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ABSTRACT

Following rapid technological advances, ultra-high field functional MRI (fMRI) enables exploring correlates of
neuronal population activity at an increasing spatial resolution. However, as the fMRI blood-oxygenation-level-
dependent (BOLD) contrast is a vascular signal, the spatial specificity of fMRI data is ultimately determined by
the characteristics of the underlying vasculature. At 7 T, fMRI measurement parameters determine the relative
contribution of the macro- and microvasculature to the acquired signal. Here we investigate how these
parameters affect relevant high-end fMRI analyses such as encoding, decoding, and submillimeter mapping of
voxel preferences in the human auditory cortex. Specifically, we compare a T>* weighted fMRI dataset, obtained
with 2D gradient echo (GE) EPI, to a predominantly T, weighted dataset obtained with 3D GRASE. We first
investigated the decoding accuracy based on two encoding models that represented different hypotheses about
auditory cortical processing. This encoding/decoding analysis profited from the large spatial coverage and
sensitivity of the To* weighted acquisitions, as evidenced by a significantly higher prediction accuracy in the GE-
EPI dataset compared to the 3D GRASE dataset for both encoding models. The main disadvantage of the T»*
weighted GE-EPI dataset for encoding/decoding analyses was that the prediction accuracy exhibited cortical
depth dependent vascular biases. However, we propose that the comparison of prediction accuracy across the
different encoding models may be used as a post processing technique to salvage the spatial interpretability of
the GE-EPI cortical depth-dependent prediction accuracy. Second, we explored the mapping of voxel
preferences. Large-scale maps of frequency preference (i.e., tonotopy) were similar across datasets, yet the
GE-EPI dataset was preferable due to its larger spatial coverage and sensitivity. However, submillimeter
tonotopy maps revealed biases in assigned frequency preference and selectivity for the GE-EPI dataset, but not
for the 3D GRASE dataset. Thus, a T» weighted acquisition is recommended if high specificity in tonotopic maps
is required. In conclusion, different fMRI acquisitions were better suited for different analyses. It is therefore
critical that any sequence parameter optimization considers the eventual intended fMRI analyses and the nature
of the neuroscience questions being asked.

Introduction signal-to-noise ratio (SNR; Vaughan et al, 2001), allowing the
acquisition of images at an increased spatial resolution. 3 T fMRI

At ultra-high magnetic fields, functional MRI (fMRI) benefits from experiments are typically run with 2—3 mm isotropic resolutions,
increased blood-oxygenation-level-dependent (BOLD)-based suscept- whereas at 7 T millimeter to submillimeter spatial resolutions are not
ibility contrast (Ogawa et al., 1992; Yacoub et al., 2001) and a higher uncommon. This has attracted substantial interest from the neuros-
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cientific community, as the higher spatial resolution allows exploring
the human brain non-invasively at an unprecedented spatial scale.
Specifically, a submillimeter isotropic resolution could allow investiga-
tions of functional processing separately in deep, middle, and super-
ficial cortical depths. As different cortical depths have characteristic
patterns of anatomical connectivity and unique functional roles
(Douglas and Martin, 2004; Larkum, 2013), the possibility of obtaining
non-invasive laminar functional data is intriguing (Kok et al., 2016;
Muckli et al., 2015; Olman et al., 2012). Moreover, the cortical depth-
dependent exploration of functional responses to stimulus features
(e.g., visual orientation, or sound frequency) enables examining the
stability of feature preference throughout cortical depth (Zimmermann
et al., 2011; De Martino et al., 2015; Nasr et al., 2016). This may
provide information regarding the existence and functional role of
columnar feature organizations, a neuroscientific topic that has been
debated and unresolved to date (Horton and Adams, 2005; Rakic,
2008).

Simply acquiring higher resolution fMRI images does not guarantee
a corresponding increase in the specificity of the measured functional
processes, as the BOLD signal reflects the hemodynamic response to
neural activity. The spatial specificity of the BOLD signal is therefore
constrained by the underlying vasculature. Importantly, fMRI data can
be acquired in various ways at ultra-high fields, impacting the overall
sensitivity of the signals to different components of the vasculature.
The most common approach is to use gradient-echo echo-planar
imaging (GE-EPI), a T,* weighted sequence. The acquired GE-EPI
signal contains contributions both from macro- and microvasculature
(Ugurbil et al., 2003; Uludag et al., 2009; Yacoub et al., 2005). The
macrovasculature includes large diving veins penetrating the gray
matter (GM) and the large pial veins situated on top of the GM
(Duvernoy et al., 1981). These large draining vessels produce a strong
BOLD effect (i.e., a high sensitivity), while also decreasing the spatial
specificity as they generate responses away from the actual site of
neuronal activity (e.g., higher signal towards the GM surface; Goense
et al., 2007; Harel et al., 2006; Kok et al., 2016; Koopmans et al., 2011,
2010; Polimeni et al., 2010; Ress et al., 2007; Siero et al., 2011; Zhao
et al., 2004). Several approaches have previously been used in order to
minimize the contribution of large and unspecific veins to GE-EPI data.
The first approach involves excluding the voxels closest to veins from
the analysis. The superficial cortical layers may be excluded altogether,
or venous voxels may be identified and excluded (Koopmans et al.,
2010; Lu et al., 2010; Shmuel et al., 2007). As a second approach, post
processing techniques have been used to suppress the BOLD signal of
large veins after acquisition. For example, the complex fMRI signal
(both magnitude and phase) can be used to estimate and remove the
part of the signal that originated from the macrovasculature (Menon,
2002; Vu and Gallant, 2015). A third approach can be used if a priori
information about the representation of the stimulus on the cortex is
available. Such a priori information may be used to identify voxels with
spatially non-specific responses. These voxels can then be excluded
from the analysis, and the remainder of the GE-EPI dataset can be used
to map high resolution organizations (Muckli et al., 2015; Yacoub et al.,
2007).

Alternatively, at high fields it is also possible to collect submilli-
meter T, weighted functional images (for example using a spin echo
(SE) sequence). Such a T» weighted sequence suppresses the contribu-
tion of large vessels (Yacoub et al., 2003), and thus the acquisitions
have relatively more signal from smaller veins. This results in signals
with high spatial specificity (De Martino et al., 2013b; Duong et al.,
2003; Goense et al., 2007; Harel et al., 2006; Uludag et al., 2009; Zhao
et al., 2004), which are ideal for laminar and columnar investigations of
the human cortex. Indeed, in a direct comparison, SE was shown to be
more specific than GE in identifying ocular dominance columns in
human primary visual cortex (V1; Yacoub et al., 2007).

While T, weighted SE sequences are superior in terms of spatial
specificity, they also suffer from several drawbacks. Their acquisition time
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is longer, measured BOLD contrast is lower (lower sensitivity), and
specific absorption rate (SAR) is higher compared to T,* weighted
sequences. As such, to make submillimeter T» weighted acquisitions a
realistic option for high field fMRI applications, significant tradeoffs are
made in the imaging field of view (FOV) and the volume coverage (i.e.,
data can be collected from only a small region of the brain). For 2D SE-
EPI this has led to acquisitions with a single thick slice and a small in
plane FOV (Yacoub et al., 2008, 2007). More recently, to overcome some
of the limitations of SE-EPI, such as relatively low functional contrast to
noise (CNR) and the anisotropic voxel resolution, 3D inner volume
gradient and spin echo (3D GRASE) was proposed as an alternative
(Feinberg et al., 2008; Oshio and Feinberg, 1991). Using a train of
refocusing pulses to encode a 3D slab, combined with inner volume
selection, 3D GRASE provides a predominantly T, weighted signal
(Kemper et al., 2015a). However, in order to keep the acquired signal
predominantly T, weighted and reduce the spatial blurring along the
phase encode directions (partition and in-plane phase encode), the field of
view (FOV) is still limited (Kemper et al., 2015b). Further, while the
measured BOLD CNR with 3D GRASE is higher than with a SE-EPI
sequence (Kemper et al., 2015a), it is still substantially smaller than the
BOLD contrast measured with GE-EPI (De Martino et al., 2013b). In spite
of these constraints, the imaging advantages of the 3D GRASE approach
permitted the first columnar mapping study in humans outside of V1
(Zimmermann et al., 2011), and the first human columnar mapping study
outside of visual cortex (De Martino et al., 2015).

Given the advantages and disadvantages of both T»* and T> weighted
acquisitions, currently there is no generic answer as to the optimal strategy
for exploring laminar and columnar processing in the human cortex at high
magnetic fields. Here, we directly compared a T>* weighted sequence
(multislice GE-EPI) to a predominantly T, weighted sequence (3D GRASE),
both acquired at 0.8 mm isotropic, in a study of the human auditory cortex
of six volunteers at 7 T. We conducted two investigations of cortical depth-
dependent functional processing. First, we compared the performance of
the two datasets following a decoding analysis. fMRI decoding assesses the
information present in a brain region or subset of voxels, and can thus also
be used to quantify the information present as a function of cortical depth
(Muckli et al., 2015). We based sound decoding on two different computa-
tional encoding models which reflect different hypotheses about auditory
cortical processing (Moerel et al., 2012; Santoro et al., 2014). Second, we
compared the two datasets with respect to sound feature mapping (i.e.,
estimation of the voxels’ tonotopic frequency preference and selectivity). We
interpret results in light of the voxels’ proximity to large veins.

Our results suggest that different fMRI acquisitions are well suited
for different analyses. Compared to the 3D GRASE dataset, the GE-EPI
dataset had the advantage of higher prediction accuracy in the
encoding/decoding analyses. While prediction accuracy in the GE-
EPI dataset increased towards the pial surface, we propose that the
difference between the encoding models’ performances can be used as a
post processing technique that salvages the interpretability of the GE-
EPI cortical depth-dependent prediction accuracy. While large-scale
maps of frequency preference (i.e., tonotopy) showed no observable
bias, cortical depth-dependent tonotopic maps displayed a bias in the
assigned best frequency preference and selectivity in the GE-EPI
dataset only. Thus, the mapping of cortical feature preference orga-
nized at this fine spatial scale benefitted from the high specificity of the
3D GRASE dataset. In conclusion, at ultra-high fields, where a choice
between signals with high CNR dominated by large draining veins or
signals with lower CNR dominated by the microvasculature is possible,
it is essential that the choice of imaging sequence considers the
intended subsequent fMRI analyses.

Material and methods
Ethics statement

The experimental procedures were approved by the Institutional
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Review Board (IRB) for human subject research at the University of
Minnesota. Informed consent was obtained from each participant
before commencement of the measurements.

Subjects

Six healthy volunteers participated in this study (mean age [SD]
=28.5 [7.8]; two males and four females). The subjects had no history
of hearing disorder or neurological disease.

Experimental design and stimuli

The study involved three experimental sessions, in which all
subjects participated. The first session served to collect high resolution
anatomical data for the purpose of segmentation, cortical layer
sampling (Zimmermann et al., 2011), and vessel segmentation. In
the second and third session, high resolution GE-EPI and 3D GRASE
data were collected, respectively, while subjects listened to natural
sounds. One subject participated in a fourth session, during which a
Time of Flight (TOF) dataset and susceptibility-weighted images (SWT)
were acquired. The TOF and SWI images served to create an angiogram
and venogram respectively, used for validating the vessel segmentation
procedure.

The natural sounds included recordings of the following sound
categories: speech, voices, animal cries, music, tools, and nature scenes
(144 sounds in total; 24 sounds per category). Sounds were sampled at
16 kHz and their duration was 1000 ms. Sound onset and offset were
ramped with a 10 ms linear slope, and their energy (RMS) levels were
equalized. Sounds were presented to the subjects in the MRI scanner
using the MRI-compatible S14 model earbuds of Sensimetrics
Corporation (www.sens.com) with a linear frequency transfer up to
8 kHz.

The natural sounds were divided into 4 non-overlapping sets of 36
sounds each. These sets were created randomly under the constraint
that all semantic categories should be equally represented in each set.
Sessions 2 and 3 consisted of 12 and 16 fMRI data collection runs,
respectively. We presented one stimulus set (36 distinct sounds) per
run, and each set was presented three or four times across the full
session (i.e., 3 or 4 runs per sound set for sessions 2 and 3,
respectively). Stimuli were presented at a jittered inter-stimulus
interval of 2, 3, or 4 TRs. Sounds were played, with additional random
jitter, in silent gaps between functional volume acquisitions. Trials
where no sound was presented were added (8% of the trials). Subjects
were instructed to attend to the sounds and perform a one-back task.
That is, they indicated with a button press if the exact same sound was
played on consecutive trials (occurring on 6% of the trials; repeat trials
were not considered in the training and testing of encoding models).

MRI acquisition

All measurements were performed on a 90 cm bore 7 T whole body
magnet (Magnex Scientific, Abingdon, UK) driven by a Siemens
console (Siemens Medical Systems, Erlangen) using a custom whole
head 32 channel loop transceiver and a high performance head
gradient insert. In the first session, Ty, proton density [PD], and To*
weighted data with full brain coverage were collected at a voxel size of
0.6 mm isotropic. Two T; weighted scans were acquired using a
modified magnetization-prepared rapid gradient-echo (MPRAGE) se-
quence. PD datasets were acquired with the same MPRAGE as the T;
weighted image but without the inversion recovery module. See Table 1
for the acquisition parameters.

In the second session, GE-EPI images were acquired (see Table 1
for the acquisition parameters). Slice placement included the bilateral
auditory cortex. This session consisted of 12 runs, each ~5 min in
duration. In session two and three, a T; weighted scan was acquired for
the purpose of realignment across sessions and slice placement.
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The third session served to collect high-resolution 3D GRASE
images (see Table 1). Due to the limited FOV of the 3D GRASE
settings, slice placement included Heschl's gyrus (HG) and regions at
its anterior and posterior adjacency. In 3/6 subjects these regions were
covered bilaterally, and in the other subjects only the left hemisphere
was covered. This session consisted of 16 runs, each ~4 min in
duration.

TOF and SWI data was collected from an oblique slab oriented
along the lateral sulcus, which covered the auditory cortex bilaterally.
Parameters of the TOF and SWI datasets are listed in Table 1.

Anatomical data analysis

PD images were used to minimize receive coil inhomogeneities in
T; weighted images (Van de Moortele et al., 2009; left column of
Fig. 1). The resulting T;/PD datasets were further corrected for
residual inhomogeneities, and down-sampled to 0.8 mm isotropic
resolution matching the resolution of the functional data. Automatic
tools of BrainVoyager QX were used to detect the white matter (WM)-
GM, and GM-cerebrospinal fluid (CSF) boundaries. Both boundaries
were manually edited to ensure a correct definition of the regions of
interest (HG and regions at its anterior and posterior adjacency).

Next, cortical thickness was measured as implemented in
BrainVoyager QX 2.8 (Brain Innovation, Maastricht, Netherlands),
which uses a procedure based on the Laplace equation (De Martino
et al., 2013b; Jones et al., 2000; Zimmermann et al., 2011). In brief,
this procedure defines the intensity values at the inner and outer gray
matter boundary (i.e., the WM-GM and GM-CSF boundary, respec-
tively), and smooths the intensity values of voxels between these
boundaries. The solution of Laplace's equation creates a smooth field
that allows calculating a gradient at each voxel. Integrating gradients
across voxels results in ‘streamlines’ that define the maximum change
(i.e., the shortest path) between the WM-GM and GM-CSF boundaries.
Based on this cortical thickness computation, cortical depth-dependent
grids are defined. Note that the Laplace equation is only used to the
compute cortical thickness. Instead, the cortical depth-dependent grids
are spaced equidistantly across cortical depth, rather than as being
defined by the Laplace solution. That is, the first regularly spaced grid
is created orthogonal to, and halfway through, the streamlines (cortical
thickness=0.5). Additional grids (closer to the WM, or to the CSF) are
created by moving up or down along the streamlines to get correspond-
ing grid points at other cortical depths (left column of Fig. 1). For each
subject and hemisphere, we created a grid containing nine (ranging
from 0.1 [close to WM] to 0.9 [close to CSF] cortical thickness) cortical
depths. The WM-GM and GM-CSF boundaries as defined on the
anatomical data are not included in these grids.

Vessels were identified by selecting the darkest voxels in the To*
and SWI datasets, and the brightest voxels in the TOF dataset, followed
by manual corrections (right column of Fig. 1). Separately for each
dataset (i.e., separately for the T»*, SWI, and TOF data), the Euclidean
distance between each gridpoint and all voxels identified as vessels was
computed. Each gridpoint's distance to a vessel was assigned as the
minimum distance (in mm; i.e., the distance to the closest vessel).
Correspondence between the T»>*, SWI, and TOF-based vessel segmen-
tation was assessed with a correlation analysis.

Functional data analysis

The functional data were analyzed with BrainVoyager QX and
custom MATLAB (The MATHWORKS Inc., Natick, MA, USA) code.
Preprocessing consisted of slice scan-time correction (with sinc inter-
polation), 3-dimensional motion correction, temporal high pass filter-
ing (removing drifts of 2 cycles and less per run), and temporal
smoothing of the time series (2 data points). Functional data were
co-registered to the anatomical data, the result of which was reviewed
in each subject and adjusted where needed. Next, the data were
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Table 1
Acquisition parameters.
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TR (ms) TI (ms) Gap (ms) TE (ms) Echo spacing (ms) Flip angle (°) GRAPPA
T1 3100 1500 na 3.5 na 4 3
PD 2160 na na 3.5 na 4 3
Tx* 3700 na na 16 na 4 3
GE-EPI 2400 na 1200 22.8 0.7 90 3
3D GRASE 2000 na 310 29.2 0.7 90; 180 na
TOF 25 na na 3.3 na 22 2
SWI 28 na na 14.4 na 15 2
MB Matrix size slices Voxel resolution averages TA (min)
T1 na 384x384 256 0.6 mm 2 14
PD na 384x384 256 0.6 mm 1 5
Ta* na 384x384 256 0.6 mm 1 8
GE-EPI 2 232x256 36 0.8 mm na 5 per run
3D GRASE na 28x250 16 0.8 mm na 4 per run
TOF na 452x576 80 0.4 mm 1 6
SWI na 432x576 80 0.4 mm 2 12

Acquisition parameters for all acquired datasets. TR=repetition time; TI=inversion time; gap=silence between acquisitions during which sound is presented, computed as TR —
acquisition time of one volume; TE=echo time; GRAPPA=generalized autocalibrating partially parallel acquisition; MB=multiband; TA=acquisition time of the dataset. Voxel resolution

was isotropic for all datasets.

brought to ACPC space (i.e., rotation to bring the line between the
anterior and posterior commissure horizontal). Overall percent signal
change (PSC) maps were computed based on the responses to natural
sounds and sampled at different cortical depths (using the grids
described in ‘Anatomical data analysis’). The relation between PSC
and distance to veins was assessed by grouping gridpoints per cortical
depth according to their distance to a vein (4 groups, 25% of gridpoints
per group for each cortical depth), and computing PSC separately for
each group. We tested for a significant correlation between PSC and
distance to veins using a non-parametric analysis, implemented in
order to correctly deal with the fact that 6 out of 9 data points came
from the same three subjects. That is, we performed 2NumberOfSubjects
permutations of the sign of the data to generate a null distribution,
where the data coming from the same subject was kept together across
permutations. The p-value was assigned as the number of permutations
that resulted in a correlation further away from zero than the original
data divided by the total number of permutations.

Comparison of computational model performance across datasets

After exploring the cortical depth-dependent PSC and its relation to
veins in the GE-EPI and 3D GRASE dataset, we next tested how these
cortical depth-dependent patterns affected the performance of decod-
ing based on two different encoding models in the two datasets. We
chose to test two encoding models, as we were not only interested in
overall decoding performance but also wished to explore how cortical
depth-dependent variations in PSC would interact with the perfor-
mance across encoding models. The following two encoding models
were tested (for details, see Moerel et al., 2012; Santoro et al., 2014): a
simple frequency model, and a model that defined voxel responses in
terms of their frequency-specific modulation tuning (i.e., tuning to
temporal modulation rates and spectral modulation scales). The
representation of the sounds in the frequency model space was
obtained as the output of the first (early) stage of a biologically inspired
model of auditory processing (Chi et al., 2005; NSL Tools package,
available at http://www.isr.umd.edu/Labs/NSL/Software.htm). This
model mimics the spectral transformation of sounds passing through
the cochlea to the midbrain, and includes a bank of 128 overlapping
bandpass filters equally spaced along a logarithmic frequency axis
(180-7040 Hz; range of 5.3 octaves). To represent sounds by the
frequency model, the spectrograms resulting as the output of this
model were averaged over time resulting in 128 model parameters to
estimate.

For the modulation model, the output of the first stage of the NSL
model was passed to a second model stage. This stage mimics cortical
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auditory processing by extracting the modulation content from the
sounds’ spectrograms using a set of modulation filters (temporal
modulation frequencies of w=[1, 3 9, 27] Hz; spectral modulation
frequencies Q of=[0.5, 1, 2, 4] cycles/octave). The filter output was
computed at each frequency bin, and then averaged over time. To limit
the number of (correlated) features, we divided the frequency axis in 8
bins with equal bandwidth in octaves, and averaged the modulation
energy within each frequency bin. This resulted in 128 model para-
meters (8 frequenciesx4 temporal modulation ratesx4 spectral mod-
ulation scales) to estimate. In summary, each computational model
represents the sounds in an [SxF] feature matrix W, where S is the
number of natural sounds and F is the number of features to estimate.

The model parameters were estimated in 4-fold cross-validation,
where each cross-validation consisted of 108 training sounds S;-qin
and 36 testing sounds S;es;. Per cross-validation, we computed the
response to training sounds for each voxel i, Yi-qin,i [Strainx1] as
follows. The data were first denoised (Kay et al., 2013; http://
kendrickkay.net/GLMdenoise/) and then a voxel-wise hemodynamic
response function (HRF) common to all sounds was estimated (Kay
et al., 2008a). This HRF was used to compute a beta weight for each
sound (see Moerel et al., 2015, 2012 for details). The response for each
voxel i to testing sounds, Y;ese, i [Stesex 1], was computed following the
same procedure but used the HRF as estimated on the training sounds.

The response to the sounds in voxel i was modeled as a linear
transformation of the feature matrix W:

Yrmin,i = WiainR;i (1)

where Wipain [St-ainxF] is the representation of the training sounds
in the model space, and R; is an [Fx1] vector of model parameters
whose elements R;; quantify the contribution of feature j to the overall
response of voxel i. Eq. (1) was solved using ridge regression (Hoerl
and Kennard, 1970a). The regularization parameter A was determined
independently for each voxel by automatically inspecting the stability
of the ridge trace (Hoerl and Kennard, 1970b; Santoro et al., 2014). We
assessed model performance as its accuracy in predicting responses to
novel testing sounds (“sound identification analysis”; Kay et al., 2008b;
Moerel et al., 2013; Santoro et al., 2014). Namely, we used the
estimated feature preference of each voxel i to predict the response
YViest,: as:

Viesti = WeestRi 2)

where Wiest [StesexF] is the representation of the testing sounds in
the model space.

We evaluated model prediction by computing a sound identification
score. This score expresses to what extent a model could accurately
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Fig. 1. Anatomical data analysis. For each subject, the 0.6 mm isotropic T;w, PDw, and T>*w data are collected. Left column: the T;w/PDw image is segmented, and used for the
creation of WM-GM surfaces and cortical depth-dependent grids. Right column: the T>*w image is used to identify vessels.

predict a specific testing sound from the pool of all testing sounds. The
sound identification score is computed as follows. For each sound k we
horizontally concatenated the predicted response Y;eqr z [1xV] across
cross-validations, and computed its correlation to the measured fMRI
responses to all testing sounds Yiest [Stessx V] horizontally concate-
nated across cross-validations. Rank rp of the correlation between
predicted and observed responses to sound k measures the models
ability to correctly match predicted response Ytest’k [1xV] with
measured response Yiessx [1xV]. Thus, a rank of 1 indicates perfect
prediction, while a rank of Syes;/2 represents chance, and S;.s; (Where
the number of testing sounds=36) represents the worst outcome. The
rank was normalized between 0 and 1. Prediction accuracy Py of each
sound was defined as 1 — the normalized rank:

_ Fr— 1
Stest_l

e ®

Values of Py range between 0 and 1, with perfect prediction=1 and
chance=0.5. The overall accuracy of the model was obtained as the
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mean prediction accuracy across all testing sounds. Models and
datasets were statistically compared by performing a two-way repeated
measures ANOVA after Fisher transformation of the prediction accu-
racy values.

Cortical depth-dependent model performance was assessed by
sampling matrices Y and R at 9 cortical depths (using the grids
described in ‘Anatomical data analysis’), and repeating the analysis
procedure per cortical depth. Statistical significance was assessed for
deep, middle, and superficial cortical depths (0.2, 0.5, and 0.8 cortical
depth, respectively). Separately for GE EPI and 3D GRASE, a two-way
repeated measures Analysis of Variance (ANOVA) with factors
‘Computational Model’ and ‘Cortical Depth’ after Fisher transformation
of the prediction accuracy values was performed.

The relationship between computational model performance and
distance to veins was assessed by grouping gridpoints per cortical
depth according to their distance to a vein (4 groups, 25% of gridpoints
per group for each cortical depth), and computing the models’
prediction accuracy separately for each group.
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Comparison of estimated voxel preferences

Next, we evaluated the mapping of the voxels’ frequency preference (i.e.,
tonotopy) in detail. Large-scale tonotopy maps were created by color-coding
each voxel according to the frequency with the highest weight in the trained
modulation model (the voxel's best frequency [BF]). A red-yellow-green-blue
color scale was used, where preference for low and high frequencies was
assigned to red and blue colors, respectively. GE-EPI and 3D GRASE
tonotopy maps were smoothed with a Gaussian kernel (FWHM=4 voxels;
map smoothing applied on this volume-based analysis only; all cortical depth
dependent analyses were performed on unsmoothed maps), and correlated
to each other. Significance of observed correlations between the tonotopic
maps as defined by the two datasets was assigned based on permutation
testing (IN=200; null-distribution consists of the correlation between maps
after imposing the same map smoothness on randomized 3D GRASE maps).

For the left hemisphere only, we computed group tonotopy maps by
bringing the anatomical and functional data to Talairach space and
performing a cortex-based alignment (CBA; Goebel et al., 2006) on the
anatomical WM-GM surfaces. Functional maps were sampled on these
CBA surfaces. Group maps display the mean preferred frequency for
those vertices that were included in the map of at least 3 subjects.

We compared the specificity of cortical depth dependent tonotopic
maps as computed on the GE-EPI and 3D GRASE datasets. To this end,
the weights of the trained modulation model were sampled at different
cortical depths. As for the large-scale tonotopy maps, each gridpoint's
BF was assigned as the frequency with the highest weight in the trained
modulation model. The relationship between BF and cortical depth was
assessed by plotting the BF histogram separately for each cortical
depth. Following the computation of tuning width in animal electro-
physiology (Q-value; Cheung et al., 2001; Imaizumi et al., 2004) and
previous fMRI studies (De Martino et al., 2013a; Moerel et al., 2012),
the tuning width (TW; i.e., the selectivity of the gridpoint's frequency
preference) of each gridpoint g was computed by fitting a Gaussian
curve (with its mean constrained to the gridpoint's BF) to the voxel's
frequency  weights, computing TWg,=BF,/FWHM, (where
FWHM =full width at half maximum of the best fitting Gaussian
curve). Note that high and low values of TW indicate narrow and broad
frequency tuning, respectively. In deep, middle and superficial cortical
depths, the difference in TW across datasets was tested for significance
with a non-parametric analysis. Specifically, 2NmPerOfSubjects pormyta-
tions of the data labels (‘GE EPI’ or ‘3D GRASE’) were performed to
generate a null distribution. In these permutations, the data coming
from the same subject was kept together. The p-value was assigned as
the number of permutations that resulted in a larger difference in TW
than the original data, divided by the total number of permutations.

Finally, we assessed the relationship between the correspondence in
tonotopy maps across datasets and distance to veins. For each grid-
point, we computed the difference in BF (in octaves) as assigned by the
GE-EPI and 3D GRASE dataset. Per cortical depth, the gridpoints were
grouped according to their distance to a vein (10 groups, 10% of
gridpoints per group for each cortical depth). In deep, middle and
superficial cortical depths, the average difference in BF across datasets
was compared between the group closest and furthest from veins with a
non-parametric analysis. Specifically, 2NumberofSubjects yormytations of
the data labels (‘close to veins’ or ‘far from veins’) were performed to
generate a null distribution. In these permutations, the data coming
from the same subject was kept together. The p-value was assigned as
the number of permutations that resulted in a larger difference
between locations close to and far from veins than the original data,
divided by the total number of permutations.

Results
Cortical depth-dependent responses to the natural sounds

We observed significant responses to the sounds on HG, Heschl's
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sulcus, and parts of planum polare (PP), planum temporale (PT) and
the superior temporal gyrus (STG) in both the GE-EPI and 3D GRASE
dataset (q [FDR] < 0.05; see Supplementary Fig. 1). Due to limitations
in the 3D GRASE coverage, bilateral auditory cortex was only covered
in 3/6 subjects. In the remaining subjects, only the left auditory cortex
was included. For both datasets, results are reported for 9 hemispheres
(6 left hemispheres and 3 right hemispheres).

We examined the percent signal change (PSC) across cortical
depths by sampling the data on the cortical depth-dependent grids.
Note that due to the grid sampling, the same subset of voxels was
analyzed across datasets. Overall, PSC was lower for 3D GRASE than
for GE-EPI. This magnitude was to be expected as the BOLD signal in
auditory cortex is much lower than in visual cortex, and the 3D GRASE
percent signal change can be expected to be less than 50% of that of the
GE-EPI (De Martino et al., 2013b). In spite of the low PSC, the
observation of significant responses to the sounds (see Supplementary
Fig. 1) indicates that the lower responses in GRASE are accompanied
by a relatively low variability. While PSC was constant across cortical
depths for the 3D GRASE dataset, PSC increased towards the surface
for the GE-EPI dataset. This pattern was present at the level of
individual subjects (Fig. 2a), and was preserved when averaging across
9 hemispheres (Fig. 2b).

Next, we analyzed the relationship between a gridpoint's PSC and
its distance to a vein. As a first step, we validated our T,*-based vessel
segmentation procedure against standard methods of angiogram or
venogram creation (i.e., vessel segmentation on a SWI and TOF
dataset, respectively). Fig. 3a shows matched slices from the TOF,
SWI, and T»* datasets. As expected, low intensity voxels in the SWI
dataset (reflecting veins) corresponded to low intensity voxels in the
To* dataset. Both surface veins located on top of the GM and diving
veins could be observed (Fig. 3a, red circles and arrows, respectively).
This correspondence between the datasets was confirmed quantita-
tively. Gridpoint distances to a vessel (in mm; Fig. 3b) were negatively
correlated when defined on the SWI and TOF datasets (average Fisher's
transformed correlation across cortical depth [SE] r=-0.26 [0.016]),
confirming that these datasets identify different vessels (veins and
arteries, respectively; Fig. 3c). Distances to vessels defined by the SWI
and T,* datasets were positively correlated (average Fisher's trans-
formed correlation across cortical depth [SE] r=0.44 [0.037]), con-
firming that they both identified veins (Fig. 3c).

When overlaying the T»*-based venogram with the maps of PSC, a
visual correspondence between vein locations and highest PSC was
evident (Fig. 4). This correspondence was most noticeable in the GE-
EPI dataset. Quantification of the correspondence between distance to
a vein (in mm) and PSC showed a significant negative correlation for
GE-EPI (average Fisher's transformed correlation [SE] r=-0.34
[0.030]; non-parametric permutation analysis; p=0.016), confirming
that locations with a lower distance (i.e., closer) to veins had a higher
PSC. No significant correlation was present in the 3D GRASE dataset
(average Fisher's transformed correlation [SE] r=—0.01 [0.052]). We
further explored the cortical depth dependency of PSC by dividing the
gridpoints in four groups according to their distance to veins (see
Supplementary Fig. 2). For GE-EPI, the cortical depth dependency of
PSC was stronger for gridpoints closest to veins (red line in Fig. 2c;
increase from 0.83 PSC close to the WM to 1.87 PSC close to the CSF)
than for gridpoints furthest from veins (blue line in Fig. 2c; increase
from 0.49 PSC close to the WM to 0.88 PSC close to the CSF). However,
even for gridpoints furthest from veins (blue line in Fig. 2¢), an
increase of PSC towards the GM-CSF surface could still be observed.
Moreover, the proximity to veins changed PSC also in deep GM (0.1-
0.3 cortical depth).

Encoding and decoding performance

As a next step, we analyzed the GE-EPI and 3D GRASE datasets
using on a model-based decoding analysis. For both the tonotopy and
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Fig. 2. Cortical depth-dependent percent signal change. (a) Cortical depth-dependent percent signal change (PSC) for subject 2 (left) and subject 5 (right) in the GE-EPI and 3D GRASE
dataset (in black and gray, respectively). (b) Average PSC across 9 hemispheres, separate for GE-EPI and 3D GRASE in black and gray, respectively. Error bars indicate the standard
error across hemispheres. (c) Average PSC across 9 hemispheres for GE-EPI (left) and 3D GRASE (right), separate for gridpoints with varying distance to a vein. Error bars indicate the
standard error across hemispheres. The legend provides the distance to veins (in mm) in superficial and deep cortical depths for each group. WM=white matter; CSF=cerebrospinal fluid.

the modulation model, we examined prediction accuracy throughout
the superior temporal plane, irrespective of cortical depth (including all
voxels that responded significantly to sounds [p < 0.05 uncorrected];
voxels selected per dataset). The modulation model significantly out-
performed the simpler tonotopy model across datasets (two-way
repeated measures ANOVA on Fisher transformed values, on ‘Model’
[tonotopy, modulation] and ‘Method’ [GE-EPI (all), 3D GRASE (all)];
no significant interaction; main effect of ‘Model’; F[1,5]=52.43;
p=0.0008). Overall prediction accuracy was significantly higher in the
GE-EPI than 3D GRASE dataset (Fig. 5a: compare ‘GE-EPI (all)’ to ‘3D
GRASE (all)’; main effect of ‘Method’; F[1,5]=22.54; p=0.0051). To
further explore the origin of the prediction accuracy difference between
the GE-EPI and 3D GRASE dataset, we repeated the analysis of the GE-
EPI dataset while limiting the number of voxels in two ways. First,
when selecting only those voxels within the FOV of the 3D GRASE
dataset, overall prediction accuracy for GE-EPI decreased (Fig. 5a:
compare ‘GE-EPI (all)’ to ‘GE-EPI (FOV GRASE)’), but was signifi-
cantly higher than that of the 3D GRASE dataset (two-way repeated
measures ANOVA on Fisher transformed values; no significant inter-
action; main effect of ‘Model’; F[1,5]=17.07; p=0.0091; main effect of
‘Method’; F[1,5]=8.74; p=0.032).Second, we computed the prediction
accuracy on the GE-EPI dataset using the same number of voxels as
selected in the 3D GRASE dataset (within the FOV of the 3D GRASE
dataset; Fig. 5a: ‘GE-EPI (nvox GRASE)’). Overall prediction accuracy
for GE-EPI was still significantly higher than that of the 3D GRASE
dataset (two-way repeated measures ANOVA on Fisher transformed
values; no significant interaction; main effect of ‘Model’; F[1,5]=19.50;
p=0.0069; main effect of ‘Method’; F[1,5]=12.58; p=0.016).

We next analyzed prediction accuracy per cortical depth (Fig. 5b
and c). For the GE-EPI dataset (Fig. 5b), prediction accuracy increased
towards the CSF for both models (two-way repeated measures ANOVA
on Fisher transformed values, on ‘Model’ [tonotopy, modulation] and
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‘Cortical depth’ [deep, middle, superficial]; no significant interaction;
significant main effect of ‘Model’; F[1,5]=12.55; p=0.017, and main
effect of ‘Cortical depth’; F[2,10]=10.63; p=0.0033). While the mod-
ulation model outperformed the tonotopy model across cortical depths
in the 3D GRASE data, the prediction accuracy was instead stable
across cortical depths, irrespective of the model (Fig. 5¢; two-way
repeated measures ANOVA on Fisher transformed values; no signifi-
cant interaction; no significant main effect of ‘Cortical depth’; signifi-
cant main effect of ‘Model’; F[1,5]=8.02; p=0.037). Thus, while only
the GE-EPI dataset showed a significant increase in prediction accuracy
with cortical depth, the difference in the model performance was the
same across datasets (Fig. 5d). In the GE-EPI dataset only, the voxels
closest to veins (with the highest PSC) had the highest prediction
accuracy (Fig. 5e). The experimental effect (i.e., the difference in
computational model performance), however, was not related to vein
distance (Fig. 5f).

Specificity of cortical depth-dependent tonotopic maps

We compared the mapping of frequency preference (i.e., tonotopy)
based on the trained modulation model across datasets. While small
differences between tonotopic maps across datasets were observed, on
a large spatial scale these maps were significantly similar across
datasets in 5 out of 6 subjects (average correlation across subjects
[Fisher's transformation] r=0.35; p <0.005 in 5 subjects based on
permutation testing). Their large-scale pattern was in accordance with
previously reported tonotopy maps. That is, maps contained a low
frequency cluster on HG, bordered postero-medially and antero-
laterally by preference for high frequencies (first column of Fig. 6
shows tonotopic maps in an individual, and Supplementary Fig. 3
shows tonotopy group maps; Da Costa et al., 2011; Formisano et al.,
2003; Moerel et al., 2012; Saenz and Langers, 2014).
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Fig. 3. Validation of vessel segmentation. (a) Matched slice for a TOF, SWI, and T»* dataset. Arteries are identified as bright voxels in the TOF images. Veins are identified as dark voxels
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(c) Correlation in minimum distance to a vessel across datasets. SWI and TOF distances are negatively correlated (black line), confirming that they identify different vessels. SWI and T»*
are positively correlated (blue line), confirming that they both identify veins. GM=gray matter; WM=white matter; CSF=cerebrospinal fluid.

Next, we explored tonotopy maps separately for deep, middle, and
superficial cortical depths. Fig. 6 shows cortical depth-dependent
tonotopy maps for a representative subject. While the BF across the
cortex was stable throughout deep, middle, and superficial cortical
depths in the 3D GRASE dataset, the overall BF in this particular
subject decreased towards superficial cortical depths (i.e., maps
became more red) in the GE-EPI dataset. For other subjects/hemi-
spheres, both increases and decreases in overall BF were observed. This
suggests the presence of a bias in BF in the GE-EPI dataset.

Three analyses support the presence of a bias in the estimated
frequency tuning in the GE data. First, across hemispheres, the
histogram of the gridpoints’ BF broadens toward the CSF in GE-EPI,
indicating a shift in frequency preference (Fig. 7a and b). Second, to
test if biases in frequency preference were related to a gridpoint's
distance to large veins, the difference between the GE-EPI and 3D
GRASE tonotopy maps (in octaves) was computed separately for voxels
close to and far from veins. The difference between the GE-EPI and 3D
GRASE tonotopy maps (in octaves) was significantly higher in grid-
points close to veins than far from veins (Fig. 7c). This effect was
marginally significant in middle cortical depths (non-parametric
permutation analysis, p=0.078), and significant in superficial cortical
depths (non-parametric permutation analysis, p=0.016). Finally, we
tested if frequency selectivity (i.e., gridpoint's tuning width) was biased
in the GE-EPI and 3D GRASE dataset. The tuning width (TW) of voxels
increased toward the cortical surface in the GE-EPI dataset only
(Fig. 7d). TW was significantly higher in GE-EPI than 3D GRASE for
both middle and superficial cortical depths (non-parametric permuta-
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tion analysis, p=0.047 and p=0.031 for middle and superficial cortical
depths, respectively).

Discussion

At ultra-high fields, because of the high functional CNR, there are
several options as to how fMRI data can be acquired. Based on the data
and analyses presented here, we argue that the optimal choice in
sequence and acquisition parameters depends on the nature of the
neuroscience question being asked and on the subsequent planned
analyses.

Cortical depth-dependent sound responses and their spatial relation
to large vessels

We explored the difference in cortical depth-dependent responses
across the GE-EPI and 3D GRASE dataset by investigating their
dependence on proximity to veins. Given the spatial resolution of the
anatomical data, resulting venograms were likely sensitive to large pial
veins (typically 1-4 mm in diameter; Duvernoy et al., 1981) and surely
missed a large number of smaller (e.g., diving) veins. In the GE-EPI
dataset, locations closer to large veins identified by the venograms
displayed higher BOLD responses. This relationship between vein
distance and GE-EPI PSC was strongest at the GM surface, where we
observed more than a twofold increase in response strength when
comparing locations close to and far from veins. The correspondence
between vein distance and response strength diminished towards the
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Fig. 4. Overlay of percent signal change and vein proximity. The overlay between the T»*-based vein segmentation (green; second and third column) and the percent signal change
(PSC) in response to the natural sounds is shown for three hemispheres. The second and third column show PSC in the GE-EPI and 3D GRASE dataset, respectively. The white dotted

line indicated the location of HG.

WM. Interestingly, though, while the dependence between PSC and
distance to veins decreased it did not disappear in deep GM. That is,
even in deep GM (i.e., close to WM), functional responses were
substantially larger in locations close to veins than in locations further
from veins (1.7 fold increase). Even in the 25% of gridpoints furthest
from veins, response strength increased towards the GM surface (1.8
fold increase).

As a large number of veins could not be identified with the spatial
resolution of our measurements, our results likely underestimated the
effect of veins on PSC, prediction accuracy, and map specificity. It
would be of interest to extend this work at higher spatial resolution
(possibly in animal models; Yu et al, 2016) to more completely
estimate the effect of veins. Importantly, even while underestimating
the effect of veins, our results show that while the dependence between
PSC and distance to superficial veins decreased it did not disappear in
deep GM. Thus, while “large vein” effects can be reduced using post-
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processing techniques that remove voxels in close proximity to vessels
(Ahveninen et al., 2011; Menon, 2002; Polimeni et al., 2010; Yacoub
et al., 2001), our results demonstrate that large vein contaminations
affect every cortical depth in a GE-EPI dataset.

Coverage and PSC beneficial for encoding and decoding analyses

How does the large vein contribution to the GE-EPI dataset affect
the results of the fMRI analysis? Across datasets, the modulation
model significantly outperformed the simpler tonotopy model. This is
in accordance with our previous work (Santoro et al., 2014), and
confirms that auditory cortical processing can be well described by the
frequency-specific tuning of auditory cortical neuronal populations to
joint temporal and spectral modulations. While the datasets give the
same ‘neuroscientific’ answer, we furthermore observed that prediction
accuracy was higher for GE-EPI than for 3D GRASE. Part of this
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between the two encoding models (d). Error bars indicate the standard error across hemispheres. (e-f) Performance of the modulation model (left) and the experimental effect (difference
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deep cortical depths for each group.

difference in performance between GE-EPI and 3D GRASE was due to
the difference in spatial coverage, shown by a reduction in GE-EPI
prediction accuracy when coverage was equalized across datasets. The
remaining difference in performance between GE-EPI and 3D GRASE
may be driven by the higher CNR of GE-EPI compared to 3D GRASE.

The difference in prediction accuracy between the datasets could
also be observed in the cortical depth-dependent decoding analysis.
The consistently higher prediction accuracy in GE-EPI confirms that
the measured GE-EPI responses to sounds, while driven by large veins,
were stable. Moreover, it shows that the GE-EPI responses preserve
information on the auditory neuronal population functional prefer-
ences. Compared to decoding throughout the volume, cortical depth-
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dependent explorations suffer from lower power due to a decreased
number of data points (i.e., voxels). For such analyses, the gain in
prediction accuracy due to the higher PSC of GE-EPI may therefore
prove critical. That is, while a 3D GRASE dataset may not perform
above chance when computing prediction accuracy per cortical depth
because of an insufficient number of voxels or CNR, a GE-EPI dataset
may have sufficient power to detect cortical depth-dependent differ-
ences in information content (Muckli et al., 2015).

Throughout analyses, stronger responses to the sounds coincided
with higher prediction accuracy. One exception can be seen when
further exploring the PSC and prediction accuracy across different
distances to veins (compare Fig. 2¢ to Fig. 5e). That is, the difference in
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voxels in superficial depths of the GE-EPI dataset can be seen, the preferred frequency content across cortical depths was stable in the 3D GRASE dataset.
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PSC between the 25% of gridpoints closest to large veins compared to
the rest of the grid (compare the red line in Fig. 2c to the other lines) is
relatively larger than the corresponding difference in prediction
accuracy (Fig. 5e). This may hint at the presence of a trade-off between
higher PSC in the GE-EPI dataset, and lower noise and possibly higher
spatial specificity in the 3D GRASE dataset.

The effect of unspecific signals on decoding

While the higher prediction accuracy provided by GE-EPI is
valuable, GE-EPI datasets suffer from a large drawback. GE-EPI
decoding is based on stable, but spatially unspecific signals (Yacoub
et al., 2007). Thus, if the goal is to link the observed decoding effect to a
cortical location or depth, these spatially unspecific signals will hamper
the interpretation. That is, unspecific signals may change the real
spatial variation of decoding. A large vein may carry information
outside of its original cortical location (Formisano and Kriegeskorte,
2012; Kriegeskorte et al., 2010; Vu and Gallant, 2015; Yacoub et al.,
2007). In the current study, large veins induced higher PSC at the GM
surface, and GE-EPI prediction accuracies correspondingly displayed a
bias (i.e., increase) towards the GM surface. The increased performance
of a model towards the GM-CSF boundary could thus not be inter-
preted.

Leveraging the higher CNR of GE-EPI could be beneficial if the
contribution of large and unspecific veins could be disregarded. There
is no straightforward solution to this problem. Previous studies have
taken various approaches to ameliorate the influence of unspecific
veins on a GE-EPI dataset. A first approach is to exclude those voxels
that are closest to large veins. The superficial cortical layers may be
excluded altogether, or venous voxels may be identified and excluded
(Koopmans et al., 2010; Lu et al., 2010). Our results show that this
approach does not solve the problem, as voxels throughout cortical
depth (and outside venous voxels) are biased by their proximity to large
veins. In fact, removing such voxels may create a problem, as it will
produce gaps in the dataset (possibly decreasing the ability to interpret
spatial patterns throughout cortical depth). Second, techniques can be
used to suppress the BOLD signal of large veins after acquisition. Based
on the complex fMRI signal, both magnitude and phase, these methods
estimate and remove the part of the signal that originated from
macrovasculature (Menon, 2002; Vu and Gallant, 2015). It would be
of interest to explore the extent to which these techniques can remove
the cortical depth-dependent increase of PSC in submillimeter GE-EPI
datasets, and if their employment would improve the specificity of GE-
EPI datasets (i.e., improve correspondence between cortical depth-
dependent maps as measured by GE-EPI and 3D GRASE). Third, if
information regarding the stimulus and the expected response patterns
is available, such a priori information may be used to identify voxels
with spatially non-specific responses (Muckli et al., 2015). However, as
a priori information on the spatial organization of the cortical stimulus
representation is often not available, this technique is not applicable in
the general case.

Here, we propose an alternative post-processing technique. That is,
our results suggest that while cortical depth-dependent performance of
a single condition cannot be interpreted, the difference in cortical
depth-dependent prediction accuracy between models is unbiased (see
Fig. 5d). Caution must be taken in this approach, as not any differential
effect is safe (Polimeni et al., 2010; Vu and Gallant, 2015). The
comparison between conditions must be very tight, ensuring that the
conditions are affected in the same manner by the macrovasculature.
Model comparison is uniquely suited for dealing with unspecific GE-
EPI signals by differential analysis, as both models use the same GE-
EPI data as input. This ensures that both conditions (i.e., models) are
equally affected by differences in the presence of, and distance to, large
veins. Our results confirm this, as the difference between model
performances was unbiased, interpretable, and in complete accordance
with results from the 3D GRASE dataset.
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Spatial spectficity is crucial for cortical depth-dependent feature maps

Throughout the auditory pathway, neuronal populations can be
characterized by the sound frequency to which they respond best (their
best frequency [BF]). At each processing stage of the auditory
hierarchy, neuronal populations are spatially ordered according to
their BF resulting in one or multiple tonotopic maps. At the level of the
auditory cortex, tonotopic maps are organized on a relatively large
spatial scale. Consequently, tonotopic maps can be delineated with
sufficient accuracy also at 3 T (Moerel et al., 2012; Saenz and Langers,
2014). Beyond this large-scale tonotopic organization, invasive animal
studies suggest that additional topographic organizations may be in
place at a finer spatial scale. For example, invasive studies throughout
species showed that frequency preference is constant perpendicular to
the cortical surface resulting in ‘frequency columns’ (Abeles and
Goldstein Jr., 1970; Shamma et al., 1993; Shen et al., 1999;
Sugimoto et al., 1997). To explore the stability of frequency preference
throughout the cortical depth non-invasively, as was recently achieved
using T, weighted fMRI (3D GRASE; De Martino et al., 2015), an
unbiased high specificity feature tuning estimate per cortical depth was
necessary.

We evaluated mapping frequency preference across datasets both in
a less challenging setting (averaged across cortical depths) and in a
situation demanding high specificity (cortical depth-dependent tono-
topic maps). The large-scale tonotopic distribution was similar across
datasets, and the small differences in tonotopic maps that existed did
not hamper the detection of the major tonotopic gradient. Given its
larger spatial coverage and sensitivity, GE-EPI dataset is preferable in
studies that aim to delineate the large-scale tonotopic map in human
auditory cortex. Instead, consistent with results from visual cortex (De
Martino et al., 2013b; Yacoub et al., 2007), GE-EPI cortical depth-
dependent tonotopic maps were biased both in the assigned preferred
frequency of a location, and in the selectivity of their frequency
preference. Preference biases were observed in middle and superficial
(but not deep) cortical depths, in accordance with reports of higher GE-
EPI specificity close to the WM (De Martino et al., 2013b; Muckli et al.,
2015; Nasr et al., 2016; Polimeni et al., 2010).

The vascular contamination in GE-EPI cortical depth-dependent
topographic maps reported here and previously (De Martino et al.,
2013b; Nasr et al., 2016; Yacoub et al., 2007) may be detrimental to the
planned analysis. For example, Yacoub et al. (2007) showed that
cortical columns as estimated by T and T»* weighted acquisitions
were in accordance with each other only in parts of the visual cortex.
Further, recent work by Nasr et al. (2016) acknowledged that the
surface contamination may have even artificially “enhanced” the
columnar organization in their data. Our data corroborate these
findings, showing that the large vein effect in GE-EPI data penetrates
to the deepest layers. Therefore, mapping columnar organizations or
assigning voxel feature preference using GE-EPI data is compromised
irrespective of cortical depth location.

To summarize, when the goal of a study is to observe cortical
feature preference organized at a fine spatial scale, deep WM GE-EPI
data is preferable over GE-EPI data at more superficial cortical depths.
Studies that aim to evaluate the stability and variability of feature
preference throughout cortical depth (e.g., to evaluate the presence of a
columnar organization, or transformations of stimulus representations
throughout the cortical depth) cannot exclude middle and superficial
GM from the analysis and, consequently, the acquisition of a T»
weighted datasets or multiple experimental conditions to remove the
large vein bias effect is preferable if the continuity and integrity of the
maps is to be preserved.

Conclusions

At ultra-high field, the choice of sequence and acquisition para-
meters should depend on the planned analyses and/or the nature of the
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neuroscience question being asked. While encoding and decoding profit
from the large coverage and high signal in GE-BOLD acquisitions,
cortical depth dependent investigations using T»>* weighted images
must be based on differential comparisons between conditions that are
equally influenced by the macrovasculature. Such differential analysis
has the potential to suppress the cortical depth dependent bias present
in resulting prediction accuracies. For assigning feature preference on
the submillimeter scale, a T» weighted acquisition is preferable.
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