acquired 4D fMRI images were manually registered to a common space using a six degree-

of-freedom rigid body transformation. Low-frequency drift was removed by temporal high 
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pass filtering with a cut-off frequency of 1/128 Hz as implemented in SPM. 5 or 6 ofMRI 

acquisitions were collected for each subject. After preprocessing, the 4D fMRI images for 

each subject were normalized to the same scale to account for differences in mean and 

variance. All the ofMRI acquisitions were then averaged for each subject before statistical 

analysis. Both single-subject and group-level analyses were conducted during statistical 

analysis.

For the single-subject analysis, we show results that either do not involve smoothing in the 

preprocessing step to preserve the distinct hemodynamic responses and enable comparisons 

at the single-voxel level (D'Esposito et al., 1997; Gazzola and Keysers, 2009), or involve 

spatial smoothing with a 0.5 mm FWHM Gaussian kernel to increase the signal-to-noise 

ratio. Throughout the present study, results with the single-subject analysis refer to those that 

do not involve smoothing in the preprocessing step, unless otherwise noted. Prior to 

statistical analysis, the correlations within each set of regressors were removed using the 

SPM implementation of Gram-Schmidt orthogonalization. After generating statistical 

parametric maps using the linear regression platform in SPM, a threshold was applied to 

define activated voxels. Commonly used voxel-wise threshold settings were employed. For 

the non-smoothed data, we applied p < 0.05 with Bonferroni correction to control the 

family-wise error rate (FWER), uncorrected p < 0.001, and false discovery rate (FDR) < 

0.05 (Benjamini and Hochberg, 1995; Genovese et al., 2002) on all brain-masked voxels. 

For the spatially-smoothed data, we used p < 0.05 with random field theory correction to 

control the FWER on all brain-masked voxels. Note that here we used voxel-wise inference 

instead of cluster-wise inference during statistical analysis. This is because with our imaging 

acquisition parameters, SPM’s cluster-wise inferences may yield inflated false positive rate 

at the first-level analysis (Eklund et al., 2012).

For the group-level analysis, fixed-effects analysis and random-effects analysis were 

conducted using SPM to show the detected activation maps at the group level. Experimental 

ofMRI data from 10 subjects were included. We applied a 0.5 mm FWHM Gaussian kernel 

to spatially smooth the raw data in order to increase the signal-to-noise ratio and ameliorate 

differences in the inter-subject localization. With the fixed-effects analysis, the time series 

from each subject were temporally concatenated across different subjects before entering 

into a first-level analysis using SPM. With the random-effects analysis, regression 

coefficient estimates from the single-subject analysis for each subject were entered into a 

second-level analysis, and a full factorial design was used for each method and model order 

at the second level analysis. The potentially unequal variance of the regression residuals 

across subjects was accounted for by using the correction algorithm implemented in SPM. 

With both the fixed-effects and random-effects analyses, because the data was spatially 

smoothed, the statistical threshold was set to p < 0.05 with random field theory correction to 

control the FWER (Worsley et al., 1992). Similar to the single-subject analysis, here we used 

voxel-wise inference, as SPM’s cluster-wise inference may yield inflated false-positive rates 

at the group level (Eklund et al., 2016).

Since the group-level analysis requires each method to share the same regressors across 

different subjects, group ICA was conducted to select a common set of signal components 

among different subjects. Group ICA was performed based on the self-organizing clustering 
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method (Esposito et al., 2005). In short, 20 independent components were extracted for each 

subject using GIFT software package. For a total of 10 subjects in each group, 200 

independent components were extracted. Then, a similarity matrix (SM) value was 

calculated for each pair of the 200 total independent components, resulting in a 200 × 200 

matrix. Each value in the similarity matrix was calculated using a weighted sum of the 

correlation coefficients of each component pair’s spatial component maps (CCs) and their 

associated time courses (CCt):

(7)

In Eq. 7, i and j each represent an independent component. λ was set to 0.5, so that the 

spatial and temporal correlations were equally weighted. The similarity matrix was then 

converted into a dissimilarity matrix (DM) according to:

(8)

Based on the resulting DM matrix, we invoked a supervised hierarchical clustering 

algorithm, which links components to each other only if they were from different subjects. 

In this way, similar components in different subjects were clustered into the same group, 

yielding a total of 20 groups, where each group contains 10 components, and each 

component originated from a different subject. The mean time courses from each group were 

ranked based on their coherencem values, and signal groups were selected using hierarchical 

agglomerative clustering as described earlier. The mean time series from each of the signal 

groups were employed as a set of regressors for the fixed-effects and random-effects 

analyses.

For the simulated datasets, the analysis was conducted similarly to the single-subject 

analysis for the ofMRI datasets as described earlier. Due to the space limit and scope of the 

present work, spatial smoothing was not involved in the preprocessing step and group-level 

analyses were not conducted with the simulated data. As before, prior to statistical analysis, 

the correlations within each set of regressors were removed using the SPM implementation 

of Gram-Schmidt orthogonalization. The statistical parametric maps were generated using 

the linear regression platform implemented in SPM. Commonly used voxel-wise threshold 

settings were employed to define activated voxels, which include p < 0.05 with Bonferroni 

correction to control the FWER, uncorrected p < 0.001, and FDR < 0.05 (Benjamini and 

Hochberg, 1995; Genovese et al., 2002) on all brain-masked voxels.

2.4 ofMRI data

As mentioned above, we used data from a recently published in vivo ofMRI study (Liu et al., 

2015) to evaluate the analysis methods. ofMRI is a novel technique that combines 

optogenetics with fMRI readouts (Abe et al., 2012; Desai et al., 2011; Kahn et al., 2013; Lee 

et al., 2016; Lee et al., 2010; Weitz and Lee, 2013). Compared to conventional electrical 

stimulation or sensory stimulation, ofMRI allows visualization of the causal effects of 
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specific neuronal populations. It directly stimulates neurons, which eliminates the 

confounding effects of stimulating many cell types at the same time. The high level of 

variability in the evoked BOLD responses reported in recent ofMRI studies (Byers et al., 

2015; Desai et al., 2011; Duffy et al., 2015; Lee et al., 2016; Lee et al., 2010; Liu et al., 

2015; Takata et al., 2015; Weitz et al., 2014) offers an excellent opportunity to assess the 

robustness of different methods to cope with heterogeneous BOLD responses.

The ofMRI data used in the present study were acquired using a 7 T Bruker Biospec small 

animal MRI system at UCLA and a 7 T Agilent MR901 horizontal bore scanner at Stanford 

as described previously (Liu et al., 2015). Briefly, adult female Sprague-Dawley rats (> 11 

weeks old) were used. Gradient recalled echo BOLD (TR/TE = 750 ms/12 ms) with a four-

interleave spiral readout was used to acquire 23 coronal slices at a 3 s temporal resolution. 

The in-plane field of view was 35 × 35 mm2 and the slice direction coverage was 11.5 mm. 

The data was then reconstructed to a 128 × 128 × 23 matrix.

In the present study, three groups of subjects were included in the ofMRI datasets. (i-ii) The 

first two groups of subjects are the experimental groups. In these subjects, adeno associated 

viruses that were engineered to express channelrhodopsin-2 (ChR2) were stereotaxically 

injected into the central thalamus of each subject. A fiber optic cannula was subsequently 

implanted for light delivery. (i) In the first experimental group, data from 10 subjects with 10 

Hz or 40 Hz optical stimulation in the central thalamus was used. The stimulation paradigm 

consisted of 30 s baseline, followed by six 60 s cycles, each consisting of 20 s stimulation 

and 40 s rest. Throughout the present study, the experimental ofMRI data refer to data from 

the first experimental group, unless otherwise noted. (ii) In the second experimental group, 

data from one subject with 100 Hz optical stimulation in the central thalamus was used. 

Here we employed a slightly different stimulation paradigm compared to the first 

experimental group, in which 10 s of stimulation was applied in each of the six cycles 

instead of 20 s (Fig. S9A). (iii) The third group of subjects is the control group. In this case, 

saline was injected into the central thalamus of each subject and a fiber optic cannula was 

implanted for light delivery. Data from two subjects with 40 Hz optical stimulation in the 

central thalamus was used. The stimulation paradigm was the same as in the first 

experimental group.

2.5 Simulated data

Simulated datasets were generated to utilize data with known ground truth. We assumed that 

a diverse range of signal shapes was evoked using the same six-cycle block design as in the 

experimental ofMRI data. Each simulated slice was based on a single imaging slice from the 

experimental ofMRI data during the baseline period. Random, non-physiological system 

disturbances were modeled by additive Gaussian noise and were added into all the brain-

masked voxels. In each slice, signals with the same shape were added into two “active” 

regions in the cortex and striatum. The activation signal was created by convolving the 

canonical HRF used in SPM with a boxcar function with a varying onset and duration. The 

onset shift of the boxcar function was set to vary between 0 and 20 s, time locked to the 20 s 

stimulation block. The duration range was set to vary between 5 and 50 s, to reflect the 

transient and prolonged BOLD responses observed in previous studies (Duffy et al., 2015; 
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Gonzalez-Castillo et al., 2012; Weitz et al., 2014). After convolving each boxcar function 

with the canonical HRF used in SPM, the resulting time series that did not return to below 

50 % maximum amplitude at the end of each cycle were excluded, resulting in 85 shapes, 

each with a distinct onset and duration. To ensure the generalizability of the results, three 

different contrast-to-noise ratios (CNR), 1, 1.5, and 2, were used. CNR was calculated as a 

ratio of the signal amplitude and the standard deviation of the underlying noise in the time 

domain.

For each method, we summarized the analysis results that were obtained from the simulated 

datasets with different signal shapes. This was conducted by averaging the analysis results 

across all signal shapes assuming a uniform distribution, or by calculating weighted average 

based on the bivariate probability distribution of onset and duration for the 10 Hz and 40 Hz 

stimulation ofMRI data. The probability distribution was estimated using the onset and 

duration measured from the observed raw time series in the ofMRI datasets. The superset of 

voxels detected by each method across all subjects were included. The threshold was set to p 

< 0.05 with Bonferroni correction. To minimize the effect of outliers, the onset and duration 

range between the 5th and 95th percentile was included. Based on these onset and duration 

values, a histogram approach was used to estimate the probability distributions. Specifically, 

we generated a 2D histogram using the following steps. First, we divided the onset and 

duration values from the ofMRI data into a series of consecutive and non-overlapping bins. 

The bins were specified based on the onset and duration of each simulated signal shape. 

Then, we counted how many values fell into each bin. The ratio of the number of values in 

each bin and the total number of values across all bins was obtained as the probability for 

the corresponding simulated signal shape.

Concerning ICA, before computing the summary statistics, we defined a set of specific 

regressors for each distribution of onset and duration. This was different from model-based 

methods, where the set of regressors was pre-determined. In ICA, to obtain the distribution-

specific regressors, additional datasets were generated to depict different distributions. For 

example, we used spatial concatenation of simulated datasets with different signal shapes to 

generate the uniform distribution. In this case, each signal shape was present in the same 

number of active voxels. Conversely, to simulate the 10 Hz and 40 Hz stimulation ofMRI 

data, we generated datasets with the same data size and “active” regions as those for the 

uniform distribution; however, unlike the uniform distribution, here each signal shape was 

present in a different number of active voxels. In particular, the number of active voxels that 

contained each signal shape was calculated as the product of the total number of active 

voxels in the datasets and the probability of the signal shape in the 10 Hz or 40 Hz 

stimulation ofMRI data distribution. As a result, three datasets were generated, each of them 

depicting a different distribution of onset and duration. In each dataset, we extracted 

independent components using the GIFT software package. We then selected signal 

components using coherencem value plus hierarchical agglomerative clustering, as described 

earlier in the manuscript. Finally, the signal components were used as a set of distribution-

specific regressors. From here, the next steps of the statistical analysis were set to be the 

same for ICA as for model-based methods with the goal of fairly compare the performance 

across different methods.
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3. Results

3.1 GLM with the 1st order canonical basis set leads to detection and characterization 
errors with experimental ofMRI datasets

Figure 1 shows the detection and characterization results by GLM with the 1st order 

canonical basis set using recently published experimental ofMRI data (Liu et al., 2015). 

Based on previous anatomical and electrophysiological studies, where widespread 

projections from the stimulation site (i.e., the central thalamus) to the forebrain have been 

demonstrated (Deschenes et al., 1996; Steriade and Glenn, 1982; Van der Werf et al., 2002), 

we would expect a large volume of forebrain activities to be detected with the ofMRI data. 

However, the 1st order canonical basis set detects cortical and thalamic responses with the 10 

Hz stimulation ofMRI data, but detects a small volume of responses with the 40 Hz 

stimulation ofMRI data, in contrast to what was detected using coherence analysis in our 

previous study (Liu et al., 2015). We then take a close look at the observed BOLD responses 

detected by the 1st order canonical basis set. There, we see variations in their temporal 

dynamics across different stimulation frequencies (Fig. 1E-H) and brain regions (Fig. S2A, 

B). Specifically, at 10 Hz stimulation, the observed BOLD responses (Fig. 1E, G), especially 

those in the cortex (Fig. S2A), show similar onset and duration as the convolution of the 

canonical HRF with the experimental paradigm, which henceforth we refer to as canonical 

response. While at 40 Hz stimulation, the observed BOLD responses show delayed onset 

and extended duration compared to the canonical response (Fig. 1F, H), especially in the 

thalamus and striatum (Fig. S2B). However, the 1st order canonical basis set is not able to 

characterize these diverse temporal features in the ofMRI data (Fig. 1I-L), as its shape is 

fixed and only its amplitude is allowed to vary (Worsley and Friston, 1995).

The above results obtained by the 1st order canonical basis set demonstrate its inability to 

cope with highly variable responses. Here, we sought to understand the proper choice of 

methods in these scenarios. Specifically, we conducted a systematic evaluation to assess a 

set of six standard methods’ capabilities to detect and characterize heterogeneous BOLD 

responses. These include GLM with the canonical, gamma, FIR, B-spline, and Fourier basis 

sets, as well as ICA (Fig. 2).

3.2 GLM with the 2nd and 3rd order canonical basis sets, the 2nd to 4th order gamma basis 
sets, the 5th to 20th order FIR basis sets, the 5th to 9th order B-spline basis sets, and the 
2nd to 5th order Fourier basis sets show good detection performance with the ofMRI 
datasets

We first examined the detection performance across different methods with the experimental 

ofMRI data. With the 10 Hz stimulation data, the 2nd and 3rd order canonical basis sets, the 

1st to 4th order gamma basis sets, the 5th to 7th order B-spline basis sets, the 2nd order 

Fourier basis set, and ICA detect significantly greater volumes compared to the 1st order 

canonical basis set (Fig. 3A). Among the different methods, ICA detects the largest volume. 

Nonetheless, each method detects similar activations at the stimulation site (i.e., the 

thalamus) and the downstream brain regions (Fig. 3B). The observed BOLD responses 

detected by different methods also share similar onset and duration as the canonical response 

(Fig. 3C, D), especially in the cortex (Fig. S2C). In contrast, with the 40 Hz stimulation data, 
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the majority of the methods yield significantly larger volumes compared to the 1st order 

canonical basis set, including the 2nd and 3rd order canonical basis sets, the 2nd to 4th order 

gamma basis sets, the 3rd to 20th order FIR basis sets, the 3rd to 9th order B-spline basis sets, 

the 1st to 5th order Fourier basis sets, and ICA (Fig. 3E). Among the different methods, ICA 

detects the largest volume. Unlike the detection results with the 10 Hz stimulation ofMRI 

data, not all methods are able to detect responses at the stimulation site and the downstream 

brain regions during 40 Hz stimulation (Fig. 3F). Specifically, the 1st order canonical basis 

set detects a very small volume in the thalamus, cortex, and striatum, while most of the other 

methods detect a large volume in these regions. In addition, with 40 Hz stimulation, the 

observed BOLD responses, especially those in the cortex, show much higher variations in 

their temporal dynamics compared to the 10 Hz stimulation ofMRI datasets (Fig. 3G, H, 

S2D). Most of the methods are able to detect BOLD responses with substantial onset and 

duration deviations from the canonical response, except for the 1st order canonical basis set 

(Fig. 3H).

Next, we examined the consistency of these detection results across different conditions. 

There, detection results with similar trends within and across methods are obtained when: (i) 

different threshold settings are used (Fig. S3); (ii) raw data is spatially smoothed to increase 

the signal-to-noise ratio (Fig. S4); and (iii) fixed-effects analysis at the group level is used 

(Fig. S5). By invoking random-effects analysis at the group level, the brain regions detected 

at the subject level are similarly detected, although with a smaller volume (Fig. S6). Notably, 

with random-effects analysis, increasing the model order within each method leads to a 

larger detection volume with the 10 Hz and 40 Hz stimulation ofMRI datasets. This is 

because methods with larger numbers of regressors take more contrast images per subject 

into the second level analysis (Ashburner et al., 2008), resulting in a greater number of total 

degrees of freedom and very sensitive statistical tests. Specifically, in the case of n subjects 

and k regressors in the model, the total degrees of freedom are n × k − 1 at the second level 

analysis. This is different from the single-subject and fixed-effects analyses, where the total 

degrees of freedom are fixed at m − 1 for fMRI data with m time frames. As a result, with 

random-effects analysis, the differences in the detection results across methods are largely 

governed by the differences in the total degrees of freedom, rather than each method’s 

capabilities to handle heterogeneous BOLD responses.

We then examine each method’s detection performance with the control ofMRI data. In the 

group of control subjects, saline was injected into the brain instead of ChR2-expressing 

virus. Therefore, we do not expect any optogenetically-evoked neuronal activity, and assume 

all detected responses with the control dataset to be false positive. In other words, methods 

with smaller detection volumes are preferred. As shown in Figure 4A and B, most of the 

methods detect similar volumes as the 1st order canonical basis set. However, ICA detects a 

considerably larger volume of spurious activations than any other methods. Similar results 

are obtained when different threshold settings are used (Fig. S8A-F), and when the control 

data is spatially smoothed to increase the signal-to-noise ratio (Fig. S8G, H).

To summarize the above-described detection results with experimental and control ofMRI 

datasets at varying thresholds, we generate modified ROC curves and calculate AUC values 

for each method (Fig. 4C-F). ROC curves with large areas under the curve and hence high 
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AUC values are preferred as they indicate the method’s ability in yielding a large detection 

volume with the experimental ofMRI data while maintaining a small amount of spurious 

detections with the control ofMRI data across different threshold settings. With both 10 Hz 

and 40 Hz stimulation ofMRI datasets, most of the methods yield significantly higher AUC 

values compared to the 1st order canonical basis set (Fig. 4C, D). Compared to the detection 

volume results with the experimental ofMRI data, we observe similar trends within and 

across methods except with ICA. ICA detects the largest volume with the experimental 

ofMRI data, but yields one of the lowest AUC values. This is consistent with previous 

results that ICA detects a larger volume of false positive activations than any other methods 

with the control ofMRI data. Similar detection results are obtained when using an ofMRI 

dataset with a different block-design paradigm (Fig. S9E and F). With the ofMRI data, we 

show that the 2nd and 3rd order canonical basis sets, the 2nd to 4th order gamma basis sets, 

the 5th to 20th order FIR basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th 

order Fourier basis sets yield high AUC values and good detection capabilities (Figure 4C-F, 

Table 1).

3.3 GLM with the 4th order gamma basis set, the 20th order FIR basis set, the 7th to 9th 

order B-spline basis sets, and the 3rd to 5th order Fourier basis sets show good 
characterization performance with the ofMRI datasets

The characterization results of the experimental ofMRI data are shown in Figure 5. First, we 

examine the characterization errors of each method. With the 10 Hz and 40 Hz stimulation 

ofMRI datasets, the 4th order gamma basis set, the 20th order FIR basis set, the 7th to 9th 

order B-spline basis sets, and the 3rd to 5th order Fourier basis sets consistently yield 

significantly lower onset errors, duration errors, and RMSE compared to the 1st order 

canonical basis set (Fig. 5A-C), suggesting good characterization performance. As shown in 

Figure 5C, increasing the model order within each method leads to a decrease in the RMSE. 

This is because with the ofMRI data, RMSE is calculated relative to the observed time 

courses, and any increase in the model order within each method naturally leads to a better 

fit to the observed data. Similar characterization results are obtained when analyzing an 

ofMRI dataset with a different block-design paradigm (Fig. S9G).

Next, we take a closer look at the onset and duration estimated by different methods at each 

detected voxel. As shown in Figure 5D, the onset and duration estimated by the 4th order 

gamma basis set, the 9th order B-spline basis set, and the 5th order Fourier basis set show 

similar patterns as those measured from the observed data, while the values estimated by the 

canonical basis set show a clear deviation, suggesting biased estimations. Since each 

regressor in the 20th order FIR basis set has a bin width of the image acquisition interval (3 

seconds), their onset and duration estimates are therefore fixed at integer multiples of 3 

seconds and do not show a continuous pattern in Figure 5D. As shown in Figure S1, ICA 

extracts two signal components in most of the subjects. With these subjects, ICA yields a 

fixed duration value for each estimated onset value (Fig. 5D), and cannot characterize the 

differences among BOLD responses that share the same onset but different duration. This is 

the same with other methods that have two regressors, such as the 2nd order canonical basis 

set, the 2nd order gamma basis set, and the 1st order Fourier basis set (coherence analysis) 

(data not shown).
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3.4 GLM with the 2nd to 4th order gamma basis sets, the 5th to 9th order FIR basis sets, the 
5th to 9th order B-spline basis sets, the 1st to 5th order Fourier basis sets, and ICA show 
good detection performance with the simulated datasets

To further validate the above results obtained with ofMRI data, we conducted the assessment 

using simulated data with varying onset and duration (Fig. 6A). Figure 6B shows three 

probability distributions of onset and duration used in the calculation of summarized results. 

The 10 Hz and 40 Hz stimulation ofMRI data distributions are based on the bivariate 

probability distributions of onset and duration estimated from the experimental ofMRI data. 

The uniform distribution is equivalent to averaging across the analysis results from the 

simulated datasets with different signal shapes.

The detection results of simulated data are summarized in Figure 7. First, we examine the 

TPR metric (Fig. 7A, B). Unlike other methods, the 1st to 3rd order canonical basis sets and 

the 1st and 2nd order gamma basis sets can only detect small onset and duration deviations 

from the canonical response. Across different distributions of onset and duration, the 3rd and 

4th order gamma basis sets, the 5th to 9th order FIR basis sets, the 5th to 9th order B-spline 

basis sets, the 1st to 5th order Fourier basis sets, and ICA similarly yield high TPR (Fig. 7B).

Next, we examined the FPR metric. As shown in Figure 7C and D, in each method, false 

positives are not detected in the majority of the simulation. ICA detects a larger volume of 

spurious activations than any other methods with the control ofMRI data (Fig. 4A, B), but 

yields similar FPR as other methods with the simulated data across different threshold 

settings (Fig. 7C, D, S11A).

To summarize the TPR and FPR metrics at varying thresholds, we generate ROC curves and 

calculate AUC values for each method. Across different distributions of onset and duration, 

the 2nd to 4th order gamma basis sets, the 5th to 20th order FIR basis sets, the 5th to 9th order 

B-spline basis sets, the 1st to 5th order Fourier basis sets, and ICA similarly yield the highest 

AUC (Fig. 7E, F). Detection results with similar trends within and across methods are 

obtained when different threshold settings are applied (Fig. S11) and under different CNR 

levels (Fig. S12), with the exception that at lower CNR levels, the 20th order FIR basis set 

underperforms relative to other methods (Fig. S12C, Table 1).

3.5 GLM with the 3rd and 4th order gamma basis sets, the 5th to 9th order FIR basis sets, 
the 5th to 9th order B-spline basis sets, the 2nd to 5th order Fourier basis sets, and ICA 
show good characterization performance with the simulated datasets

The characterization results of the simulated data are shown in Figure 8. First, we examine 

the estimation errors of onset and duration (Fig. 8A-D). For the canonical basis set, adding 

the 2nd and 3rd order decreases the onset errors, but at the cost of the duration errors. Across 

different distributions of onset and duration, the 3rd and 4th order gamma basis sets, the 5th 

to 9th order FIR basis sets, the 5th to 9th order B-spline basis sets, the 2nd to 5th order Fourier 

basis sets, and ICA similarly yield low onset and duration errors. Note that, four signal 

components are extracted using ICA with each distribution of onset and duration (Fig. 

S10A).
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Finally, RMSE is used to assess each method’s capability to predict the observed BOLD 

responses. As shown in Fig. 8E and F, the 1st to 3rd order canonical basis sets and the 1st and 

2nd order gamma basis sets yield small RMSE near the canonical response, but large RMSE 

when onset and duration deviate substantially. Across different distributions of onset and 

duration, the 3rd and 4th order gamma basis sets, the 5th to 9th order FIR basis sets, the 5th to 

9th order B-spline basis sets, the 1st to 5th order Fourier basis sets, and ICA similarly yield 

low RMSE. Characterization results with similar trends within and across methods are 

obtained when analyzing the simulated datasets with different CNR levels (Fig. S13), with 

the exception that at higher CNR levels, the 1st order Fourier basis set (coherence analysis) 

underperforms relative to other methods, especially with the 10 Hz stimulation ofMRI data 

distribution (Table 1).

3.6 GLM with the 3rd and 4th order gamma basis sets, the 7th to 9th order FIR basis sets, 
the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets show 
good balance between detection and characterization

We summarize each method’s detection and characterization performance with the ofMRI 

and simulated datasets. Each method’s AUC and RMSE values are averaged across the 10 

Hz and 40 Hz stimulation ofMRI datasets for the real data, and across different CNR levels 

and distributions of onset and duration for the simulated data (Table 1). As shown in Figure 

9, most of the methods show superior detection and characterization capabilities compared 

to conventionally used 1st order canonical basis set. To identify the methods that perform 

well with both the ofMRI and simulated datasets, we standardized the mean AUC and 

RMSE of each method shown in Figure 9A and B, and compared the standardized values 

across the ofMRI and simulated datasets. As shown in Figure 9C, most of the methods 

exhibit similar detection and characterization performances between the ofMRI and 

simulated datasets, except for the 20th order FIR basis set and ICA. The 20th order FIR basis 

set yields low RMSE relative to the observed data with the ofMRI datasets, but exhibits high 

RMSE relative to the ground truth with the simulated datasets. This is possibly because the 

20th order FIR basis set overfits the observed data. ICA yields a high AUC value with the 

simulated datasets but shows a low AUC value with the ofMRI datasets, as it detects a larger 

volume of false positive activations than other methods with the control ofMRI data. In 

summary, with both ofMRI and simulated datasets, we show that the 3rd and 4th order 

gamma basis sets, the 7th to 9th order FIR basis sets, the 5th to 9th order B-spline basis sets, 

and the 2nd to 5th order Fourier basis sets exhibit superior detection and characterization 

performance over other methods.

4. Discussion

The large number of existing analysis approaches necessitates a comprehensive assessment 

to ease the selection of methods in scenarios with heterogeneous BOLD responses, yet none 

have been performed thoroughly with a block-design paradigm. In the present work, we 

address this issue by systematically evaluating a series of standard analysis methods using 

rodent ofMRI data (Liu et al., 2015) and simulations with a block-design paradigm. We find 

that, conventionally used GLM with a canonical basis set leads to considerable detection and 

characterization errors in the presence of heterogeneous BOLD responses. GLM with the 3rd 
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and 4th order gamma basis sets, the 7th to 9th order FIR basis sets, the 5th to 9th order B-

spline basis sets, and the 2nd to 5th order Fourier basis sets are the optimal methods as they 

offer good balance between detection and characterization. GLM with the 1st order Fourier 

basis set (coherence analysis) used in our earlier studies shows good detection capability. 

ICA shows good detection and characterization performance with the simulated data, but 

detects a large volume of spurious activations with the control ofMRI data.

Our study aims to evaluate the performance of various methods and strives to provide 

recommendations for method selection primarily in the analysis of animal fMRI data. In 

small animal fMRI studies, variations in the temporal dynamics of the hemodynamic 

responses can be more severe than those in human studies. This is likely due to the use of 

anesthesia to minimize motion and restraint stress (Schlegel et al., 2015; Schroeter et al., 

2014; Williams et al., 2010), the use of disease models (Nersesyan et al., 2004; Weber et al., 

2008), and the use of direct brain stimulation (Angenstein et al., 2009; Byers et al., 2015; 

Duffy et al., 2015; Ferenczi et al., 2016; Lee et al., 2016; Lee et al., 2010; Liu et al., 2015; 

Weitz et al., 2014) in small animal studies. Under these conditions, evoked BOLD responses 

can differ considerably from the canonical response. For example, in urethane-anesthetized 

mice, a 20 s electrical stimulation in the hind paw causes the fMRI responses in the thalamus 

to be delayed by approximately 11 s compared to the canonical response (Schroeter et al., 

2014). In another study with isoflurane-anesthetized rats, optogenetic stimulation of the 

hippocampus for 20 s evokes BOLD responses that last for over 50 s (Weitz et al., 2014). In 

such cases, employing the analysis approaches recommended in the present study may be 

beneficial to accurately detect and characterize these heterogeneous responses.

Notably, in animal ofMRI studies, analysis methods that can accurately detect and 

characterize evoked BOLD responses are particularly useful in the identification of 

stimulation-related artifacts. During ofMRI experiments, stray light and local tissue heating 

associated with the optical stimulation can introduce undesirable artifacts to the data 

(Christie et al., 2013; Schmid et al., 2016), hence it is important to identify contaminated 

data during the analysis process. Specifically, artifacts caused by stray light are typically 

detected in vision-related brain regions (Schmid et al., 2016), whereas optogenetically-

evoked responses are usually absent there when the stimulation target is outside of the visual 

pathway (Byers et al., 2015; Desai et al., 2011; Duffy et al., 2015; Lee et al., 2016; Lee et 

al., 2010; Liu et al., 2015; Takata et al., 2015; Weitz et al., 2014). As a result, accurate 

detection of BOLD responses in vision-related regions is essential to identify data 

contaminated with these artifacts. Conversely, at the stimulation site, artifacts caused by 

local tissue heating usually exhibit both positive and negative fMRI signal changes (Christie 

et al., 2013), whereas optogenetically-evoked responses usually show only one type of 

polarity (Duffy et al., 2015; Lee et al., 2010; Liu et al., 2015; Takata et al., 2015; Weitz et 

al., 2014). As a result, accurate characterization of BOLD responses at the stimulation site is 

critical to identify data contaminated with heating artifacts. In both cases, employing the 

methods that show good detection and characterization performance in the present study 

may be advantageous in the analysis process.

Beyond providing guidelines for animal studies, our results may also be useful for analyzing 

block-design fMRI data in human studies, especially those with highly variable responses. 
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For example, in ischemic patients, a 24 s hand-grasping task causes the BOLD responses in 

the primary motor cortex to be delayed by up to 24 s compared to those in the cerebellum 

(Amemiya et al., 2012). In patients with major arterial stenosis, a 10 s handball squeeze task 

causes the BOLD responses in the primary motor cortex to be delayed by approximately 3 s 

compared to those in healthy individuals (Roc et al., 2006). Occasionally, heterogeneous 

BOLD responses can also be observed in healthy human subjects. For example, a 9 s painful 

mechanical stimuli causes the BOLD responses in the somatosensory cortex to persist for 

approximately 18 s (Pujol et al., 2009). After averaging a large number of trials for each 

subject, a 20 s visual stimulation plus attention control task leads to highly variable BOLD 

responses throughout the brain (Gonzalez-Castillo et al., 2012). In such cases, adopting the 

methods recommended in the present work may also be useful to reduce errors in the 

detection and characterization tasks.

Notably, our results, which are based on rodent ofMRI data and simulated data guided by 

experimental data, are in good agreement with published data on human block-design 

studies. For example, GLM with the 1st order canonical basis set detected a smaller volume 

of hemodynamic responses compared to ICA in patients with fibromyalgia when painful 

stimuli were applied (Pujol et al., 2009). In a like manner, during psychomotor tasks in 

healthy subjects, GLM with the 1st order canonical basis set did not uncover BOLD 

responses in the frontal regions that were detected by ICA (McKeown et al., 1998b). 

Consistently with our results, when the elicited BOLD responses were less heterogeneous 

during a simple visual paradigm in healthy subjects, GLM with the 1st order canonical basis 

set and ICA delivered comparable detection results (Calhoun et al., 2001a).

Nonetheless, it should be noted that there exist several differences in regards to the 

characterization performed here compared to the commonly conducted ones in event-related 

studies. First, instead of characterizing impulse response functions, we focused on 

characterizing responses evoked by blocks of stimulation, which we refer to as block 

responses, although the impulse response function characterizations are more widely 

investigated (Lindquist et al., 2009; Shan et al., 2014). While block-design studies are not 

optimal for modeling impulse response functions (Maus et al., 2012), characterizing block 

responses can often offer great insights. For example, delayed occipital block responses 

during face encoding task may serve as an early marker for Alzheimer’s disease in human 

(Rombouts et al., 2005). In rodent ofMRI studies, prolonged block responses could be 

indicative of seizure-like afterdischarge activities in the hippocampus (Weitz et al., 2014). 

These variations in the block responses could originate from various sources including the 

timing of neuronal activity, the impulse response function, and nonlinearities. Nonetheless, 

accurate detection and characterization of these block response variations provide an 

important first step towards in-depth investigations of the underlying mechanism. Second, 

we did not impose constraints on the basis sets, although it is recommended when modeling 

impulse response functions in order to avoid physiologically ambiguous or implausible 

shapes (Calhoun et al., 2004; Steffener et al., 2010; Woolrich et al., 2004). This is because a 

larger degree of variations may be observed in block responses compared to impulse 

response functions. For example, impulse response functions are usually considered to be 

physiological meaningful if they only have one peak (Calhoun et al., 2004), or exhibit a 

sensible range of time-to-peak values (Henson et al., 2002). However, because of the 
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transient neuronal activities at block transitions (the beginning and end of each task-block), 

physiological meaningful bimodal block responses have been observed in humans (Marxen 

et al., 2012). Block responses from the ofMRI datasets used here also exhibit a wide range 

of onset shifts relative to the canonical response. Therefore, we did not impose constraints 

on the basis sets.

The present work demonstrates advantages of flexible models in achieving better detection 

and characterization performances, but the analysis results should be interpreted with 

caution. First, using flexible models may lead to the detection of physiologically implausible 

responses. To reduce such undesirable errors, it may be helpful to examine the temporal 

dynamics of detected BOLD responses in each region of interest. Special attention may be 

paid to unexpected activation and prior knowledge of anatomical and functional connectivity 

could be used to assess whether detected responses are physiologically plausible. 

Electrophysiological experiments, such as in vivo extracellular recordings, may also help to 

confirm the neural origin of detected responses. Second, the regression coefficients 

estimated with flexible models may lack interpretability, in contrast to conventionally used 

1st order canonical basis set where the regression coefficient typically reflects the amplitude 

of the BOLD responses. For example, in the case of the Fourier basis set, it is difficult to 

interpret the regression coefficients of higher harmonics, as they only represent the 

refinement of model fitting, and are not interpretable features of the BOLD responses, such 

as amplitude, onset, and duration.

In this study, systematic evaluations of various statistical methods are presented, but a few 

caveats exist. First, the simulated data was generated by adding Gaussian noise to the ground 

truth signal, which did not account for any other type of physiological noise that may be 

present in the real data (e.g., colored noise). Adding physiological noise may affect the TPR, 

FPR, and AUC results (Welvaert and Rosseel, 2012). Second, the simulated datasets did not 

include other types of BOLD responses, such as nonstationary or biphasic responses (Fox et 

al., 2005a; Fox et al., 2005b; Gonzalez-Castillo et al., 2012; Harms and Melcher, 2002; 

Uludag, 2008). Third, we evaluated a variety of analysis methods on their simultaneous 

detection and characterization capabilities, but it may be possible to achieve higher 

accuracies using advanced statistical methods, such as two-gamma-variate fitting (Yu et al., 

2016) and exponential fitting (Bosshard et al., 2015). Future comparisons including 

advanced methods may be useful. Fourth, it is worth noting that, there exist many metrics to 

compare methods besides those employed in the present work. Among the commonly used 

ones are the Akaike Information Criterion (Akaike, 1998), the Bayesian Information 

Criterion (Schwarz, 1978), and the Bayesian model selection (Wasserman, 2000). In this 

work, we focused on two specific applications of fMRI analysis – detection and 

characterization of the BOLD responses – utilizing application-specific performance 

metrics, such as AUC for detection and RMSE of fit for characterization. Fifth, the method 

employed to select signal components assumes the existence of signals of interest in the 

datasets. However, if used on data without signals of interest, such as the control ofMRI 

data, this method would yield a group of ‘signal’ components that are predominantly noise 

(Fig. S7). Employing such ‘signal’ components during data analysis may lead to undesirable 

consequences, such as the detection of spurious activations, as shown in Section 3.2. With 

the purpose of comparing the performance against other methods, we employed these 
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‘signal’ components from the control ofMRI data. However, when using ICA for data 

analysis, time series and spatial maps of the selected signal components should be inspected 

prior to further analysis to avoid erroneous detections. Finally, the present study mainly 

focused on periodic block designs, and may not directly apply to non-periodic block-design 

studies. For example, our signal component selection method assumes that the signal of 

interest is periodic with respect to time. Therefore, this method is not suitable to extract 

signal components from data with a non-periodic paradigm. Additionally, the sinusoidal 

functions in the Fourier basis set was used to model BOLD responses over the entire scan 

session. In this case, their fundamental frequency was set to the frequency of repeated 

stimulation cycles, which would only apply to studies with periodic designs. Nonetheless, 

the Fourier basis set may be used for non-periodic block-design studies if it is used to model 

the impulse response function instead. In this case, the sinusoidal functions may need to be 

convolved with the stimulation paradigm before being used as regressors. For example, the 

Fourier basis set was used to model impulse responses in epilepsy patients and successfully 

detected activations that may be indicative of propagated epileptiform activity (Lemieux et 

al., 2008). Therefore, further evaluations may be necessary to understand each method’s 

detection and characterization capabilities in non-periodic block-design studies.
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Highlights

Six fMRI analysis methods are evaluated against heterogeneous BOLD responses.

• Evaluations are conducted using both real and simulated data.

• Conventionally used canonical HRF leads to detection and characterization 

errors.

• Flexible models show robust detection and characterization performance.

• The gamma, finite impulse response, B-spline, and Fourier basis sets are 

preferred.
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Figure 1. 
GLM with 1st order canonical basis set leads to detection and characterization errors with 

experimental ofMRI datasets. (A) Schematic of the ofMRI experimental design indicating 

the site of transduced cells in the central thalamus (green), optical fiber location (blue line), 

and location of acquired coronal fMRI slices (1…23). Slice numbers correspond to those 

denoted in the activation maps in subsequent figures. (B) Regions of interest used to extract 

the time series in subsequent figures are shown. (C, D) Activation maps detected by GLM 

with the 1st order canonical basis set from a representative subject are shown. For group-

level activation maps, please see Supplementary Figure S5 and S6. In panel C-L, non-

smoothed ofMRI data were used and the threshold was set to p < 0.05 with Bonferroni 

correction. T2-weighted anatomical images are used as underlays. (E, F) Plots show the 

observed BOLD responses that are detected by GLM with the 1st order canonical basis set. 

They were generated by first averaging the time series of detected voxels that fell within 

each region of interest, followed by averaging over six stimulation cycles of the resulting 

time series. Error bars represent standard error of the mean (SEM) across different 

stimulation cycles. The superset of voxels detected by GLM with the 1st order canonical 

basis set in each subject were used in panel E-L (N = 10 subjects). Percent signal change 

was calculated relative to the baseline period. Horizontal blue bars represent the 20 s period 

of optical stimulation. (G, H) Plots show the onset and duration measured from the observed 

data. Each grey dot refers to a detected voxel from a subject (N = 10 subjects). Probability 

density color map was calculated with a histogram of 50 bins along each axis. Canonical 

response was generated by convolving the canonical HRF with the experimental paradigm. 

(I, J) Plots show the fitted BOLD responses that are estimated by GLM with the 1st order 

canonical basis set. The observed responses shown in panel E and F are overlaid here for 
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comparison using gray line. (K, L) Plots show the onset and duration estimated by GLM 

with the 1st order canonical basis set. Abbreviations are as follows: ctx (cortex), str 

(striatum), and thal (thalamus).
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Figure 2. 
A GLM platform was used to compare analysis methods. (A) Illustration of the general 

linear model framework. β1 and β2 are the coefficients in the model, and ε represents 

residual. (B) Each regressor used in the canonical and gamma basis sets is obtained by 

convolving a basis function with the experimental paradigm. Blue boxcars in the 

experimental paradigm represent the 20 s period of optical stimulation. (C) Illustration of the 

basis functions in the canonical and gamma basis sets. (D) Illustration of different sets of 

regressors used in the general linear model framework. Due to the space constraint, only 

order 3 and 5 are shown for the FIR and B-spline basis sets.
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Figure 3. 
GLM with the 2nd and 3rd order canonical basis sets, the 2nd to 4th order gamma basis sets, 

the 5th to 7th order B-spline basis sets, the 2nd order Fourier basis set, and ICA yield large 

detection volumes with the experimental ofMRI datasets. (A-D) Detection capability 

assessment with the 10 Hz stimulation ofMRI data. (E-H) Detection capability assessment 

with the 40 Hz stimulation ofMRI data. (A, E) Bar graphs show the active volume detected 

by each method. The detection volume was first normalized to the active volume detected by 

GLM with the 1st order canonical basis set (gray arrowhead and dashed horizontal line) for 

each subject, and then averaged across different subjects. Non-smoothed ofMRI data were 

used and the threshold was set to p < 0.05 with Bonferroni correction in each panel. Error 

bars represent SEM across different subjects. Asterisk indicates p < 0.05 compared with 

GLM with the 1st order canonical basis set using one-sided Wilcoxon signed-rank test (N = 

10 subjects). (B, F) Activation maps from a representative subject are shown. For group-

level activation maps, please see Supplementary Figure S5 and S6. Here, for simplicity, we 

show results from conventionally used GLM with the 1st order canonical basis set, as well as 

from the model order within each method that yields the largest detection volume in panel A 

and E. The gray border represents the superset of voxels that are detected by all tested 

methods. Colored voxels are detected by the method denoted in the figure legend. The 

evoked response is considered positive if the average percent signal change over entire 

stimulation cycle is above zero, otherwise is considered negative. T2-weighted anatomical 

images are used as underlays. (C, G) Plots show the observed BOLD responses that are 

detected by all methods combined. Error bars represent SEM across different stimulation 

cycles. Horizontal blue bars represent the 20 s period of optical stimulation. (D, H) Plots 

show the onset and duration measured from the BOLD responses that are detected by each 
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method. The onset and duration are measured from the observed time course, not estimated 

from the fitted time course. Each grey dot refers to a detected voxel from a subject (N = 10 

subjects). The probability density color map is overlaid. Note that, the plots for the 1st order 

canonical basis set are identical to those in Figure 1G and H. Abbreviations are as follows: 

Can. (canonical), Gam. (gamma), Fo. (Fourier), ctx (cortex), str (striatum), thal (thalamus), 

and co (coherence analysis).
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Figure 4. 
GLM with the 2nd and 3rd order canonical basis sets, the 2nd to 4th order gamma basis sets, 

the 5th to 20th order FIR basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th 

order Fourier basis sets show good detection performance with the ofMRI datasets. (A) Bar 

graph shows the normalized detection volume with the control ofMRI data. The detection 

volume was first normalized to the active volume detected by GLM with the 1st order 

canonical basis set for each subject (gray arrowhead and dashed horizontal line), and then 

averaged across different subjects. Error bars represent SEM across different subjects (N = 2 

subjects). Non-smoothed ofMRI data are used in each panel. The threshold was set to 

uncorrected p < 0.001 in panel A and B to better show the spurious activations detected by 

each method. Please see Supplementary Figure S8 and its figure caption for results with 

other threshold settings. (B) Activation maps from a representative subject are shown. T2-

weighted anatomical images are used as underlays. In this subject, one signal component 

was extracted for ICA and t-test was used during statistical analysis. (C, D) Bar graphs 

represent normalized AUC values for each method. AUC values were first normalized to the 

AUC value yielded by GLM with the 1st order canonical basis set (gray arrowhead and 

dashed horizontal line) for each subject, and then averaged across different subjects. Error 

bars represent SEM across different experimental subjects. Asterisk indicates p < 0.05 

compared with GLM with the 1st order canonical basis set using one-sided Wilcoxon signed-

rank test (N = 10 subjects). (E, F) Modified ROC curves are shown. For simplicity, we show 

results from conventionally used GLM with the 1st order canonical basis set, as well as from 

the model order within each method that yields the largest AUC values in panel C and D. 

Shaded areas represent SEM across different experimental subjects (N = 10 subjects). C1 to 

C3, G1 to G4, FIR3 to FIR20, B3 to B9, and F1 to F5 refer to different model orders in the 
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canonical, gamma, FIR, B-spline, and Fourier basis sets. Abbreviations are as follows: Can. 

(canonical), Gam. (gamma), and Fo. (Fourier).
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Figure 5. 
GLM with the 4th order gamma basis set, the 20th order FIR basis set, the 7th to 9th order B-

spline basis sets, and the 3rd to 5th order Fourier basis sets show good characterization 

performance with the ofMRI datasets. The results in each panel were calculated using the 

superset of voxels detected by all methods combined, rather than the voxels detected by each 

method. This way each method’s characterization capabilities can be assessed without the 

influence of their detection performance. Non-smoothed ofMRI data were used and the 

threshold is set to p < 0.05 with Bonferroni correction in each panel. (A-C) Bar graphs show 

the average onset error (A), duration error (B), and RMSE (C). In panel A, the onset errors 

of some methods are beyond the upper limit of the plot. Therefore, these values are not 

shown to better illustrate the onset errors of the rest methods. The methods with extreme 

onset errors include the 3rd and 5th order FIR basis sets and the 1st order Fourier basis set 

with the 10 Hz stimulation ofMRI data, and the 3rd order FIR basis set with the 40 Hz 

stimulation ofMRI data. The onset and duration error was calculated relative to the onset and 

duration measured from the observed time course and is in the unit of seconds. RMSE was 

calculated relative to the observed data and is in the unit of percent signal change (PSC). The 

mean errors in panel A to C were calculated by first averaging the errors across different 

detected voxels within each subject, and then averaging across different subjects. Error bars 

represent SEM across different subjects. Asterisk indicates p < 0.05 compared with GLM 

with the 1st order canonical basis set using one-sided Wilcoxon signed-rank test (N = 10 

subjects). The results using GLM with the 1st order canonical basis set is denoted with a 

gray arrowhead and a dashed horizontal line. (D) Plots show the onset and duration 

measured from the observed data (top panel) and estimated by each method (bottom panels). 

For simplicity, we show results from conventionally used GLM with the 1st order canonical 

basis set, as well as from the model order within each method that yields the lowest errors in 

panel A to C. Each grey dot refers to a detected voxel from a subject (N = 10 subjects). The 

probability density color map is overlaid. Note that, the plots for the 1st order canonical basis 
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set are identical to those in Figure 1K and L. Abbreviations are as follows: Can. (canonical), 

Gam. (gamma), and Fo. (Fourier).
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Figure 6. 
Simulated datasets were designed to have a wide range of onset and duration. (A) Signals 

were simulated with varying onset and duration. The simulated shape that matches the 

canonical response is denoted by a black arrowhead in each panel. The horizontal axis refers 

to the onset shift of each signal shape relative to the canonical response. The vertical axis 

refers to the duration of each signal shape. Bottom right shows the spatial activation pattern 

of the simulated data with the ground truth positive voxels overlaid in red. (B) Three 

probability distributions of onset and duration are shown. Each square in the grid 

corresponds to the probability of the onset and duration from a different simulated signal 

shape.
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Figure 7. 
GLM with the 2nd to 4th order gamma basis sets, the 5th to 9th order FIR basis sets, the 5th to 

9th order B-spline basis sets, the 1st to 5th order Fourier basis sets, and ICA show good 

detection performance with the simulated datasets. (A, C, E) Colormaps show true positive 

rate

(A), false positive rate (C), and AUC (E) for each method. Threshold was set to p < 0.05 

with Bonferroni correction in panel A-D. CNR is 1.5 in each panel. Results from the 

simulated shape that matches the canonical response is denoted by black arrowheads. (B, D, 

F) Plots show average true positive rate (B), false positive rate (D), and AUC (F). The results 

using GLM with the 1st order canonical basis set is denoted with a gray arrowhead and a 

dashed horizontal line. The model order that yields the highest true positive rate, the lowest 

false positive rate, and the highest AUC within each method is denoted by black arrowheads. 

Abbreviations are as follows: Can. (canonical), Gam. (gamma), B-spli. (B-spline), Fo. 

(Fourier), and Co (coherence analysis).
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Figure 8. 
GLM with the 3rd and 4th order gamma basis sets, the 5th to 9th order FIR basis sets, the 5th 

to 9th order B-spline basis sets, the 2nd to 5th order Fourier basis sets, and ICA show good 

characterization performance with the simulated datasets. Similar to Figure 5, the results in 

each panel were calculated using the ground truth positive voxels rather than the voxels 

detected by each method, so that each method’s characterization capability can be assessed 

without the influence of their detection performance. (A, C, E) Colormaps show onset errors 

(A), duration errors (C), and RMSE of fit (E) for each method. Color bar represents onset 

and duration errors in the unit of seconds, and RMSE in the unit of percent signal change 

(PSC). CNR is 1.5 in each panel. (B, D, F) Plots show average onset errors (B), duration 

errors (D), and RMSE (F). The results using GLM with the 1st order canonical basis set is 

denoted with a gray arrowhead and a dashed horizontal line. The model order that yields the 

smallest errors within each method is denoted by black arrowheads. Note that, in panel B, 

the onset errors of the 3rd order FIR basis set with the 10 Hz and 40 Hz stimulation ofMRI 

data distributions are beyond the upper limit of the plot and therefore are not shown to better 

illustrate the onset errors of the rest methods. Abbreviations are as follows: Can. (canonical), 

Gam. (gamma), B-spli. (B-spline), Fo. (Fourier), and Co (coherence analysis).
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Figure 9. 
GLM with the 3rd and 4th order gamma basis sets, the 7th to 9th order FIR basis sets, the 5th 

to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets show good balance 

between detection and characterization. (A, B) Plots show the mean AUC and RMSE of 

each method. Non-smoothed ofMRI data were used when calculating AUC and RMSE. The 

dashed line represents the results using GLM with the 1st order canonical basis set. C1 to 

C3, G1 to G4, FIR3 to FIR20, B3 to B9, and F1 to F5 refer to different model orders in the 

canonical, gamma, FIR, B-spline, and Fourier basis sets. Co stands for coherence analysis. 

(C) Plots show the standardized mean AUC and RMSE of each method. The bottom panel 

shows an overlay across different methods. For each method, the standardized AUC and 

RMSE from the ofMRI datasets (solid circle) is connected to the standardized AUC and 

RMSE from the simulated datasets (open circle) using a colored dashed line. The 

standardized AUC and RMSE are calculated using the mean AUC and RMSE of each 

method shown in panel A and B. See Section 2.2 for details regarding the calculation of 

standardized AUC and RMSE.
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