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A B S T R A C T

Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method to study white matter integrity,
and is sensitive to detect differences in Alzheimer's disease (AD) patients. Diffusion MRI may be able to
contribute towards reliable diagnosis of AD. We used diffusion MRI to classify AD patients (N=77), and controls
(N=173). We use different methods to extract information from the diffusion MRI data. First, we use the voxel-
wise diffusion tensor measures that have been skeletonised using tract based spatial statistics. Second, we
clustered the voxel-wise diffusion measures with independent component analysis (ICA), and extracted the
mixing weights. Third, we determined structural connectivity between Harvard Oxford atlas regions with
probabilistic tractography, as well as graph measures based on these structural connectivity graphs.
Classification performance for voxel-wise measures ranged between an AUC of 0.888, and 0.902. The ICA-
clustered measures ranged between an AUC of 0.893, and 0.920. The AUC for the structural connectivity graph
was 0.900, while graph measures based upon this graph ranged between an AUC of 0.531, and 0.840. All
measures combined with a sparse group lasso resulted in an AUC of 0.896. Overall, fractional anisotropy
clustered into ICA components was the best performing measure. These findings may be useful for future
incorporation of diffusion MRI into protocols for AD classification, or as a starting point for early detection of
AD using diffusion MRI.

Introduction

Reliable and early diagnosis of Alzheimer's disease (AD) is key to
developing a cure for this disease (Prince et al., 2011). Magnetic
resonance imaging (MRI) is highly useful as a biomarker for AD, and
may be suitable for early detection of AD as well (Jack et al., 2010).
Machine learning classification provides a powerful method to make
predictions about the disease state of an individual based on MRI
scans. So far individual classification studies in AD have mainly focused
on anatomical MRI scans (Klöppel et al., 2008; Plant et al., 2010;
Cuingnet et al., 2011; de Vos et al., 2016). Other MRI modalities are
increasingly being used for AD classification as well, such as white
matter integrity measures (Nir et al., 2014), and functional MRI (Lee
et al., 2013; Koch et al., 2012). White matter integrity measures are
promising for predicting AD using machine learning classification

(Dyrba et al., 2013; O'Dwyer et al., 2012). White matter networks
have also been used for classification of mild cognitive impairment,
which is often a prodromal state of AD (Wee et al., 2011, 2012).
However, multiple measures can be derived from diffusion MRI scans.
Traditionally, the diffusion tensor imaging model (Basser et al., 1994)
is applied to the diffusion data to derive voxel-wise measures, such as
voxel-wise fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (DA), and radial diffusivity (DR). Additionally, these voxel-
wise measures can be clustered into independent components, so that
the individuals' weights for each component can be used to predict AD
(Ouyang et al., 2016). Furthermore, structural connectivity networks
can be estimated with tractography (Behrens et al., 2007). Graph
measures can then be determined based on these structural connectiv-
ity networks, such as node strength, degree, clustering, and centrality,
as well as average shortest path length, or transitivity of a network
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(Rubinov and Sporns, 2010). It is not yet known which diffusion MRI
measure is most accurate and useful for predicting AD. Moreover,
combining multiple MRI-based measures may improve prediction
accuracy (Schouten et al., 2016; de Vos et al., 2016; Sui et al., 2013;
Dai et al., 2012).

Here we study AD classification using diffusion MRI measures
separately and combined in a comprehensive way. First we explore the
predictive performance of voxel-wise diffusion tensor imaging mea-
sures using tract based spatial statistics (TBSS) of FA, MD, DA, and DR
(Smith et al., 2006). Then we cluster these voxel-wise TBSS measures
using independent components analysis (Beckmann, 2012), and use
the mixing weights on the components for classification (Ouyang et al.,
2015). Finally, we study the predictive performance of structural
connectivity of probabilistic tractography networks (Behrens et al.,
2007), and of graph measures that are based on these structural
connectivity networks. Additionally, we explore the combination of all
measures using a sparse group lasso.

Materials and methods

Data sample

Participants
Our dataset was collected as a part of the prospective registry on

dementia (PRODEM; Seiler et al., 2012). Our sample only contained
subjects scanned at the Medical University of Graz. The inclusion
criteria are: dementia diagnosis according to DSM-IV criteria
(American Psychiatric Association, 2000), non-institutionalization
and no need for 24-h care, and availability of a caregiver who agrees
to provide information on the patients' and his or her own condition.
Patients were excluded from the study if they were unable to sign a
written informed consent or if co-morbidities were likely to preclude
termination of the study. We conducted our study with the baseline
scans from the PRODEM study, and included only patients diagnosed
with AD in accordance to the NINCDS-ADRDA Criteria (McKhann
et al., 1984), for whom diffusion MRI scans were present.

The controls were drawn from the Austrian Stroke Prevention
Family Study, which is a prospective single-center community-based
follow-up study with the goal of examining the frequency of vascular
risk factors and their effects on cerebral morphology and function in
the controls. On the basis of structured clinical interview and a physical
and a neurological examination, participants had to be free of overt
neurologic or psychiatric findings and had to have no history of a
neuropsychiatric disease, including cerebrovascular attacks and de-
mentia. The study protocols were approved by the ethics committee of
the Medical University of Graz, Austria, and written informed consent
was obtained from all subjects.

This resulted in a dataset of 77 AD patients between ages 47 and 83,
and 173 controls between ages 47 and 83 (see Table 1).

MRI acquisition
Each participant was scanned on the same Siemens Magnetom

TrioTim 3T MRI scanner. Anatomical T1-weighted images were
acquired with TR=1900 ms, TE=2.19 ms, flip angle=9°, isotropic voxel
size of 1 mm. Diffusion images were acquired along 12 non-collinear
directions with a b-value of 1000 s

mm2 . Each direction and a b=0 image
was scanned 4 times with TR=6700 ms, TE=95 ms, 50 axial slices,
voxel size=2.0×2.0×2.5 mm.

MRI preprocessing

The MRI data were processed using FMRIB Software Library (FSL,
version 5.0; Smith et al., 2004; Jenkinson et al., 2012) unless otherwise
specified. For the anatomical MRI this included brain extraction, bias
field correction, and non-linear registration to standard MNI152
(Grabner et al., 2006). For the diffusion MRI this included brain
extraction and eddy current correction.

Elastic net classification with nested cross validation

We used the feature vectors derived from the different aforemen-
tioned techniques in a logistic elastic net regression model for
classification (Zou and Hastie, 2005; Friedman et al., 2010). We used
10-fold cross validation to determine the generalisation performance of
the elastic net regression models. For each subject this produced a
probability between 0 and 1 of being classified as an AD patient.

The elastic net imposes a penalty on the regression parameters to
ensure that the regression model remains stable even when the number
of predictors is larger than the number of observations. Specifically, it
uses a combination of a least absolute shrinkage and selection operator
(LASSO; Tibshirani, 1996), and Ridge penalty (Hoerl and Kennard,
1970). The LASSO penalty enforces sparse solutions, by shrinking
many regression parameters to 0. The Ridge penalty smoothly shrinks
the size of the regression parameters. The ratio between the two
penalties is determined by a hyperparameter α, and the strength of the
penalty is determined by a hyperparameter λ. When the values of these
hyperparameter are estimated based on the cross-validated classifica-
tion performance, the out-of-sample classification performance may be
overestimated, because a combination of hyperparameters may work
particularly well for one specific sample, and may not fully generalise to
a different sample (Kriegeskorte et al., 2009). Therefore, we take a
nested-cross validation approach to estimate the hyperparameters
(Varma and Simon, 2006), i.e., we perform an additional cross-
validation within the training set to estimate the hyperparameters,
and then use those settings to train a model on the entire training set in
order to predict the test set. The focus of our method is on optimisation
of predictive performance and not on model stability. The trade-off of
this choice is that the models from the cross validation folds may differ
in sparseness and regularisation, and are therefore not suitable for
interpretation (Varoquaux et al., 2016).

To reduce the variability in the classification outcome resulting
from the random partitioning in training and test folds we repeated the
entire classification procedure 10 times. The reported results are the
average over these 10 repetitions.

Combining measures using the Sparse Group Lasso

To explore whether the combination of multiple sets of features
improves classification we used the Sparse Group Lasso (SGL; Simon
et al., 2013). Sets of features can be grouped together, and the SGL
imposes a LASSO penalty between groups, and an elastic net penalty
within groups. The resulting models then show sparseness between
groups (i.e., the weights of some groups of features are set to zero),
while also imposing some sparseness within selected groups (i.e., the
weights of some features within a group is set to zero). Like the elastic
net, the SGL uses the hyperparameters α to determine the mix between
LASSO and Ridge within the groups, and λ to determine the strength of

Table 1
Demographics for the study population.

Demographics Control (N=173) AD (N=77)

Age 66.1 ± 8.71 68.6 ± 8.58
Gender, ♂/♀ 74/99 (57.2%♀) 31/ 46 (59.7%♀)
Education (years) 11.5 ± 2.76 10.8 ± 3.22
Disease duration (months) 0.00 ± 0.00 26.7 ± 24.5
MMSE 27.5 ± 1.83 20.4 ± 4.51
CDR – 0.82 ± 0.34
GDS 2.11 ± 2.15 2.64 ± 2.57

Data is represented as mean ± standard deviation. MMSE=mini mental state exam,
CDR=clinical dementia rating, GDS=geriatric depression scale.

T.M. Schouten et al. NeuroImage 152 (2017) 476–481

477



the penalty. We used the same nested cross-validation approach as in
the elastic net procedure to choose λ, but fixed α at 0.05, resulting in a
sparse between group and fairly dense within group model. We did not
choose α within the nested cross validation procedure because this was
computationally impractical (10-fold, 10-repeats took about 3 weeks to
calculate in parallel on a high performance computing cluster using
100 cores for a single α value), and because this procedure does a poor
job at model selection (Simon et al., 2013).

Measuring classification performance

To assess the classification performance, we performed receiver
operating characteristic (ROC) analyses on the predicted outcomes
between 0 and 1 from the elastic net and sparse group lasso regression.
We calculated the ROC curve by shifting the threshold for classifying an
individual as AD from 0 to 1, and plotted the true positive rate
(sensitivity) versus the false positive rate (1 - specificity) for each
intermediate point. The area under this ROC curve (AUC) is a measure
of classification performance that is insensitive to the distribution
between controls and AD patients (Fawcett, 2006), so that we can take
full advantage of the larger number of controls than AD patients in our
dataset. We performed bootstrapping with 5000 samples to determine
the standard error of the AUC. The ROC analyses were performed with
the perfcurve function in MATLAB R2016b.

Classification features

Tract-based diffusion tensor features

In order to extract voxel-wise measures from the diffusion images
we used tract based spatial statistics (TBSS; Smith et al., 2006). TBSS
projects the subjects' diffusion measures onto a mean white matter
tract, which can then be used for voxel-wise cross-subjects analyses.
Because the values are comparable across subjects we can use these
features for individual classification as well. Using TBSS we projected
the subjects' fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (DA), and radial diffusivity (DR) onto a mean white matter
skeleton that represents the center of the white matter tracts. This
resulted in a feature vector with a length of 113282 values per measure
for each individual.

Independent components analyses clustered diffusion tensor features

The second method that we employ for classification is independent
components analysis (ICA) based classification. We use the same voxel-
wise, skeletonized measures from TBSS, but we decompose these voxel
maps into a number of independent components using MELODIC
(Beckmann, 2012). This resulted in a mixing matrix of one value per
component per subject, and their corresponding component weight
maps. We use the values from the mixing matrix in the same
classification procedure as described previously. The ICA procedure
is an unsupervised learning method, that does not require information

about the class labels of the individuals. Therefore it was admissible to
use ICA as a preprocessing step prior to the cross-validation procedure.
We perform this ICA analysis separately for the FA, MD, DA, and DR
maps. We call these measures FA-ICA, MD-ICA, DA-ICA, and DR-ICA
to distinguish them from the voxel-wise measures.

Independent components analysis does not provide a standardised
method to determine the optimal number of components for classifica-
tion. The preferable method to choose a suitable number of compo-
nents is to consider number of components as an additional model
hyperparameter. This number can then be tuned in the nested cross-
validation loop. Unfortunately this was computationally infeasible in
our case. Instead we set the number of components to 28, following
Ouyang et al. (2015).

Probabilistic tractography based structural connectivity and graph
features

In order to perform tractography between comparable regions
within each subject we used the Harvard-Oxford anatomical brain
atlas (Desikan et al., 2006; Zhan et al., 2015). We split the 48 cortical
regions of the Harvard-Oxford atlas into left and right hemisphere
regions, resulting in 96 cortical regions. The cortical regions were
combined with the 14 brain regions from the subcortical atlas,
excluding the brain stem because it was not fully scanned for each
participant. This resulted in a total of 110 grey matter anatomical
regions. We removed all voxels under 25% probability of being part of
any region, and then assigned each voxel to the region for which its
probability was the highest (see Fig. 1).

We constructed a structural connectivity network for each indivi-
dual in order to perform graph analysis. We performed probabilistic
tractography between 110 Harvard Oxford Atlas regions using prob-
trackx from FSL (Behrens et al., 2007; Zhan et al., 2015). The settings
that we used were the FSL default settings (curvature threshold=0.2,
maximum number of steps=2000, step length=0.5 mm). From each
voxel within any of the atlas seed regions 100 streamlines were drawn,
resulting in a 110 by 110 structural connectivity graph. The graph was
made undirected by summing the upper and lower triangles of the
connectivity graph, such that the connectivity between regions A and B
is the sum of the connections from A to B, and from B to A. Then, in
order to normalise the number of streamline counts between two
regions, we divided each connection between two regions by the sum of
the total number of successfully drawn streamlines from both regions.
For each region, this number ranged between 3450 and 241977
streamlines depending on the size of the region and the success rate
of drawing a streamline from that region. We used all the elements of
the upper triangle of this connectivity graph as features for classifica-
tion ( = 5995110 * 109

2 features).
After constructing the structural connectivity graphs we used the

MATLAB implementation of the Brain Connectivity Toolbox (http://
www.brain-connectivity-toolbox.net) (Rubinov and Sporns, 2010) to
calculate the strength, degree, clustering, and betweenness centrality
for each node in each graph, and the transitivity, and characteristic

Fig. 1. Harvard-Oxford cortical and subcortical regions that we used as target and seed nodes for probabilistic tractography. Areas represent the probabilistic regions above the 25%
threshold, and then assigned to the highest probability region.
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path length of each graph. This resulted in 110 features per measure for
strength, degree, clustering, and betweenness centrality, and a single
feature for transitivity, and for path length per individual.

Results and discussion

Detailed results for the classification procedure are summarised in
Table 2, while an overview of the mean AUCs for each measure is
depicted in Fig. 2.

Classification results of tract-based diffusion tensor features

When using the voxel-wise TBSS measures for classification we
found an AUC between 0.888 and 0.902 (Table 2). The best single
measure performance was achieved with radial diffusivity (DR), closely
followed by the other DTI measures.

This method is already commonly used in case control studies with
AD or other patient groups, and we show that it is also suitable for
individual classification. While DR slightly outperforms the other TBSS
measures, the differences are small. It is likely that the differences in
performance between the TBSS measures do not generalise to other
datasets. Still, TBSS in general appears to be a suitable method for
individual classification of Alzheimer's disease.

Classification results of ICA clustered diffusion tensor features

The classification performance of ICA-clustered TBSS measures
ranged between 0.893 for DA-ICA, and 0.920 for FA-ICA. The
classification performance of MD-ICA (0.896), and DR-ICA (0.899)
are very similar to DA-ICA.

The approach of using ICA to cluster diffusion tensor images is not
commonly used, but at least one study already showed that the mixing
weights of several diffusion components were useful in separating AD
from normal controls (Ouyang et al., 2015).

The mixing weights of 28 components resulted in very good
classification performance, up to 0.920 for FA-ICA. However, com-
pared to voxel-wise diffusion tensor measures only FA seemed to
benefit from ICA clustering. For MD, DA, and DR the classification
performance remained virtually unchanged. Even then, the ICA
clustering allows an enormous reduction in the number of features
required to describe an individual, from 113282 voxel-wise features to
only 28 mixing weights.

One caveat with this method is that it is more difficult to extract
these 28 features from an unseen individual, because the entire dataset
was used to derive the mixing weights and corresponding component
weight maps. One possible method is to spatially regress the feature
maps (e.g., FA) of a new individual on the 28 components' weight

Table 2
Alzheimer's patients versus controls classification using tract-based spatial statistics,
ICA-clustered TBSS measures 20 components, graph measures, and all features
combined with a sparse group lasso. The mean and the bootstrapped standard error of
the areas under the ROC curve over 10 repetitions are reported, as well as the sensitivity,
specificity, and classification accuracy for the optimal point in the ROC.

Measure AUC ± SE Sensitivity Specificity Accuracy

FA-TBSS 0.892 ± 0.023 0.838 0.821 0.826
MD-TBSS 0.888 ± 0.023 0.844 0.792 0.808
DA-TBSS 0.891 ± 0.021 0.849 0.804 0.818
DR-TBSS 0.902 ± 0.021 0.791 0.873 0.848

FA-ICA 0.920 ± 0.018 0.868 0.844 0.851
MD-ICA 0.898 ± 0.022 0.842 0.843 0.843
DA-ICA 0.893 ± 0.022 0.897 0.806 0.834
DR-ICA 0.899 ± 0.022 0.832 0.844 0.840

Connectivity graph 0.900 ± 0.023 0.803 0.871 0.850
Degree 0.817 ± 0.029 0.799 0.740 0.758
Strength 0.840 ± 0.029 0.766 0.809 0.796
Clustering 0.784 ± 0.032 0.669 0.795 0.756
Betweenness Centrality 0.647 ± 0.038 0.595 0.668 0.646
Path Length 0.720 ± 0.035 0.625 0.727 0.696
Transitivity 0.531 ± 0.041 0.373 0.772 0.649

Sparse Group Lasso 0.896 ± 0.025 0.885 0.774 0.808

Fig. 2. Overview of classification results. Bars indicate mean area under the receiver operating characteristics curves over 10 repetitions. The error bars represent standard errors based
on 5000 bootstraps.
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maps, to find the individuals' mixing weights.

Classification results of probabilistic tractography based structural
connectivity and graph features

For the structural connectivity measures the classification perfor-
mance ranged between an AUC of 0.531 for transitivity, and 0.840 for
strength. Interestingly, the connectivity graph, upon which the graph
measures are based, reached an AUC of 0.900, outperforming each
graph measure (Table 2). Graph measures have been very successful in
finding group differences, by summarising graphs into much fewer
features than the connectivity matrix. However, in the classification
context, where we can use information from the entire graph, the graph
measures that we explored do not seem to be beneficial.

Classification results of multiple features combined with the sparse
group lasso

The sparse group lasso resulted in good classification performance
with an AUC of 0.896. However, this did not outperform the best
measure, which was FA-ICA. Nevertheless, the properties of the sparse
group lasso allow us to gain valuable insight into which measures are
selected for classification, and which measures are left out of the model
completely. We explored the sum of the absolute β values for each
group of predictors, over the 100 different classification models
resulting from 10-fold cross validation with 10 repetitions (see
Fig. 3). Here we see that some groups of predictors are always included
in the SGL models: MD-TBSS, FA-ICA, MD-ICA, DA-ICA, DR-ICA, and
Strength. Other groups of predictors are never included in the SGL
models: FA-TBSS, Degree, Clustering, and Transitivity. The rest of the
groups are sometimes included in the models and sometimes set to
zero: DA-TBSS, DR-TBSS, Connectivity graph, Betweenness Centrality,
and Path Length.

We observe some correspondence with the single measure classi-
fication scores (see Fig. 2). The strongest contribution to the SGL
models come from the TBSS and ICA measures, while the Connectivity
graph and the Strength are also consistently selected by the SGL. This

suggests that there is complementary information in the DTI measures,
and the graph measures. At the same time we observe that the very
good performing FA-ICA is always selected, but the almost equally well
performing FA-TBSS is never selected. The same pattern, albeit it less
pronounced, can be seen with MD, DA, and DR. This behaviour of the
SGL is expected, as the ICA measures are based upon the TBSS
measures, and do not contain complementary information.
Unfortunately these mixed results for FA, MD, DA, and DR do not
provide a clear winner between the TBSS and ICA approaches in terms
of classification performance, but the ICA approach does have the
advantage of strong feature reduction.

Conclusion

Overall, diffusion MRI is a suitable technique for classification of
Alzheimer's disease (AD). Fractional anisotropy (FA) is a useful
measure to detect AD, and clustering fractional anisotropy into
independent components is an especially promising method that had
not been fully explored previously. Using probabilistic tractography to
determine structural connectivity networks can also result into decent
classification performance, especially when the connectivity graph itself
is considered instead of the derived graph measures. In this study we
explored the possibility of using a sparse group lasso to combine
multiple diffusion measures. Although this did not increase classifica-
tion performance in our sample, it did suggest that FA, MD, DA, and
DR could be complemented by Connectivity graphs, and Degree. The
sparse group lasso could not unambiguously answer the question of the
effectiveness of using ICA with TBSS measures for classification.
Specifically, ICA seemed very effective for FA, while the results for
MD, DA and DR were mixed. The single best performing measure was
FA clustered into independent components. These findings can serve as
a starting point to include diffusion MRI in procedures for early AD
detection.
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