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Abstract

Phase-amplitude coupling (PAC) is hypothesized to coordinate neural activity, but its role in 

successful memory formation in the human cortex is unknown. Measures of PAC are difficult to 

interpret, however. Both increases and decreases in PAC have been linked to memory encoding, 

and PAC may arise due to different neural mechanisms. Here, we use a waveform analysis to 

examine PAC in the human cortex as participants with intracranial electrodes performed a paired 

associates memory task. We found that successful memory formation exhibited significant 

decreases in left temporal lobe and prefrontal cortical PAC, and these two regions exhibited 

changes in PAC within different frequency bands. Two underlying neural mechanisms, nested 

oscillations and sharp waveforms, were responsible for the changes in these regions. Our data 

therefore suggest that decreases in measured cortical PAC during episodic memory reflect two 

distinct underlying mechanisms that are anatomically segregated in the human brain.
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Introduction

Interactions between oscillations in the brain remain poorly understood, though they are 

hypothesized to temporally coordinate information between local neuronal populations (J. 

Lisman & Idiart, 1995; J. Lisman, 2005; Jensen & Colgin, 2007; Canolty & Knight, 2010; J. 

E. Lisman & Jensen, 2013). One such interaction, phase-amplitude coupling (PAC), occurs 

when the phase of a low frequency oscillation modulates the amplitude of a high frequency 

oscillation (Canolty et al., 2006; Canolty & Knight, 2010). In the context of memory, this 

may provide a mechanism for embedding, and retrieving, individual memory representations 

within a broader context (Hasselmo & Eichenbaum, 2005; Buzsáki, 2005; Canolty & 

Knight, 2010). Indeed, evidence that PAC may play a role in memory formation has emerged 

in studies of the hippocampus in both animals and humans (Tort, Komorowski, Manns, 

Kopell, & Eichenbaum, 2009; Axmacher et al., 2010; J. E. Lisman & Jensen, 2013; Lega, 

Burke, Jacobs, & Kahana, 2014; Heusser, Poeppel, Ezzyat, & Davachi, 2016).

Despite empiric support for the role of PAC in memory, however, successful memory 

encoding has also been linked with decreases, rather than just increases, in PAC (Lega et al., 

2014; Axmacher et al., 2010; Leszczynski, Fell, & Axmacher, 2015). This raises the 

question as to whether, in some cases, PAC limits effective neural processing. This may be 

the case in the cortex, where PAC has been observed in pathologic conditions such as 

Parkinson’s disease (de Hemptinne et al., 2013, 2015). Hence, although PAC is ubiquitous 

throughout the cortex (Canolty et al., 2006; He, Zempel, Snyder, & Raichle, 2010; Canolty 

& Knight, 2010), it is unclear whether cortical PAC is beneficial for memory encoding. One 

possibility is that increases in cortical PAC may improve memory encoding, lending support 

to the hypothesis that cortical PAC coordinates information just as in the hippocampus. 

Conversely, if PAC actually limits information processing in the cortex, then successful 

memory formation should be accompanied by decreases in PAC.

We examine this question here using intracranial EEG (iEEG) in participants with subdural 

electrodes placed for seizure monitoring as they engaged in a paired associates verbal 
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memory task. Importantly, properly interpreting these data must account for the fact that 

measured PAC may arise due to two different underlying neural mechanisms - true 

interactions between low and high frequency oscillations that may help coordinate local 

neural populations (Jensen & Colgin, 2007; J. E. Lisman & Jensen, 2013), or repeated sharp 

or non-sinusoidal deflections in the iEEG signal that may be related to changes in synchrony 

of synaptic bursts (Sherman et al., 2016; Burke, Ramayya, & Kahana, 2015; Lozano-

Soldevilla, ter Huurne, & Oostenveld, 2016; Cole et al., 2016). As such, we used a 

waveform analysis to investigate the electrophysiological contributions to any changes in 

PAC. We were motivated to understand whether any changes in cortical PAC related to 

successful memory encoding could be attributed to these distinct neural mechanisms.

Methods

Participants

33 participants with medication-resistant epilepsy underwent a surgical procedure in which 

platinum recording contacts were implanted subdurally on the cortical surface as well as 

deep within the brain parenchyma. In each case, the clinical team determined the placement 

of the contacts to localize epileptogenic regions. The Institutional Review Board (IRB) 

approved the research protocol, and informed consent was obtained from the participants 

and their guardians. These data were initially collected and analyzed for changes in spectral 

power in separate studies (Yaffe et al., 2014; Greenberg, Burke, Haque, Kahana, & 

Zaghloul, 2015).

Paired Associates Task

Each patient participated in a paired associates task (Figure 1a). Participants were asked to 

study a list of word pairs and then later cued with one word from each of the pairs, selected 

at random. Participants were instructed to vocalize each cue word’s partner from the 

corresponding word pair. Lists were composed of four pairs of common nouns, chosen at 

random and without replacement from a pool of high-frequency nouns. Words were 

presented sequentially and appeared in capital letters at the center of the screen. Word pairs 

were separated from their corresponding recall cue by a minimum lag of two study or test 

items. During the study period (encoding), each word pair was preceded by an orientation 

stimulus (a row of capital X’s) that appeared on the screen for 300 ms followed by a blank 

interstimulus interval (ISI) of 750 ms with a jitter of 75 ms. Word pairs were then presented 

on the screen for 2500 ms followed by a blank ISI of 1500 ms with a jitter of 75 ms. During 

the test period (retrieval), a randomly chosen word from each of the four study pairs was 

shown, and the participant was asked to recall the other word from each pair by vocalizing a 

response into a microphone. Each cue word was preceded by an orientation stimulus (a row 

of question marks) that appeared on the screen for 300 ms followed by a blank ISI of 750 ms 

with a 75 ms jitter. Cue words were then presented on the screen for 3000 ms followed by a 

blank ISI of 4500 ms. Participants could vocalize their response any time during the recall 

period after cue presentation. Vocalizations were digitally recorded and then manually 

scored for analysis. Responses were designated as correct, as intrusions, or as passes when 

no vocalization was made or when the participant vocalized the word ‘pass’. Intrusion and 

pass trials were designated as incorrect trials. A single experimental session contained up to 
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25 lists. For analysis, we designated a single trial as the encoding period for a study word 

pair and the retrieval period during testing of its corresponding cue.

Intracranial EEG (iEEG) Recordings

Depending on the amplifier and the discretion of the clinical team, intracranial EEG (iEEG) 

signals were sampled at 1000 or 2000 Hz. Signals were referenced to a common contact 

placed subcutaneously, on the scalp, or on the mastoid process. All recorded traces were 

resampled at 1000 Hz, and a fourth order 2 Hz stopband butterworth notch filter was applied 

at 60 Hz to eliminate electrical line noise. The testing laptop sent +/− 5 V digital pulses via 

an optical isolator into a pair of open lines on the clinical recording system to synchronize 

the electrophysiological recordings with behavioral events.

We collected electrophysiological data from a total of 2750 subdural and depth recording 

contacts (83.3 ± 5.5 per subject; PMT Corporation, Chanhassen, MN; AdTech, Racine, WI). 

Subdural contacts were arranged in both grid and strip configurations with an inter-contact 

spacing of 10 mm. Hippocampal depth electrodes (6–8 linearly arranged contacts) were 

placed in four patients. Contact localization was accomplished by co-registering the post-op 

CTs with the post-op MRIs using both FSL Brain Extraction Tool (BET) and FLIRT 

software packages and mapped to both MNI and Talairach space using an indirect 

stereotactic technique and OsiriX Imaging Software DICOM viewer package. The resulting 

contact locations were subsequently projected to the cortical surface of a Montreal 

Neurological Institute N27 standard brain (Dykstra et al., 2011). Pre-operative MRIs were 

used when post-operative MR images were not available.

We analyzed iEEG data using bipolar referencing to reduce volume conduction and 

confounding interactions between adjacent electrodes (Nunez & Srinivasan, 2006). Bipolar 

referencing is routinely used for subdural electrode recordings, and has been noted be 

superior to the average reference montage in reducing muscular artifacts in iEEG (Kovach, 

Tsuchiya, Kawasaki, Howard III, & Adolphs, 2011). We defined the bipolar montage in our 

data-set based on the geometry of iEEG electrode arrangements. For every grid, strip, and 

depth probe, we isolated all pairs of contacts that were positioned immediately adjacent to 

one another; bipolar signals were then found by finding the difference in the signal between 

each pair of immediately adjacent contacts. The resulting bipolar signals were treated as new 

virtual electrodes (henceforth referred to as electrodes throughout the text), originating from 

the midpoint between each contact pair. All subsequent analyses were performed using these 

derived bipolar signals. Importantly, we excluded all electrodes exhibiting ictal or interictal 

activity at the seizure focus and at sites of generalization as identified by a team of trained 

epileptologists in order to avoid confounding any memory effects with concurrent seizure 

activity. In total, our dataset consisted of 2,292 electrodes (1,048 left hemispheric, 1,244 

right hemispheric). Additionally, we excluded any trials displaying excessive variance or 

kurtosis (defined as greater than 2.3 times the interquartile range away from the third 

quartile) in order to provide the most conservative assessment of normal human 

electrophysiology in the context of noise and transient epileptiform activity.
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Spectral Power and Phase

We quantified spectral power and phase by convolving the bipolar iEEG signals with 

complex valued Morlet wavelets (wavelet number 6) (Addison, 2002). To quantify phase-

amplitude coupling (PAC) and to generate corresponding comodulograms, we calculated 

spectral power and phase using 15 linearly spaced wavelets between 2 and 16 Hz for the 

phase frequencies and 25 linearly spaced wavelets between 5 and 250 Hz for the amplitude 

frequencies. The encoding period was 0 to 4500ms from the onset of pair presentation, and 

the retrieval period was from the onset of cue presentation to the time of vocalization. The 

omission of any data after the start of vocalization was intended to minimize any potential 

confounding effects associated with speech generation. We convolved the above wavelets 

with the iEEG data from each of these periods in order to generate continuous measures of 

instantaneous amplitude and phase. During pass trials where no vocalization was present, we 

assigned a response time by randomly drawing from the distribution of correct reaction 

times. One participant was instructed to vocalize her response only after the cue word 

disappeared from the screen. In all trials, we included a 1000 ms buffer on both sides of the 

clipped data.

To examine PAC between frequency bands, we also quantified spectral power and phase for 

each frequency band by first bandpass filtering the iEEG signal into four predefined 

frequency bands using a second order Butterworth filter: theta (3–8 Hz), alpha (8–12 Hz), 

low gamma (30–58 Hz), and high gamma (70–180 Hz). We then calculated a continuous 

measure of amplitude and phase for each frequency band using a Hilbert transform. While 

the delta band (1–3 Hz) may be important in specific memory contexts (Haque, Wittig Jr., 

Damera, Inati, & Zaghloul, 2015), we did not analyze delta band PAC due to the reported 

intrinsic bias of PAC towards lower frequencies (Aru et al., 2015). Non-stationarities of the 

iEEG signal occupy less phase bins than those of higher frequency modulating bands. Hence 

it follows that delta PAC measurements are more vulnerable to nonspecific high frequency 

fluctuations in the iEEG signal (Aru et al., 2015; Jones, 2016), and we report theta and alpha 

band effects instead.

Measurement of Phase-Amplitude Coupling

We used the continuous measures of phase and amplitude to compute phase-amplitude 

coupling (PAC) between every modulating low frequency and every modulated high 

frequency. During every temporal epoch (i.e. encoding or retrieval), we divided the 

continuous time phases of the modulating frequency into 20 evenly spaced phase bins. For 

every phase of the modulating low frequency signal, we found the corresponding amplitude 

of the modulated high frequency signal and assigned that amplitude to the corresponding 

phase bin. The presence of PAC results in a non-uniform distribution of modulated 

amplitudes across modulating phase bins. We quantified this by calculating a modulation 

index (MI) which measures the difference in entropy between the calculated phase-

amplitude distribution and a uniform distribution using a normalized Kullback-Leibler 

distance (Tort, Komorowski, Eichenbaum, & Kopell, 2010):
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where j is the index of each phase bin, N is the total number of phase bins, and H is the 

entropy of the distribution pj. Hmax is the entropy of a uniform phase-amplitude distribution 

and is defined as logN. We constructed comodulograms by calculating the MI between every 

pair of low modulating frequencies and high modulated frequencies. For every calculated 

MI, we defined the preferred phase as the phase bin with the highest average modulated 

amplitude.

Anatomic Localization and Topographic Plots

With iEEG, the precise placement of electrodes is different for each participant, which limits 

our ability to examine spatially resolved effects across subjects. We overcome this limitation 

by spatially smoothing electrode effects using 760 spatial regions of interest (ROIs) that 

were evenly spaced every 9.98 ± 0.02 mm on the cortical surface of a Montreal Neurological 

Institute N27 standard brain. For each participant, we averaged either the z-scored MI or 

waveform amplitude from all electrodes that were within 12.5 mm from the center of a given 

ROI. We averaged statistics within each individual so that a single region was not overly 

represented by a participant who happened to have many electrodes in that region. Most 

electrodes contributed to more than one ROI, and most ROIs included either zero or more 

than one electrode per subject. When performing whole brain analyses across participants, 

only ROIs that contained electrodes from five or more participants were evaluated.

We visualized ROI-based results by projecting the values computed at each ROI (see 

Statistical Analyses) onto a 3D rendered image of the standard brain (Figure 1d). For each 

vertex of the standard brain, a weighted average of nearby ROI values was calculated using a 

3D Gaussian kernel (σ = 4.2 mm; center weight 1; zero weight beyond 12.5 mm). With this 

method, a vertex directly adjacent a particular ROI will largely represent the value of that 

ROI, with a small contribution from neighboring ROIs (which are spaced approximately 10 

mm apart). On the other hand, a vertex halfway between two ROIs will represent an 

attenuated mean of those two ROIs. For whole-brain plots demonstrating significant 

differences between trial types, all colored regions, independent of color intensity, indicate 

two-tailed significance at the p < 0.05 level as determined by the non-parametric cluster-

based correction for multiple comparisons described below.

Statistical Analyses

For every participant, we calculated the MI across all trials for every electrode. We did this 

separately for correct and incorrect trials to generate a difference in MI for every pair of 

modulating and modulated frequency bands during each temporal period (encoding or 
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retrieval). To assess for significant differences between conditions, we first permuted the 

trial labels 1000 times and generated an empiric distribution of MI differences in each 

electrode for each participant. The true difference was then assigned a z-score based on the 

normal inverse cumulative distribution function (μ = 0, σ = 1) of its rank among the 

permuted values. Hence, for each electrode, we generate a measure of statistical significance 

(|z| > 1.96, p < .05) when comparing PAC between correct and incorrect trials. In addition to 

providing a measure of significance, this normalization procedure allows for the comparison 

of MI value changes that can vary several orders of magnitude across electrodes. We then 

spatially smoothed each electrode’s z-scored MI difference by converting to ROIs as 

described above. For every ROI in each participant, we were therefore left with an average z-

scored difference in MI during each temporal epoch and for every pair of frequency bands.

We performed a random effects statistical analysis at each ROI across participants. Our null 

hypothesis was that across participants, the brain region represented by each ROI showed no 

difference in PAC during correct versus incorrect trials. We tested this hypothesis using a 

non-parametric clustering-based procedure to assess for statistical differences across 

participants (Maris & Oostenveld, 2007). This procedure identifies contiguous spatial 

regions exhibiting significant differences between trial types while avoiding a priori 

assumptions about particular spatial regions and correcting for multiple comparisons. For 

each analyzed ROI, a minimum of five participants contributed across-trial z-scored MI 

difference values. In each ROI, we computed the true mean difference across participants 

between correct and incorrect trials using these values. We then randomly permuted the 

participant-specific averages (correct vs incorrect), which in practice translates to randomly 

reversing the sign of the z-scored MI difference, within each participant and recomputed the 

mean difference across participants. For n participants, this results in an empiric distribution 

of 2n possible mean differences that are all equally probable under the null hypothesis. We 

generated the empiric distribution from a minimum of 32 (number of participants = 5) and a 

maximum of 1000 permutations for every ROI. We compared the true mean difference in 

each ROI to this empiric distribution to generate an across-participant z-score and p-value 

for each ROI. This p-value represents the likelihood that the true mean difference at an 

individual ROI represents a departure from the null hypothesis. However, this p-value for 

each individual ROI does not take into account the multiple comparisons that are made in 

space (across ROIs), and therefore is not reported in the text.

To correct for multiple comparisons across ROIs, we separately identified positive and 

negative clusters containing ROIs that were adjacent in space that exhibited a significant 

difference between trial types using the across-participant permutation procedure described 

above (where in each ROI, p < .05). For each cluster of significant ROIs identified in the true 

and permuted cases, we defined a cluster statistic as the sum of each of the z-scores for all 

ROIs within that spatial cluster. We retained the maximum cluster statistic during each 

permutation to create a distribution of cluster statistics. We assigned p-values to each 

identified cluster of the true data by comparing its cluster statistic to the distribution of 

maximum cluster statistics from the permuted cases. Clusters were determined to be 

significant if their p-value calculated in this manner was less than .05.
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Generation of Average Waveforms

To identify a characteristic waveform in the iEEG signal in a particular electrode, we first 

identified the low frequency modulating and high frequency modulated frequency band 

associated with the highest MI and its associated preferred phase bin. We examined the 

bandpass filtered and Hilbert transformed iEEG signal and identified all instances of this 

preferred phase. Because the preferred phase is in fact a phase bin that extends over a 

discrete temporal window, we identified the precise time of maximum high gamma 

amplitude within each temporal window and designated that point as the time of the 

preferred phase.

Then at every instance of the preferred phase in the modulating frequency, we extracted 500 

ms of the continuous iEEG signal centered at the precise time of maximum high gamma 

amplitude. We averaged these extracted waveforms across all instances of preferred phase 

across all trials to generate an average waveform for each electrode during each condition. In 

this manner, average waveforms with larger amplitudes reflect either a larger or more 

consistent occurrence of a characteristic waveform during the preferred phase of each cycle 

of the modulating signal.

We used an automated algorithm to categorize the type of waveform found in each electrode. 

We categorized a waveform as a nested oscillation if at least three local maxima fell within 3 

cycles of the slowest possible high frequency oscillation of the modulated frequency band. 

In practice, this meant finding 3 local maxima around the preferred phase within 100 ms for 

low gamma electrodes or within 45 ms for high gamma electrodes, which have the slowest 

possible frequencies of 30 Hz and 70 Hz respectively. Electrodes that did not satisfy this 

criteria were categorized as sharp waveforms.

To confirm that nested oscillation electrodes were designated based on genuine oscillations 

as opposed to random high frequency fluctuations in the signal, we generated surrogate 

waveforms by selecting a random preferred phase for each trial and then implementing the 

same triggered average. In this fashion, we generated the surrogate preferred phase 

waveforms with the same temporal autocorrelations as the true preferred phase waveforms. 

We assigned the sizes of the local maxima in all waveforms as the distance from the peak to 

the nearest local minima, and we performed a pairwise t-test comparing the mean local 

maxima size of each trial to its surrogate for each electrode. We found that the high 

frequency peaks of the nested oscillations were significantly (p < .05) larger than those of 

their surrogate counterparts in 86.39 ± 1.73 % of electrodes across all participants. We 

designated nested oscillations electrodes that had high frequency components that were not 

significantly different from their surrogates as indicative of stochastic volatility of the signal, 

and did not include them as nested oscillation electrodes in subsequent analyses.

Calculation of Sample Entropy

Due to the apparent cyclostationarity of sharp waveforms as opposed to nested oscillations, 

we investigated if sample entropy, a measure of signal complexity, was as anatomically 

tractable as waveform type. For a given template sequence of length m+1, where m is known 

as the embedding dimension, sample entropy can be understood as the cumulative 
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probability that one can predict m+1 length self-similar template sequences based on m 
length self-similar sequences. Sample entropy therefore measures signal complexity by 

quantifying the occurrence of self-similar sequences in the signal. Intuitively then, less 

predictable signals (i.e. less cyclostationary) are expected to have higher values of sample 

entropy.

For an embedding dimension m, a tolerance r, and a time-step τ, the formal equations for the 

calculation of sample entropy are as follows (Sokunbi et al., 2013):

Xi and Xj are pattern vectors whose components are time delayed versions of the original 

signal X(t) with time-step τ. An embedding dimension m of 2, a tolerance r of 0.2 * 

std(X(t)), and a constant time-step τ of 1 ms were used in all analyses. Of note, the number 

of 3 element self-similar template sequences is necessarily less than or equal to the number 

of 2 element self-similar template sequences, implying that sample entropy is bounded 

between 0 and 1.

Results

33 participants (18 males; age 34.2 ± 2.3 years (mean ± SEM)) with medically refractory 

epilepsy who underwent surgery for placement of intracranial electrodes for seizure 

monitoring participated in a verbal paired associates task (Figure 1a). Participants responded 

on each trial with the correct word, an incorrect word (intrusion), or with no word. 

Responses were designated as passes when either no response was given or the word ’pass’ 

was vocalized. We considered intrusion and pass trials as incorrect trials for all analyses. 

Participants studied 224 ± 23 word pairs and successfully recalled 38.3 ± 3.6 % of paired 

words with a mean response time of 1,812 ± 75 ms. Participants vocalized intrusions on 14.6 

± 1.9 % of trials with a mean reaction time of 2,722 ± 112 ms. For the remaining study word 

pairs, participants either made no response to the cue word, or vocalized the word ‘pass’ 

with a mean response time of 3,385 ± 200 ms. A one-way ANOVA showed that study-test 

lag had no significant effect on recall probability (F(4, 160) = .97, p = .43).
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We analyzed intracranial EEG (iEEG) oscillatory activity to investigate interactions between 

low frequency and high frequency signals. We used a measure of phase-amplitude coupling 

(PAC) to quantify the extent to which the phase of a low frequency oscillation is coupled to 

the amplitude of a higher frequency (Tort et al., 2008, 2009, 2010; Lega et al., 2014). In 

many electrodes across participants, we found that high frequency amplitude was locked to 

the phase of a low frequency oscillation. We define the phase at which the peak of the high 

frequency amplitude occurs as the preferred phase (Figure 1b). For every electrode, we 

constructed a phase-amplitude comodulogram by calculating PAC for every pair of low and 

high frequencies (Figure 1c). We separately constructed these comodulograms for correct 

and incorrect trials during the encoding and retrieval periods to assess any differences in 

PAC between conditions.

Based on the known interactions between theta and gamma frequencies in the hippocampus 

during memory formation (Axmacher et al., 2010; Lega et al., 2014), we examined whether 

similar interactions between both theta and low gamma (30–58 Hz) and theta and high 

gamma (70–180 Hz) existed throughout cortical regions. We also examined alpha to low and 

high gamma interactions given the role that alpha to high gamma PAC may play during tasks 

that involve visual processing, attention, and memory (Palva, Palva, & Kaila, 2005; Cohen et 

al., 2009; Canolty & Knight, 2010; Voytek et al., 2010; Fell & Axmacher, 2011). Across 

participants, we found that 37.86 ± 1.79 % of all electrodes demonstrated significant 

differences in PAC between correct and incorrect trials in any of these frequency band pairs 

in either encoding or retrieval (p < .05, permutation procedure). 11.86 ± 1.06 and 13.30 

± 1.73 % of electrodes demonstrated significant differences in theta to low gamma and theta 

to high gamma PAC, respectively, between conditions, while 10.81 ± 0.67 and 11.91 

± 1.06 % of electrodes demonstrated significant differences in alpha to low or high gamma 

PAC, respectively.

We examined the spatial distribution of these significant effects by spatially smoothing 

electrode data from each participant into regions of interest (ROIs) that spanned the entire 

brain (see Methods). We identified contiguous clusters of ROIs that exhibited a significant 

difference in PAC between correct and incorrect trials across participants (p < .05, 

permutation procedure, corrected for multiple comparisons; see Methods). Theta band PAC 

to both low and high gamma exhibited significant memory related changes in distinct 

anatomic areas. During encoding, correct trials had significantly decreased theta to high 

gamma PAC in the left and right inferior frontal gyri, including a small portion of the right 

superior temporal gyrus (Figure 1e). Conversely, theta to low gamma PAC significantly 

decreased in the left temporal lobe during both encoding and retrieval. For alpha band PAC, 

we found significant decreases in alpha to low gamma PAC bilaterally in the medial 

temporal lobes along the parahippocampal gyri and in the right orbitofrontal cortex during 

encoding (data not shown). These differences, however, were not present in any brain region 

for retrieval, and no significant regions were found for alpha to high gamma coupling in 

either encoding or retrieval.

Measures of PAC may arise due to true interactions between low and high frequency 

oscillations (Jensen & Colgin, 2007; J. E. Lisman & Jensen, 2013) or due to repeated phase-

locked sharp deflections in the recorded trace (Kramer, Tort, & Kopell, 2008; Aru et al., 
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2015; Jones, 2016; Lozano-Soldevilla et al., 2016; Cole et al., 2016). As such, we were 

interested in understanding whether differences in these underlying neural mechanisms 

giving rise to PAC could account for the observed differences in these anatomic 

distributions. We began by examining the relationship between the unfiltered iEEG voltage 

signal and the observed measure of PAC in all electrodes. Representative examples of the 

iEEG signal, the filtered low and high frequency signal, the spectrogram, and the 

corresponding comodulogram for three electrodes are shown in Figure 2. Consistent with the 

conventional interpretation of PAC (Canolty et al., 2006; Buzsáki, 2006; J. E. Lisman & 

Jensen, 2013), we found that PAC may emerge from the interaction between a low frequency 

signal and a phase-locked high frequency oscillation (Figure 2a). We call this type of iEEG 

signal a nested oscillation, as multiple cycles of a high frequency oscillation are locked to a 

low frequency waveform. However, we also observed that apparent PAC could emerge in the 

presence of a repeated sharp waveform that, although containing high frequency 

components, often does not exhibit an explicit high frequency oscillation (Figure 2b–c). We 

call these iEEG signals sharp waveforms. Notably, these waveforms can at times consist of 

only a single low frequency oscillation with sharp peaks that generate high frequency 

components (Figure 2b).

Given this relation between a characteristic waveform and measured PAC, we hypothesized 

that the extent to which these waveforms are repeated in the iEEG trace could track the 

observed changes in PAC during successful memory encoding and retrieval. For each 

electrode, we used the modulating frequency band and the preferred phase identified in the 

comodulogram to determine the characteristic waveform present in the iEEG trace during 

each condition (Figure 3a; see Methods). The amplitude of the phase-triggered average 

waveform reflects a combination of both the consistency and the strength of the modulating 

low frequency signal. This amplitude should not be significantly impacted by the presence 

or absence of any high frequency oscillations. We found that, in an exemplar electrode, the 

amplitude of the average waveform is significantly correlated with the extent to which PAC 

was measured across all trials (r = 0.663, p < .001; Figure 3b). This relation between the z-

scored characteristic waveform amplitude and apparent PAC was consistent across all 

electrodes in this participant (r̄ = 0.304 ± 0.025, t(54) = 12.22, p < .001), and across all 

participants (r̄ = 0.206 ± 0.017, t(32) = 12.45, p < .001) (Figure 3b). When separating these 

values by waveform type, we found that PAC in nested oscillations was significantly less 

dependent on the amplitude of the low frequency waveform compared to sharp waveforms 

(NO r̄ = 0.140 ± 0.018 and SW r̄ = 2.11 ± 0.022; t(32) = −4.25, p < .001).

We then examined the memory related differences in these average waveforms between 

correct and incorrect trials across all electrodes and across all participants. We trial-matched 

correct and incorrect trials, calculated the difference in peak amplitude between each case 

for every electrode, and compared the difference across participants. We found contiguous 

clusters of ROIs that exhibited significant differences in average waveform amplitude 

between correct and incorrect trials (p < .05, permutation procedure, corrected for multiple 

comparisons; Figure 3c; see Methods). During successful encoding, we found significant 

decreases in average waveform amplitude in the left inferior frontal gyrus and temporal lobe. 

During retrieval, however, these differences were only present in the left temporal lobe.
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Our data suggest that a large component of the changes in measured PAC observed with 

memory formation arise due to differences in the consistency and strength of an underlying 

iEEG waveform. However, the average waveform amplitudes fail to explain how the changes 

in cortical PAC specific to separate frequency band pairs are differentially distributed across 

brain regions. We therefore classified each electrode as showing either nested oscillations or 

sharp waveforms by applying an automated algorithm to the average waveforms extracted 

from the iEEG trace for each electrode (see Methods). As suggested by previous studies 

(Kramer et al., 2008; Tort, Scheffer-Teixeira, Souza, Draguhn, & Brankačk, 2013), average 

waveforms only exhibit high frequency oscillations if the underlying iEEG signal contains 

an actual high frequency oscillation. Hence, we designated an electrode as exhibiting a 

nested oscillation if its average waveform contained at least three local maxima around the 

preferred phase. If three local maxima were not present on the average waveform, we 

categorized it as exhibiting a sharp waveform. A single subject example of this classification 

scheme is illustrated in Figure 4.

We found that approximately a third of all electrodes dominated by a theta modulating 

frequency were categorized as containing nested oscillations (36.2 ± 3.7% across 

participants). This was about three times more likely than the appearance of nested 

oscillations in electrodes dominated by an alpha modulating frequency (11.1 ± 2.7%; t(32) = 

7.05, p < .001). Conversely, slightly over half of all electrodes exhibiting high gamma PAC 

were categorized as containing nested oscillations (52.9 ± 4.0%). This was also around three 

times more likely than in electrodes exhibiting low gamma PAC (15.1 ± 2.4%; t(32) = 11.00, 

p < .001). Both nested oscillation and sharp waveform electrodes exhibited a non-uniform 

distribution of phases (nested oscillations, p < .001, z = 41.04, Rayleigh Test with angle 

doubling to account for bimodal distribution; sharp waveforms, p < .001, z = 60.61). The 

distribution of preferred phases for both categories clustered around both 0 and ±π, 

suggesting that any high frequency components are related to the peaks and troughs of those 

signals. Of note, however, bipolar referencing may result in preferred phases for adjacent 

electrodes that are offset by π, and so our data cannot determine whether the preferred 

phases are truly bimodal, or if they only occur at either the peak or trough of the low 

frequency oscillation.

We next examined the distribution of waveform categories in all electrodes in each spatial 

ROI (Figure 5a). Electrodes in the left prefrontal cortex and the right occipito-temporal lobe 

were more likely to be classified as containing nested oscillations, while electrodes in the 

temporal lobes were more likely to be classified as demonstrating sharp waveforms. Indeed, 

we found significant differences in the distribution of electrode categories across frontal, 

temporal, and parietal lobe electrodes (f(72) = 11.72, p < .001, one-way ANOVA across 

brain areas for each waveform category). In post-hoc tests, we found that across participants, 

a higher percentage of frontal electrodes were classified as nested oscillations compared to 

those in the temporal lobe (t(53) = 5.55, p < .001, two-sample t-test of percent nested 

oscillations in each region), and the same relationship was demonstrated for electrodes in the 

parietal lobe compared to those in the temporal lobe (t(44) = 2.42, p < .05; Figure 5b).

Our data suggest that sharp waveforms are generally composed of highly stereotyped and 

cyclostationary signals, whereas nested oscillations are more rapidly fluctuating and volatile. 
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To quantify these differences, we examined sample entropy, a measure of signal complexity, 

of the unfiltered iEEG traces. Such entropy analyses have been successfully used for 

discerning differences in EEG signal qualities for Alzheimer’s disease and autism spectrum 

disorder (Mizuno et al., 2010; Catarino, Churches, Baron-Cohen, Andrade, & Ring, 2011), 

and thus we hypothesized that nested oscillations and sharp waveforms would be separable 

based on their intrinsically different waveform characteristics. Lower values of sample 

entropy are expected in predictable signals that contain frequent repetition of self-similar 

data sequences, as with the repeated low frequency components we observed in sharp 

waveforms. Consequently we expected that nested oscillations would exhibit higher sample 

entropy than sharp waveforms. We calculated the sample entropy for all trials (see Methods), 

and found a marked similarity between the distribution of nested oscillations and sample 

entropy across the cortical surface (Figure 6a). When we compared the frontal, temporal, 

and parietal lobes, we found that the frontal and parietal lobes had significantly higher 

sample entropy than the temporal lobes (frontal to temporal t(59) = 3.54, p < 0.001 and 

parietal to temporal t(54) = 3.40, p < 0.01; Figure 6b), tracking the observed anatomic 

distribution of the waveform categories (Figure 5b). Accordingly, we found that the sample 

entropy of nested oscillation electrodes was significantly higher than for sharp waveform 

electrodes across all participants (t(32) = 8.22, p < .001), suggesting that the broad 

categories identified by our waveform classification algorithm indeed had different salient 

features.

Given the anatomic distribution of nested oscillations and sharp waveforms, we then asked 

how memory related changes in measured PAC in these two electrode categories compared 

to the changes observed with theta to low and high gamma PAC (Figure 1e). When only 

considering electrodes demonstrating nested oscillations, we found a significant decrease in 

theta to high gamma PAC during successful encoding in the left inferior frontal gyrus (p < .

05, permutation procedure, corrected for multiple comparisons; Figure 7a). This anatomic 

region overlapped with the left frontal change in theta to high gamma PAC identified when 

we examined memory related changes irrespective of waveform type. These data therefore 

suggest that the memory effects observed in theta to high gamma PAC are largely carried by 

changes in nested oscillations that only occur in approximately half of the high gamma 

electrodes. Conversely, when considering only electrodes demonstrating sharp waveforms, 

we observed significant decreases in theta to low gamma coupling in the left temporal lobes 

during both encoding and retrieval (p < .05, permutation procedure, corrected for multiple 

comparisons; Figure 7b). This pattern overlapped with the observed changes in theta to low 

gamma PAC seen independent of waveform type, and is consistent with our finding that the 

vast majority of changes in theta to low gamma PAC are mediated by changes in sharp 

waveforms. Interestingly, for theta to high gamma PAC, it appears that the significant right 

hemispheric cluster identified in Figure 1e has contributions from both sharp waveforms in 

the superior temporal gyrus and nested oscillations in the inferior frontal gyrus, although 

neither of these areas are significant alone (Figure 7).

Discussion

Our data demonstrate that successful memory encoding and retrieval are associated with 

significant decreases in a measure of cortical phase-amplitude coupling (PAC), and these 
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decreases were anatomically and functionally segregated among several memory relevant 

areas. Using a waveform analysis to investigate the electrophysiological contributions to 

PAC, we found two waveform morphologies, nested oscillations and sharp waveforms, that 

were also anatomically segregated across the cortex and tracked the observed changes in 

apparent PAC. Our data suggest that these different waveform morphologies may therefore 

represent different underlying neuronal mechanisms that each contribute to the observed 

decreases in measured cortical PAC during human episodic memory formation.

While most interpretations of PAC have suggested that increases are functionally significant 

(J. Lisman, 2005; Canolty et al., 2006; Tort et al., 2008; Canolty & Knight, 2010), recent 

studies have also demonstrated the role of decreases in PAC for successful memory 

formation in the human hippocampus (Lega et al., 2014; Axmacher et al., 2010; Leszczynski 

et al., 2015). Our findings that brain regions demonstrate significant decreases in PAC as a 

function of episodic memory (Figure 1) are therefore among competing claims about the 

functional role of PAC in human cortex. One possibility is that neuronal over-coupling, 

manifest as PAC, may serve to inhibit, rather than enhance, effective neural processing 

(Hanslmayr, Staresina, & Bowman, 2016).

Over-coupling has been identified in pathologic conditions such as Parkinson’s disease (de 

Hemptinne et al., 2013; Yang, Vanegas, Lungu, & Zaghloul, 2014), and therapeutic deep 

brain stimulation that disrupts this over-coupled state has been shown to improve clinical 

symptoms (de Hemptinne et al., 2015). From a conceptual framework, these over-coupled, 

stereotyped neuronal phenomena have been described as informational lesions (Grill, A., & 

Miocinovic, 2004; Voytek & Knight, 2015). Hence, the reductions in coupling that we 

observe suggest that phase locked cortical activation may actually be poor for memory 

encoding and retrieval (Hanslmayr et al., 2016). While hippocampal PAC may be important 

for organizing memory representations (J. Lisman, 2005; Axmacher et al., 2010; 

Leszczynski et al., 2015), such coupling may limit flexibility in cortical neural processing, 

and therefore in information processing capabilities.

Interpreting these changes in PAC is difficult, however, as the precise neurophysiological 

contributions to measured PAC in the context of memory encoding and retrieval are complex 

(Aru et al., 2015; Jones, 2016). Our data are consistent with previous reports that suggest 

measures of human cortical PAC can be derived from repeated nested oscillations (Canolty 

et al., 2006; He et al., 2010) or from repeated non-sinusoidal signals (Kramer et al., 2008; 

Aru et al., 2015; Jones, 2016; Lozano-Soldevilla et al., 2016; Cole et al., 2016). Indeed, the 

extent of measured PAC, both in our recorded iEEG signals and in simulated and non-neural 

traces (Tort et al., 2008, 2013; He et al., 2010; Aru et al., 2015), is related to the strength and 

consistency of characteristic and repeated waveforms in the time series trace. The 

constituent frequency components of the underlying stereotypical waveform determine the 

modulating and modulated frequencies observed in measures of PAC (Aru et al., 2015; 

Burke et al., 2015; Jones, 2016). And the preferred phase is related to the temporal 

arrangement of these functional components.

In this sense then, the functional significance of measures of PAC during memory encoding 

and retrieval may be related to the underlying iEEG waveforms themselves. We examined 
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differences in the strength and consistency of these waveforms and found that correct 

encoding and retrieval caused significantly reduced phase-triggered average waveform 

amplitudes in the left temporal lobe, while correct encoding alone caused reduced average 

waveform amplitudes in the left frontal lobe (Figure 3). These observed differences in 

amplitude were similar, although not identical, in extent and anatomical location to the 

effects measured with PAC, and raise the possibility that these changes in the iEEG signal 

may represent a neural correlate of episodic memory. While measures of PAC may be 

difficult to interpret, their utility could be in identifying the presence of these underlying 

waveforms, and the neural mechanisms they may represent.

As such, we used an automated classification algorithm to gain insight into the spatial 

distribution of the constituent components that contribute to the observed measures of PAC. 

Nested oscillations were more prevalent in the frontal lobes than in the temporal lobes. 

Conversely, measures of PAC in the temporal lobe, as well as those associated with alpha 

oscillations, appear to have a stronger link with sharp waveforms that do not demonstrate the 

presence of a clear high gamma oscillation (Figure 5). It is possible, of course, that our 

automated approach is simply incapable of detecting all nested gamma oscillations, and the 

distinction between true nested oscillations and neural stochastic volatility remains an area 

of active investigation (Lachaux, Axmacher, Mormann, Halgren, & Crone, 2012; Burke et 

al., 2015; Aru et al., 2015; Jones, 2016). However, we examined signal complexity and 

found that it, too, had an anatomic distribution that was closely related to the distribution of 

waveform types (Figure 6). Together, these data suggest that the waveform characteristics of 

the frontal lobes are different than those of the temporal lobes, and this in turn provides a 

basis for interpreting the memory related modulation of activity in these areas.

Indeed, when we examined the memory related changes in electrodes classified as either 

containing nested oscillations or sharp waveforms, we found that they too were anatomically 

segregated, suggesting the existence of different neuronal mechanisms underlying successful 

memory formation (Figure 7). Nested oscillations exhibited significant decreases during 

successful encoding that were confined to only the left inferior frontal gyrus and the theta to 

high gamma frequency bands. Hence, our data suggest that nested oscillations are the 

primary contributor to the memory related changes we observe in higher frequency PAC. We 

found that electrodes characterized by sharp waveforms, on the other hand, exhibited 

significant decreases in theta to low gamma coupling in the left temporal lobe. Correct 

retrieval involved the same left temporal lobe regions, suggesting that the observed memory 

related changes in low gamma PAC are largely driven by sharp waveforms.

Previous studies suggest nested oscillations may play an important role in executive control 

and working memory maintenance in the prefrontal cortex (Voytek et al., 2015). The 

reduction in PAC for nested oscillations, however, may be due to extended duty cycles of 

high frequency oscillations (Jensen, Gips, Bergmann, & Bonnefond, 2014). In this 

framework, PAC decreases primarily because gamma cycles are distributed over more phase 

bins of the modulating frequency. Similar changes have been observed in monkey visual 

cortex (Spaak, Bonnefond, Maier, Leopold, & Jensen, 2012) and in human hippocampus 

(Leszczynski et al., 2015; Heusser et al., 2016), and may underlie the reductions in PAC we 

observe in the left inferior frontal gyrus during encoding.

Vaz et al. Page 15

Neuroimage. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conversely, sharp deflections in the iEEG waveform may reflect synchrony of synaptic 

bursts (Sherman et al., 2016). Phase-locked repetition of these deflections may therefore 

entrain neural activity to a single rhythm in the temporal lobe. In this case then, successful 

memory formation may require a reduction in the extent to which synaptic inputs are 

temporally aligned, allowing for greater flexibility in neural processing. Our data 

demonstrating decreases in the phase-triggered average waveform amplitude support this 

possibility.

The anatomic and functional segregation of these neural mechanisms during episodic 

memory then suggests that the sharp waveform temporal lobe regions may be receiving 

temporally aligned synaptic inputs, while nested oscillation frontal regions may be involved 

in inter-regional communication or executive control. Additionally, the observed temporal 

dynamics of sharp waveforms and nested oscillations imply that both mechanisms must 

occur in concert for successful memory. Importantly, this confirmation of distinct neural 

mechanisms in human cortex as measured with PAC adds evidence to the emerging field of 

waveform based inference on the neurophysiological mechanisms underlying iEEG 

(Sherman et al., 2016; Gerber et al., 2016; Cole et al., 2016).

Together, our data demonstrate task-related decreases in the extent of both nested 

oscillations and sharp waveforms that correlate with successful memory encoding and 

retrieval. Using a systematic method to distinguish these waveforms, we show that memory 

related changes in measures of cortical PAC may be related to distinct underlying neural 

mechanisms represented by these different waveforms. Hence, although the proper 

interpretation of PAC and its functional significance still remain unclear (Kramer et al., 

2008; Canolty & Knight, 2010; Lachaux et al., 2012; Burke et al., 2015; Aru et al., 2015; 

Jones, 2016), measures of PAC may be important in informing us about the complex nature 

of underlying waveforms in the iEEG signal and their changes during successful memory 

encoding and retrieval.
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Figure 1. 
Methods and PAC analysis (A) Paired associates episodic memory task. In each trial, a pair 

of words is presented on the screen during encoding. Subsequently during retrieval, one 

word from each pair is randomly chosen and presented, and participants are instructed to 

vocalize the associated word. Timing of word and cue presentation is shown in the inset. (B) 
Theta to HG (70–180 Hz) phase-amplitude plot. Average normalized HG amplitude for this 

electrode is plotted for 20 theta (3–8 Hz) phase bins repeated for two cycles. Dotted red line 

indicates HG amplitude where no comodulation would be measured. (C) Comodulogram. 
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Each frequency pair of phase providing frequencies every 1 Hz from 2 Hz to 16 Hz versus 

amplitude providing frequencies every 5 Hz from 5 Hz to 250 Hz is plotted where colors 

correspond to the respective modulation indices (MI) of each pair. (D) Subject distribution 

across all regions of interest (ROIs) (E) Whole brain analysis across participants for theta to 

LG and HG PAC for correct versus incorrect trials. Colors in the first and third rows 

correspond to the average z-score differences between correct and incorrect trials in each 

ROI during encoding and retrieval. ROIs exhibiting significant differences, corrected for 

multiple comparisons, are shown in the second and fourth rows. The blue color of the 

significant regions in these rows indicates PAC was significantly less for correct trials 

compared to incorrect trials.
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Figure 2. 
Characteristic waveforms underlie PAC (A) Nested oscillation (NO) example of PAC. (left) 
Exemplar iEEG trace is shown in blue while low and high frequency bandpassed 

components are shown in green and red respectively. (right) Corresponding comodulograms 

are shown for all trials for each electrode. (B) Sharp waveform (SW) example of PAC from 

single low frequency oscillation. (C) Generalized SW example of PAC.
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Figure 3. 
Cortical waveforms exhibit memory related differences (A) Comodulograms for correct and 

incorrect encoding periods with corresponding average waveforms. The average waveforms 

for correct and incorrect trials are shown on the right. (B) Correlation of PAC and waveform 

amplitude. (left) Correlation of log-transformed MI vs. amplitude of average z scored 

waveform for all trials of the electrode in (A). (right) Average correlation coefficient (r) for 

all participants (n=33). (C) Whole brain group analysis for average waveform amplitude for 

correct compared to incorrect trials. Colors in the first and third rows correspond to the 
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average z-score differences between correct and incorrect trials in each ROI during encoding 

and retrieval. ROIs exhibiting significant differences, corrected for multiple comparisons, 

are shown in the second and fourth rows. The blue color of the significant regions in these 

rows indicates waveform amplitude was significantly less for correct trials compared to 

incorrect trials.
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Figure 4. 
Average waveforms from a single subject. All electrodes for this subject are shown in either 

red (indicating NO) or blue (indicating SW). Example triggered waveforms are shown from 

the left parahippocampal gyrus, frontal lobe, and temporal lobe.
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Figure 5. 
Waveform classification (A) Waveform distribution across brain regions. Colors correspond 

to percentage of electrodes demonstrating each waveform category, where warmer and 

cooler colors represent more NOs and SWs respectively. Exemplar iEEG traces are shown 

for NO (left) and SW (right). (B) Bar plot comparing frontal, temporal, and parietal lobes for 

% NO. Error bars here represent the SEM across all participants who had electrodes in those 

lobes. (***) indicates p < .001 and (*) indicates p < .05.
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Figure 6. 
Entropy characterization (A) Entropy distribution across brain regions. Colors correspond to 

the magnitude of average sample entropy, where cooler and warmer colors represent lower 

and higher values respectively. (B) Bar plots comparing frontal, temporal, and parietal lobes 

for sample entropy. Error bars here represent the SEM across all participants who had 

electrodes in those lobes. (***) indicates p < 0.001 and (**) indicates p < 0.01.
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Figure 7. 
Whole brain analysis across participants for theta band PAC for correct versus incorrect 

trials. (A) Theta to HG PAC. (B) Theta to LG PAC. Colors in the first and third rows 

correspond to the average z-score differences between correct and incorrect trials in each 

ROI during encoding and retrieval. ROIs exhibiting significant differences, corrected for 

multiple comparisons, are shown in the second and fourth rows. The blue color of the 

significant regions in these rows indicates PAC was significantly less for correct trials 

compared to incorrect trials.

Vaz et al. Page 28

Neuroimage. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction
	Methods
	Participants
	Paired Associates Task
	Intracranial EEG (iEEG) Recordings
	Spectral Power and Phase
	Measurement of Phase-Amplitude Coupling
	Anatomic Localization and Topographic Plots
	Statistical Analyses
	Generation of Average Waveforms
	Calculation of Sample Entropy

	Results
	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

