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Abstract 

Accurate characterization of the spatiotemporal relationship between two of the most 

prominent neuroimaging measures of neuronal activity, the 8-13Hz, occipito-parietal 

EEG alpha oscillation and the BOLD fMRI signal, must encompass the intrinsically 

dynamic nature of both alpha power and brain function. Here, during the eyes-open 

resting state, we use a 16s sliding-window analysis and demonstrate that the mean spatial 

network of dynamic alpha-BOLD correlations is highly comparable to the static network 

calculated over six minutes. However, alpha-BOLD correlations showed substantial 

spatiotemporal variability within-subjects and passed through many different 

configurations such that the static network was fully represented in only ~10% of 16s 

epochs, with visual and parietal regions (coherent on average) often opposingly 

correlated with each other or with alpha. We find that the common assumption of static-

alpha BOLD correlations greatly oversimplifies temporal variation in brain network 

dynamics. Fluctuations in alpha-BOLD coupling significantly depended upon the 

instantaneous amplitude of alpha power, and primary and lateral visual areas were most 

strongly negatively correlated with alpha during different alpha power states, possibly 

suggesting the action of multiple alpha mechanisms. Dynamic alpha-BOLD correlations 

could not be explained by eye-blinks/movements, head motion or non-neuronal 

physiological variability. Individual’s mean alpha power and frequency were found to 

contribute to between-subject variability in alpha-BOLD correlations. Additionally, 

application to a visual stimulation dataset showed that dynamic alpha-BOLD correlations 

provided functional information pertaining to the brain’s response to stimulation by 

exhibiting spatiotemporal fluctuations related to variability in the trial-by-trial BOLD 
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response magnitude. Significantly weaker visual alpha-BOLD correlations were found 

both preceding and following small amplitude BOLD response trials compared to large 

response trials.
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Introduction 

The intrinsic electromagnetic oscillations of the brain’s neuronal populations are widely 

studied as functional correlates of cognitive systems. The 8-13Hz alpha oscillation is the 

dominant characteristic of scalp EEG and the most readily measured electrophysiological 

signal of human brain activity. The alpha oscillation is a fundamental feature of both 

spontaneous and task-evoked brain activity and has been shown to play an important role 

in the perception of external stimuli (Babiloni et al., 2006; Haegens et al., 2011; Handel 

et al., 2011; Hanslmayr et al., 2007; Hanslmayr et al., 2013; Linkenkaer-Hansen et al., 

2004) and many cognitive abilities (Basar et al., 2001; Basar et al., 1997; Jensen et al., 

2002; Klimesch, 1999; Mazaheri and Jensen, 2010; Palva and Palva, 2011; Pfurtscheller 

and Lopes da Silva, 1999; Sauseng et al., 2005; Zumer et al., 2014). It is hypothesised 

that it provides a mechanism for gating and regulating the flow of information both 

within and between brain networks by selectively inhibiting task-irrelevant pathways 

(Jensen and Mazaheri, 2010; Klimesch et al., 2007; Zumer et al., 2014). Alpha is also a 

commonly used measure of a subject's level of arousal, attention and cortical excitability 

(Olbrich et al., 2009; Rihs et al., 2007; Rihs et al., 2009; Romei et al., 2008; Roth, 1961; 

Strijkstra et al., 2003; Thut et al., 2006). 

While alpha is therefore clearly an important neural oscillation with considerable 

behavioural and physiological implications, uncertainty still exists about how it is 

generated. Partly, this is a result of the difficulty in accurately localising the generators of 

scalp electromagnetic activity, and also a lack of sensitivity to crucial deep brain 

structures such as the thalamus. Consequently the relationship between the power of the 

occipito-parietal alpha oscillation and the amplitude of the blood oxygenation level 
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dependent (BOLD) fMRI signal has long been of interest for localising the spatial origins 

of this neuronal activity and the cortical and subcortical regions whose activity is 

influenced by it. Commonly, this relationship has been assessed by computing the linear 

correlation between the two signal timeseries. However, the majority of previous studies 

only assess “static” alpha-BOLD correlations over at least several minutes, often as long 

as ten minutes (de Munck et al., 2008; de Munck et al., 2009; Goldman et al., 2002; 

Laufs et al., 2006; Laufs et al., 2003). This neglects both the intrinsic, spontaneous nature 

of alpha oscillations as well as the dynamic information about temporal fluctuations in 

brain activity that they contain.  

Static negative correlations between spontaneous fluctuations in resting-state alpha power 

and the BOLD signal have been observed in primary and lateral visual cortex (Ben-

Simon et al., 2008; de Munck et al., 2008; de Munck et al., 2007; de Munck et al., 2009; 

Feige et al., 2005; Goldman et al., 2002; Laufs et al., 2006; Laufs et al., 2003; Liu et al., 

2012; Mo et al., 2012; Moosmann et al., 2003; Wu et al., 2010; Zhan et al., 2014) as well 

as bilateral frontal and parietal regions resembling the dorsal attention network (DAN) 

(de Munck et al., 2007; Laufs et al., 2006; Mo et al., 2012; Zhan et al., 2014). In addition, 

positive correlations have been less frequently observed in the bilateral insula (Goldman 

et al., 2002), the thalamus (de Munck et al., 2007; Feige et al., 2005; Goldman et al., 

2002; Liu et al., 2012; Wu et al., 2010) and the default mode network (DMN) (Mo et al., 

2012; Wu et al., 2010).  

Static alpha-BOLD correlations therefore encompass brain regions from multiple 

different intrinsic connectivity networks (ICNs) (de Munck et al., 2009; Feige et al., 

2005; Goldman et al., 2002; Laufs et al., 2006; Mo et al., 2012). These ICNs are defined 
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by strong static correlations in fMRI signal between their individual nodes, exhibiting 

high levels of within-network functional connectivity (Cole, 2010; Van Dijk et al., 2009), 

with distinct temporal patterns of activity compared to other ICNs, and hence low levels 

of between-network functional connectivity. By definition therefore different ICNs do 

not remain continually, coherently active with each other for periods of several minutes 

and beyond, otherwise they would be classed as the same ICN. Instead, the static alpha-

BOLD network, which encompasses multiple ICNs (visual, saliency, DAN, DMN), is 

composed of dynamic networks that regularly come in and out of coherence with each 

other over long periods of time (Smith et al., 2012; Zalesky et al., 2014). On average this 

variable relationship with alpha approximates a common pattern of coupling, but to what 

extent this common pattern represents the actual regions involved in alpha fluctuations 

remains to be clarified. 

Functional measures of dynamic neuronal interactions can be extracted by studying how 

the coherence in the activity of different brain regions fluctuates over time. In recent 

years, there has been an increase in studies implementing short time-windows to assess 

such temporally fluctuating, functional relationships both within- and between-ICNs 

(Allen et al., 2014; Chang and Glover, 2010; Gonzalez-Castillo et al., 2014; Handwerker 

et al., 2012; Hutchison et al., 2013b; Schaefer et al., 2014; Tagliazucchi et al., 2012; 

Wilson et al., 2015; Zalesky et al., 2014). These dynamic fMRI functional connectivity 

analyses have revealed that short-term correlations, on the order of tens of seconds, are 

closer to the dynamic temporal organization of brain activity and therefore more 

functionally informative, findings supported by recent MEG studies (Betti et al., 2013; de 

Pasquale et al., 2010). 
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An analogous dynamic analysis is well suited to studying resting-state alpha-BOLD 

coupling, due to the transient nature of alpha power fluctuations. A single, static measure 

of alpha-BOLD correlation can be considered an approximation of the average 

relationship over a period of ten minutes, but provides little useful functional information 

about brain dynamics. A dynamic approach would provide an informative tool to 

investigate the effect of transient alpha-BOLD correlations upon a subsequent task 

response or a transition between behavioural states. The central hypothesis of the current 

study is that the commonly reported static relationship between alpha power and 

visual/DAN/DMN/thalamic BOLD signal is an oversimplification and that these regions 

show temporal fluctuations in the strength of the alpha-BOLD correlation. It is 

acknowledged that the spatial location of alpha-BOLD correlation displays a large degree 

of between-subject variability (Goncalves et al., 2006; Laufs et al., 2006). More recent 

work has begun to show the potential of dynamic EEG-BOLD correlations to elucidate 

temporal patterns of resting-state brain connectivity (Chang et al., 2013; Tagliazucchi et 

al., 2012; Yu et al., 2016), but a basic understanding of the extent and functional 

significance of within-subject variability in alpha-BOLD coupling remains lacking.  

In this study, we conduct a thorough investigation of the spatiotemporal dynamics of 

correlations between occipito-parietal alpha power and the BOLD signal during the eyes-

open resting-state, before applying the method to study how the temporal profile of 

alpha-BOLD correlations fluctuates with variations in the trial-by-trial amplitude of the 

BOLD response to visual stimulation. We initially investigate how an individual’s alpha 

power and alpha frequency contribute to the between-subject variability in the strength 

and spatial pattern of static resting-state alpha-BOLD correlations. We then employ a 
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sliding window analysis to study the temporal dynamics of the resting-state alpha-BOLD 

relationship. Firstly, we compare dynamic to static correlations to investigate whether 

alpha-BOLD correlations can be accurately and meaningfully assessed at short timescales 

of 60, 32, 16s or 8s (30, 16, 8 or 4 MR samples). 

We then investigate if alpha power is consistently correlated with the BOLD signal in the 

brains major ICNs. We assess how often brain regions that are correlated with alpha on 

average are actually uncoupled from alpha and from each other, addressing questions 

such as: whether the spatial pattern of alpha-BOLD coupling passes through different 

configurations, whether an alpha-BOLD network exists that temporally varies in strength, 

sometimes showing periods of no correlation at all, or whether it fractures into different 

components that show structured variations in regional correlations over time. 

We use the extra information provided by this dynamic analysis to investigate differences 

in the spatial pattern and extent of alpha-BOLD correlations between periods of high and 

low alpha power. Finally, using an additional recording of EEG-fMRI responses to visual 

stimulation we investigate how the spatiotemporal pattern of dynamic alpha-BOLD 

correlations relates to the magnitude of the brain’s response to stimulation and whether 

temporal differences in alpha-BOLD coupling are associated with differences in BOLD 

response amplitude. 

 

Methods 

Written informed consent was obtained from all participants and the protocol was 

approved by the Research Ethics Board of the University of Birmingham. Thirty-two 
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right-handed subjects (age = 26 ± 4 years, 16 females) took part in a resting-state EEG-

fMRI study whereby they were instructed to lie-still and keep their eyes open for 6 

minutes. 

 

EEG-fMRI data acquisition 

All experiments were conducted at the Birmingham University Imaging Centre (BUIC) 

using a 3T Philips Achieva MRI scanner. An eight-channel phased-array head coil was 

used to acquire a T1-weighted anatomical image (1 mm isotropic voxels) and whole-

brain T2*-weighted, functional EPI data (180 volumes, 32 slices, 3x3x4 mm voxels, 

TR=2000 ms, TE=35 ms, SENSE factor=2, flip angle=80°). Subject’s cardiac and 

respiratory cycles were continuously recorded throughout using the scanner’s inbuilt 

pulse oximeter and respiratory belt. EEG data were simultaneously recorded from 62 

scalp Ag/AgCl ring-type electrodes distributed according to the 10–20 system (EasyCap, 

Germany) with two additional channels used for recording the electrocardiogram and 

electrooculogram. The impedance at all recording electrodes was maintained below 20 

kΩ. BrainAmp MR-plus EEG amplifiers (Brain Products, Munich) were used for 

recording data at 5 kHz with 0.016-250 Hz hardware filters. Subjects were positioned 

such that electrodes Fp1 and Fp2 were at the magnet isocentre in the foot/head direction 

so as to minimise the gradient artefact (Mullinger et al., 2011). The EEG acquisition 

clock was synchronised with the MR scanner clock, with the TR equal to a multiple of 

the EEG sampling period, to ensure consistent sampling of the artefact waveforms 

(Mullinger et al., 2008).  
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Alpha oscillation measurement 

EEG data were corrected for MRI gradient and pulse (ballistocardiogram, BCG) artefacts 

using average-artefact subtraction in Brain Vision Analyser 2 (BrainProducts, Munich). 

Data were subsequently down-sampled (500Hz), band-pass filtered (1-30Hz) and re-

referenced to an average of all non-noisy channels. Separately for each subject, data were 

then further processed with independent component analysis (fastICA (Hyvarinen, 1999)) 

to extract the alpha oscillation from other brain processes and background noise (Becker 

et al., 2011; Mayhew et al., 2013b; Scheeringa et al., 2011b). Lateralised alpha 

components were not consistently present in all subject’s decompositions so we could not 

separately study the activity of these sources, i.e. compared to central components. Alpha 

ICs exhibit a small degree of variability between subjects in their spatial topographies, 

however overall we observed a high degree of consistency, including central posterior 

topographies along with more lateral regions, which together encompass bilateral 

occipito-parietal cortex in all cases. The group median average number of alpha 

components was 4, range 2-6. Scalp topographies of the static alpha power components 

of 12 representative subjects are shown in Figure S1. Therefore to ensure accurate 

measurement of the alpha oscillation only ICs with bilateral or lateralized 

parietal/occipital scalp topography and a clear spectral peak between 8-13Hz were 

selected and retro-projected into channel space. Data from parietal/occipital channels 

PO3/4, POz, O1/2 and Oz were then epoched based on the timing of each MRI volume 

trigger (0-2000ms). For each subject, we then calculated the alpha power topography of 

every 2s (TR) interval to assess temporal variability in the spatial pattern of alpha power. 
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To investigate how similar each TR’s alpha distribution was to the static distribution, for 

each subject we then calculated the spatial correlation between their static alpha 

topography and the alpha topography of each TR period. Time-frequency spectrograms 

of oscillatory power were calculated for all TR epochs using the continuous Morlet 

wavelet transform in the Fieldtrip toolbox (http://fieldtrip.fcdonders.nl/) (Oostenveld et 

al., 2011). The mean alpha power of each TR epoch was calculated between ±1Hz of 

each individuals’ alpha frequency (IAF). Individual mean alpha power (IAP) across TR 

epochs was also calculated. The alpha power timecourses were averaged across the six 

channels, mean subtracted and then normalised by the maximum power to control for 

differences between subjects. 

  

In each subject we further identified two components which represented eye-blinks (EB) 

and eye-movements (EM), comparable to previous reports (Gao et al., 2010; Jung et al., 

2000; Plochl et al., 2012). These were easily identified from a very strong central (EB) or 

dipolar, lateralized (EM) frontal topography and transient spikes (EB) or smoother power 

fluctuations (EM) of activity in the EEG timeseries (Figure S2). The clear identification 

of eye blink components throughout every subject’s data provides evidence that none of 

our subjects fell asleep during the scan. The effect of eye movements on resting alpha-

BOLD correlations has been sparsely investigated to-date therefore we quantified both 

EB and EM effects from the EEG to enable us to study whether alpha power or alpha-

BOLD coupling were modulated by either eye movements or eye blinks. A timeseries of 

both EB and EM power was derived by taking the absolute value of the Hilbert envelope 
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of the EB and EM IC in each subject, the mean power of each TR epoch was then 

calculated to construct a regressor for subsequent fMRI analysis.  

 

fMRI data preprocessing 

All fMRI analyses were carried out using FSL 5.0 (www.fmrib.ox.ac.uk/fsl). Prior to 

statistical analysis, automated brain extraction using BET and motion correction using 

MCFLIRT (Jenkinson et al., 2002) were applied. At this point, two subjects were 

removed from further analysis due to excessive (>3mm) head motion. Physiological noise 

correction, using the standard RETROICOR procedure of linear regression (Glover et al., 

2000) was then implemented using in-house MATLAB code. Subsequently, spatial 

smoothing (5 mm FWHM Gaussian kernel), high-pass temporal filtering (100s cutoff) 

and registration to high-resolution anatomical and MNI standard brain images were 

performed. 

 

fMRI GLM analysis 

GLM analysis was performed to identify the brain regions with significant static 

correlations between the entire BOLD signal and the entire alpha power timeseries. For 

each subject, first-level design matrices were formed from nine regressors: 1) the alpha 

power timecourse convolved with the canonical double-gamma haemodynamic response 

function; 2) respiration volume per unit time (RVT) (Birn et al., 2008); 3) variation in the 

heart-rate interval (HRI) (Chang et al., 2009); 4-9) six motion parameters of head 

translation and rotation. None of the regressors were orthogonalized with respect to any 
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other regressors as recommended by previous work (Chang et al., 2009; Chang and 

Glover, 2009; de Munck et al., 2009). 

The RVT and HRI were calculated from the physiological data to control for potential 

differences in heart-rate and depth of respiration throughout the experiment. Previous 

work has reported a relationship between alpha and physiological variability (de Munck 

et al., 2008; Yuan et al., 2013). Modelling fluctuations in RVT and HRI with the GLM 

allows us to account for BOLD signal variability that is unrelated to neuronal activity, 

and removing these potential confounds will improve our estimate of the alpha-BOLD 

relationship. 

First-level statistical analyses were performed using FEAT 6.01. Positive and negative 

contrasts were set on all regressors. Second-level, fixed-effects analysis was used to 

calculate the group average of static alpha-BOLD correlation maps. Additional group-

level regressors were specified in the fixed-effects analysis, formed from individual 

variability in: 1) the IAF; 2) IAP, to investigate whether the strength of subject’s alpha-

BOLD correlation was related to basic characteristics of their alpha oscillation. All Z-

statistic images were thresholded using clusters determined by Z>2.3 and a cluster 

corrected significance threshold of p<0.05. 

Two additional GLM analyses were performed including the timeseries of EB and EM as 

regressors to investigate respectively the brain regions where BOLD signal correlated 

with eye-blinks and eye-movements as defined from the EEG data. 

 

Definition of fMRI ICNs 
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BOLD data were temporally concatenated across subjects and MELODIC (Beckmann 

and Smith, 2004) was used to decompose this group data into 20 maximally spatially-

independent components. From these components seven ICNs were identified by visual 

inspection: 1) default mode (DMN); 2) dorsal attention (DAN) 3) saliency (SAL); 4) 

sensorimotor (SM); 5) auditory (AD); 6) primary visual (PV) and 7) lateral visual (LV) 

networks (Figure S3). The primary nodes of each ICN were used to define regions of 

interest (ROIs) from these component maps, following previous work (Khalsa et al., 

2013; Przezdzik et al., 2013). DMN: posterior cingulate (PCC), medial prefrontal cortex 

(mPFC); DAN: left intra-parietal sulcus (IPS) and lateral orbitofrontal cortex (OFC); 

SAL: left insula and anterior cingulate (ACC). The sensory ICNs (SM, AD, PV, LV) 

were divided into left and right hemisphere ROIs. All ROIs were defined by centering a 

3x3x3 voxel cube (12x12x16mm) on the peak z-statistic voxel, located centrally in each 

region. Anatomical masks (Harvard-Oxford subcortical atlas, FSLatlas tools) were used 

to define an MNI-space ROI for the bilateral thalamus. 

 

Characterizing dynamic alpha-BOLD relationships 

The BOLD data were further processed to remove the trends of RVT and HRI using 

linear regression along with the mean white matter and ventricular signals were extracted 

from subject specific masks defined from each subject’s T1-weighted anatomical image 

using FAST (Zhang et al., 2001). For each subject, the mean BOLD timecourse across 

voxels was then extracted from each ROI. 
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For each subject, the 6-minute alpha power timecourse was convolved with the canonical 

HRF to account for the haemodynamic delay and then divided into short epochs for 

dynamic analysis. The choice of window length is crucial, as previous work has shown 

results are strongly dependent on data length (Keilholz et al., 2013; Shakil et al., 2016; 

Wilson et al., 2015), see (Hindriks et al., 2016; Hutchison et al., 2013a; Leonardi and Van 

De Ville, 2015; Shakil et al., 2016) for excellent guidelines on dynamic analysis.  Our 

choice of epoch length was guided by previous studies of dynamic fMRI functional 

connectivity, the majority of which used windows in the range 30-120s (Allen et al., 

2014; Betzel et al., 2016; Chang and Glover, 2010; Chang et al., 2013; Gonzalez-Castillo 

et al., 2014; Hutchison et al., 2013a; Hutchison et al., 2013b; Keilholz et al., 2013; 

Kiviniemi et al., 2011; Leonardi and Van De Ville, 2015; Shakil et al., 2016; 

Tagliazucchi et al., 2012; Thompson et al., 2013a; Thompson et al., 2013b; Wilson et al., 

2015; Yu et al., 2016; Zalesky et al., 2014) but lower bounds of 12s and 16s are also 

described (Shakil et al., 2016; Thompson et al., 2013a; Wilson et al., 2015). Dynamic 

measures are limited by the inescapable trade-off that increasing temporal resolution 

comes at the cost of a decrease in the fidelity of correlations calculated over fewer time 

points. Appropriate window size is related to the frequency content of the data as the 

lowest frequency content of the signal dictates the minimum window size. A previous 

investigation identified appropriate FC epoch lengths based on the data properties 

(Leonardi and Van De Ville, 2015). For the filtering used in the present study their 

criteria recommend that we use epoch lengths between 12-60s. Therefore to conform 

with this, to provide comparison with previous work and to obtain the best possible 

temporal resolution to study variations in alpha power, we use 
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four subsets of epochs of duration: 60s, 32s, 16s, 8s (30, 16, 8, 4 TRs respectively) with a 

50% overlap, resulting in 11, 21, 44, 89 epochs per subject respectively. The timeseries 

of each of these alpha power epochs was then correlated with the corresponding temporal 

epoch of the BOLD data from each brain voxel, creating a sliding window correlation 

analysis to characterise the temporal dynamics of the alpha-BOLD relationship across the 

whole brain. This approach is analogous to many previous studies of dynamic functional 

connectivity (Handwerker et al., 2012; Hindriks et al., 2016; Hutchison et al., 2013b; 

Keilholz et al., 2013; Shakil et al., 2016; Wilson et al., 2015) but here we use EEG alpha 

power instead of a seed BOLD timecourse. For each epoch, a voxel-wise map of 

Pearson’s R-values was created. Each epoch R-value map was masked with each ICN 

ROI to extract the mean R-value per ROI which resulted in a timeseries of R-values 

characterising the temporal dynamics of the alpha-BOLD relationship for each ROI. For 

each subject and each ROI, the static correlation between the whole 6-minute timeseries 

of BOLD signal and alpha power was also calculated. 

We evaluated our measures of dynamic alpha-BOLD correlation for each ROI in three 

ways: 1) by comparing the group mean regional static correlation strength (R-value) to 

the group mean dynamic correlation for each of the four epoch durations. A repeated 

measures ANOVA (Factors: Epoch (Static,60s,32s,16s,8s) x ROI) was used to test for a 

significant difference in R-value between static and dynamic correlation methods; 2) for 

each ROI, the subject’s static alpha-BOLD correlation strength was correlated against 

their mean number of epochs that exhibited a positive or a negative alpha-BOLD 

correlation; 3) For display purposes volumetric maps of the alpha-BOLD correlation 

were transformed to Z-statistics and averaged across epochs for each subject. Group 
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mean statistical maps were then calculated using random effects 2
nd

 level analysis 

(p<0.001 uncorrected) in SPM8 (www.fil.ion.ucl.ac.uk/spm/). 

At this point, from the options considered the 16s epoch duration was identified as 

providing the most preferable combination of increased temporal resolution and robust 

measurement of the alpha-BOLD relationship (see Results). It isn’t feasible to concisely 

present a detailed study of the many features of alpha-BOLD dynamics for all window 

lengths so for brevity we used 16s epochs for all subsequent analyses. The timecourse of 

total relative movement, obtained from MCFLIRT as a summary parameter of each 

subject’s head motion, was used to calculate the correlation between alpha power and 

head motion for each 16s epoch. Epochs with a significant (p<0.05) alpha-motion 

correlation were removed from further analysis. On average, 4.1±1.6 out of 44 epochs 

(range 1 to 7) were removed which ensured that dynamic alpha-BOLD correlation 

measurements are minimally confounded by artefacts or noise. 

 

Proportion and distribution of dynamic alpha-BOLD correlations  

For each ROI we assessed the frequency of alpha-BOLD correlation strength for each 

subject, and then calculated the group mean proportion of epochs that showed: a) positive 

or negative correlations (R > 0 or R < 0); b) or strong correlations (R > 0.5 or R < -0.5.). 

These data were plotted as group histograms to visualize the distribution of dynamic 

correlations across all subjects. 

We wished to understand how often the spatial pattern of dynamic alpha-BOLD 

correlations resembled the static correlation network and how often it passed through 
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different spatial configurations. Therefore we compare the proportion of the time that the 

spatial pattern of dynamic alpha-BOLD correlations reflects that of the static correlation 

(i.e. negative correlation with visual areas and the DAN occurring concurrently with a 

positive correlation with the DMN and thalamus) compared to how often the dynamic 

correlations reflect the inverse of the static correlation (positive alpha-visual/DAN or 

negative alpha-DMN/thalamus correlations). Therefore we calculated the proportion of 

epochs during which the BOLD signals of the PV, LV and IPS ROIs were all negatively 

correlated with alpha power whilst BOLD signals in the PCC and THL were positively 

correlated with alpha. We further calculated what proportion of the time alpha was 

correlated only with different sub-regions of this network, such as just PV and LV. These 

comparisons informed us about the combinations of regional correlations, and the extent 

to which the regions that exhibited a negative, static BOLD-alpha correlation on average 

(i.e. PV, LV, DAN) are uncoupled from alpha power (and by extension uncoupled from 

each other) on a shorter temporal scale. Finally we demonstrate some representative 

examples of the unusual configurations that the spatial patterns of alpha-BOLD 

correlations can take. For each subject we found the epochs where the following 

correlations, which diverged from the static behavior, were observed: (A) positive alpha-

BOLD correlations with LV, (B) positive with PV, (C) negative with THAL and (D) 

negative with PCC. All subjects contributed epochs to the group averages showing that 

these configurations were consistent across the group. For each example, we pooled the 

epochs across subjects and calculated group mean maps of voxel-wise alpha-BOLD 

correlations using random effects 2
nd

 level analysis (p<0.001 uncorrected) in SPM8 

(www.fil.ion.ucl.ac.uk/spm/).. 
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Investigating the effect of dynamic alpha power on alpha-ICN correlations 

We finally investigated whether the strength of the regional alpha-BOLD correlation 

varied with temporal fluctuations in alpha power within the session. Within each subject, 

epochs were ranked by their alpha power to enable comparison of alpha-BOLD 

relationships between periods where alpha power was low compared to high. Firstly, for 

each subject the proportion of epochs with alpha power above and below the mean value 

was calculated. Secondly, for each ROI, the epoch R-values of alpha-BOLD correlation 

were sorted into two subgroups; the epochs with the highest and lowest thirds of alpha 

power respectively. Thirds were chosen, rather than a median split, because of the uneven 

distribution of alpha power across epochs (see Figure S6) and all subjects had at least 

33% of epochs with power greater than the mean value. A repeated measures ANOVA 

(Factors: ROI x Power (Lower, Upper)) was used to test for a significant effect of alpha 

power upon the alpha-BOLD correlation strength. Where appropriate (i.e. only if a 

significant main effect or interaction was observed) post-hoc t-tests were used to compare 

correlation values between lower and upper alpha power within each ROI. Thirdly, to 

visualize differences in the spatial pattern of alpha-BOLD correlations between low and 

high alpha power epochs across the whole brain, the voxel-wise maps of alpha-BOLD 

correlation were sorted into lower and upper thirds based on the corresponding epochs 

alpha power and then averaged for each subject. Group mean statistical maps of alpha-

BOLD correlations for upper and lower alpha thirds were then calculated using random 

effects 2
nd

 level analysis (p<0.001 uncorrected) in SPM8.  
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Investigating the relationship between dynamic alpha-BOLD correlations and single-trial 

BOLD responses to stimulation. 

An additional EEG-fMRI dataset was used to investigate whether the temporal dynamics 

of the alpha-BOLD correlation relate to the magnitude of the brains response to 

subsequent visual stimulation. Full experimental details can be found in (Ostwald et al., 

2010; Porcaro et al., 2010) but briefly in 14 healthy young adult subjects, 85 100%-

contrast left-hemifield checkerboard visual stimuli were displayed for 2s separated by an 

interval between 16.5-20s. 64-channel EEG data were recorded simultaneously with 

BOLD fMRI data at 3T, TR = 1500ms, TE = 35ms, 2.5 x 2.5 x 3mm voxels, 20 slices 

centered on visual cortex. The timecourse of ongoing alpha power was extracted using 

equivalent ICA methods to those described above and convolved with the canonical 

HRF. BOLD data were standardly preprocessed and the ICN ROIs employed above were 

registered to this task data along with the right primary visual cortex (rV1) ROI of 

significant BOLD response to the visual stimulation described in (Mayhew et al., 2013b). 

Single-trial BOLD response timecourses were extracted from the rV1 ROI and their peak 

amplitudes measured. Trials were then sorted into lower and upper 25% quartiles of 

response amplitude and we compared the spatiotemporal profile of alpha-BOLD 

correlations between these largest and smallest BOLD responses. 

Dynamic, voxel-wise alpha-BOLD correlation maps were then calculated in this task data 

using a series of 13.5s (9 TR) duration epochs centered on every volume of the dataset. 

For each trial, a 4D volumetric timeseries was created from the nine most temporally 
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local epochs, centered on TR = -4,-3,-2,-1,0,1,2,3,4 relative to the stimulus onset, 

therefore encompassing the period -12s preceding to +12s following stimulation. This 

formed a timeseries of alpha-BOLD correlation maps that enabled us to track the regional 

variation in alpha-BOLD dynamics from pre- to peri- and post-stimulus time points. 

These correlation map timeseries were arranged into quartiles corresponding to the trials 

with lower and upper 25% of BOLD response amplitude. The rV1 ROI, along with a 

combined visual cortex ROI (PV and LV) as well as the IPS and INS ROIs were then 

used to extract mean alpha-BOLD correlations for each of the nine epochs and for both 

quartiles. A repeated measures ANOVA (factors: BOLD quartile x Epoch) was used to 

test for significant differences in alpha-BOLD correlation in each ROI. For display 

purposes group mean statistical maps of alpha-BOLD correlations for upper and lower 

BOLD response quartiles, as well as significant voxel-wise differences between them, 

were then calculated using random effects 2
nd

 level analysis (p<0.001 uncorrected) in 

SPM8. 

 

Results 

Static alpha-BOLD correlations 

Figure 1A displays the group GLM results of the brain regions where the resting-state 

BOLD signal was significantly correlated with the whole 6-minute alpha power 

timecourse. In agreement with previous reports we found significant static alpha-BOLD 

positive correlations in the bilateral thalamus and the DMN, as well as significant static 

negative correlations in bilateral primary and lateral visual regions, the DAN and small 
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areas of the insula cortex (de Munck et al., 2007; Goldman et al., 2002; Laufs et al., 

2006; Liu et al., 2012; Mo et al., 2012; Moosmann et al., 2003; Zhan et al., 2014). 

Modelling variations in the depth of the subject’s breathing (RVT) and cardiac rate (HRI) 

as confounds of no interest in the GLM showed that BOLD responses were significantly 

correlated with these physiological fluctuations in widespread areas of grey matter in 

agreement with previous work (Figure S4) (Birn et al., 2008; Chang et al., 2009). 

Inspection of first-level statistical maps revealed that all subjects showed at least one 

regional alpha-BOLD correlation comparable in polarity to the spatial map of group-level 

static correlation, but also highlighted between-subject variability in alpha-BOLD 

correlations (Goncalves et al., 2006). For instance, four subjects exhibited no significant 

negative alpha-BOLD correlation in any visual region. Six subjects showed a negative 

alpha-BOLD correlation in primary visual but not lateral visual regions and seven 

subjects showed negative alpha-BOLD correlation in lateral but not primary visual 

regions. These results indicate the between-subject variability in static alpha-BOLD 

correlations. 

Group GLM analysis revealed a significant positive relationship between the negative 

alpha-BOLD correlation and the between-subject variability in the IAP, predominantly in 

occipital and parietal cortex (Figure 1B). In addition a significant negative relationship 

between the negative alpha-BOLD correlation and the between-subject variability in the 

IAF was seen mainly in occipital, parietal and insula cortex (Figure 1C). We observed no 

correlation (R=-0.24, p=0.21) between IAF and IAP measures indicating that these 

explain different components of between-subject variance in the data. These correlations 

can be interpreted as showing that subjects with lower IAF, or higher IAP, exhibited 
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stronger magnitude negative alpha-BOLD correlations in the identified brain areas. Both 

IAP and IAF correlations were widespread in primary and lateral visual cortex. The 

largest spatial differences between IAP and IAF were observed outside of visual regions, 

with IAF explaining alpha-BOLD correlation strength in the insula, the lateral geniculate 

nucleus (LGN), and anterior IPS regions of the DAN, compared to IAP showing stronger 

correlations in posterior IPS (Figure 1C). No significant between-subject variation with 

either IAP or IAF was observed in positive alpha-BOLD correlation regions of the 

thalamus and DMN. 

 

Dynamic alpha-BOLD correlations during the resting-state 

The group mean spatial correlation between the static and dynamic (TR) scalp 

topographies of alpha power was R= 0.65 ± 0.06, showing that in general the spatial 

distribution of alpha was temporally consistent and closely resembled the average. 

Henceforth we assumed the occipito-parietal alpha source to be spatially static and 

investigated the temporal variability of regional alpha-BOLD relationships using 

dynamic correlations calculated over short temporal windows of either: 60, 32, 16 or 8s. 

For each ROI, the strength and sign of the alpha-BOLD correlation were highly 

comparable between the static value and the dynamic epoch calculations down to 

windows as short as 16s (Figure 2A). The 8s correlation shows a substantial drop in 

correlation strength compared to the other epoch lengths (41% compared to 16s), 

demonstrating a decrease in the fidelity of the measured correlation for epochs containing 

very few timepoints. All subsequent results are presented using the more robust 16s 
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epoch length. It should be noted that we do not attach any special relevance or advantage 

to 16s epoch specifically, but just wish to investigate alpha-BOLD dynamics with a good 

trade-off between temporal resolution and signal to noise ratio. Repeated measures 

ANOVA found a significant effect of ROI (F(4.3,117) = 10.6, p=0.001) as would be 

expected, but no significant effect of Epoch (F(1.9,504) = 1.8, p=0.18), or interaction 

between Epoch and ROI (F(9,242) = 0.89, p=0.51). Figure 2B shows the group mean 

voxel-wise map of dynamic alpha-BOLD correlations averaged across all 16s epochs. 

Dynamic alpha-BOLD correlations were negative in primary visual, lateral visual and 

DAN regions and positive in the thalamus and DMN, showing a very strong spatial 

similarity to the static correlations. This demonstrated that dynamic correlations 

accurately characterised the mean relationship, providing similar information to static 

correlations, but with greater temporal information. It is interesting to note that the 

variability in the alpha-BOLD correlation was largely consistent between regions, aside 

from the ACC where variability was lower, suggesting that correlation stability does not 

vary greatly across the brain.  

In addition, for each ROI, we observed that the between-subjects variability in the static 

alpha-BOLD correlation was significantly correlated with the number of epochs 

displaying an alpha-BOLD correlation of a certain polarity (Figure S5) i.e. subjects with 

the largest magnitude negative static alpha-BOLD correlation had the largest number of 

negatively correlated alpha-BOLD epochs, and vice-versa. Together these results 

demonstrate that alpha-BOLD correlations can be calculated using short temporal 

windows of 16s (8 MR samples), revealing highly comparable values to those of static 
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correlations. Therefore we conclude that dynamic correlations extract information that 

enables more detailed study of the temporal fluctuations between alpha and BOLD. 

 

Proportion and distribution of dynamic alpha-BOLD correlations  

Measurement of dynamic alpha-BOLD correlations allows us to move forward from the 

simplistic assumption of a static, single-polarity, alpha-BOLD relationship and examine 

the frequency of individual regional relationships and also the proportion of time in 

which alpha power is correlated with the BOLD signal from different regions. 

Figure 3 shows, for each ICN, the group mean proportion of epochs with a negative or 

positive correlation (A) or a strong negative or positive correlation (B), for group 

histograms see Figure S6. Surprisingly, no ROI showed a bias in correlation polarity 

greater than ~60/40% in favour of its group mean static correlation. PV was the ROI with 

largest disparity with 61% (39%) negative (positive) alpha-BOLD correlation epochs. LV 

(59/41%) and IPS (58/42%) showed more negatively than positively correlated epochs 

and THL (54/46%), and DMN (53/47%) regions more positive than negative epochs, but 

most regions showed only a small divergence from a 50/50% split (Fig 3A). Further 

analysis showed that 27% of epochs exhibited a strong (R<-0.5) negative PV-alpha 

correlation, however approximately half that amount (13%) showed a strong (R>0.5) 

positive PV-correlation (Fig 3B). For all ROIs the most common direction of dynamic 

correlation matched the polarity of the static correlation, as would be expected. However, 

surprisingly no ROI other that PV exhibited more than a quarter of epochs with a strong 

dynamic correlation of the same polarity as the static correlation. 
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Further analysis of dynamic correlation proportions is summarized in Table 1 and Figure 

4. Figure 4 displays the group mean proportion of epochs during which the dynamic 

analysis detected the same alpha-BOLD correlation polarity as was demonstrated in the 

static analysis. The first six segments, moving clockwise (purple to grey) around the chart 

represent (in total) the 59% of the time when a negative PV-alpha correlation was 

observed. This total time is divided into subsections showing when, e.g. alpha was 

concurrently negatively correlated with PV, LV and IPS as well as positively correlated 

with PCC and THL (black). Whereas the time (45%) that both PV and LV were 

negatively correlated is represented by the first four segments (purple to cyan). The last 

three segments (yellow to red) represent the 41% of the time when positive PV-alpha 

correlations were observed, including 20% of the time when one of either LV or IPS was 

negatively correlated (yellow). Figure 4 further shows that 43% of the time, an opposite 

polarity alpha-BOLD correlation was observed between either PV&IPS or between 

PV&LV (light blue to yellow). Table 1 contains other interesting combinations of 

regional alpha-BOLD correlations, for example that either PV or LV were negatively 

correlated with BOLD 75.1% of the time. 

In general, we observed that only 7.7% of epochs showed the same polarity of dynamic 

correlation as was shown in the static correlation (i.e. negative PV, LV&IPS and positive 

PCC&THL, Fig 1). However, the opposite situation hardly ever occurred, and it was also 

very rare for both PCC and THL to be negatively correlated with alpha at the same time 

as PV, LV and IPS. Only during 35% of epochs did we observe that all of the PV/LV/IPS 

ROIs were concurrently negatively correlated with alpha power. Approximately 44% of 

epochs showed a negative correlation with alpha between two ROIs out of PV/LV/IPS. In 
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approximately 10% of the total epochs one of those three ROIs was uncoupled from 

alpha. 

Further demonstration that resting-state alpha-BOLD coupling adopts spatial 

configurations quite different from that of the static average is shown in Figure 5. We 

observed that during periods of positive alpha-LV correlation (Fig 5A), alpha was also 

positively coupled to bilateral auditory and sensorimotor cortex as well as the 

middle/anterior cingulate cortex but no correlation with primary visual areas was seen. 

The map during positive alpha-PV correlations (Fig 5B) was quite different, it also 

showed cingulate regions but no other sensory cortex. Instead weak positive alpha-BOLD 

coupling was seen in DMN regions. The map during negative alpha-THL correlations 

(Fig 5C) showed that alpha was also strongly negatively correlated with the whole visual 

cortex during these periods. Also observed in Fig 5C were correlations with PCC and 

mPFC DMN regions, and bilateral parietal and sensorimotor cortex. Finally, during 

epochs that exhibited negative alpha-PCC correlations (Fig 5D), negative correlations 

with the rest of the DMN were seen and the only other correlation was negative coupling 

between alpha and visual cortex.  

 

Regional effect of dynamic alpha power on alpha-ICN correlations 

We further investigated whether the instantaneous power of the alpha oscillation affected 

the temporal dynamics of the alpha-BOLD correlation in a regionally dependent manner. 

For all subjects, we found that a larger proportion of epochs exhibited alpha power values 

that were less than the mean within-run value (58.9±4.3% of epochs, group mean ± std) 
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than were greater than the mean 41.1±4.2% (Figure S7). This result shows that the alpha 

oscillation is more commonly found in a weakly-synchronised than a highly-

synchronised state during awake rest. These findings are in accordance with descriptions 

and models of the non-linear nature of the alpha oscillation and that longer periods of 

quiescent, low power are intrinsically interspersed with transient bursts of high power 

(Freyer et al., 2009). 

Figure 6A compares the group mean dynamic correlation for each ROI between epochs 

with the lowest and highest third of alpha power values. We observed that the regional 

alpha-BOLD correlation displayed a dependency upon alpha power. Repeated measures 

ANOVA showed a significant effect of Power (F(1,27)=4.5, p=0.016), ROI 

(F(4.9,132)=4.9, p=0.001) and a significant interaction between Power x ROI  

(F(4.3,118)=6.2, p=0.008). Selective post-hoc student’s t-tests were subsequently used to 

highlight the ROIs contributing to this interaction effect. This showed that PV-alpha, 

INS-alpha and ACC-alpha correlations were significantly more negative (p=0.004, 

p=0.007 and p=0.002 respectively during low than during high alpha power epochs, 

which remain below the 0.05 significance threshold after correcting for multiple (seven) 

comparisons). Additionally, it was notable that during the epochs of lowest alpha power, 

the alpha-BOLD correlation in PV was not significantly different from zero (p=0.64), 

whereas in the epochs of highest alpha power the PV-BOLD correlation was strongly 

negative. The largest difference in correlation between upper and lower alpha power 

epochs was observed in the INS and ACC regions of the saliency network, where the 

alpha-BOLD correlation was positive in lower epochs, and negative in the upper epochs. 

This strong dependence of saliency-alpha correlations upon alpha power suggests the 
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presence of a high-degree to temporal variability which may explain why this network is 

only weakly correlated with alpha in static correlations (Figure 1). 

In contrast, IPS-alpha and LV-alpha correlations were more negative during epochs when 

alpha power was low than epochs when it was high, although neither of these reached 

significance (p=0.18 and p=0.09 respectively). Alpha correlations with the DMN were 

significantly more positive in the mPFC when alpha power was low compared to high 

(p=0.03). Alpha correlations with THL were also more positive when alpha power was 

low compared to high (p=0.04). 

Further elucidation of these findings is provided by the group mean spatial maps of 

voxel-wise alpha-BOLD correlations plotted for both the highest and lowest alpha power 

epochs in Figure 6B&C. The lower alpha power epochs showed a greater spatial extent of 

negative alpha-BOLD correlation in both LV and IPS areas whereas PV-alpha and INS-

alpha correlations were much stronger and more widespread in higher alpha power 

epochs. Also evident were widespread negative alpha-BOLD correlations in secondary 

somatosensory regions during low alpha power epochs and in subcortical LGN and 

brainstem areas during high alpha power epochs. The conjunction of areas of alpha-

BOLD correlation that occurred in both lower and upper alpha power epochs was most 

prevalent in the DAN, particularly the anterior regions. A positive alpha-BOLD 

correlation in the thalamus, the ACC and the DMN was only observed in lower alpha 

power epochs. 
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The relationship between the BOLD signal and spontaneous eye-blinks and eye–

movements 

Additional GLM analyses showed that the power of eye-blinks derived from ICA of the 

EEG data correlated positively with the BOLD signal in PV, the cuneus, the LGN and 

mid-THL; and negatively with the BOLD signal in LV and in the parietal and inferior 

and medial frontal regions of the DAN (Figure 7A&B). In comparison the power of eye 

movements were found to only correlate positively with BOLD signal in PV, the cuneus, 

the LGN and mid-thalamus as well as widespread cortical regions consisting of anterior 

cingulate, bilateral insula, parietal and frontal eye-field regions (Figure 7C). This 

relationship can be interpreted as showing that larger EB and EM are associated with 

increased BOLD signal in primary visual, thalamic and fronto-parietal areas showing our 

novel EEG derived metrics are consistent with previous work using eye tracking (Bristow 

et al., 2005; Guipponi et al., 2014; Hupe et al., 2012). Interestingly the inclusion of the 

EB and EM regressors in the GLM only slightly weakened the statistics of the main 

effect static alpha-BOLD correlation [peak Z-statistic = 13.6 (without EB/EM); Z = 13.3 

(with EB/EM)] demonstrating a large degree of orthogonality between the BOLD signal 

correlates of ocular artefacts and alpha power.  

We compared the occurrence of eye blinks and movements with dynamic epoch 

measurements of alpha power by correlating measures of alpha power with EB and EM 

calculated over equivalent 16s duration epochs. A significant relationship between either 

EB-alpha or EM-alpha was found in only 3 and 4 subjects respectively, suggesting that 

our dynamic measurement of alpha-power reflects spontaneous fluctuations in the 



31 

 

neuronal signal and is predominantly independent of modulations driven by eye 

movements and closures. 

 

The relationship between dynamic alpha-BOLD correlations and single-trial BOLD 

responses to stimulation 

To illustrate the wider utility and functional importance of the dynamic alpha-BOLD 

correlation approach presented above, we applied the method to relate pre-, peri and post-

stimulus temporal variations in alpha-BOLD correlations to the magnitude of the brains 

response to a simple visual stimulus. Figure 8 illustrates the temporal profile of alpha-

BOLD correlations in rV1, bilateral PV+LV, IPS and INS ROIs for lower and upper 

quartiles of the rV1 BOLD response to stimulation. It should be noted that only the first 

and last points fully capture the pre- and post-stimulus time window. 

We found that the large difference in BOLD response amplitude between trial quartiles 

was associated with significant pre-stimulus and post-stimulus differences in the strength 

and spatial extent of alpha-BOLD correlation in visual cortex regions (Figure 8A&B).  

Repeated measures ANOVA found a significant effect of Sorting and of Epoch upon the 

alpha-BOLD correlations for both rV1 (F(1,9)=7.9, p=0.02); (F(8,72)=5.2, p=0.01) and 

PV+LV (F(1,9)=6.4, p=0.03); (F(8,72)=4.8, p=0.02) regions respectively. No significant 

interaction was observed or any significant effects for the IPS or INS regions. 

As shown in Figure 8, negative alpha-BOLD correlation in visual cortex was stronger for 

upper than lower quartile responses throughout. However, two distinct temporal phases 

were observed. High BOLD response trials had significantly stronger alpha-BOLD 
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correlations pre-stimulus and during the post-stimulus response period. The temporal 

profile during high response trials shows that the alpha-BOLD correlation was strongly 

negative at -6s prestimulus, it then weakened in the lead up to immediately prestimulus 

time points but then greatly increased in strength during the response period. In 

comparison the low response trials show signs of strengthening alpha-BOLD correlation 

immediately prestimulus which then weakens during the response period. At 6s, around 

the time of the BOLD response peak, alpha-BOLD correlations attain comparable 

strengths between upper and lower response trials. Alpha-BOLD coupling strengths for 

the two quartiles appear to converge in the period immediately prestimulus, but after 

stimulation the coupling changes in opposite directions such that for the lowest response 

trials almost no alpha-BOLD correlation is observed in visual cortex at 0-1.5s. The maps 

at the top of the figure further illustrate how the spatial pattern of alpha-BOLD 

correlations evolved over time for trials with very different BOLD response amplitudes 

and the regions with significant differences in coupling between lower and upper 

response quartiles. 

 

Discussion 

This study demonstrates that considerable within- and between-subject variability exists 

in the spatiotemporal pattern of alpha-BOLD correlations in the human brain during eyes-

open rest. We show that alpha-BOLD correlations can be accurately measured using 16s 

sliding window epochs, and use this increased temporal resolution to show how the 

alpha-BOLD correlation in distinct ICNs fluctuates over time, varies between ICNs and 
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shows a complex relationship with alpha power amplitude. In general we find that the 

general assumption of a static, inverse alpha-BOLD relationship is a considerable 

oversimplification and that the static network is fully coherent during only a small 

proportion of the total experiment time. Our results suggest that the static network does 

not fluctuate coherently as a whole entity in its correlation with alpha power. Instead of 

periodically waxing and waning in strength the static network loses its coherence such 

that its different regional components correlate with alpha during different periods of 

time. 

By correcting for physiological noise, head-motion and accounting for eye 

movement/blink events, we have taken thorough steps to remove their potential 

confounding effects upon temporal fluctuations in alpha-BOLD correlations, and 

demonstrated that they are not driving the results that we observe. Additionally, we find 

that the trial-by-trial amplitude of V1 BOLD responses to visual stimulation could be 

predicted by the strength of the alpha-BOLD correlation in the visual cortex, 

demonstrating the utility of sliding window alpha-BOLD analysis to provide functional 

information about brain dynamics. 

 

Between-subject variability in static correlations 

Individuals with the highest alpha power and lowest alpha frequency exhibited the 

strongest, static alpha-BOLD negative correlations (Fig1B&C). These results indicate 

that between-subject variability in mean alpha properties has metabolic consequences 

which can be detected as differences in alpha-BOLD coupling, which is consistent with 
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previous reports that oscillation power and frequency reflect bulk neurophysiological 

characteristics of an individual that are stable over sessions (Kondacs and Szabo, 1999; 

Napflin et al., 2007), related to cortical volume (Schwarzkopf et al., 2012), white matter 

connections (Hindriks et al., 2015) and even genetic factors (Bodenmann et al., 2009). In 

addition our results inversely linking the frequency of alpha to the strength and spatial 

extent of its correlation with the BOLD signal suggest that oscillation frequency may 

inform about the activity and size of the underlying generating neuronal network given 

that lower frequency alpha oscillations represent synchronous activity over a larger 

cortical network (Grandy et al., 2013; Koch et al., 2008; Kondacs and Szabo, 1999; 

Singer, 1993; Varela et al., 2001) which encompasses greater total neuronal activity and 

stronger BOLD signal (Fig 1B&C). It is well known that IAP varies substantially 

between subjects, which is why normalization is often used in group analyses, and here 

we show that the subjects with the strongest IAP show the strongest alpha-BOLD 

coupling over occipito-parietal regions. However until an improved understanding of the 

origin of inter-individual differences in alpha oscillations, including the contributions of 

current source orientation, cortical volume, brain geometry and skull thickness or the 

signal-to-noise ratio of the EEG measurement (which would be affected by the efficacy 

of MR artifact correction) is obtained, the functional interpretation of these effects 

remains obscure.  

 

Spatiotemporal, within-subject variability in alpha-BOLD coupling. 
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Fluctuations in alpha power were not consistently correlated with the BOLD signal 

during the resting-state, instead we observed spatiotemporal variations in correlation 

structure as alpha-BOLD coupling occurred in different sub-components of the static 

“network” as a function of time. Overall, the brain regions which demonstrated static 

correlations (Fig 1) appeared to represent the mean spatial network that would be formed 

by averaging together the distinct, power-dependent patterns of dynamic correlations. In 

an additional task EEG-fMRI dataset we found that dynamic alpha-BOLD correlations 

exhibited temporal and spatial variations related to the magnitude of the BOLD response 

to visual stimulation, showing that this coupling can also provide functional information 

pertaining to the brain’s response to experimental tasks. 

All investigated brain regions showed substantial variability in not only the strength of 

the resting-state alpha-BOLD correlation, but also its polarity (Figs 3,4,5,6). Many 

regions showed an approximately even division between the time spent demonstrating 

positive or negative correlations. Even primary visual cortex, the region which exhibited 

the strongest negative correlation with alpha, was positively correlated with alpha during 

40% of epochs on average and very strongly positively correlated with alpha during 15% 

of epochs.  

In addition to finding that alpha-BOLD correlations were highly dynamic within-ROI, we 

also found considerable variability between-ROIs. For instance, during only 8% of the 

total time did the dynamic correlations reproduce the entire network observed in the static 

correlation map (Table 1 and Fig 4). Furthermore, during only 36% of epochs were all 

three of the regions which dominated the static correlations (PV, LV and IPS) 

concurrently negatively correlated with alpha power. It was also quite common for 
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multiple regions of the static correlation network to concurrently display opposite 

correlations with alpha power. We even observed this dissociation between primary and 

lateral visual cortex, as only 45% of the time were both visual ROIs correlated negatively 

with alpha. Visualising the voxel-wise maps of the more unusual alpha-BOLD coupling 

patterns showed some unique associations, such as periods during which the alpha 

correlation with both PV and THL (or both PV and DMN) had the same polarity (Fig 5B-

D), in contrast to opposite polarity in static measures. We also observed a multi-sensory 

state where LV, auditory and sensorimotor cortex were all positively coupled to alpha 

power at times when PV was uncorrelated.  

This dynamic behavior of alpha-BOLD coupling doubtless reflects the intrinsic temporal 

fluctuations in, and the hierarchical organisation of, brain network connectivity. What we 

observe here are some examples of the many configurations of the activity patterns that 

the brain passes through during the unconstrained resting-state, ranging from the largely 

temporally distinct fluctuations of signals from different ICNs, to the partial separation 

observed between subcomponents of the whole visual network. These varying 

configurations are associated with switching between vigilance states, internal/external 

thought and memory processes and general mind-wandering alongside temporal 

fluctuations in the power of the alpha oscillation. Links between variability of ICN and 

electrophysiological activity are beginning to be studied (Betti et al., 2013; Brookes et al., 

2011; Chang et al., 2013; Mantini et al., 2007; Vincent et al., 2007) and identification of 

the processes that could give rise to variations in alpha-BOLD coupling over time is an 

important topic for future work aiming to understand the functional significance of 

distinct patterns in within- and between-ICN connectivity.  
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Alpha sources and the variation of alpha-BOLD coupling with alpha power. 

The present study assumes a single, static spatial source of alpha activity, which although 

we found a high degree of similarity between the dynamic and the static topographies, is 

likely an oversimplification. Posterior alpha can be locally generated in V1 (Bollimunta 

et al., 2008) and via bottom-up, pacemaking drive from the thalamus (Hughes and 

Crunelli, 2005; Lopes da Silva, 1991) which dominates during rest (Goldman et al., 2002; 

Roux et al., 2013), although it is likely that modulations also occur due to spontaneous 

recruitment of top-down feedback influences (von Stein et al., 2000) primarily from 

higher order areas such as the DAN (Bastos et al., 2015; Capotosto et al., 2009; van 

Kerkoerle et al., 2014) but potentially also the PCC, INS/ACC as these regions display 

alpha-BOLD correlations by association even though they are not thought to directly 

contribute to posterior alpha generation. Future work needs to further elucidate multiple 

alpha sources and their relationship with dynamic patterns of alpha-BOLD coupling 

 

Dynamic alpha-BOLD coupling displays a complex range of configuration patterns 

which argue against a simple periodic waxing and waning in the coherence of the whole 

static network’s activity with the amplitude of alpha power (or measurement SNR). If 

regional dissociation of alpha-BOLD coupling (e.g. as seen between PV and LV) were 

simply due to fluctuations in the prominence of activity between two separate alpha 

sources, such that the activity of one source reduced as the other concurrently increased, 

then due to volume conduction overall posterior EEG alpha power would be consistent 
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between both states. Although such a scenario could explain variations in the spatial 

location of the strongest alpha-BOLD correlation over time, no clear relationship between 

alpha-BOLD coupling and alpha power would be observed. In contrast, our data shows 

that the spatiotemporal dynamics of resting alpha-BOLD coupling depended on the 

epoch's level of alpha power, and that PV and LV were most strongly negatively 

correlated with alpha during different alpha power states. The strong alpha-BOLD 

coupling observed in PV during high alpha power is consistent with evidence that PV 

acts as a cortical alpha generator (Bollimunta et al., 2011; Buffalo et al., 2011). The 

surprising finding was that LV regions were often uncoupled from PV during high alpha 

power and that during low alpha power we observed a different spatial pattern of alpha-

BOLD correlation, rather than a weaker version of the same network. Therefore temporal 

fluctuations in alpha-BOLD coupling of the static network did not appear to neatly align 

with the magnitude of alpha power. 

 

Alpha-BOLD coupling during stimulation - relationship between changes in brain 

metabolism and oscillation synchrony. 

In the task EEG-fMRI recording we found that alpha-BOLD coupling was largely 

coherent between PV and LV regions but its strength varied between pre- and post-

stimulus time points in relation to the amplitude of the visual cortex BOLD response to 

stimulation (Fig 8E). A state of low alpha-BOLD correlation in the visual cortex 

preceding stimulation was predictive of a small amplitude V1 response and further 

reduced alpha-BOLD coupling post-stimulation, whereas in high response trials a 



39 

 

strongly negative alpha-BOLD correlation pre-stimulus was followed by a large V1 

BOLD response and stronger alpha-BOLD coupling post-stimulation. When interpreting 

the spatial variation in these results it must be considered that the alpha-BOLD is likely 

to depend on the SNR of both signals, which could explain why the regions with the 

strongest responses (PV and LV) show the greatest effect. The alpha oscillation was 

desynchronized by the visual stimulus (Mayhew et al., 2013b) but this brief (2s) duration 

effect was not correlated with the BOLD amplitude and therefore differences in alpha 

response are unlikely to give rise to the BOLD variability observed. Our previous work 

showed that 500ms prestimulus alpha power was inversely related to the amplitude of the 

subsequent BOLD response but predominantly in negative BOLD regions with only a 

small effect on the positive BOLD response in anterior V1 (Mayhew et al., 2013b) in 

comparison to the more widespread visual effect seen with alpha-BOLD coupling. Taken 

together these results indicate that the magnitude of the BOLD response is strongly 

linked to alpha-BOLD coupling and suggest that visual cortex BOLD responses depend 

on several features of preceding brain activity. This finding is in agreement with previous 

neuroimaging studies which showed that the brain’s responsiveness to a stimulus can be 

predicted by activity measures obtained from the pre-stimulus resting state (Boly et al., 

2007; Eichele et al., 2008; Sadaghiani et al., 2009; Sadaghiani et al., 2015). 

Variations in the BOLD response amplitude to a consistent stimulus input likely reflect a 

combination of temporal drifts in subject’s attention, alertness and quality of fixation as 

well as spontaneous fluctuations in the excitability of the underlying neural network. The 

largest response trials occur when a more responsive, coherent cortical system arises 

from a mutual alignment of these factors. We suggest that a tight coupling between alpha 
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power and BOLD in visual cortex, independent of the level of alpha power, reflects 

synchronised activity in a network that is primed to respond. Consequently, following 

such a state, a large BOLD response to stimulation and strong alpha-BOLD coupling is 

observed. When interpreting EEG-BOLD correlations it must be remembered that no 

single frequency band can alone be expected to explain BOLD signal variance, which 

represents an integration of the metabolic demand of broadband activity and appears most 

strongly correlated with gamma (>40Hz) frequencies (Logothetis, 2002; Magri et al., 

2012; Scheeringa et al., 2011a). In addition, the influence of other ICNs such as the DMN 

can also to explain variance in stimulus responses (Mayhew et al., 2013a). 

 

Potential and possible confounds in dynamic analyses 

Dynamic analyses based on sliding, short-duration windows offer advantages for 

assessing the relationship between simultaneously recorded EEG-BOLD signals. 

However, as with any study involving short time window measures, there is the risk of 

contamination by noise and also the inherent difficulty in evaluating whether temporal 

fluctuations in correlation can be taken as evidence of the presence of dynamic functional 

relationships (Hindriks et al., 2016). For fMRI data, with a TR typically on the order of 

seconds, shortening time windows will always come at the cost of reducing the signal-to-

noise ratio of the measure and therefore, although potentially providing more functional 

information, are subject to statistical uncertainty as the dynamic measures are only 

estimates of the true underlying, unknown, correlation. Determining the accuracy of 

dynamic measures is challenging without a detailed understanding of the signals 
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constituent noise sources, although see (Chang et al., 2013; Handwerker et al., 2012; 

Hindriks et al., 2016; Keilholz et al., 2013; Zalesky et al., 2014) for suggested test 

statistics. 

 

Here we cite the similarity between the correlation values of the static and the mean 16s, 

32 and 60s epoch as suggesting dynamic analysis provides a meaningful measure of 

temporal fluctuations in alpha-BOLD coupling. Whilst this does not constitute an 

unambiguous validation, if epochs were substantially confounded by noise it would be 

expected that the average correlation would approach zero, which we did not observe as a 

fall-off in signal was only found for 8s epochs. We have used a similar approach for 

examining dynamic functional connectivity previously (Wilson et al., 2015), and 

provided a similar level of validation of the approach by identifying the expected 

alterations to regional functional connectivity that occur with sleep onset. However, a 

detailed understanding of the origin of the temporal dynamics of functional connectivity 

remains elusive. Where some studies have suggested the functional importance of 

dynamic connectivity because a static correlation appears to be driven by transient 

periods of strong connection (Allan et al., 2015; Liu and Duyn, 2013) others have 

recently suggested that dynamic measures are low on neurophysiological meaning and 

dominated by sampling variability and head motion (Laumann et al., 2016). By directly 

relating variability in neuronal activity to short-term fluctuations in BOLD signal, we 

believe our findings of dynamic alpha-BOLD coupling, alongside other sliding-window 

EEG-fMRI studies (Chang et al., 2013; Tagliazucchi et al., 2012; Yu et al., 2016), 
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provide some validation for dynamic correlations of BOLD signal reflecting functionally 

relevant neurophysiological information. 

 

Although in the current study we cannot discount the possibility that spurious correlations 

can arise when measuring correlations on short time scales, by correcting BOLD data for 

physiological noise, discarding epochs with high correlations between head-motion and 

alpha power and also accounting for eye movement/blink events, we have taken 

considerable measures to minimize the potential for our dynamic correlations being 

confounded by noise. Although a considerable improvement over static correlations or 

windows of several minutes, our 16s epoch analysis remains some distance away from 

the true time scale of brain dynamics. The recent advent of accelerated fMRI acquisition 

techniques (Feinberg et al., 2010) provides substantial increases in temporal resolution 

(TR <1s) and the ability to filter out unaliased physiological noise. These advances will 

make dynamic multimodal neuroimaging strategies like the one described here more 

powerful and more common (Lee et al., 2013), although the slow temporal properties of 

the haemodynamic response will always restrict the ability of BOLD fMRI for capturing 

instantaneous neural events. With such increases in imaging speed comes the necessity to 

maintain accurate modelling of the HRF, especially for EEG-fMRI where the transfer 

function mapping neuronal to haemodynamic signals remains an area of active 

investigation (Rosa et al., 2010). Here we assume the same HRF for all brain regions, 

although acknowledging this may be suboptimal in the thalamus where different response 

shapes have been reported (de Munck et al., 2007; Wu et al., 2010). 
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Eye blinks and eye movements represent an important source of variance in both 

cognitive state and electrophysiological signals. However, whilst sustained eye closure 

enhances alpha synchronization and power (Berger, 1929; Feige et al., 2005; Jasper, 

1936; Mo et al., 2012) the effect of eye blinks and movements on EEG signals is less 

clear (Bonfiglio et al., 2011; Gasser et al., 1985; Hagemann and Naumann, 2001). 

Interestingly, our analysis incorporating eye movements further highlighted the 

dissociation between the BOLD signals of the PV and LV: the PV was positively 

correlated with both EB and EM, whilst the LV was negatively correlated with EB and 

weakly positively correlated with EM. Furthermore the positive responses to both EB and 

EM that occurred in both the PV and thalamus further demonstrates instances when the 

BOLD signal is coherent between these two regions, and not always anticorrelated as 

static alpha-BOLD correlations would suggest (Fig 1). In combination with the lack of a 

correlation between epoch measures of alpha and EB/EM, the minimal effect of including 

EB/EM regressors on the alpha-BOLD correlation statistics, and our ICA separation of 

ocular and alpha activities, these results suggest it is unlikely that ocular modulations of 

alpha power could be solely responsible for fluctuations in alpha power, and the 

spatiotemporal variability in alpha-BOLD correlations which we observe. Although a 

potential limitation of this analysis is that we only consider the power of eye components 

and not variations in the blink duration which could potentially modulate alpha. 

Our GLM analyses revealed the brain areas whose activity correlated with the magnitude 

of EEG derived EB and EM measures, not just the occurrence of them. The substantial 

size and extent of BOLD activations to EB and EM suggests that a heterogeneous 

distribution of EB and EM between experimental conditions could present a troublesome 
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source of noise in studies of visual processing. We suggest that EB and EM power could 

be incorporated as additional nuisance regressors in GLM analyses of EEG-fMRI data to 

account for BOLD signal fluctuations unrelated to the neuronal activity of task 

processing, or to investigate the interaction between eye movements and brain responses 

and behavior.  

Finally, short-window based analyses offer advantages for assessing the relationship 

between simultaneously recorded EEG-BOLD signals. Evaluating correlations across 

continuous time periods of several minutes risks introducing spurious correlations as 

confounds can arise from using continuous timeseries regressors of EEG power which are 

sensitive to both transient artefactual and stimulus-locked head-motion (Chowdhury et 

al., 2014; Jansen et al., 2012) and also to the residual MR artefacts which are routinely 

left behind by post-processing methods used for artefact correction. Studying dynamic 

correlations reduces the influence of any single, noisy period on the results and also 

enables rejection of artefactual epochs from the dataset. 

 

Conclusion 

Studying static alpha-BOLD correlations assumes that activity of all regions remains 

coherent throughout the scan duration, across functionally distinct ICNs, which 

contradicts current understanding of these ICN’s intrinsically dynamic activity. Our 

findings are consistent with recent work describing temporally distinct patterns of activity 

occurring at rest (Smith et al., 2012; Zalesky et al., 2014), such that two ICNs, as well as 

different regions of the same ICN, vary between states of coherent and uncorrelated 
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activity. In addition, differential recruitment of ICN coherence between trials of a 

perceptual or cognitive task has a substantial impact on the success or failure of 

performance (Cocchi et al., 2013; Cohen and van Gaal, 2013). Therefore this work 

highlights the potential for using dynamic EEG-BOLD relationships to inform trial-by-

trial study of the relationship between spontaneous, ongoing electrophysiological 

processes and behavioural or brain response outcomes (Bassett et al., 2011; Damaraju et 

al., 2014; Mayhew et al., 2013a; Mayhew et al., 2013b; Schaefer et al., 2014) and 

investigation of transitions between cognitive states such as switching of attention or the 

frequent alterations in consciousness that occur during different sleep stages(Hobson and 

Pace-Schott, 2002; Wilson et al., 2015). 

In summary this work demonstrates that alpha-BOLD correlations can be accurately 

studied at time-scales as short as 16s and that fluctuations in alpha power were not 

consistently correlated with the BOLD signal, such that the spatial pattern of correlated 

brain regions fluctuated over time, as a function of alpha power amplitude and relative to 

the amplitude of stimulus responses. Further work, featuring shorter TR BOLD 

acquisitions should investigate exactly what time window provides the best 

representation of EEG-BOLD coupling for specific frequency bands, combining optimal 

temporal resolution with signal-to-noise considerations. Taken together these findings 

suggest that the dynamic alpha-BOLD relationship carries a considerable amount of 

information which could be used to further understand the role of the alpha oscillation in 

brain function during rest and task performance. 
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Figure Captions 

 

Figure 1. Group average statistical map (A) of the brain regions exhibiting significant 

static positive (red-yellow) and negative (blue) correlation between the entire 6-minute 

timecourses of BOLD signal and alpha power. In the lower rows are superimposed the 

brain regions where alpha-BOLD correlation strength covaries with between-subject 

variability in IAP (1B, purple) and IAF (1C,green). All images were cluster corrected at 

p<0.05. 

 

Figure 2. A) Group mean alpha-BOLD correlation in each ICN ROI for static (black) and 

60s, 32s, 16s and 8s dynamic (white, yellow, green, grey) epoch calculations 

demonstrating the high similarity in regional alpha-BOLD correlation between different 

window lengths. Error bars represent standard error in the mean. B) Group mean 

statistical map of 16s dynamic positive (red-yellow) and negative (blue) alpha-BOLD 

correlation calculated using random effects, p<0.001 uncorrected.  

 

Figure 3. Group mean proportion of 16s epochs that exhibit magnitude of dynamic 

correlation R > 0 (A) or R > 0.5 (B). Error bars represent standard error in the mean. 

Group histograms of dynamic correlations for each ROI are shown in Figure S6. In all 

cases the correlation values cover the full available range (i.e., -1 to +1), and in the 

majority of regions, the distribution of R-values approximated a normal distribution. A 

bias towards a larger proportion of negative R-value epochs was seen for PV, LV and 
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SM, and to a lesser extent for the IPS, whereas a slight bias towards a majority of positive 

values was observed for THL and also the PCC and mPFC DMN regions. However it is 

evident from the distributions that a considerable proportion of epochs displayed dynamic 

alpha-BOLD correlations of the opposite polarity to that seen in the static correlations 

 

Figure 4. Pie chart examining the group mean proportion of epochs with specific regional 

combinations of alpha-BOLD relationships. The purple segment at the top represents the 

proportion of epochs during which the PV,LV,IPS, PCC and THL exhibited dynamic 

correlations with the same polarity as observed in the static correlation map. Moving 

clockwise from the top represents gradually decreasing similarity with the spatial pattern 

of static correlations. The first six segments (cold colours, purple to grey) represent the 

proportion of the time when PV was negatively correlated with alpha power, coinciding 

with various other regional correlations, as marked by the solid arc. The remaining three 

segments (warm colours, yellow to red) explore combinations of positive alpha-PV 

correlations with other regional correlations, as marked by the dotted arc. The dashed 

arrow represents the proportion of the time that alpha was simultaneously correlated 

negatively with PV, LV and IPS. 

 

Figure 5. Mapping unusual alpha-BOLD coupling configurations. Four examples are 

shown of the group mean maps of voxel-wise alpha-BOLD correlations calculated during 

epochs where the following correlations were observed: (A) positive alpha-BOLD 

correlations with LV, (B) positive with PV, (C) negative with THAL and (D) negative 

with PCC. These maps display some of the variety of configurations, all diverging from 
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the static average, that alpha-BOLD coupling passes through during a 6-minute resting-

state scan. 

 

Figure 6. Dynamic alpha-BOLD correlations are dependent upon alpha power. A) Group 

mean 16s dynamic correlation for each ROI for lower (white) and upper (grey) thirds of 

alpha power epochs. Error bars represent standard error in the mean. * denotes significant 

difference (p<0.05) between upper and lower alpha power. Group average maps of 

negative (B) and positive (C) alpha-BOLD correlation during lower (blue) and upper 

(red/yellow) alpha power epochs calculated using random effects, p<0.001 uncorrected. 

Green shows the conjunction of the two maps. 

 

Figure 7. Group average maps of positive (A) and negative (B) correlation between 

BOLD signal and eye blink power and positive BOLD correlation with eye movement 

power (C). All images were cluster corrected at p<0.05. 

 

Figure 8. Group mean dynamic alpha-BOLD negative correlations in rV1 (A), PV+LV 

(B), IPS (C) and INS (D) ROIs measured at 9 timepoints pre-, peri and post-visual 

stimulation, sorted into lower (blue) and upper (red) 25% quartiles of BOLD response 

amplitude. Spatial maps of the dynamic alpha-BOLD negative correlations observed for 

these quartiles are shown above at five example time-points. Lower quartile (blue) is 

plotted on top of upper quartile (red) with regions of significant difference additionally 

superimposed in green. Group mean rV1 BOLD responses from the corresponding 
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quartiles are plotted in E) illustrating the large difference in response associated with the 

different temporal profiles of alpha-BOLD negative correlation. 

 

Figure S1. Spatial topographies of the static alpha ICs retained to form the basis of 

posterior alpha power measurement in twelve representative subjects. 

 

Figure S2. Spatial topography and stacked activity plots for eye-blink (A) and eye-

movement (B) independent components extracted from the resting-state EEG of four 

representative subjects. For display purposes only, the periods in the stacked plots were 

arbitrarily defined from consecutive 2s sections of spontaneous EEG activity. 

 

Figure S3. Spatial maps of sensorimotor (A), auditory (B), primary visual (C), lateral 

visual (D), default mode (E), dorsal attention (F) and saliency (G) ICNs identified from 

group ICA of the resting-state BOLD data. Individual ICN nodes were used as ROIs to 

extract resting-state BOLD signal and compute regional alpha-BOLD correlations. 

 

Figure S4. Group level maps of significant correlation between BOLD signal and RVT 

(A) and HRI (B). All images were cluster corrected at p<0.05. 

 

Figure S5. For each ROI, a significant correlation is observed between the strength of 

static alpha-BOLD correlation and the number of epochs exhibiting either a negative (A) 

or positive (B) dynamic alpha-BOLD correlation.  
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Figure S6. Histograms showing the distribution of dynamic alpha-BOLD correlations 

collated over the group for all 16s epochs, for each ROI. 

 

Figure S7. For each subject, the proportion of 16s epochs with alpha power above (white) 

or below (grey) the mean value of the whole timecourse. 
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Table 1. Group mean proportion of 16s epochs which exhibited various combinations of 

regional alpha-BOLD correlations. Each line represents a separate instance of concurrent 

negative (left) and positive (centre) dynamic alpha-BOLD correlations in different ROIs. 

ROIs with negative alpha-BOLD 

correlation 

ROIs with positive alpha-

BOLD correlation 

Group mean % of 

total 16s epochs 

PV,LV,IPS PCC, THL 7.7 

PV,LV,IPS PCC 12.9 

PV,LV,IPS THL 16.6 

PCC,THL PV,LV,IPS 0.6 

PV,LV,IPS,PCC,THL - 2.1 

PV,LV,IPS - 35.4 

- PV,LV,IPS 16.4 

PV or LV or IPS  83.6 

PV,LV,IPS,INS - 23.1 

PV,LV - 44.5 

- PV,LV 24.9 

PV or LV - 75.1 

PV,IPS - 42.9 

LV,IPS - 44.6 

PV,LV IPS 9.0 

PV,IPS LV 7.4 

LV,IPS PV 9.1 

PV,ACC - 36.1 

PV,INS - 36.6 

INS or ACC PV 20.0 

SM PV 16.2 

IPS PCC 28.3 
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Highlights 

 Studied temporal dynamics of resting-state correlations between alpha EEG and 
BOLD fMRI 

 16s dynamic correlations represent the static mean pattern only 10% of the total 
time 

 Alpha-BOLD coupling shows many spatial configurations that diverge from the static 
network 

 Regional alpha-BOLD coupling fluctuates over time and depends on alpha power 
amplitude 

 Visual regions, correlated with alpha on average, display different patterns over 

time 
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