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Abstract

Even after thorough preprocessing and a careful time series analysis of functional magnetic 

resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption 

that the variance is constant across subjects in the group level model. This is especially concerning 

when modeling a continuous covariate at the group level, as the slope is easily biased by outliers. 

Various models have been proposed to deal with outliers including models that use the first level 

variance or that use the group level residual magnitude to differentially weight subjects. The most 

typically used robust regression, implementing a robust estimator of the regression slope, has been 

previously studied in the context of fMRI studies and was found to perform well in some 

scenarios, but a loss of Type I error control can occur for some outlier settings. A second type of 

robust regression using a heteroscedastic autocorrelation consistent (HAC) estimator, which 

produces robust slope and variance estimates has been shown to perform well, with better Type I 

error control, but with large sample sizes (500–1000 subjects). The Type I error control with 

smaller sample sizes has not been studied in this model and has not been compared to other 

modeling approaches that handle outliers such as FSL’s Flame 1 and FSL’s outlier de-weighting. 

Focusing on group level inference with a continuous covariate over a range of sample sizes and 

degree of heteroscedasticity, which can be driven either by the within- or between-subject 

variability, both styles of robust regression are compared to ordinary least squares (OLS), FSL’s 

Flame 1, Flame 1 with outlier de-weighting algorithm and Kendall’s Tau. Additionally, subject 

omission using the Cook’s Distance measure with OLS and nonparametric inference with the OLS 

statistic are studied. Pros and cons of these models as well as general strategies for detecting 

outliers in data and taking precaution to avoid inflated Type I error rates are discussed.
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Introduction

When analyzing fMRI data, even with thorough preprocessing, it is likely that artifacts will 

prevail in some subject’s data causing outlying blood oxygen level dependent (BOLD) 

contrast estimates in the group level analyses. This can be a concern when the group level 

model involves a continuous covariate, since outliers can easily influence the fit of a 

regression line. It can also be an issue with categorical covariates, although mean estimates 

are often less impacted by outliers than regression slopes. A drawback of the most common 

analysis strategy for imaging data is it involves blindly applying a model in a voxelwise 

fashion, inspecting only the p-value maps. Comparatively, in a standard single regression 

analysis, say using behavioral data only, multiple plotting strategies and statistical 

assessments are used to study heteroscedasticity and other violations of regression 

assumptions. This practice is somewhat difficult in voxelwise analyses and so a common 

goal is to find a model, such as robust regression, that aims to detect and downweight the 

contribution of outliers in a regression analysis. Although there have been studies that focus 

on models that are robust to outliers (Wager et al., 2005; Fritsch et al., 2015; Woolrich, 

2008), in each case only subsets of robust models have been compared over a somewhat 

limited set of heteroscedasticity scenarios and not all focused on performance with 

continuous regressors, but focus on group 1-sample t-tests. The purpose of this work is to 

examine the Type I error rate across a wide selection of regression models, including some 

that have not been considered in the context of fMRI analysis. Also, a larger set of 

heteroscedasticity settings, varying both the type and degree of heteroscedasticity are 

considered.

The most commonly used robust regression approaches rely on estimators of the regression 

slope that are robust to outliers. Another class of robust regression approaches, utilizing 

heteroscedastic autocorrelation consistent (HAC) estimators, also provide robust variance 

estimates. These will be referred to as “doubly robust” since both the slope and variance 

estimators are robust to outliers. In this work, the models compared are two types robust 

regression (singly and doubly robust), FSL’s Flame 1 (similar to AFNI’s MEMA), FSL’s 

Flame 1 with outlier de-weighting, Ordinary Least Squares (OLS), which equivalent to most 

commonly used model in SPM and AFNI, and Kendall’s rank correlation. Improvements to 

OLS also considered are removing subjects according to the Cook’s D metric and using 

nonparametric inference, which has fewer assumptions than parametric inference. All other 

approaches rely on parametric inference.

Due to the repeated measures nature of fMRI data, the variance structure has both a within-

subject and a between-subject variance component and the outliers can be driven by 

heteroscedasticity in either of these variances. Past works only consider model comparisons 

with heteroscedasticity within one of these variance types, whereas here the comparison is 

across all models with heteroscedasticity in either variance component. Lastly, a wider 

selection of heteroscedastic variance patterns are considered, including univariate outliers, 

multivariate outliers and heteroscedasticity that correlates with the group model covariate 

(e.g. variance in BOLD contrast increases with an impulsivity measure of interest). Also, 

instead of only considering one level of outlying variance, a continuum of outlier degree is 

studied, illustrating how models perform with weak and strong outliers.
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Heteroscedasticity

The residual plots (residual versus explanatory variable) in Figure 1 illustrate the 

heteroscedasticity settings considered here. In the univariate outlier case (top row), the 

outlier is either in the explanatory variable or in the explained variable, while in the 

multivariate case (bottom left) both the explanatory and explained values are outlying. The 

final case, which has never been considered in robust regression studies of neuroimaging 

data, is when the variance increases along with the explanatory variable (bottom right). This 

will be referred to as heteroscedasticity without outliers, since there are no clear outlying 

values, but the variance is still heterogeneous.

Within- and Between-subject variance

Here it is assumed that each subject has a single functional run of data and in this case the 

standard modeling approach is the two-stage summary statistics model (Mumford and 

Nichols, 2006). The first stage models the time series data and, for subject i, results in a 

within-subject estimate of the BOLD contrast, β̂i, as well as the within-subject variance of 

the contrast, which will be denoted . The second stage model combines the within-

subject contrast estimates and their variances in a group model. This model results in a 

group contrast estimate, γ, as well as a between-subject variance, , which is combined 

with the within-subject variance to form the mixed effects variance, . Specifically, 

for subject i, let βî be the level 1 contrast estimate, Wi is the group level covariate value 

(assumed to be a scalar), and γ is the group-level parameter (regression slope) then

(1)

Given this structure, it is clear that outliers in the βî can be driven either by inflated within- 

or between-subject variance. To be clear, the focus here is on outliers in the first level 

parameter estimates (β̂i) and not in the time series data, which are not directly studied in this 

work. Of course it could be the case that a subject with multiple outliers in their time series 

data, say due to motion, may have an inflated value for . The following section describes 

the various estimation strategies for this group model and their corresponding assumptions. 

Specifically, some models will simplify the variance structure by assuming the within-

subject variance is constant across subjects.

Group models considered and previous work

The specific details of the group models will be given in the methods, but will be broadly 

discussed here. The simplest group model is OLS, where the within-subject variance is 

assumed to be constant across subjects, simplifying the mixed effects variance to a single 

parameter, σ2, so Equation 1 becomes β̂i ~ N (Wiγ, σ2). The estimate of this model is found 

by least squares, which is the value of γ that minimizes
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(2)

This estimator is commonly used in the SPM software package (www.fil.ion.ucl.ac.uk/spm/) 

and in AFNI (afni.nimh.nih.gov/afni/).

In comparison, FSL’s (fsl.fmrib.ox.ac.uk/fsl) Flame 1 model (Woolrich et al., 2004) and 

AFNI’s MEMA model (Chen et al., 2012) do not relax the assumption of Equation 1, and 

allow for heteroscedasticity in the within-subject variance. Univariate outliers driven by the 

within-subject variance, alone, and the impact on Type I error and power between this style 

of model and OLS was compared in Beckmann et al. (2003) and Mumford and Nichols 

(2009). The model of interest was the 1-sample t-test and it was found that Type I error was 

preserved for both approaches, but power was slightly reduced for OLS in the presence of 

univariate outliers. This work will instead focus on continuous regressors in the group level, 

which has not yet been done for this model comparison.

In robust regression, a score function is used to differentially weight subjects according to 

the size of their residual, which will account for some forms of heteroscedasticity. 

Specifically, the ratio of the subject’s residual and the overall standard deviation, σ, is passed 

into a function ρ and the minimization problem is defined by finding γ that minimizes

(3)

Effectively this turns into a weighted linear regression, where outlying subjects, as 

determined by their residual magnitude, contribute less to the parameter. The weight is a 

function of the score function, ρ. Common settings for ρ include Tukey’s Bisquare or 

Huber’s loss function, which are plotted in Figure 2 and must be chosen when running a 

robust regression. A second choice involves the estimator of σ and options include M, S and 

MM. Among other properties, these estimators differ in their computational ease and what is 

called the breakdown point, which indicates what proportion of the data can contain outliers 

before the estimator may fail. The M estimator uses a median absolute deviation (MAD) 

estimator of σ. Although it is computationally simple, it has a breakdown point of 0 (Huber, 

1981). On the other hand, S estimators use a residual scale estimator of σ and are also 

simple to estimate, but have a breakdown point of 50%. The downside is the estimates tend 

to have low efficiency (i.e. are more variable). The MM estimator combines the S and M 
estimators, where the S estimation strategy is used as a starting point for the M estimator, 

which allows for a higher breakdown point (50%) while retaining efficiency. The specifics 

about these estimators can be found in Croux et al. (2003). Since the parameter, σ, appears 

within the minimization step, the two parameters, γ and σ are estimated iteratively using 

what is known as iteratively reweighted least squares. In this work, this model will be 

referred to as “singly robust” as only the estimate of γ is robust to outliers and not σ.
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In Wager et al. (2005) both the Bisquare and Huber loss function were considered in singly 

robust models in comparison with OLS and some other estimation approaches not revisited 

here (e.g. dropping subjects with high Mahalanobis distance). Outliers were either univariate 

or multivariate and the regression setting was with a single continuous regressor and the 

sample sizes considered were between 20–40 subjects. The findings indicated that Type 1 

error is controlled for univariate outliers in the explained variable for both robust methods 

and OLS, but OLS suffered from a loss in power. In the multivariate case, no method 

properly controlled Type I error rates.

A slightly different approach to robust regression was presented in Fritsch et al. (2015), 

where a Randomized Parcellation Based Inference (Da Mota et al., 2014) is combined with 

robust regression. Huber’s loss function was used and the sample size was much larger than 

in Wager et al. (2005), typically 400–1000 subjects. Competing models included OLS, 

support vector regression (SVR) and least trimmed squares (LTS) and univariate outliers in 

models with continuous regressors were considered. As in Wager et al. (2005), OLS and 

robust regression were found to control Type I errors, but with a loss in power for OLS when 

univariate outliers were present. Interestingly, although Type I errors were found to be 

controlled, the real data analysis revealed a significant cluster with OLS that was not present 

with robust regression, in which a single influential outlier caused the false positive 

activation. This does not contradict the finding that Type I errors are preserved with OLS, 

but instead reflects that when using a p-value threshold of 0.05 there is still a 5% chance for 

false positives to occur with either method and the two methods will not necessarily both 

experience false positives with the same data.

The robust regression estimator considered up until now only provides an estimate of γ that 

is robust to outliers. This is the most commonly found robust regression model across 

software packages. Within the R software package, in some cases the p-values are output as 

part of robust regression output, but in many cases, such as the rlm, p-values are not 

supplied. This is because there is a debate over the proper way to derive p-values for robust 

regression (Croux et al., 2003). The R software package’s lmrob function does output p-

values and, therefore, may be thought to be a better robust model. This function uses an 

estimation strategy that additionally provides robust standard error estimates that are 

heteroscedasticity and autocorrelation consistent (HAC) in addition to being robust to 

outliers. The derivation of this estimator can be found in Croux et al. (2003), where, for 

large sample sizes (1000 subjects) it was found to have the strongest control of Type I error 

over singly robust models in the case of heteroscedasticity without outliers. Most notably, 

the singly robust approach and OLS were not able to control the Type I error rate due to an 

underestimate of the standard error. The weakness of the HAC estimator is when the errors 

are homoscedastic. Although the Type I error is preserved, at the large sample sizes they 

considered, the estimate of the standard error suffers from a loss in precision (Croux et al., 

2003). Although this work provides promise for doubly robust regression, the sample sizes 

and heteroscedasticity settings were not realistic representations of a typical fMRI study, 

where sample sizes are likely less than 100 and if heteroscedasticity without outliers is 

present, it will not be as dramatic as in the simulations used in Croux et al. (2003).
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Lastly, the outlier de-weighting algorithm that is part of FSL (Woolrich, 2008) models the 

between-subject variance as a mixture of two Gaussian distributions while also allowing for 

heteroscedastic within-subject variances using Flame 1. Inference is based on a Bayesian 

framework, using an expectation-maximization estimation. This allows subjects to have 

different between-subject variances and be weighted differentially in the model estimation. 

In Woolrich (2008), comparison models included OLS, singly robust with Tukey’s Bisquare 

loss function and a permutation-based test that incorporated the within-subject variances. 

The permutation method used the lower level variances by permuting data in the usual way, 

but using the Flame 1 T-statistic instead of an OLS statistic. This permutation strategy was 

not considered here because in the situations where Flame 1 had issues, permutation tests 

would not be likely to offer any improvement due to exchangeability assumption violations. 

The simulations focused on univariate outliers in the between-subject variance with a 1-

sample t-test as well as regression with a single continuous covariate. The Flame 1 with 

outlier de-weighting approach was found to generally perform better than OLS and robust 

regression with better control of Type I errors and higher power. The permutation test results 

fell between that of OLS and Flame 1 with outlier de-weighting. Importantly, Woolrich 

(2008) found that when the regression covariate was skewed, the Flame 1 with outlier de-

weighting approach did not perform well. This is to be expected, since it would deviate from 

the assumption that the distribution of the errors follows a mixture of two Gaussian 

distributions.

This work combines all of these models to study and compare their performances across a 

wider set of heteroscedasticity settings than have been previously used and focus on a wide 

array of sample sizes, from 30–500. Also, instead of only focusing on a single magnitude of 

outlier, a continuum of outlier values is studied to provide a thorough comparison of the 

models. The primary question is whether there will be a model that can perform well in all 

situations and, if not, what can be done to help control the influence of outliers on results, 

while preserving the Type I error rate.

Methods

Models considered

The robust regression routines used were from the R software package (www.r-project.org). 

For singly robust regression, the rlm function within the MASS library was used and the 

doubly robust regression, using the HAC estimator for the variance, was implemented using 

the lmrob function within the robustbase library. In both cases MM estimation using 

Tukey’s bisquare score function was used. For OLS regression, the lm function was used 

and when using a Cook’s D criterion to select and omit outliers, the cooks.distance 

function was used and thresholds of 1 and 4/N, where N is the number of subjects, were 

considered. Kendall’s rank correlation p-values were computed using the cor.test 

function. The Flame 1 and Flame 1 with outlier de-weighting algorithms were implemented 

using the flameo function, which is part of FSL. Permutation tests were coded in R. 

Although it is standard to use a cluster-based permutation, the focus here is on voxelwise 

statistics and so uncorrected, voxelwise permutation tests were conducted. In the 
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permutation tests, subject labels were permuted and 5000 permutations were used to derive 

the nonparametric null distribution. All p-values correspond to a 2-tailed hypothesis.

Real data

The Balloon Analog Risk task (Lejuez et al., 2002) of the “Generality of Self Control” data 

set in the open fmri data base (set 00008 in openfmri.org) was used to guide the parameter 

value choices in the simulations. In the task, participants saw a balloon and could either 

choose to inflate it further or stop inflating it with left and right button presses, respectively. 

The value of the balloon started at 50 cents and increased by 25 cents with each pump. 

When a participant decided to stop pumping the balloon, the current value was saved as 

winnings and if the balloon was pumped until explosion, which occurred after a variable 

number of pumps, no winnings were added. The first level contrast of interest was the 

BOLD activation difference for inflating a balloon versus choosing to stop inflating (accept-

reject) and the group level covariate of interest was the within-subject number of balloons 

that exploded. There were a total of 24 subjects with a mean age of 20.8 (range 18–33, 10 

females). Further details about the paradigm can be found in the study description posted on 

openfmri.org (openfmri.org/media/ds000009/ds009 methods 0 CchSZHn.pdf). The data 

were analyzed using the FSL software package, which supplies both within-and between-

subject variance estimates that were used drive reasonable parameter settings in the 

simulations. In other words, variance magnitudes that would be found in real data.

FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 

6.00, part of FSL. The following pre-statistics processing was applied; motion correction 

using MCFLIRT (Jenkinson et al., 2002); non-brain removal using BET (Smith, 2002); 

spatial smoothing using a Gaussian kernel of FWHM 5mm; grand-mean intensity 

normalization of the entire 4D dataset by a single multiplicative factor; highpass temporal 

filtering (Gaussian-weighted least-squares straight line fitting, with sigma=50.0s). 

Registration to high resolution structural and/or standard space images was carried out using 

FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002). Time-series statistical analysis 

was carried out using FILM with local autocorrelation correction (Woolrich et al., 2001). In 

addition to the task related regressors (accept, explode and reject trials) nuisance regressors 

were added to the model to address motion artifact. The 6 standard motion parameters plus 

the extended motion parameters (derivative, square and derivative of square) were added as 

well as indicator regressors for high motion time points, indicated by a framewise 

displacement (FD) larger than 0.9. Higher-level analysis was carried out using FLAME 

(FMRIB’s Local Analysis of Mixed Effects) stage 1 (Beckmann et al., 2003; Woolrich et al., 

2004; Woolrich, 2008). The group level model only included a regressor for the number of 

balloons exploded, for each subject and an intercept.

General simulation setup

Data were simulated for a single voxel and Type I error and power were calculated based on 

10,000 single voxel analyses. Time series data were simulated based on the two stage model:
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(4)

In the first level model, Yi is the BOLD time series of length T for subject i, X is the first 

level design matrix, βi is the within-subject BOLD activation magnitude for subject i, and 

the first level error term follows a Gaussian distribution, , where IT is a T × T 
identity matrix. It is assumed that the design matrix, X, was the same across all subjects and 

contained a single regressor. The variance estimates are based on the real data, so the 

effective regressor for the accept-reject contrast for the first subject in the real data analysis 

was used as the regressor in the simulations (Smith et al., 2007). The within-subject variance 

of β̂i is then given by

(5)

In the second level, Wi is the group level covariate value for subject i and ui is the second 

level error term where . In simulating the data it was assumed that the group 

level model did not include an intercept, but an intercept was always included when 

modeling the data.

The different types of heteroscedasticity were simulated either through  or . To 

generate the simulated time series the subject-specific estimate, βi, is sampled from a 

Gaussian,

(6)

and the time series for a single voxel for subject i is then given by drawing a sample from

(7)

Time points were assumed to be independent, as this should not impact the performance of 

the group-level models.

After simulating the BOLD time series data, OLS regression was used to estimate βî and 

, which were then entered into the competing second level models.

Univariate outliers in explanatory variable

The real data had an average estimated within-subject variance around 5000 and between 

subject variance around 2500, so these values were used for  and , respectively. In this 
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simulation the outlier was in the explanatory variable, Wi, which was simulated by drawing 

the nonoutlying values of the explanatory variable from a standard normal distribution and 

then 10% of the data were assigned as outliers and their value for Wi was sampled from a 

normal distribution with variance ranging between 1–9.

Univariate outliers in explained variable

Again the non-outlying within- and between-subject variances are 5000 and 2500, but 10% 

of the subjects were denoted outliers by inflating either  or , but not both. Outliers in 

 ranged between 10,000 to 70,000, while outliers in  ranged between 5000 and 70,000. 

This means, that in each scenario the outlying mixed effects standard deviation was 1–3 

times larger than the non-outlying group. For the power calculations, γ was set to 50, for 

sample sizes of 30, and 3 when studying power over a range of sample sizes and Wi was 

sampled from a standard normal distribution.

Bivariate outlier

Just as before 10% of the data were assigned as outliers and the outlying variances followed 

the same setup as the univariate outliers in the explained variable and we focused on outliers 

in Wi sampled from a normal distribution with a variance of 9, while the nonoutlying 

covariate values were sampled from the standard normal.

Heteroscedasticity without outliers

Through inspection of multiple fMRI data sets, we did not find clear cases where there was a 

strict linear increase in the variance as a function of the group level covariate, as illustrated 

in Figure 1, but instead found that when heteroscedasticity was paired with a skewed group-

level covariate, results between the methods differed. The simulation setting was 

heteroscedasticity driven by two levels of variability corresponding to a median split of the 

group-level covariate. Using the real data we split the subjects into low and high explosion 

groups, depending upon whether their number of balloon explosions was below or above the 

median (12 explosions). After estimating the between-subject variance separately for each 

group using Flame 1, we split the mixed effects variance ratio (high/low explosion) into 20 

percentiles and the separate within- and between-subject variance estimates for each 

percentile are shown in Table A.1. Although both the within- and between-subject variances 

vary across the percentiles, the between-subject variance differences drive the 

heteroscedasticity and so the simulations used the average within-subject variance (4788) 

while varying the between-subject variance according to the numbers in the Table.

To simulate the data and assign the variance values, we first randomly created the group-

level regressor, number of balloon explosions, by randomly drawing a value from the 

Gaussian kernel density estimate, with a bandwidth of 1.56, of the real data distribution. 

This was done by first randomly sampling a value, with replacement, from the number of 

explosions data, call this μsub, and then simulating a subject’s number of explosions by 

drawing a single sample from N(μsub, (1.56)2). Figure 3 shows the distribution of this value 

over subjects as well as the kernel density estimate. Once the group level covariate, Wi, was 

determined, the simulated subject was assigned to the low or high explosion group according 

Mumford Page 9

Neuroimage. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the median value of the original number of explosions regressor (12 explosions) and 

variances were assigned according to the values in Table A.1 for the between subject 

variance while 4788 was used for the within-subject variance. For Type I error estimation, γ 
was set to 0 and for power it was set to 8.

Results

The following will present the Type I error and power results for all simulations. The OLS 

model using Cook’s D< 4/N never appears in plots, as this approach did not control the Type 

I error well in any of the simulations. Also, note that throughout the results the Permutation-

based results were so similar to OLS that a separate line was not plotted. This may seem 

unexpected, but is a result of heteroscedasticity violating the exchangeability assumption of 

the permutation test. More about the history of the permutation test and heteroscedasticity is 

included in the Discussion section. In some cases Cook’s D<1 also matched OLS, so is 

either included with OLS result or will have a separate line when it differed from OLS as 

specified in the figure legends.

Lastly, when interpreting the results for Power, keep in mind that the level of Power can only 

be considered if a test is valid, or when the Type I error is controlled.

Univariate outliers in explanatory variable

Figure 4 shows the Type I error rate (top) and Power (bottom) for the case where there was a 

univariate outlier in the explanatory variable for 10% of the data, with a total of 30 subjects. 

The x-axis indicates the degree of the outlier in the explanatory variable. Note that the ratio 

starts at 1, so this represents the case of no outliers. The doubly robust method does not 

control the Type I error rate, while all other models do well. Importantly, when the sample 

size is increased, the doubly robust regression does produce valid test results for large 

sample sizes (Supplemental Figure S1). Flame 1, Flame 1 with outlier de-weighting and 

OLS have the highest power, followed by singly robust and Kendall. Note the power for the 

doubly robust method cannot be considered, since the Type I error is not preserved. It may 

seem counterintuitive that power is reduced with the singly robust model, since the 

univariate outlier case was found to have higher power with singly robust than OLS in 

Wager et al. (2005) and Fritsch et al. (2015), but those univariate outliers were in the 

explained variable, which is covered in the next section. Since the outlier is in the 

explanatory variable, the βi may be outlying, but will follow the true regression slope 

without having an inflated residual error. Therefore, the complexity of the robust regression 

model is not needed and the standard error estimates are slightly inflated, causing the 

decrease in power. Note that this is the case when there are no outliers (ratio = 1) as well.

Univariate outliers in explained variable

Figure 5 shows the Type 1 error rates (top panels) and power estimates (bottom panels) 

when the outlier is driven by the between-subject variance (left) and within-subject variance 

(right) for a sample size of 30 when 10% of the data are outliers. The doubly robust model 

again fails to control the Type I error rate and the singly robust has a slightly inflated Type I 

error rate in both settings. Although the doubly robust method does not control the Type I 
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error rate at a sample size of 30, as the sample size increases, the Type I error rate and power 

improve for this approach although it requires a sample size of at least 500 subjects. 

Supplementary Figure S2 shows this result when the outlier is driven by the between-subject 

variance. At a sample size of 30, for outliers driven by the between-subject variance, the 

power gain depends on the severity of the outlier, where for less severe outliers, Flame 1 and 

OLS outperform the singly robust approach. For more severe outliers, the singly robust 

model has the highest power, followed by Flame 1 with outlier de-weighting, although 

Flame 1 with outlier de-weighting has inflated Type I errors for extreme outliers.

For the setting where the outlier is driven by the within-subject variance, the results are 

similar except for the Flame-based models, which is to be expected. Both Flame 1 and 

Flame 1 with outlier de-weighting have superior power, compared to the singly robust 

approach since they specifically use the within-subject variances to downweight noisy 

subjects. Flame 1 is known to overestimate the between subject variance when the between-

subject variance is small, leading to very conservative tests (Eklund et al., 2015) and so a 

simulation where the between subject variance was set to 100 for all subjects and the within-

subject variance controlled outliers as before was performed. Supplementary Figure S3 

shows that, as expected, the Type I error rate is conservative for the Flame 1 algorithms in 

this setting, but the power is still highest across all other models.

Bivariate Outlier

Figure 6 shows the results for the bivariate outlier when the outlying standard deviation in 

the explanatory variable was 3 times that of the non-outlying group. When the outlier is in 

the between-subject variance, all models, but Kendall’s Tau, fail to control the Type I error 

rate. This resembles results previously found in Wager et al. (2005). As is to be expected, 

when the heteroscedasticity is in the within-subject variance, the Flame 1-based approaches 

do control Type I errors, better than Kendall’s Tau and with much higher power. As in the 

previous cases, increasing the sample size does improve the performance of the doubly 

robust model, but the added sample size does not improve the Type I error rate for the singly 

robust modeling approach (Figure 7). Thus, with a large enough sample size, the doubly 

robust regression is the only regression-based approach with controlled Type I errors for this 

type of heteroscedasticity. Although Kendall’s Tau has controlled Type I errors as well, the 

model cannot include multiple covariates and the interpretation is limited.

Heteroscedasticity without Outliers

Figure 8 shows the Type 1 error and power across all levels of heteroscedasticity shown in 

Table A.1 for a sample size of 30. In both plots the x-axis represents the ratio of the true 

mixed effects variance for the below median explosion group compared to the above median 

explosion group. When the ratio is less than 1, the variance is larger for the low explosion 

group and there is a stronger impact on the inflation of Type 1 errors across the models 

compared to when the ratio is larger than 1, where the variance is larger for the high 

explosion group. This is because the distribution is left skewed (Figure 3) and so inflating 

the variance in the low explosion group, where the explosions fall into the lower tail of the 

distribution is somewhat like a more gentle version of the multivariate outlier. The Kendall’s 

Tau approach is the only one with controlled Type I errors across all settings, but has 
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reduced power compared to the OLS- and Flame-based methods when their error rates are 

controlled. Also, notable, is that OLS has better Type I error control than singly robust 

regression in this setting.

Supplemental Figure S5 shows the impact of increasing the sample size when the 

heteroscedasticity was the worst (ratio = 0.364) and shows that the doubly robust model, 

which is specifically designed to handle this type of heteroscedasticity, does not have 

controlled Type I errors until the sample size is around 500 subjects, whereas the singly 

robust model does not have improvement in the error rate as the sample size increases. In 

fact, the singly robust regression model has a higher error rate than all other models. 

Kendall’s Tau has a controlled error rate, while the OLS-based, Flame-based and 

permutation approaches have similar performances, with a slight decrease in Type I error as 

the sample size increases.

Discussion

This work has presented an extended review of models typically used in fMRI analysis, or 

considered when outliers may be present. Type I error rates and power were compared 

across a wider set of heteroscedasticity settings, degree of heteroscedasticity and sample 

sizes than has been done in previous work. The findings support that there is not a single 

model that can control Type I error properly for all types of heteroscedasticity, although 

some approaches should be avoided regardless of degree of heteroscedasticity and sample 

size. Specifically, blindly applying Cook’s D to omit outliers either shows no improvement 

over OLS or has inflated Type I error rates and, thus, should never be implemented. 

Although permutation tests are more effective at controlling the Type I error rate for multiple 

comparison correction (Eklund et al., 2015), in terms of handling outliers in the settings 

considered here, it performs similarly to OLS with parametric thresholding. This is 

discussed in more detail below. The singly robust regression model loses Type I error control 

in the bivariate outlier case as well as the heteroscedasticity with outlier case, with a slight 

increase when the outlier is univariate (in the explained variable). In some cases a boost in 

power was given by the singly robust model, but when no heteroscedasticity is present, the 

inflated variance estimates slightly decrease the power performance of this model. The 

doubly robust model has poor performance for small sample sizes, but has type I error 

control for very large sample sizes. OLS was found to have slightly better control of Type I 

error in the heteroscedasticity without outliers case. Kendall’s Tau is discussed more below, 

but generally has good control of Type I error rates and poor power, although the Type I 

errors can increase with strong, bivariate outliers. The Flame 1 approach offers an obvious 

benefit when the outliers are present in the within-subject variance, with higher power than 

robust regression in the univariate outlier cases, if the outlier is driven by the within-subject 

variability. Since Flame 1 performs so well when the outlier is driven by the within-subject 

variance, one approach might be to use Flame 1 and carefully inspect the model residuals to 

see if there are any outliers driven by the between-subject variance. If so, Flame 1 with 

outlier de-weighting could be implemented, although it does not always have strong control 

over Type I error rate and is not as highly powered as robust regression, in some settings 

where the outlier is driven by the between-subject variance. Notably the outlier de-weighting 

algorithm is computationally intensive to implement. It took two hours for the model to 
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complete using the 24 subject real data (BART study described above) across 226,000 

voxels on a Linux 7 computer with 8 × 3.5GHz Intel Xeon processor cores and 16GB of 

RAM.

Why does the permutation test fail?

The primary assumption of the permutation test is that exchangeability holds under the null, 

meaning the underlying distribution of the data are not perturbed by the permutations. The 

most common example where exchangeability does not hold is when data are correlated. 

Permuting in this case involves swapping time points and violates exchangeability due to 

disruptions in the correlation structure. Outliers in the case of the 1-sample t-test do not 

violate this assumption since the permutation involves multiplying randomly chosen 

subject’s estimates by -1. This preserves the outliers’ behavior in the data, in that they 

remain outliers. In this work the most egregious problems occurred with the bivariate outlier, 

where no method controls the false positive rate well. In this case the “feature” of the 

distribution that must be preserved is the behavior of the influential outlier. For most shuffes 

of subject labels, the permutation strategy in this case, the outlier will fall into the univariate 

outlier case, which has less influence. Results similar to what was found here were found in 

Hayes (1996), Rasmussen (1989) and Hahn et al. (2013).

What can be done about outliers?

It is a bit discouraging that there isn’t a single model that can handle all types of 

heteroscedasticity, reliably. This seems like a larger issue for imaging analyses where 

hundreds of thousands of regressions are simultaneously estimated and viewing the data is a 

daunting task. What this work should encourage is a more careful inspection of data. For 

example, the worst offenders in elevated Type I error occurred when there were issues with 

the explanatory variable, which is easy for the researcher to investigate prior to the analysis, 

through plotting histograms or boxplots. If the explanatory variable shows skew, which 

could be alleviated by a transformation, that will automatically remove the analysis from 

falling into the heteroscedasticity without outliers setting studied here, although severe 

heteroscedasticity can still inflate Type I error rates without skew in the covariate as shown 

in Croux et al. (2003). If the explanatory variable shows outliers, using a priori cutoffs, 

subjects that appear to be outliers should be considered for removal. Models with and 

without that subject should be compared. In situations like this when sample sizes are small, 

omitting one outlier usually reveals more outliers, which is an unfortunate issue with small 

studies and nothing can be done to alleviate this problem and the limitations of the study 

must be realized. Likely the best strategy, which yields limited modeling options and 

interpretation, is to use the Kendall’s Tau for very small sample sizes.

Although it may seem impossible to study the explained variable in the same amount of 

detail, if the subject-specific contrast images are concatenated into a single 4D image and a 

“movie” is played in a viewer, such as fslview, outlying subjects may be observed. Special 

attention should be given to voxels in regions that showed significance. This can also be 

done with the within-subject variance estimates. When outliers occur, it could be the case 

that this subject was flagged earlier in the analysis as a potential outlier, possibly due to poor 

task performance or high motion. It is not recommended that a subject be discarded, simply 
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because the data appear to be outlying, but this could be a good indication that a robust 

regression, Flame 1 or Flame 1 with outlier de-weighting should be considered.

Residuals from the model can also be viewed as movies to try and identify potential outliers. 

In the case of a regression model with a single regresor, if the subjects are ordered according 

to their regressor value, the residual plots as shown in Figure 1 can easily be created if the 

image viewer used also displays the time series plots.

Avoid p-hacking

Unfortunately, the advice given here may lead to comparing the results from various models 

to determine whether an outlier was influencing the results. It is heavily encouraged to not 

simply choose the model with the lowest p-value as “best”, but to carefully consider the 

results. If it is a weak effect that slightly tips from p < 0.05 to p > 0.05, proceed with caution 

and present any result with honesty and clarity. It is not encouraged that all of these models 

be applied to the same data set. Whatever modeling approaches are used with the data, it 

should be reported in the resulting manuscript, both the model the reported results were 

based on as well as any other models used.

Weighted regression models

Both the Robust and Flame-based approaches operate by differentially weighting subjects. 

An important consideration when using these types of approaches is looking at who was 

downweighted in the analysis. In some cases, a subpopulation of the study may have been 

greatly downweighted, in which case the interpretation of the results may change. For 

example, in a behavioral analysis with a depression index covariate, which was skewed 

regardless of transformation, when robust regression was applied, all of the highly depressed 

subjects were heavily downweighted in the analysis, implying that results were likely more 

appropriate within a subpopulation with lower depression and should not be interpreted for 

the high depression group.

Limitation of simulations

The simulations created here focused on single voxels, whereas typically whole brain 

analyses using cluster-wise inference procedures are used. Due to the spatial smoothness of 

fMRI data, it is unlikely that an outlier will exist only in isolated voxels, but in sets of 

voxels. For example, in Fritsch et al. (2015), an influential outlier that caused a false positive 

linear relationship when using OLS was consistent across many voxels.

Kendall’s Tau

In many small sample studies, it is often tempting to use Kendall’s Tau and these results 

show that in most cases the Type I error rate is fairly well controlled, but often with a large 

decrease in power. Unfortunately, in some cases the Type I errors are a bit inflated and, more 

importantly, the interpretation can be difficult as the shape of the relationship between the 

explanatory and explained variable can not be concluded without looking at the data. The 

only conclusion that can be made is the relationship is monotonic. Lastly, this approach 

limits to ability to control for other possible confounding variables.
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Conclusion

There is not a single model that can handle all types of heteroscedasticity for all sample 

sizes, although for large sample sizes (>500), the doubly robust model is a good alternative. 

The worst scenarios, in terms of controlling Type I error, involved issues with the 

explanatory variable, which is simple to visually inspect. If the explanatory variable is 

skewed, a transformation should be considered. If there are outliers in the explanatory 

variable, they should be considered from removal, since even the robust regression 

approaches fail to control Type I error in the presence of bivariate outliers. By avoiding skew 

and outliers in the explanatory variable, it is more likely that inferences will be valid. 

Although difficult, it is not impossible to visually inspect imaging data to look for potential 

outliers and it is highly encouraged. If outliers are driven by the within-subject variance, the 

FSL’s Flame 1 algorithm can handle any type of heteroscedasticity and so one approach 

would be to use Flame 1 and then study the residuals from the model to see whether there 

are any outliers driven by the between-subject variance. If outliers seem to be present, 

without any reason to simply omit the subjects, using an approach such as robust regression 

or Flame 1 with outlier de-weighting can be useful. To alleviate “p-hacking”, be clear about 

all models used in the study when reporting results and do not simply choose the result with 

the smallest p-value as this could be a Type I error.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Simulation settings for heteroscedasticity without outliers

Table A.1

Settings for simulation of heteroscedasticity without outliers. Using the real data, the ratio of 

the mixed effects variance for subjects whose group level covariate was below to above the 

median was split into 20 percentiles (first column). Within each percentile the average 

within and between subject variance was estimated for the low and high explosion groups 

(columns 2–4). The simulations were based on the between-subject variances in this table 

and the average within-subject variance (4788).

Percentile range of mfx variance ratio

[0.0362, 0.581) 15468 2580 7321 6558

[0.581, 0.707) 6370 1873 5093 5527

[0.707, 0.799) 4570 1709 4634 5223

[0.799, 0.879) 3627 1628 4340 5056

[0.879, 0.948) 2906 1549 4205 4948

[0.948, 1.01) 2415 1476 4041 4854
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Percentile range of mfx variance ratio

[1.01, 1.07) 2132 1513 3840 4706

[1.07, 1.13) 1657 1300 3680 4563

[1.13, 1.18) 1483 1345 3496 4384

[1.18, 1.22) 1289 1256 3360 4324

[1.22, 1.28) 1179 1259 3295 4334

[1.28, 1.33) 1241 1495 3377 4520

[1.33, 1.4) 1256 1665 3486 4795

[1.4, 1.48) 1354 2023 3586 5069

[1.48, 1.58) 1503 2523 3766 5520

[1.58, 1.71) 1615 3215 3847 5765

[1.71, 1.9) 1741 4073 4055 6368

[1.9, 2.19) 1852 5313 4168 6922

[2.19, 2.77) 1896 7344 4374 7939

[2.77, 40.5) 2018 16245 4525 10080
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Figure 1. 
Residual plots illustrating different types of heteroscedasticity. The top two plots represent 

univariate outliers where the outlier is either in the explanatory variable (left) or explained 

variable, shown by the large residual (right). The bottom left shows a multivariate outlier 

where both the explanatory variable and residual are inflated. The bottom right shows an 

example of heteroscedasticity without outliers, where the variance gradually decreases with 

the explanatory variable.
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Figure 2. 
Plots of the Huber’s (black) and Tukey’s Bisquare (red) loss functions.
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Figure 3. 
Distribution of number of balloon explosions from real data analysis with Gaussian kernel 

density estimate. Samples from the kernel density estimate were used in simulation study.
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Figure 4. 
Univariate outlier in explanatory variable for a sample size of 30 with 10% outliers. The top 

panel shows Type I error rates, while the bottom shows power. The horizontal dotted lines 

indicate 95% confidence intervals around the Type I error of 0.05. The x-axis is the ratio of 

the standard deviation of the explanatory variable for the outliers compared to non-outliers. 

Note, Power levels can only be considered if there is Type I error control.
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Figure 5. 
Univariate outlier in explained variable for a sample size of 30 with 10% outliers. The top 

panels show Type I error rates, while the bottom show power. The x-axis is the ratio of the 

mixed effects variance, , for outliers, compared to non-outliers. The horizontal 

dotted lines indicate 95% confidence intervals around the Type I error of 0.05. Note that 

permutation and OLS often have very similar results, so the permutation result isn’t plotted.
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Figure 6. 
Bivariate outlier for a sample size of 30 with 10% outliers. The standard deviation was three 

times higher for the outlier in the explanatory variable, compared to the non-outliers. The 

top panels show Type I error rates, while the bottom show power. The x-axis is the ratio of 

the mixed effects variance, , for outliers, compared to non-outliers. The horizontal 

dotted lines indicate 95% confidence intervals around the Type I error of 0.05.
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Figure 7. 
Bivariate outlier over a range of sample sizes when the ratio of the outlier to non-outlier 

mixed effects standard deviation is 3 for both the explanatory and explained variables in 

10% of the subjects. The horizontal dotted lines indicate 95% confidence intervals around 

the Type I error of 0.05. The doubly robust approach has improved Type I error control as 

the sample size increases.
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Figure 8. 
Type I error and Power for the case of heteroscedasticity without outliers for 30 subjects. 

The x-axis reflects the ratio of the mixed effects variance for the above median group, 

compared to the below median group. The horizontal dotted lines indicate 95% confidence 

intervals around the Type I error of 0.05.
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