
Functional dynamics of hippocampal glutamate during 
associative learning assessed with in vivo 1H functional 
magnetic resonance spectroscopy

Jeffrey A. Stanley1, Ashley Burgess1, Dalal Khatib1, Karthik Ramaseshan1, Muzamil 
Arshad2,3, Helen Wu2, and Vabhav A Diwadkar1

1Brain Imaging Research Division, Department of Psychiatry & Behavioral Neurosciences, Wayne 
State University School of Medicine, Detroit, MI

2Translational Neuroscience Program, Department of Psychiatry & Behavioral Neurosciences, 
Wayne State University School of Medicine, Detroit, MI

3Institute of Gerontology, Wayne State University, Detroit, MI

Abstract

fMRI has provided vibrant characterization of regional and network responses associated with 

associative learning and memory; however, their relationship to functional neurochemistry is 

unclear. Here, we introduce a novel application of in vivo proton functional magnetic resonance 

spectroscopy (1H fMRS) to investigate the dynamics of hippocampal glutamate during paired-

associated learning and memory in healthy young adults. We show that the temporal dynamics of 

glutamate differed significantly during processes of memory consolidation and retrieval. 

Moreover, learning proficiency was predictive of the temporal dynamics of glutamate such that 

fast learners were characterized by a significant increase in glutamate levels early in learning, 

whereas this increase was only observed later in slow learners. The observed functional dynamics 

of glutamate provides a novel in vivo marker of brain function. Previously demonstrated N-

methyl-D-aspartate (NMDA) receptor mediated synaptic plasticity during associative memory 

formation may be expressed in glutamate dynamics, which the novel application of 1H MRS is 

sensitive to. The novel application of 1H fMRS can provide highly innovative vistas for 

characterizing brain function in vivo, with significant implications for studying glutamatergic 

neurotransmission in health and disorders such as schizophrenia.
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Supplementary — Caption to Figure
Supplement Figure 1: Mean % levels of hippocampal glutamate across each of the eight encoding (A) and retrieval (B) epochs for 
each of the learning groups (i.e., fast learners in blue and slow learners in red). Significant differences (p<0.05) in glutamate levels 
relative to the control condition are indicated for the fast (†) and slow (‡) learners.
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1. Introduction

Glutamate is the brain’s major excitatory neurotransmitter, and plays a particularly salient 

role in frontal-hippocampal mechanisms of learning and memory (Castner and Williams, 

2007). The hippocampal formation is particularly rich in glutamatergic neurons, and 

hippocampal-based mechanisms of memory consolidation are presumed to be subserved by 

N-methyl-D-aspartate (NMDA) mediated synaptic plasticity (Bliss and Collingridge, 1993). 

NMDA is the principle ionotropic glutamate receptor; rodent studies have indicated that 

calcium flux through the NMDA receptor is principally implicated in learning and memory 

(Slutsky et al., 2004). Generally, the molecular and genetic bases of learning have been 

extensively studied in rodent models, yet methodological gaps limit translating mechanisms 

of action across species. Animal studies can rely on single or multi-unit neuronal recordings, 

or the use of genetic models of memory, via NMDA knockouts, that can be emulated in 

humans only under pre-surgical conditions (Suthana et al., 2015b). Thus animal studies 

provide valuable approximation of the neurochemical contributions to learning and memory 

(Chen and Tonegawa, 1997; Silva, 2003).

By comparison, in vivo human studies are largely forced to rely on hemodynamic (via the 

BOLD fMRI signal) rather than neurochemical signals to infer hippocampal function. fMRI 

has provided vibrant characterization of regional and network responses associated with 

associative learning and memory (Banyai et al., 2011; Ranganath et al., 2005; Sommer et al., 

2005; Suthana et al., 2015a; Wadehra et al., 2013; Woodcock et al., 2015), but their 

relationship to functional neurochemistry is unclear at best (Logothetis, 2008). The use of in 
vivo signals that capture functional neurochemistry can provide a more direct assessment of 

neurochemical dynamics. Here, we provide novel application of proton functional magnetic 

resonance spectroscopy (1H fMRS) to characterize in vivo glutamate dynamics during 

hippocampal-based associative learning. Previous 1H fMRS studies have documented 

increased glutamate levels in response to visual stimulation (Bednařík et al., 2015b; Lin et 

al., 2012; Mangia et al., 2007; Mangia et al., 2006; Schaller et al., 2013) or during motor 

responding (Schaller et al., 2014). Notably however, these studies were conducted outside 

the hippocampus, and using non-glutamate reliant tasks. Here, we significantly expand on 

previous work with the first known demonstration of selective glutamate modulation in the 

hippocampus during associative learning and memory. These observations rest on the 

reasonable assumption that NMDA-driven hippocampal activity related to memory 

formation will lead to increased levels of glutamate in the hippocampus, an increase that 

the 1H MRS signal will be sensitive to.

To establish the functional viability of 1H fMRS, we specifically explored the temporal 

dynamics of the quantitated neurochemical signal as a function of learning proficiency on a 

paired-associated learning task. The course of paired-associate learning is well approximated 

by functions with a negatively accelerated or sigmoidal growth behavior, with limited free 
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parameters estimating learning rate (Diwadkar et al., 2008). The dynamics of the task thus 

permits cleavage into sub-groups of relatively fast and slow learners based on the fitted 

response functions, and task performance has been linked to estimated fMRI metrics. For 

instance, effective connectivity analyses of fMRI signals shows that the coupling of the 

hippocampus with specific heteromodal regions is statistically correlated with learning rates 

(Banyai et al., 2011), and generally, fMRI-characterized “neural” responses are predictive of 

subsequent remembering and forgetting of associated memories (Addante et al., 2015; Kim, 

2011). These fMRI studies indicated that estimated amplitude of the fMRI BOLD response 

and hippocampal connectivity is yoked to behavioral proficiency.

In extending the linkage between performance and measures of brain function using 1H 

fMRS characterized glutamate dynamics, we seek to a) establish the technique’s viability 

and specificity and b) present an expanded framework for in vivo assessment of 

hippocampal function (and dysfunction) in health and disorders providing a significant 

complement to fMRI.

We organize the presentation of our results in the following sequence in concert with our a 
priori goals:

1. First we present a comprehensive characterization of behavioral proficiency. 

These analyses show significant effects of time on performance, confirming the 

expected behavioral dynamics of the task. We next used the fitted performance 

functions to the behavioral results to cleave the participants into two sub-groups 

corresponding to fast and slow learners. This separation is logically connected 

with our subsequent presentation of the analyses of the 1H fMRS data.

2. From the 1H fMRS data we characterize effects of task condition (Encoding and 

Retrieval) and Time on modulated glutamate. These analyses establish 

significant effects of each of the task conditions and time on glutamate 

modulation. Next between fast and slow learners we demonstrate differences in 

the temporal dynamics of the glutamate response suggesting that the temporal 

dynamics of glutamate modulation in the hippocampus corresponds with 

behavioral proficiency.

2. Materials and Methods

2.1 Subjects

A total of 16 healthy, young adults (9 males; mean age of 25.0 ± 2.0 yrs.; 22-29.2 yrs.) were 

recruited through local advertisements at Wayne State University. All participants provided 

signed informed consent approved by the Wayne State University Institutional Review 

Board. Based on screening questionnaires, participants were free of past or current medical, 

psychiatric and/or neurological illness (e.g., hypertension, thyroid disease, diabetes, asthma 

requiring prophylaxis, seizures or significant head injury with loss of consciousness) and/or 

MRI contraindications.
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2.2 Associative Learning/Memory fMRS Task

The 1H fMRS data was collected while participants engaged in an associative learning and 

memory paradigm that required subjects to over time, learn the associations between objects 

and locations in space (Figure 1). Previous fMRI studies have shown that the task strongly 

modulates responses in the hippocampus, as well as effective connectivity between the 

hippocampus and neo-cortical regions (Banyai et al., 2011; Buchel et al., 1999; Woodcock et 

al., 2016; Woodcock et al., 2015). Moreover, behavioral proficiency on the task has been 

shown to conform to classic mechanisms of negatively accelerated learning (Diwadkar et al., 

2016; Diwadkar et al., 2008), suggesting that the task characteristics strongly engage basic 

hippocampal mechanisms of learning and memory (Hasselmo, 1999; Rolls, 1996).

As shown in the task schematic in Figure 1, participants were required to learn nine object-

location pairs over eight blocks, each of which cycled between encoding, rest, retrieval and 

rest epochs. During each encoding epoch, the nine equi-familiar objects (Snodgrass and 

Vanderwart, 1980) were present in randomized sequence in their associated grid location 

(3sec/object totaling 27sec). Participants were instructed to vocalize the name of the object 

as presented (monosyllabic object names minimized head motion; All responses were 

recorded through a microphone system as part of assessing performance). Following a brief 

rest/rehearsal epoch (27sec), cued retrieval was employed to test participant memory. The 

nine grid locations were cued (red square; 3sec/cue totaling 27sec) in random order, with 

participants instructed to respond by vocalizing the name of the object associated with the 

grid location (participants responded “no” if they could not recall or guess the associated 

object). The extended length of the task (eight blocks; 14:24 minutes), was designed to 

maximize the possibility of participants reaching asymptotic performance.

For each participant, behavioral data was collected during the cued-Retrieval epochs. For 

each participant, performance data (expressed as % correct) was modeled using a nonlinear 

least-square fitting algorithm of the Gompertz function (below; (Gompertz, 1825)). The 

Gompertz function optimizes three parameters that characterize sigmoidal behavior of the 

data: These are a) the asymptote (that can be construed as learning capacity), b) point of 

inflection in time (that can be construed of as when performance transitions to approach 

asymptote), and c) the learning rate time constant on the paradigm. In the equation below, 

time, is represented by the block number (Range: 1–8):

Modeling of behavioral responses was conducted using the Isquonlin function in Matlab 

(The MathWorks, Inc.), which included imposing a lower bound limit of 0 for all three 

parameters and an upper bound limit of 100% for the asymptote parameter.

2.3 Baseline Control Condition

As our goal was to assess task-active modulation of glutamate in the hippocampus during a 

hippocampal-centric paradigm, we employed a non-hippocampal baseline task as a control 

condition. The simple uni-manual visuo-motor integration paradigm employed as the control 
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condition (Asemi et al., 2015) required participants to tap their forefinger and their thumb in 

response to a flashing visual stimulus. Cues were presented 0.5sec in duration at varying 

frequencies between 0.7Hz and 1.4Hz in which participants were instructed to tap their 

index finger and thumb together at each cue. A total of six finger-tapping epochs (34sec/

epoch) interspersed with 20sec rest epochs were employed.

This control paradigm induces strong attention and motor processing, without learning or 

memory components. The task was administered before the learning paradigm to estimate 

modulation of hippocampal glutamate in an active control state. Subsequently, glutamate 

levels during learning were expressed relative to the levels during this finger tapping 

baseline task.

2.4 Functional Magnetic Resonance Spectroscopy (fMRS)

All MR imaging data was collected on a 3T Siemens Verio system using a 32-channel head-

coil. A set of T1-weighted axial images covering the whole brain was collected (1mm3 pixel 

resolution) and images were resampled and used to prescribe the placement of a 1.7 × 3.0 × 

1.2cm3 (or 6.12 cm3) MRS voxel in the right anterior portion of the hippocampus (i.e., the 

location of the anterior edge of MRS voxel coincided with the anterior edge of the 

hippocampus and not include the amygdala). Angulation and rotation of the MRS voxel was 

allowed accordingly to minimize the partial volume effect (Figure 2). During the finger-

tapping and learning/memory tasks, 22 individual and consecutive single-voxel, short-TE 1H 

MRS measurements of 16 averages each were collected. The acquisition protocol included: 

point-resolved spectroscopy (PRESS) sequence with outer volume saturation (OVS) for 

improved localization precision and reduced signal contamination from outside the specified 

voxel, TR= 3.375s, TE= 23ms, 2,048 data points, 2kHz bandwidth,16 averages, acquisition 

time of 54s per measurement and VAPOR (Variable Power and Optimized Relaxation 

Delays) for water suppression and cleaner spectral baseline (Tkác and Gruetter, 2005). 

Selecting a short-TE minimized the signal attenuation due to T2 relaxation (i.e., T2-

weightedness) and the J-modulation effects of coupled spins. Prior to each acquisition, the 

homogeneity of the magnetic field was optimized (or shimmed) using FASTESTMAP (Fast, 

Automatic Shim Technique using Echo-planar Signal readout for Mapping Along 

Projections)(Gruetter and Tk, 2000). A fully relaxed water-unsuppressed spectrum was also 

collected following the task (i.e., with a TR=10sec and 2 averages).

A main goal of this study was to assess changes in the levels of hippocampal glutamate over 
time for each task condition (encoding and retrieval epochs), therefore the 22 1H MRS 

measurements were binned based on task conditions. Moreover, the 1H MRS measurements 

in successive task epochs were averaged in pairs (i.e., by signal averaging two successive 

spectra prior to spectral quantification), increasing the S/N ratio and permitting reliable 

quantification. The pairing scheme is illustrated in Figure 1B.

Post-processing and quantification of the 1H MRS data was 100% automated. For each pair 

of averaged 1H MRS signal, the 1H metabolites, glutamate, N-acetyl-aspartate (NAA), 

phosphocreatine plus creatine (PCr+Cr), trimethylamines [glycerophosphocholine plus 

phosphocholine (GPC+PC)], and myo-inositol, glutamine, taurine, N-acetyl-

aspartylglutamate, alanine, aspartate, gamma-amino-butyric acid (GABA), and glucose, and 
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the lipid and macromolecule resonances (Seeger et al., 2003) were quantified using the 

Linear Combination (LC) Model software (Provencher, 1993) with simulated basis set for 

the a priori knowledge reflecting the acquisition parameters. A typical example of an 

individual 1H MRS spectrum from the right hippocampus (head/body) is shown in Figure 2. 

Freesurfer and FSL tools (FLIRT, FAST, MRI_VOLSYNTH, MRI_VOL2VOL) were used 

to tissue segment the T1-weighted images, which were then used to quantify the tissue 

fraction values within each voxel location. The absolute concentration of glutamate was 

estimated using the fully relaxed unsuppressed water signal, tissue fraction values and the 

appropriate T1 and T2 relaxation values as described by Gasparovic et al. (2006).

2.5 Statistical Analyses

To ensure analyses were comparable across the behavioral and fMRS data, the behavioral 

data (like the MRS data) were also averaged across successive pairs of epochs (see Figure 

1B). For the behavioral analyses, % correct served as the dependent variable and paired 

epochs as the main term. Initial assessment of differences in glutamate levels between task 

conditions (Control, Encoding and Retrieval) was conducted with task condition as the main 

term, followed by post-hoc analyses. These analyses were conducted using the repeated 

measures generalized estimating equations (GEE) and differences of least squares means for 

post-hoc comparisons (SAS GENMOD; SAS Institute Inc.).

Additionally, the testing of differences in the temporal dynamics of glutamate modulation 

across the paired epochs for both the Encoding and Retrieval conditions was conducted 

using the repeated measure GEE statistics with epoch number as the main term followed by 

post-hoc comparisons. All GEE analyses included age and gender as covariates.

Investigating differences in sub-groups of learners was one of the central aims of the paper. 

To facilitate this, we applied a median split on the inflection parameter from the modeling of 

the behavioral data. As previously noted, the inflection parameter models the transition from 

linear to asymptotic performance: It is expected that faster learners will transition earlier 
from linear to asymptotic learning than slower learners. Considering the limited sample size 

and non-normal distribution in the data, nonparametric Wilcoxon tests (JMP; SAS Institute 

Inc.) were performed to assess sub-group differences in the modeled parameters of the 

behavioral data (inflection point, learning rate time constant and asymptote value). In each 

sub-group, nonparametric-paired comparisons (Wilcoxon) were also conducted to identify 

unique differences in glutamate modulation across the paired encoding and retrieval epochs 

relative to the control condition. Lastly, differences in the glutamate level between the two 

sub-groups across the paired encoding and retrieval epochs were tested using nonparametric 

Wilcoxon tests. A p-value of 0.0125 or less was noted as significant, which reflects 

correcting for multiple comparisons with 4 comparisons per condition.

3. Results

3.1 Behavioral Results

The overall response rate on retrieval trials was 98%, indicative of high compliance and 

marginal data loss. Based on the % correct in recalling the 9 object-location pairs, the 
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averaged performance significantly improved across blocks (χ2= 14.24; p=0.0026) while 

following sigmoidal behavior. The post-hoc comparisons revealed significant changes in 

performance between adjacent paired epochs (1st vs 2nd pair, p<0.0001; 2nd vs 3rd pair, 

p=0.049; 3rd vs 4th pair, p=0.0024).

A median split based on the inflection time parameter from the Gompertz function cleaved 

the group into slow and fast learners (n=8 in each). The fast learners included 3 males and 5 

females whereas 6 males and 2 females were in the slow learner group. The groups did not 

differ in age (24.5±1.6 vs 25.5±2.3 years). Figure 3 includes a boxplot of the modeled 

parameters of the sub-groups, showing fast learners had both significantly earlier inflection 

times (0.53±0.41 vs 2.4±0.9; p<0.0001) and significantly faster learning rates (or smaller 

time constants; 0.99±0.44 vs 1.9±0.9; p=0.018). However, the two sub-groups asymptoted at 

the same level (89%±16% vs 95%±9%; p=0.60). Figure 4 provides a comprehensive 

accounting of behavioral proficiency and across sub-groups, the latter accentuating the 

differences in the inflection time and learning rates.

3.2 1H fMRS Results

The signal averaging of the acquired 1H MRS data into paired 1H MRS spectra was 

warranted, as it resulted in an ~33% improvement in the mean S/N ratio (±SD; 6.4±1.0 to 

8.5±1.4). The confidence in quantifying glutamate in the paired 1H MRS spectra ranged 

with Cramer-Rao lower bound (CRLB) values between 5% and 12% (mean±SD; 7.4±1.3%). 

The mean full-width-at-half-maximum (±SD) was 8.4±2.1Hz (range of 4.4Hz to 14.7Hz). 

All of the 1H MRS data from the 16 subjects was used in the statistical analyses except for 

two paired 1H MRS spectra, which were excluded due to CRLB values > 16% for glutamate 

(i.e., the absolute CRLB of glutamate was > 2 SD of the mean). The mean coefficient of 

variation (CV) of glutamate during the control baseline condition was 7.8%. Additionally, 

regarding the consistency in placing the 1H MRS voxel in the head/body of the right 

hippocampus between subjects, the tissue segmentation of the 1H MRS voxel resulted in a 

mean grey matter fraction (±SD) of 68.9%±4.2% (range of 61.5% to 74.4%).

3.2.1 Glutamate modulation by task condition and over time in the entire 
sample—The associative learning task resulted in significant modulation of hippocampal 

glutamate (χ2= 12.80; p= 0.0017; Figure 5), with the effects significant for each of the 

encoding (p< 0.0001) and retrieval (p= 0.0002) epochs compared to the control condition. 

Moreover, the task-effect on the neurochemistry was specific to glutamate evidenced by the 

lack of significance in the other quantitated metabolites including NAA (χ2= 3.25; p= 0.20), 

PCr+Cr (χ2= 3.38; p= 0.18), GPC+PC (χ2= 2.71; p= 0.26) and myo-inositol (χ2= 2.23; p= 

0.33) as well as in the S/N (χ2= 5.33; p= 0.070) and full-width-at-half-maximum (χ2= 5.26; 

p= 0.072).

In the next statistical model we evaluated dynamic changes in glutamate levels across the 

four epoch pairs (see Figure 1) during encoding and retrieval. In these analyses time or the 

epoch term was significant for both encoding (χ2= 13.41; p=0.0094) and retrieval (χ2= 

0.027). Post-hoc analyses showed significant increases of 7.1% (p=0.0014) and 4.5% 

(0.0009) in the glutamate modulation at the 1st and 2nd epoch pairs of encoding compared to 
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the control condition and the Cohen’s d effect sizes were 0.82 and 0.60, respectively (Figure 

6a). Glutamate levels tended to show an increase of 5.2% at the 4th epoch pair of encoding 

with an effect size of 0.63 but failed to reach significance (p=0.020). By comparison, post-

hoc analyses showed a significant increase of 9.8% in glutamate only at the 3rd epoch pair of 

retrieval (p<0.0001) and the Cohen’s d effect size was 1.1 (Figure 6b).

3.2.2 Glutamate dynamics vs learning proficiency in the sub-groups—Based on 

non-parametric paired comparisons, glutamate levels in the faster learning group showed a 

significant increase of 11% at the 1st paired epoch of encoding compared to the control 

condition (p=0.0096), whereas levels in the slower learning group displayed a significant 

increase of 7.7% at the 2nd paired epoch of encoding (p=0.0090) compared to the control 

condition (Figure 7A). The 8.2% glutamate increase at the 4th paired epoch of encoding in 

the slow learners failed to reach significance compared to the control condition(p=0.025). 

Glutamate levels in both learning sub-groups showed increased levels of 8.3% (p=0.048) and 

11% (p=0.0025) respectively at the 3rd paired epoch of retrieval, both compared to the 

control condition but only reached significance for the slow learners (Figure 7B). Moreover, 

in directly comparing the % change in glutamate levels (relative to the control condition) 

between the two sub-groups, the slower learning group showed a significant increase at the 

2nd paired epoch of encoding compared to the faster learning group (7.7% vs 1.3%; 

p=0.010) (Figure 7A).

4. Discussion

In this study we unveil the use of 1H fMRS as a method for assessing specific aspects of 

brain function based on neurochemical signals, specifically glutamate modulation in the 

hippocampus. The viability of the method was tested in three ways: 1) First we induced 

hippocampal activity using a reliable paired-associate learning paradigm that fMRI studies 

have indicated provides highly reliable activity and dynamics of the hippocampus; 2) To test 

the specificity of the 1H fMRS, we also contrasted the glutamate modulation in the 

hippocampus using a non-hippocampal visuo-motor paradigm; 3) Finally, to assess the 

behavioral relevance of 1H fMRS, we assessed changes in glutamate levels as a function of 

learning proficiency, and whether glutamate dynamics differed between fast and slow 

learners.

Our results were these: 1) First, we provide the only documented in vivo evidence of 

glutamate modulation in the hippocampus during learning (Figure 5); 2) Second, with the 

relatively high temporal resolution of the in vivo hippocampal glutamate measurements we 

observed unique temporal dynamics of glutamate that differentiated between processes of 

memory formation (encoding) and retrieval (Figure 6); 3) Third, learning proficiency 

statistically predicted the temporal dynamics of glutamate: Fast learners were characterized 

by an early peak in modulated glutamate during encoding (Figure 7), whereas slow learners 

evinced a complimentary pattern.

In the remainder of this report, we discuss the methodological implications of using 1H 

fMRS to asses in vivo function and neurochemical dynamics, and also unpack our observed 

effects in relating glutamate modulation to learning proficiency. We also discuss the general 
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value of the discriminative glutamate signal for in vivo characterization of NMDA-driven 

hippocampal function or dysfunction related to memory formation in health and disorders.

4.1 Putative mechanisms underpinning observed glutamate modulation

Glutamate plays a major role as an excitatory neurotransmitter in the cerebral cortex 

including the hippocampus (Erecinska and Silver, 1990), and NMDA receptor function is 

central in mediating synaptic plasticity necessary for learning and memory formation (Day 

et al., 2003). Following the neurotransmitter release of glutamate from the presynaptic 

terminal to the synaptic cleft, excess glutamate is taken up by surrounding astrocytes and 

subsequently converted predominantly to glutamine by glutamate synthase. Studies have 

shown a near 1:1 relationship between neuronal glucose oxidation and the glutamate-

glutamine cycling (Rothman et al., 2003; Shen et al., 1999; Sibson et al., 1998), implying 

that the metabolic and neurotransmitter pool of glutamate, as typically viewed in the 1H 

MRS literature (Berg and Garfinkel, 1971; Erecinska and Silver, 1990), are tightly coupled 

and hence, indistinguishable (Rothman et al., 2003). Thus, extant evidence suggests that 

task-active characterization of hippocampal glutamate must be directly related to 

neurontransmitter release induced by behavioral processing. We suggest that the demands of 

memory consolidation, lead to increased neuronal activity in the hippocampus, in turn 

leading to increased glucose utilization and oxidative metabolism (including increased 

glutamate-glutamine cycling). In response to memory formation, the increased levels of 

glutamate in the hippocampus is suggestive to be driven by the influx of oxidative 

metabolism related to increased neuronal activity (Mangia et al., 2012; Schaller et al., 2014). 

As is frequently employed in fMRI analyses, the contrast with a hippocampal-neutral 

condition, provides evidence of the selective modulation of glutamate by task.

4.2 Behavioral and glutamate dynamics in fast and slow learners

Performance on the object-location memory recall improved significantly over time 

characterized by sigmoidal behavior that reached an asymptote of 89% correct (±SEM of 

3%). However, the expected high variability in performance across individuals (Figures 3 

and 4), enabled the a priori goal of investigating the relationship between learning 

proficiency and the dynamics of the functional neurochemistry. Thus, whereas fast and slow 

learners did not differ in terms of learning “capacity” (the asymptote in each sub-group was 

at ~89% performance), both sub-groups differed in the modeled inflection point of their 

response functions. Fast learners reached 92% of their learning capacity by the third epoch 

(i.e., the mean performance was 82% correct by epoch #3), whereas the slow learners only 

reached 56% of their capacity by that time (Figures 3 and 4). When considered against the 

suggested mechanisms of glutamate modulation above, the distinction in the temporal course 

of learning between sub-groups assumes significance. Fast learners appear to engage in 

earlier successful memory consolidation than slow learners. Next, we discuss the 

relationship between the behavioral dynamics of the task in fast and slow learners, and 

neurochemical dynamics of glutamate.

Independent of time quantitated hippocampal glutamate increased significantly across all 

subjects during both encoding (5.2% relative to the motor control) and retrieval (4.2% 

relative to the motor control)(7 5). Increased glutamate was observed across three of the four 
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averaged encoding epoch pairs, but effects were more sporadic for retrieval pairs (Figure 6). 

Moreover, the variability in these effects appear to be related to temporal differences 

between the learning sub-groups (see more below). The relative specificity of the effects for 

encoding suggests some degree of preferential modulation of glutamate during memory 

formation. This may reflect the sensitivity of the NMDA-driven hippocampal modulation of 

glutamate in differentiating neural processes of memory formation from process of memory 

retrieval (see Woodcock et al., 2015 for fMRI based evidence of network differences 

between memory formation and retrieval).

As noted above, amongst fast learners, the sharpest increase in memory proficiency was 

achieved between the first and the second encoding epochs (Figure 4B). Notably, it was 

specifically in epochs one and two that fast learners showed a significant increase in 

glutamate levels (10.9% increase relative to the motor control condition), but slow learners 

did not (Figure 6). These effects emphasize the value of early hippocampal engagement 

during memory consolidation, reinforcing the idea that rapid consolidation is associated with 

early functional engagement of the hippocampus. These effects are consistent with 

molecular and lesion studies reiterating the importance of the early hippocampal 

involvement in memory formation subserving newly acquired behaviors (Wirth et al., 2003; 

Fyhn et al., 2002). Whereas we lack 1H fMRS data to assert this, it is plausible that rapid 

learners are characterized by more rapid transition to shared hippocampal — neocortical 

memory representations (Haist et al., 2001; Eichennbaum, 2004). Finally, our previous 

analyses of fMRI data in an independent sample have shown that learning rate is positively 

correlated with the effective connectivity between the hippocampus and the prefrontal cortex 

(Banyai et al., 2011). In comparison to fast learners, in slow learners significant glutamate 

increases were not observed till the second pair of encoding epochs and were largely 

sustained (~7–8% increases over the motor control condition) through the remainder of the 

learning run (Figure 7).

Glutamate during memory retrieval evinced a different dynamic profile than encoding, and 

was not sensitive in distinguishing between sub-groups. Both sub-groups showed increased 

hippocampal glutamate levels in the third paired epoch (8.2% and 11.3%, respectively) with 

no other significant effects (Figure 7). This lack of effect on hippocampal glutamate is 

notable because of the presumed differences in hippocampal function during memory 

formation and retrieval. Whereas hippocampal neurons are central in initiating the formation 

of new memories (see Basu & Sieglebaum, 2015 for a recent review), neurons in the 

prefrontal cortex are assumed to assert greater relevance during memory retrieval (Tomita et 

al., 1999; Zhang and Williams, 2015). When assessed at the scale of macroscopic brain 

network interactions based on fMRI signals, retrieval cues induce prefrontal cortex driven 

interactions with the hippocampus (Woodcock et al., 2015; Simons and Spiers, 2003) 

resulting in substantial directional effects. These studies imply that during retrieval, the 

hippocampus may be the target of excitatory top-down inputs from the prefrontal cortex, as 

opposed to the source (which is the case during encoding). Future 1H MRS assessments 

targeting the prefrontal cortex will be needed to assess the functional neurochemical 

signatures of these proposed effects.
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4.3 Observed estimates of glutamate in recent context

The use of the FASTESTMAP method for shimming (Gruetter and Tk, 2000) as well as 

having effective OVS and VAPOR for water suppression (Tkác and Gruetter, 2005) were 

critical elements in acquiring high-quality 1H MRS data from the hippocampus at a 

reasonable temporal resolution (54 s), given the difficulties of shimming due to significant 

susceptibility effects (Bednarík et al., 2015a). This led to an overall spectral quality that was 

comparable to published 3T 1H MRS studies of the hippocampus (Allaïli et al., 2015; 

Bednařík et al., 2015a), as assessed by the CRLB values reflecting the confidence in 

quantifying glutamate, S/N and spectral linewidths.

The estimated mean concentration of glutamate in the hippocampus for the control condition 

was I3.4μmol/g, which is consistent with previous reports (Kassem and Bartha, 2003) 

including a recent study reporting a mean value of 14.3μmol/g in the hippocampus at 7 Tesla 

(Cai et al., 2013). The mean metabolite ratio of glutamate over glutamine was 3.2±0.9 for 

the control condition, which is also within the middle range of published studies 

(Govindaraju et al., 2000; Tkác and Gruetter, 2005) and provides additional support for the 

viability of accurately quantifying glutamate. The concentration of glutamate has also been 

noted to be higher in hippocampus compared to the cortex (Harris et al., 2014; Kassem and 

Bartha, 2003), which is expected given the high density of NMDA receptors in the structure. 

Interestingly, the magnitude change of the hippocampal glutamate of approximately 1.1 

μmol/g to 1.5 μmol/g (or 8% to 11%) in response to the associative learning and memory is 

greater than the reported modulation of glutamate of approximately 0.2μmol/g (or 2% to 

4%) in the cortex (Bednarík et al., 2015b; Lin et al., 2012; Mangia et al., 2007; Mangia et 

al., 2006; Schaller et al., 2013; Schaller et al., 2014), further highlighting the sensitivity of 

our measurements to the induced task. Though the relationship between the density of 

NMDA receptors and the task induced changes in glutamate is poorly understood, these 

differences between studies may be task or more importantly region specific.

5. Conclusions

We provide using in vivo 1H fMRS novel evidence for dynamic glutamate modulation in the 

hippocampus during paired-associated learning and memory. Unique temporal dynamics of 

glutamate were associated with distinct processes of memory consolidation and retrieval, 

with the relatively high temporal resolution in vivo glutamate measurements. Further 

specificity was observed wherein learning proficiency predicted the temporal dynamics of 

glutamate during encoding such that fast learners were characterized by an early increase in 

glutamate levels but slow learners evinced increased glutamate levels later during encoding. 

Though the origins of the 1H MRS signal are cumulative, the observed functional dynamics 

of glutamate is consistent with hippocampal-based mechanisms of memory consolidation 

subserved by NMDA receptor mediated synaptic plasticity. Moreover, 1H MRS provides a 

potentially valuable complement to fMRI for focused exploration of in vivo brain function. 

Though further studies are warranted, these results provide a compelling and viable 

framework for the investigation of hippocampal (dys)function related to glutamatergic 

neurotransmission in heath and disorders using the novel application of 1H fMRS.
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Figure 1. 
(A) Schematic illustration of the associative learning and memory paradigm depicts the two-

dimensional grid and example objects presented during encoding, and the cued locations 

during retrieval. The intervening rest epoch is depicted by fixation marker. The figure 

highlights the encoding and retrieval trials within their respective epochs, and the 

interspersed rest epochs. (B) A total of eight encoding and retrieval epochs were employed. 

As depicted, for 1H MRS analyses, signals were averaged over successive encoding and 

retrieval epochs (paired arrows) to enhance SNR, resulting in four time points over which 

glutamate dynamics were assessed (see Figures 6 and 7). The timing of the individual 1H 

MRS measurements is depicted along the bottom.
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Figure 2. 
(A) A typical example of an individual quantified 1H MRS spectrum acquired in 54s 

(acquired in black and modeled spectrum in red). (B) Illustrates the signal of glutamate with 

a CRLB value of 8%. (C) The residual or difference between the acquired and modeled 

spectrum. (D) From top to bottom, the sagittal, coronal and axial view of the MRS voxel 

placed in the head/body of the hippocampus superimposed on the MRI.
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Figure 3. 
Figures depict data modeled using the Gompertz function (see Methods). (A) Mean 

inflection points in time are plotted as boxplots demonstrating earlier task transition in fast 

(blue), relative to slow (red) learners. The color scheme is maintained throughout. (B) There 

were no significant differences in asymptotic performance across the learning sub-groups. 

(C) The learning rate time constant was significantly higher in fast, relative to slow learners.
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Figure 4. 
Figures depict data modeled using the Gompertz function (see Methods). Raw behavioral 

performance (represented here for each of the eight epochs) plotted for each individual (A). 

(B) Raw behavioral performance (represented here for each of the eight epochs) is plotted as 

a function of learning group, depicting differential performance between fast and slow 

learners.
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Figure 5. 
The bars for each of the task conditions (encoding and retrieval) represent mean % levels of 

hippocampal glutamate relative to the control condition. The task condition term was 

significant with post-hoc analyses showing a significant increase in glutamate levels during 

both encoding (p<0.0001) and retrieval (p=0.0002).
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Figure 6. 
Mean % levels of hippocampal glutamate across the paired epochs (see Figure 1) for the 

encoding (A) and retrieval (B) condition. Post-hoc analyses showed significant differences at 

multiple paired epochs during encoding and only in the 3rd paired epoch during retrieval 

both compared to the baseline condition, which are indicated by the “*”.
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Figure 7. 
Mean % levels of hippocampal glutamate across encoding (A) and retrieval (B) epochs for 

each of the learning groups. Significant differences in glutamate levels relative to the control 

condition are indicated for the fast (†) and slow (‡) learners as well as the significant 

difference between the fast and slow learners (✻).
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