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A B S T R A C T

Recent progress in understanding the structure of neural representations in the cerebral cortex has centred around
the application of multivariate classification analyses to measurements of brain activity. These analyses have
proved a sensitive test of whether given brain regions provide information about specific perceptual or cognitive
processes. An exciting extension of this approach is to infer the structure of this information, thereby drawing
conclusions about the underlying neural representational space. These approaches rely on exploratory data-driven
dimensionality reduction to extract the natural dimensions of neural spaces, including natural visual object and
scene representations, semantic and conceptual knowledge, and working memory. However, the efficacy of these
exploratory methods is unknown, because they have only been applied to representations in brain areas for which
we have little or no secondary knowledge. One of the best-understood areas of the cerebral cortex is area MT of
primate visual cortex, which is known to be important in motion analysis. To assess the effectiveness of
dimensionality reduction for recovering neural representational space we applied several dimensionality reduc-
tion methods to multielectrode measurements of spiking activity obtained from area MT of marmoset monkeys,
made while systematically varying the motion direction and speed of moving stimuli. Despite robust tuning at
individual electrodes, and high classifier performance, dimensionality reduction rarely revealed dimensions for
direction and speed. We use this example to illustrate important limitations of these analyses, and suggest a
framework for how to best apply such methods to data where the structure of the neural representation is
unknown.
1. Introduction

Neuroimaging and multielectrode recordings enable simultaneous
measurement from neuronal populations. Collecting such measurements
for a large stimulus set produces large, multidimensional data sets. To
effectively extract meaningful information about the brain from these
rich data sets one must find ways to summarize the information, and do
so without obscuring the rich relationships in the data that these methods
are designed to reveal. One family of approaches to summarizing com-
plex data sets is dimensionality reduction methods, which re-represent
multi-dimensional data in a space defined by fewer dimensions than
the original data. Common examples of dimensionality reduction
of Opthalmology, McGill University, M
methods include principal component analysis (PCA), multi-dimensional
scaling (MDS), and cluster analyses.

For large data sets, dimensionality reduction can be an effective way
of summarizing and visualizing population neural activity (for example,
Mazor and Laurent, 2005; Stokes et al., 2013). This allows for quick
sanity checks of the data, and can increase statistical power compared
with simple averaging across trials or electrodes/voxels (Cunningham
and Yu, 2014). Dimensionality reduction can also be helpful for navi-
gating intractably large stimulus spaces, and for generating models of
such spaces (Adolphs et al., 2016). These uses exemplify the strengths of
dimensionality reduction for summarizing data in a more acces-
sible format.
ontreal, QC, H3G 1A4, Canada.
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Table 1
Summary of the dimensionality reduction methods from the Matlab function rotatefactors,
the FastICA package, and the Matlab Toolbox for Dimensionality Reduction. For methods
with free parameters, the values selected are shown in the column ‘Parameter Values’. In
every case the default parameter values were used. The setting ‘Normalize’¼ ‘on’ indicates
that the rows of the PCA components were normalized to have a unit Euclidean norm prior
to rotation, then unnormalized after rotation. The variable k indicates the number of
nearest neighbors in a neighborhood graph. The variable sigma indicates the variance of a
Gaussian kernel. For descriptions of the remaining parameters, see the Matlab Toolbox for
Dimensionality Reduction.

Model name
abbreviation

Full model name Parameter values

PCA Principal Component Analysis N/A
MDS Multi-Dimensional Scaling N/A
Varimax Varimax rotation on PCA components ‘Normalize’ ¼ ‘on’
Quartimax Quartimax rotation on PCA components ‘Normalize’ ¼ ‘on’
Parsimax Parsimax rotation on PCA components ‘Normalize’ ¼ ‘on’
FastICA Fast fixed-point algorithm for Independent

Component Analysis
‘type’ ¼ ‘kurtosis’

MaxKurtosisICA Kurtosis-maximizing Independent
Component Analysis

N/A

Isomap Isomap k ¼ 12
LLE Locally Linear Embedding k ¼ 12
LDA Linear Discriminant Analysis N/A
ProbPCA Probabilistic Principal Component Analysis max_iterations ¼ 200
FactorAnalysis Factor Analysis N/A
GPLVM Gaussian Process Latent Variable Model sigma ¼ 1
Sammon Sammon mapping N/A
LandmarkIsomap Landmark Isomap k ¼ 12;

percentage ¼ 0.2
Laplacian Laplacian Eigenmaps k ¼ 12; sigma ¼ 1
HessianLLE Hessian Locally Linear Embedding k ¼ 12
LTSA Local Tangent Space Alignment k ¼ 12
DiffusionMaps Diffusion maps t ¼ 1; sigma ¼ 1
KernelPCA Kernel Principal Component Analysis kernel ¼ ‘gauss’
SNE Stochastic Neighbor perplexity ¼ 30
SymSNE Symmetric Stochastic Neighbor Embedding perplexity ¼ 30
tSNE t-Distributed Stochastic Neighbor

Embedding
perplexity ¼ 30;
initial_dims ¼ 30

LPP Locality Preserving Projection k ¼ 12; sigma ¼ 1
NPE Neighborhood Preserving Embedding k ¼ 12
LLTSA Linear Local Tangent Space Alignment k ¼ 12
Autoencoder Deep autoencoders lambda ¼ 0
NCA Neighborhood Components Analysis lambda ¼ 0
MCML Maximally Collapsing Metric Learning N/A
LMNN Large Margin Nearest Neighbor metric

learning
k ¼ 3
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A further, and more contentious, use of dimensionality reduction is to
infer something about the how the brain itself represents the world.
Before we proceed, it is important to distinguish three related but
importantly different concepts: features, feature spaces, and representa-
tional spaces in the brain. Features are properties of stimuli. Features can
be physical properties of stimuli, e.g. color, spatial frequency, motion
direction. They also can also be psychological constructs based on theory
and behavior, e.g. the constructs of valence and arousal in emotion
perception. A feature space is a multidimensional model in which feature
values correspond to coordinates in the space. Where a feature space has
defined dimensions, any novel stimulus may be assigned a location (or
locations) within the space based on its features; and for each point in the
space a stimulus with those feature values could be constructed. Feature
spaces can vary in how succinctly and intuitively they organize stimuli,
but there will often be multiple equally parsimonious feature spaces that
provide a good account of the stimulus set. For example, colors that are
discriminable to human observers can be captured in one of many
different three-dimensional features spaces: for example, the RGB space
of a computer display, or HSL (hue, saturation, lightness) space. These
color spaces may be suitable or not for a particular task, but are equally
valid as feature spaces. Importantly, feature models describe what is
being represented, but this may or may not bear any resemblance to the
way the brain actually represents information.

A key challenge for cognitive neuroscience is to understand how the
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brain represents this information, and so to infer the structure of repre-
sentational spaces in the brain. A representational space is the feature space
that corresponds to how a brain region is representing a given set of
stimuli under specific task conditions, where neural activity varies in
predictable ways along the dimensions of the space. If a feature space
defines what an organism is representing, the representational space
defines how the brain is representing this information. If we were to
accurately map the representational space of a given brain region we
should be able to predict the response of the region to practically limitless
variation in stimulus. Hypothesis-driven investigation of representa-
tional spaces choses a small set of feature dimensions and uses them to
construct a set of stimuli, with the aim of characterizing how the brain
represents stimuli along these dimensions. This leads to the concern that
hypothesis-driven approaches are only ever testing a small subset of any
possible feature space. Further, the way the brain carves up stimuli may
differ to how we find it natural to do so, and so large portions of feature
space may go unexplored.

This has motivated the use of ‘data-driven’ approaches for defining
the feature dimensions that are of relevance to the brain. In this context,
dimensionality reduction approaches have been employed to ‘discover’
the brain's representational space. This is an attractive concept since it
opens the possibility of circumventing the need to define stimulus di-
mensions a priori, and allows the generation of data that are not tied to a
particular model of the feature space. These data-driven approaches have
greatest potential for higher-order brain regions, where the natural di-
mensions of the feature space are unknown.

One field of research where such approaches have gained popularity
is that of visual object recognition. Kriegeskorte et al. (2008) applied
multidimensional scaling (MDS) and cluster analysis to inferotemporal
(IT) cortex responses in human and monkey, and presented their results
as “reveal[ing] the properties that dominate the representation of our
stimuli in the population code without any prior hypotheses”. They
further used this data to argue that animacy is a dominant categorical
feature in the representational space of IT. Similarly, Connolly et al.
(2012) employed cluster analysis to infer the presence of categorical
structure within the representation of different animate object classes.
Sha et al. (2015), again using similar methods, argue against animacy as a
categorical dimension in the representational space of ventral vi-
sual cortex.

In this search for the ‘true’ dimensions of objects representations in
ventral visual cortex, dimensionality reduction is treated as giving more
direct access to the underlying representational structure than can be
gained using hypothesis-driven methods. For example, Caspari et al.
(2014) applied a cluster analysis to data from occipito-temporal cortex in
order “to view the structure of the [data] … without a bias for a-priori
defined stimulus classes”. Vul et al. (2012) applied a cluster analysis and
found clusters for face, place and body responses in ventral visual cortex
(an organisation hypothesized previously), and concluded that their
“discovery suggests that the observed dominance of these response pro-
files in the ventral visual pathways has not been due to the biases present
in the way the hypothesis space has been sampled in the past but to
inherent properties of the ventral visual pathway” (see also Lashkari
et al., 2010). In these ways, the consequence of treating dimensionality
reduction as ‘data-driven’ and ‘hypothesis-neutral’ is that the results can
be conferred a special status as being untainted by the experimenter's
preconceptions.

Dimensionality reduction has not only being applied in this way in the
field of visual object perception, it is also being applied to other fields of
research where the representational space of the brain is largely un-
known. These include understanding the representational structure of
face perception (e.g. Nestor et al., 2016), of prefrontal cortex during
working memory (Machens et al., 2010), of sensorimotor cortex during
speech production (Bouchard et al., 2013), and of conceptual semantic
representations (Zinszer et al., 2016; Huth et al., 2016a). A common
theme motivating such work is the hope that by using ‘data-driven’
methods we might discover previously unconsidered features of the



Fig. 1. Summary of spike rate correlation for moving dot fields (A–B) and moving gratings (C–D). In each case, spike-rate dissimilarity values (1 – r) were calculated for a single pair of
stimuli, and then averaged according to the stimulus features labelled above. Spike-rate dissimilarity values were calculated within each data set, by correlating the pattern of spike rates
across electrodes during the stimulus-induced response (66–564 ms after stimulus onset). In A and B the average spike-rate dissimilarity values for moving dot field stimuli are shown as a
function of dot field speed (A) and direction (B). In C and D the average spike-rate dissimilarity values for moving grating stimuli are shown averaged across spatial and temporal frequency
(C) and direction (D).
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brain's representational space, and that we can arrive at these findings in
a more timely manner than if we rely on a series of hypothesis-driven
experiments that test predefined dimensions. Kanwisher (2010) sum-
marises this viewpoint by noting “if we proceed by testing only the cat-
egories that seem plausible to us, then we risk getting trapped within the
confines of our own preconceptions.” Her suggested solution is to use
dimensionality reduction and other approaches which “circumvent these
biases by searching for structure in the functional responses of the ventral
visual cortex in a hypothesis-neutral fashion”.

As dimensionality reduction is gaining traction as a method for
analyzing higher-order representational spaces, we believe it is timely
and important to consider the strengths and limitations of this approach.
In this paper we seek to improve the usefulness of dimensionality
reduction by sharpening the conceptual definition of ‘data-driven’ versus
‘exploratory’ as applied to this context. We use an empirical example to
illustrate a number of practical challenges for interpreting the output of
dimensionality reduction. Finally, we outline a framework for how best
to employ dimensionality reduction for understanding neural represen-
tational spaces.

First, we outline some conceptual considerations. Since these
methods are unsupervised, the results of dimensionality reduction ana-
lyses are often interpreted as being a measure of the neural representa-
tional space that is ‘hypothesis-neutral’ (Kanwisher, 2010; Kriegeskorte
et al., 2008) and ‘bias-free’ (Caspari et al., 2014). However, we argue
here that such an approach is hypothesis-neutral and bias-free only if
both (1) the methods are unsupervised and (2) the stimulus set
adequately samples the relevant feature space.

Furthermore, even operating under the assumption that the stimulus
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set is unbiased, there are issues concerning the interpretation of data
from dimensionality reduction. Regardless of the input, dimensionality
reduction methods provide a solution – whether it is sensible or not. The
interpretation of the extracted dimensions is not necessarily straightfor-
ward (Adolphs et al., 2016), and it requires the experimenter to recognize
sensible structure in the output, which introduces further possibilities for
bias. The choice of method also has embedded issues and assumptions
that are often not given full consideration. For example, many dimen-
sionality reduction methods (including PCA and MDS) suffer from rota-
tional indeterminacy, i.e. the solutions obtained can be arbitrarily
rotated. The criteria used for selecting a solution could also affect a re-
searcher's capacity to “discover” structure in the data. The choice of
method also imposes assumptions of knowledge about the structure of
information in the representation. Cluster analyses, for example, assume
categorical structure in the representation, while other methods assume a
continuous feature representation.

The theoretical issues above weaken the claim that dimensionality
reduction is an “unbiased”/‘hypothesis-neutral’ approach for revealing
representational spaces. There is also a practical limitation for evaluating
their efficacy: as previously noted, these methods have mainly been
applied in cases where the underlying structure of the brain's represen-
tational space is unknown, meaning that it is impossible to evaluate how
successful these methods have been at extracting the representational
space of neural responses. Here we sought to fill that gap. We reasoned
that if dimensionality reduction is useful for revealing the structure of
neural representational spaces for complex, multidimensional stimulus
spaces, they should also be able to extract known feature dimensions in a
simpler case, where the stimuli systematically sampled a small number of
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Fig. 2. Summary of classifier performance for moving dot fields (A–B) and moving gratings (C–D). In each case, classifiers were trained to discriminate a single pair of stimuli, so chance
performance is always 50% correct (darkest blue). Classifiers were trained on multiunit spike rates from a single animal within short (2 ms) time bins, and classifier performance is
averaged across the duration of the stimulus-induced response (66–564 ms after stimulus onset) and across data sets. In A and B average discriminability of moving dot field stimuli is
shown as a function of dot field speed (A) and direction (B). In C and D average discriminability of moving grating stimuli are shown averaged across spatial and temporal frequency (C)
and direction (D).
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feature dimensions.
Here we evaluated the effectiveness of dimensionality reduction

methods for ‘discovering’ the dimensions of a representational space
where we had clear predictions for the expected dimensions. We applied
a range of dimensionality reduction methods to analyze multi-electrode
recordings from middle-temporal area (MT) in anesthetized marmosets
who were presented with a range of simple moving stimuli that varied
systematically in motion direction, speed, spatial frequency and temporal
frequency. Area MT has been extensively studied, and contains a high
proportion of cells that are selective for motion direction and speed
(Maunsell and van Essen, 1983; Albright, 1984; Movshon et al., 1985),
the activity of which correlates with perception of motion (Newsome
et al., 1989; Salzman et al., 1990; Britten et al., 1996). We use the results
of these analyses to illustrate potential challenges for interpreting the
results of dimensionality reduction, and integrate these considerations
with a conceptual framework for using dimensionality reduction as an
exploratory and/or data-driven method for understanding neural repre-
sentational spaces.

2. Materials and methods

We analyzed spiking activity in multielectrode recordings from area
MT of 6 sufentanil-anesthetized marmoset monkeys, collected using
protocols that have been described previously (McDonald et al., 2014;
Solomon et al., 2015; Goddard et al., 2017). The same animals and data
sets used here have also been analyzed in previous work (Goddard et al.,
2017), without the use of dimensionality reductionmethods. All data sets
(raw data spike counts and classifier performance) used here are freely
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available for download from a Dryad database (http://dx.doi.org/10.
5061/dryad.6f8f0).

2.1. Experimental preparation

We obtained six adult marmosets (Callithrix jacchus; 5 males; weight
290–400 g) from the Australian National Health and Medical Research
Council (NHMRC) combined breeding facility. Procedures took place at
the University of Sydney and were approved by Institutional (University
of Sydney) Animal Ethics Committee and conform to the Society for
Neuroscience and NHMRC policies on the use of animals in neurosci-
ence research.

2.2. Electrophysiological recordings

In each animal, a craniotomy was made over area MT, a large dur-
otomy was made and extracellular recordings were obtained using a
10 � 10 grid of parylene-coated platinum iridium microelectrodes
(1.5 mm in length, spacing 0.4 mm; Blackrock Microsystems), pneu-
matically inserted to a depth of approximately 1 mm (Rousche and
Normann, 1992). Signals were band-pass filtered (0.3–6 kHz), and
sampled by a Tucker Davis Technologies RZ2 at 24 kHz. For all implants,
we identified electrodes that were likely to be located within area MT or
MTc based on the directional-sensitivity of the multi-unit recordings, and
using the trajectory of receptive field positions (Rosa and Elston, 1998),
as described in detail by Solomon et al. (2015). Across animals, 59–96 of
the possible 96 electrodes were located within area MT or MTc, and were
included in the analyses below.

http://dx.doi.org/10.5061/dryad.6f8f0
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Fig. 3. Illustration of the expected/hypothetical dimensions for multi-unit responses to
moving dot fields (84 unique stimuli, of 12 directions and 7 speeds). The hypothetical
direction and speed dimensions are plotted individually (top left and bottom right) and
against one another (top right). The location of each moving dot field stimulus in these
spaces is given by the origin of an arrow, with the dot field direction and speed given by
the direction and color of the arrow respectively. In each plot all 84 unique stimuli are
plotted, although in the top left plot the arrows of same direction but different speed are
overlapping.
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2.3. Visual stimuli

Visual stimuli were drawn at 8-bit resolution using commands to
OpenGL, by custom software (EXPO; P. Lennie) running on a G5 Power
Macintosh computer. Stimuli were displayed on a calibrated cathode ray
tube monitor (Sony G520, refresh rate 100 Hz, mean luminance
45–55 cd/m2, width 40 cm and height 30 cm). The monitor was viewed
at a distance of 45 cm. During measurements, one eye, usually the ipsi-
lateral eye, was occluded.

In one set of stimuli, white circular dots (Weber contrast 1.0; diameter
0.4 d.v.a (degrees visual angle)) moved across a quasi-circular area
(diameter 48 d.v.a.; cropped at 37 d.v.a. vertically); outside each dot, the
monitor was held at the mean luminance. Dots were presented at a
density of 0.3 dots/s/d.v.a. and moved with 100% coherence and infinite
lifetime. The position of each dot at the beginning of a trial was specified
by a random number generator; the same set of positions was used on
every trial. Each stimulus was presented for 500 ms; the screen was held
for 300 ms at the mean luminance between each trial There were 20
repeats of each stimulus type [7 speeds (5, 7.9, 12.6, 20, 31.8, 50.4 & 80
d.v.a. s�1) � 12 directions (30� steps)], giving a total of 1680 trials. A
total of 6 data sets were collected from 5 animals for the moving dot field
stimuli. The animals (using naming conventions from the previous pub-
lished work) were ma025 (contralateral and ipsilateral eyes), ma026
(contralateral), ma027 (contralateral), my145 (contralateral) and my147
(contralateral).

In the second stimulus set, a large sine-wave grating (Michelson
contrast 0.5) drifted within a circular window (diameter 30 d.v.a.) with
hard edges; outside the window, the monitor was held at the mean
luminance. The spatial frequency was either 0.1, 0.32 or 1 cycles/d.v.a.,
and temporal frequency was 2.5, 7.69 or 25 Hz. Each stimulus was pre-
sented for 500 ms; the screen was held for 50 ms at the mean luminance
between each trial. There were 20 repeats of each stimulus type [9
spatiotemporal frequencies x 12 directions (30� steps)], giving a total of
45
2160 trials. A total of 6 data sets were collected from 4 animals: ma025
(contralateral and ipsilateral eyes), ma026 (contralateral and ipsilateral
eyes), ma027 (contralateral) and my147 (contralateral).

Each stimulus set included interleaved ‘blank’ trials (1/13 of the total
number of trials) on which no stimulus was displayed, and the screen
remained at the mean luminance. Each set of stimuli, including these
blanks, were presented in pseudo-random order.

2.4. Preliminary data analysis

For each of the electrodes identified as being within area MT, we used
the Matlab function findpeaks to identify candidate waveforms with peak
amplitude that exceeded 3 standard deviations of the raw signal on that
channel. We did not sort spike waveforms into separate neuronal sources,
so spike rates were expressed as the number of spikes per electrode.

2.5. Spike rate correlation analysis

We considered the neural population response in three cases: moving
dot fields (6 data sets, n ¼ 84 unique stimuli), moving grating stimuli (6
data sets, n ¼ 108 unique stimuli) and both dot and grating stimuli (5
data sets from 4 animals, n¼ 192 unique stimuli). For each of dataset, we
defined an nxn ‘dissimilarity matrix’ based on ‘spike-rate dissimilarity’ (1
- Pearson correlation) between the spike-rates across electrodes (total of
59–96 per dataset) to a given pair of stimuli. We correlated the mean
pattern of spike-rates across electrodes to different stimuli. Within each
data set, we averaged spike-rates across stimulus trials of the same type,
and then averaged the spike-rate across the sustained period of the
stimulus induced response (66–564 ms), generating a single pattern of
spike-rates across electrodes for each stimulus. In previous analyses
(Goddard et al., 2017) we found that the population response to stimulus
features was relatively stable over this time, after dynamics around the
response onset.

Each cell of the dissimilarity matrix was the spike-rate dissimilarity (1
- r) between the response to stimulus A and stimulus B, where stimulus A
varied from 1 to n with column and stimulus B varied from 1 to n with
row. The dissimilarity matrices were by definition symmetric about the
diagonal, with a diagonal of zeros (i.e. 1 - r when r ¼ 1). After measuring
the spike-rate dissimilarity separately for each dataset, we averaged these
values to obtain a group average dissimilarity matrix. These dissimilarity
matrices are akin to those used in previous studies (for example, Krie-
geskorte et al., 2008).

2.6. Classification analysis

As an alternative to the correlation-based dissimilarity matrices, we
also constructed dissimilarity matrices where the dissimilarity of the
neural responses was defined by classifier accuracy, which we have used
previously (Goddard et al., 2017). In our previous work we first down-
sampled the multi-unit activity of each channel to 500 Hz, extracting
the number of spike waveforms on that channel in each 2 ms time bin,
and repeated the classification process (described below) at each time
point (every 2 ms) in the 600 ms window in order to measure how
classification accuracy evolved over time. Here we retained the fine
temporal resolution of the original analysis in order to avoid ceiling ef-
fects in classifier performance, but averaged classifier performance across
the same portion of the stimulus induced response as used in the spike-
rate dissimilarity analysis (66–564 ms).

To perform the classification analysis we first reduced the dataset by
applying principal component analysis to the entire dataset for each
animal, comprising the entire 600 ms of neuronal response following
stimulus onset, for each of 2160 (gratings) or 1680 (dots) trials and up to
96 channels. Data from the first n components that accounted for 99% of
the variance were retained; data from remaining components were dis-
carded. Across animals and stimulus type (gratings and dots) n ranged
from 54 to 93. Note that the application of PCA to the raw data here was
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for data reduction, and is unrelated to the dimensionality reduction
described below.

We trained and tested classifiers (linear discriminant analysis, LDA)
to discriminate population responses on trials of different stimulus con-
ditions. We also repeated the entire analysis using a linear support vector
machine (SVM) classifier and obtained very similar results (data not
shown). For each possible pair of the 84 unique dot field stimuli we
trained the classifier to discriminate between two stimulus conditions
then measured classifier accuracy using 10-fold cross-validation. The
classification rule was learned using 90% of trials (18 trials of each type),
and the accuracy of this rule was tested on the remaining 10% of trials (2
trials of each type). This process was repeated for each of 10 partitions of
the data, such that all data were included in the test set once, and no data
were ever used in both the training and test set (leave-one-out train-
and-test).

Similarly, we trained classifiers to discriminate each pairing of the
108 unique grating stimuli, and again tested the classifier accuracy using
10-fold cross-validation. Finally, for those animals where both the
moving grating stimuli and moving dot stimuli were presented to the
same eye (ipsilateral or contralateral to the recorded MT), we repeated
the PCA and classification analysis for a single data set of 3840 trials
(with 192 unique stimuli).

In every case the entire classification analysis was performed sepa-
rately for each animal, and the average classification accuracy was ob-
tained by averaging classifier performance (in units of d') across animals.

2.7. Dimensionality reduction

From the spike-rate dissimilarity analysis and the classification
analysis we obtained two alternative dissimilarity matrices for each of
the 3 cases: moving dot fields (average of 6 data sets, n ¼ 84 unique
stimuli), moving grating stimuli (average of 6 data sets, n ¼ 108 unique
stimuli) and both dot and grating stimuli (average of 5 data sets, n ¼ 192
unique stimuli). We applied a range of dimensionality reduction tech-
niques to each of these six dissimilarity matrices.

For each dissimilarity matrix, we treated the matrix as a space with n
dimensions, each with n observations, and applied the 30 dimensionality
reduction methods listed in Table 1 to reduce the data from an n
dimensional space to a m dimensional space, where m varied from m ¼ 1
to m ¼ n-1. To implement multidimensional scaling (MDS) of our
dissimilarity matrices we used the Matlab function mdscale. For inde-
pendent component analysis (ICA) we used the ‘FastICA’ package
(downloaded from MathWorks, version: 14 January, 2017, see http://
research.ics.aalto.fi/ica/fastica/), from which we used the fast, fixed-
point algorithm for Independent Component Analysis, as well as the
kurtosis maximization ICA. ICA is conceptually similar to PCA in that it
seeks orthogonal dimensions that explain variance while reducing the
dimensionality of the dataset. The difference is that ICA iteratively
maximizes the absolute value of kurtosis, rather than explained variance.
In principle, this should make it better able than PCA to identify mean-
ingful dimensions in a dataset, particularly if the values on those di-
mensions are not normally distributed. We applied the Matlab function
rotatefactors to the results of our Principal Component Analysis (PCA) to
obtain the ‘Varimax’, ‘Quartimax’ and ‘Parsimax’ rotations. Each of these
factor analytic rotations aim to discover any latent sources of variance
whose signals are likely to be mixed in the components extracted by PCA.
For example, ‘Varimax’ maximizes the variance of the squared loadings
of each factor on all the dimensions, which aims for a solution where
each factor has either a large or a small loading on each data dimension,
ideally yielding optimal separability and interpretability. The remaining
Fig. 4. Correlation between data-defined dimensions and the known stimulus dimensions of d
dimensions extracted when dimensionality reduction was applied to the dissimilarity matrix bas
considered only the top 4 dimensions that were extracted, and correlated these with each of the
were significantly (p < 0.05) above zero, with Bonferroni correction for the multiple hypothetica
and Methods for details).
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24 dimensionality reduction methods we implemented using ‘TheMatlab
Toolbox for Dimensionality Reduction’ (version 0.8.1b, March 21, 2013,
see van der Maaten and Hinton, 2008).

To evaluate how well the extracted dimensions correlate with the
expected dimensions of each representational space, we generated hy-
pothetical dimensions for each case and correlated these hypothetical
dimensions with the observed dimensions using Kendall's tau (a rank
correlation). In each case, we generated hypothetical dimensions for each
of the stimulus dimensions that varied in the stimulus set. We assumed
that for an extracted dimension to correspond to this feature dimension
there should be ordering of the stimuli along the extracted dimension so
that stimuli of greater feature difference are further apart than those of
smaller feature difference. For the moving dot field stimuli, we generated
‘direction’ and ‘speed’ dimensions, for moving grating stimuli we
generated ‘direction’, ‘spatial frequency (SF)’, ‘temporal frequency (TF)’
and ‘speed (that is, TF/SF)’ dimensions. For the case with both moving
dot field and moving gratings we included ‘direction’, ‘SF’, ‘TF’, ‘speed’
and ‘category’, where the ‘category’ dimension was a binary classifica-
tion of the stimuli into dot fields and gratings. Examples of these hypo-
thetical dimensions are plotted in Figs. 2 and 6. For each of these
dimensions, we were interested in whether the extracted dimensions
would show the same ordering of stimuli according to the feature values.
Since there is no a priori reason for the order to be ascending or
descending (for example, for speed to increase or decrease along an
extracted ‘speed’ dimension), we specified a pair of hypothetical di-
mensions for each of these stimulus features, where one hypothetical
dimension was a mirror reversal of the other.

Similarly, since direction is a circular dimension, and there were 12
directions in our stimulus set, we generated 12 alternatives for the hy-
pothetical direction dimensions, where each started with a different di-
rection. We then mirror reversed each of these possibilities, to give a total
of 24 hypothetical direction dimensions.

Finally, when we included both moving dot field and moving grating
stimuli in a single data set, we needed to predict how the dot fields, which
are broadband in SF and TF, should be ordered relative to the gratings of
a single SF and TF. To avoid assuming a single correct solution, we
created 4 alternatives for the hypothetical SF and TF dimensions, where
the dot field stimuli were either the first or last along the dimension,
intermediate to the first and second SF/TF, or intermediate to the second
and third SF/TF. Wemirror reversed each of these 4 possibilities to create
8 hypothetical SF and TF dimensions in the case where dot fields and
gratings were considered as a single data set.

To measure how well the extracted dimensions corresponded to these
hypothetical dimensions, we rank correlated the extracted dimensions
with each of the 2, 8 or 24 alternatives, and used the maximum corre-
lation value across the alternatives as the measure of the extracted di-
mension's correlation with that feature dimension. When assessing the
significance of the correlations, we used a Bonferroni correction to adjust
the p values of these tests for the number of alternatives tested in each
case. For the moving dot field data we calculated these correlation values
for the first 4 dimensions from each method, and for the moving grating
and combined cases we considered the first 6 dimensions. By using a rank
correlation between the hypothetical dimensions and the observed di-
mensions we were testing simply for an ordering of the stimuli according
to their feature values, rather than testing how the feature values were
spaced along the dimension. We chose to use rank correlations to avoid
making assumptions about whether (for example) a neural representa-
tion of stimulus speed should be mapped onto physical speed in a linear,
logarithmic, or other monotonic relationship.

For the combined moving dot field and grating data we also executed
ot field direction and speed. Here we correlated the known stimulus dimensions with the
ed on spike-rate dissimilarity values. For each dimensionality reduction method tested, we
hypothetical direction and speed dimensions. Filled diamonds show correlation values that
l stimulus dimensions that were compared with each data-driven dimension (see Materials



Fig. 5. Correlation between known stimulus dimensions and the data-defined dimensions extracted from the dissimilarity matrix based on classifier performance. Plotting conventions as
in Fig. 4.
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a clustering algorithm (the Matlab function linkage with the default
nearest distance method) to generate a hierarchical cluster tree of the
dissimilarity matrix.

3. Results

To evaluate the effectiveness of dimensionality reduction for recov-
ering the dimensions of neural feature representations, we applied these
methods to a brain region where the feature dimensions should be well
defined: area MT responses to simple moving stimuli. We analyzed multi-
unit activity in multielectrode recordings from area MT of 6 sufentanil-
anesthetized marmoset monkeys. Each animal was shown stimuli from
one or both of two stimulus sets: a set a moving dot fields of varying
direction and speed, and a set of moving gratings of varying direction,
spatial and temporal frequency. For every pair of unique stimuli, we used
a correlation-based measure of the dissimilarity in the pattern of spike-
rates across electrodes (spike-rate dissimilarity ¼ 1-r, see Fig. 1) and
we measured the discriminability of the population responses within
each animal using multivariate pattern classification analysis (see Fig. 2).
To avoid ceiling effects in classifier performance, we performed the
analysis on spike counts from 2 ms bins, then averaged classifier per-
formance across the stimulus-induced response (66–564 ms after stim-
ulus onset). Even with short time bins, classification performance was
high (see Fig. 2).

3.1. Response dissimilarity increased with increasing stimulus feature
difference

As expected, both measures of response dissimilarity tended to in-
crease with increasing stimulus feature difference. Spike-rate dissimi-
larity tended to increase when the spike-rates were in response to stimuli
that were more different along one or more dimensions. Similarly, clas-
sifier accuracy tended to increase when the stimuli it was trained to
discriminate were more different along one or more feature dimensions.
For moving dot fields, spike-rate dissimilarity and classifier performance
were lowest when the stimuli were separated by only a single step in
direction and/or speed (the blue/green diagonals in the matrices in
Figs. 1 and 2). For speed (Figs. 1A and 2A), spike-rate dissimilarity and
classifier performance generally increased as the speed difference
increased, and were lowest for stimuli of highest speed. For dot field
direction (Figs. 1B and 2B), spike-rate dissimilarity and classifier accu-
racy were greatest when the dot fields were 180� apart (moving in
opposite directions). Note that since direction is a circular variable, when
the stimuli were 30� and 330� from downward they are only 60� apart.
This pattern of results is consistent with the existing literature on area
MT, namely that it encodes both the speed and direction of mov-
ing patterns.

For moving grating stimuli, classifier accuracy tended to increase
when the spatial and/or temporal frequency difference increased
(Fig. 2C), and was lowest for stimuli of high spatial frequency and/or
high temporal frequency. This pattern was less clear in the correlation
results (Fig. 1C). Comparedwith the moving dot fields, the average spike-
rate dissimilarity and classifier accuracy for moving gratings was more
uniform across direction differences, although it was still lowest for
stimuli of the same or smallest (30�) direction difference (Figs. 1D
and 2D).

In previous work (Goddard et al., 2017) we used the classification
accuracy data to demonstrate the dependence of the population response
on direction, speed, spatial and temporal frequency, and how the
encoding of these features evolves over time. Our analyses confirmed
what can also be seen by inspecting Fig. 2, that there is information about
each of these stimulus features in the population response, consistent
with a population response that varies systematically with each of these
stimulus feature dimensions. We next asked whether standard dimen-
sionality reduction methods could independently recover the feature
dimensions that were systematically varied in the stimulus set, and which
49
appear to be encoded systematically in the population response.

3.2. Dimensionality reduction applied to neural responses to moving dot
stimuli

To evaluate the effectiveness of dimensionality reduction for
‘discovering’ the dimensions of a neural representational space we first
considered the classifier responses to moving dot fields. This is the
simplest case in our data, where the stimuli varied along only 2 di-
mensions (direction and speed), and there was a robust increase in
classifier performance as the stimuli differed along either of these
dimensions.

First we generated the simplest possible hypothetical dimensions that
would lead to the interpretation that the representational space of MT
neurons is defined by speed and direction. These hypothetical di-
mensions are plotted in Fig. 3. We arrived at these dimensions by
assuming that direction and speed should be extracted as orthogonal
dimensions, and that there should be ordering within along both these
dimensions so that stimuli of greater feature difference are further apart
along the relevant dimension. Since direction is a circular dimension, the
solution in Fig. 3 is one of 12 equally correct solutions, in which the
leftmost direction is a different direction in each case. Similarly, for both
the speed dimension and each of the 12 correct direction dimensions, a
left-right flipping of the order along the dimension is equivalently cor-
rect. This gave us 2 speed dimensions and 24 direction dimensions that
we treated as correct solutions.

We tested a large range of dimensionality reduction approaches (see
Figs. 4 and 5, details in Table 1), including the commonly used Principal
Component Analysis (PCA) and Multi-Dimensional Scaling (MDS). For
each of these methods we rank correlated each of the hypothetical di-
rection and speed dimensions with each of the first 4 dimensions from the
dimensionality reduction. The maximum correlation between each of
these data-defined dimensions and any one of the direction and speed
dimensions is plotted in Fig. 4 (for dimensions extracted from spike-rate
dissimilarity data) and Fig. 5 (for dimensions extracted from classifier
accuracy data). Since we used a rank correlation measure (Kendall's tau)
it is possible for the ‘data-defined’ dimensions to reach a correlation of 1
with a stimulus-defined dimension by ordering the stimuli according to
either their direction or speed.

There was considerable variation across dimensionality reduction
methods in how well they extracted the direction and speed as relevant
feature dimensions (Figs. 4 and 5). Some methods found dimensions that
correlated well for direction but did not isolate a speed dimension, or vice
versa. The maximum correlation with the speed dimension achieved by
any method was tau ¼ 0.92 (LLE method, 1st dimension and NPE
method, 2nd dimension, for classifier accuracy data), and for direction
this was lower at tau ¼ 0.68 (LDA method, 2nd dimension, for classifier
accuracy data).

Overall, the dimensions extracted from the classifier accuracy data
(Fig. 5) tended to correlate with the stimulus dimensions to a greater
extent than those extracted from the spike-rate dissimilarity data (Fig. 4).
This was also the case for the moving grating stimuli and combined dot
and grating stimuli datasets considered below. For this reason, for the
remainder of this paper we focus exclusively on the dimensions extracted
from the classifier accuracy data, although we include corresponding
results for the spike-rate dissimilarity data in our supplementary mate-
rial, part 1.

PCA and MDS, the two methods that have been most widely used in
previous work on object representations in IT, were both among the best
performing methods: for both PCA and MDS, the first 4 dimensions
extracted included dimensions that correlated reasonably well with di-
rection and speed. We consider these feature dimensions extracted by
PCA and MDS in greater detail in Figs. 6 and 8 respectively. We also
consider the results of the PCA combined with Varimax rotation in
greater detail (Fig. 7), since unlike PCA and MDS, the PCA with Varimax
rotation is specifically designed to isolate separate factors contributing to
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variance in the data. For the remaining dimensionality reduction
methods, we include similar plots of the extracted dimensions in our
supplementary material (parts 2 and 5, for data based on spike-rate
dissimilarity and classifier accuracy respectively).

Visual inspection of the plots in Fig. 6B reveals how the first few di-
mensions from the PCA relate to stimulus speed and direction. The first
dimension maps onto stimulus speed, ordering the speeds from low to
high (blue to red). The second and third dimensions also have structure
related to speed, but this is non-monotonic (speeds tend to go from low to
high then back to low), so despite this structure both these dimensions
have a low rank correlation with speed which was not significantly above
zero. The second and third dimensions order the stimuli according to
direction, in a manner that is clearest when these dimensions are plotted
against one another. However, despite what may appear to be obvious
structure when dimensions 2 and 3 are plotted against one another, the
critical issue to consider here is whether it would be possible to ‘recog-
nize’ that direction was a relevant dimension for this neural represen-
tational space if it were not already known. Considered separately,
neither the second nor third dimensions appear to be natural dimensions
of the MT representational space. The dimensionality reduction has
failed to extract a circular dimension as a single dimension, which is not
necessarily a failure of the dimensionality reduction, but it does limit the
interpretability of the result when used for exploring neural representa-
tional spaces. If higher order areas such as IT also have what are best
explained as circular dimensions, these could be missed by suchmethods,
or instead extracted as multiple linear dimensions, that are close to
meaningless for understanding the true neural representational space.

When the components extracted by the PCA are rotated using Vari-
max (Fig. 7), there was more, rather than less, conflation of the speed and
direction dimensions. After the rotation the first, second, and third di-
mensions were all significantly correlated with both direction and speed,
and no single dimension reaches the same correlation with direction as
the second and third dimension from unrotated PCA components.

In the results of the MDS (Fig. 8) the extracted dimensions are further
removed from the known stimulus dimensions of direction and speed. As
for the results from PCA, there is clearly structure in the result that is
related to the speed and direction dimensions. But in this case there is less
separation of the speed and direction dimensions, so that each of the first
three dimensions include systematic variation with speed and direction.
For a naive observer, there would be even less chance of recognizing
speed and direction as relevant dimensions in this representational space.

3.3. Dimensionality reduction applied to neural responses to moving
grating stimuli

Next we considered the results of dimensionality reduction applied to
neural responses to the moving grating stimuli. This stimulus set is
slightly more complex, since the stimuli varied along three dimensions
rather than two: grating motion direction, spatial frequency (SF) and
temporal frequency (TF). Since speed is a function of SF and TF
(speed ¼ TF/SF) we compared each extracted dimension with hypo-
thetical dimensions based on either direction, SF, TF or speed, as shown
in Fig. 9. We plot the correlations between these hypothetical dimensions
and the top six dimensions that were extracted from the classifier accu-
racy data by each dimensionality reduction method (Fig. 10).

As for the responses to moving dot fields, for the responses to moving
gratings there was considerable variation in the extracted dimensions
across dimensionality reduction methods. The maximum correlation
with the direction dimension achieved by any method was tau ¼ 0.67
(PCA method, 4th dimension), for SF the maximum tau ¼ 0.76
Fig. 6. Summary of the representational space resulting from dimensionality reduction by princ
for responses to moving dot fields (84 unique stimuli, of 12 directions and 7 speeds). A: Eigen
variance in the data. B: Data for the 84 unique stimuli projected into spaces defined either by a
arrow, where the direction and speed of the stimulus are given by the direction and color of the
the ‘data-defined’ and stimulus-defined dimensions is replotted (from Fig. 5) for PCA.
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(Autoencoder method, 5th dimension), for TF the maximum tau ¼ 0.64
(SNE method, 4th dimension), and for speed the maximum tau ¼ 0.85
(LTSA and LLTSA methods, 1st dimension).

As before, PCA and MDS were among the best performing methods in
terms of extracting dimensions that had a relatively high correlation with
each of the stimulus dimensions, and in terms of identifying separate
dimensions for orthogonal stimulus dimensions. We plot the results of
PCA, PCA with Varimax rotation, and MDS in greater detail in
Figs. 11–13 respectively. In feature space, while speed correlates with
both SF and TF (and so overlap between speed and SF and speed and TF is
expected), the feature dimensions of direction, SF and TF are each
orthogonal to one another. From Fig. 10, MDS was one of the best
methods for isolating dimensions that selectively correlated with direc-
tion, SF and TF. However, the dimension isolating TF was the 5th
dimension extracted, which raises the issue of whether a naive observer
would be likely to consider that there might be signal in the 5th
dimension or whether they would only consider the first 2 or 3 di-
mensions. This issue is also illustrated by considering the plots in part B
of Figs. 11–13. Even though there is again clearly some structure in the
arrangement of the arrows in the different plots, it is difficult to discern
by eye what are the dominant organizing principles along the different
dimensions. Without the bar plot in Fig. 13C, it would be hard to notice
that the 5th dimension extracted by the MDS is ordering the stimuli by TF
to a greater extent than the other dimensions, even though the arrows are
color coded by TF. And yet for this method to reveal a previously un-
known dimension of the representational space, we are relying on an
experimenter recognizing the ordering of stimuli by TF along the 5th
dimension without having prior knowledge that TF is a potentially
relevant feature.

As for the moving dot stimuli, there is again the issue that the
dimensionality reduction methods tend not to extract direction as a
single dimension, but across two or more dimensions that correlate with
direction. Once again, applying a Varimax rotation to the PCA compo-
nents resulted in further conflation of stimulus dimensions rather than
further separation of these factors. Clearly, although Varimax rotation is
designed in principle to isolate theoretically independent dimensions,
this was not successful in this dataset.

Overall, the plots in part B of Figs. 11–13 illustrate how even for what
is still a relatively low dimension (3 dimensional) stimulus space, the
results of dimensionality reduction are complex and difficult to interpret.
This is also illustrated in the corresponding figures for the remaining
dimensionality reduction methods, included in our supplementary ma-
terial (parts 3 and 6, for data based on spike-rate dissimilarity and clas-
sifier accuracy respectively).

3.4. Dimensionality reduction applied to neural responses to combined
moving dot and grating stimuli

As a final illustrative example, we applied the dimensionality
reduction methods to the neural responses for an entire set of stimuli,
including moving dot fields and moving gratings. Although the previous
results suggest that introducing more complexity is unlikely to make the
results clearer, we wanted to include in our analysis a dataset with a
categorical stimulus dimension (here, dots versus gratings) since much of
the previous work with dimensionality reduction methods has included
categorical variables such as animacy in area IT, (although even for the
animacy category there is now evidence that animacy might be better
conceived as a continuum variable in object representations, see Sha
et al., 2015).

As before, we correlated the extracted dimensions with a series of
ipal components analysis (PCA) of the dissimilarity matrix based on classifier performance,
values of the 84 components, showing that the first few components capture most of the
single dimension or a pair of dimensions. Each moving dot field stimulus is defined by an
arrow respectively (blue ¼ slowest speed, red ¼ fastest speed). C: The correlation between
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hypothetical dimensions, this time including the categorical dimension
‘DotVsGrat’ (dots versus gratings). Since dot fields are broadband for
both SF and TF, the categorical variable ‘DotVsGrat’ is orthogonal with
direction, but covaries with SF, TF and Speed. As shown in Fig. 14, there
was again considerable variation across the dimensionality reduction
methods. The dimensionality reduction methods were not noticeably
better at extracting the categorical DotVsGrat dimension, nor did this
dimension tend to be extracted within the top few dimensions for any
method. The correlation with this hypothetical dimension tended to be
lower than the other hypothetical dimensions. The maximum correlation
with the DotVsGrat dimension achieved by any method was no higher
than for other dimensions, with maximum tau ¼ 0.66 (LLTSA method,
3rd dimension, although this dimension correlatedmore strongly with TF
than DotVsGrat), while for direction the maximum tau ¼ 0.65 (LDA
method, 2nd dimension), for SF the maximum tau ¼ 0.72 (LTSA method,
3rd dimension), for TF the maximum tau ¼ 0.69 (LLTSA method, 3rd
dimension), and for speed the maximum tau ¼ 0.67 (Sammon method,
2nd dimension).

As before, we show the results for PCA, PCA with Varimax rotation
and MDS in more detail (in Figs. 15–17 respectively). For each of these
methods, the second and third dimensions correlated well with direction,
and when plotted against one another they show circular structure, as in
the results for moving dot fields alone. Corresponding figures for the
remaining dimensionality reduction methods are included in our sup-
plementary material (parts 4 and 7, for data based on spike-rate
dissimilarity and classifier accuracy respectively).

For the combined responses to moving dot fields andmoving gratings,
we also show the result of a cluster analysis of classifier performance
(Fig. 18). Due to the hierarchical nature of the cluster analysis, the results
for dot fields or gratings alone (not shown) are similar to a cluster tree
with the branches of the other stimulus set removed. Similar to the results
for dimensionality reduction, for this cluster analysis there was evidence
that the analysis was extracting structure from the data set, but the end
result did not reveal the underlying hierarchical structure in the data in a
way that would be easily interpretable for a naive observer. At first
glance the cluster analysis appears to have separated the data according
to category (dot fields versus gratings) at a fairly high level (Fig. 18A),
although closer inspection reveals that while the top and second level
branches separated over half the moving grating responses from the dot
field responses, the remaining grating stimuli responses are not separated
from the dot field responses until the 11th branch. Together, the cluster
analysis and the dimensionality reduction results for the entire data set
demonstrate that even when the data set include a clear categorical
variable this categorical structure will not necessarily be revealed by a
data-driven approach.

4. Discussion

Dimensionality reduction approaches such as MDS and PCA are useful
illustrative tools for visualizing complex data sets, but there is an
emerging trend of treating the results of such methods as revealing new
information about the structure of the brain's representational space,
particularly when the feature dimensions are unclear (for example, in the
representation of natural objects: Kriegeskorte et al., 2008; Sha et al.,
2015; Caspari et al., 2014; Cunningham and Yu, 2014).

We argue that enthusiasm for such methods ought to be tempered.
Dimensionality reduction can give information about representational
spaces, but this is often much weaker information than researchers
suppose. The constraints on a truly data-driven, hypothesis-free analysis
are quite strict, and (we think) rarely met. Even when these constraints
are met there are theoretical considerations when interpreting such
Fig. 7. Summary of the representational space resulting from dimensionality reduction by prin
based on classifier performance, for responses to moving dot fields, with plotting conventions as
stimuli projected into spaces defined by one or two of the top 4 dimensions resulting from the
defined dimensions is replotted (from Fig. 5) for Varimax.
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representational spaces (as outlined above, and by Ritchie et al., In Press;
de Wit et al., 2016; Carlson et al., 2018). However, the current results
show that there are also practical limitations on the potential for
dimensionality reduction to uncover novel representational spaces.

4.1. Feature spaces and representational spaces

As outlined above, feature spaces are mathematical descriptions of a
given stimulus set, and a given stimulus set can usually be captured by
many equally parsimonious alternatives. Our stimuli give a simple
example: movement and speed of a dot in a 2D plane can be represented
either in polar or Cartesian coordinates. In the former, the dimensions
correspond to speed and direction; in the latter, they correspond the
length of an x-vector and a y-vector that can composed to show speed and
direction. Both feature spaces are entirely adequate to express the pa-
rameters of stimulus speed and distance (as they must be: there is a
simple mathematical translation between the two).

Representational spaces, by comparison, encapsulate a theory of how
a given neural population encodes stimuli. As we do not know the
representational space (or even the most appropriate feature space) of
most brain regions, it has been difficult to validate dimensionality
reduction as a means of uncovering representational spaces. Here we
tested how effective these approaches were at ‘uncovering’ the repre-
sentational space of area MT, which is known to encode direction, speed
and other features of motion for simple stimuli. We found that dimen-
sionality reduction methods and cluster analysis were poor at extracting
and separating the known stimulus feature dimensions, even though
there were robust neural responses to these features and even though the
stimulus set included systematic variation along the known dimensions.
We conclude by discussing why this is, and what might be done about it.

4.2. Interpretive Mania: the difficult position of the naive observer

For dimensionality reduction to be an effective way of uncovering
information about representational spaces, it must reveal structure that
can be readily interpreted by a naive observer who does not already
know the dimensions of the feature space. Our dimensionality reductions
revealed clear structure. But it is difficult to see how any of this could be
used to discover that MT is systematically responsive to direction, speed,
spatial and temporal frequency, if these were not already known sources
of variation in feature space. We assume it is uncontroversial that MT
represents direction, speed, and other features of visual motion: MT not
only responds robustly to motion stimulus dimensions (Maunsell and van
Essen, 1983; Albright, 1984; Movshon et al., 1985) but its activity has
been associated with the perception of these motion features (Newsome
et al., 1989; Salzman et al., 1990; Britten et al., 1996).

The problem is therefore that the extracted spaces bear some complex
and hard-to-determine relationship to the actual representational space
of MT, rather than being a simple readout of the underlying represen-
tational space. It may be that dimensionality reduction methods have
failed to extract this structure because of nonlinearities in the responses
of MT neurons, or because of multiplexed codes for different stimulus
features within the same population (Goddard et al., 2017). Whatever the
reason, these effects will only be compounded for higher-order areas such
as IT. Any higher order area is likely to show greater nonlinearity in
responsiveness, and is more likely to have a high dimensional neural
representation (Rigotti et al., 2013; Lehky et al., 2014). Both of these
factors suggest that for higher-order areas, dimensionality reduction
would likely result in even less interpretable output.

The problem is not, note, that the derived spaces are inadequate to
account for the variation in our stimulus. Indeed, if we did not know that
cipal components analysis (PCA) with Varimax rotation applied to the dissimilarity matrix
in Fig. 6. A: Eigenvalues of the 84 components extracted by PCA. B: Data for the 84 unique
PCA with Varimax rotation. C: The correlation between the ‘data-defined’ and stimulus-
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Fig. 9. Illustration of the expected data-driven dimensions for responses to moving gratings, based on the stimulus dimensions. Hypothetical dimensions based on direction, SF, TF and
speed are plotted individually and against one another. The origin of each arrow indicates the location of the neural response to a single stimulus in the specified space. In each plot arrows
for each of the 108 stimuli are plotted, but in many cases they are overlapping. The direction of each arrow indicates the direction of the stimulus, while its width indicates the SF, and its
color indicates TF.
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MT represented moving stimuli, the fact that we can extract feature
spaces in which moving stimuli can be systematically situated would be
decent evidence that MT does represent moving stimuli. Nor is the
problem (yet) that we do not know how to choose the one that corre-
sponds to the actual representational space. Instead, the problem is that it
is very hard to interpret what has come out, and to link that back to
anything intelligible about either the stimulus or to the brain.

The attractive feature of data-driven methods was supposed to be that
they gave ‘objective’ results, without bias from experimenters. Yet even if
we accept that these data may contain new insights about the represen-
tational space of area MT, the experimenter has to work hard to extract
anything meaningful—and it is therefore unclear whether anything
extracted is really objective. This is trivially apparent from the fact that
different dimensionality reduction methods showed considerable varia-
tion in the dimensions they extracted. It is unclear how the true solution
could be selected from these possible candidates, or on what basis one
could decide to reject all these solutions.

Similarly, there remains the problem of how to evaluate which
methods are extracting true signal and which are best interpreted as
noise. Even within a single method, there is the issue of how one should
decide which dimensions are most informative for interpreting the
Fig. 8. Summary of the representational space resulting from dimensionality reduction by multi
responses to moving dot fields, with plotting conventions as in Fig. 6. A: The metric stress of th
unique stimuli projected into spaces defined by one or two of the dimensions from a space whe
defined’ and stimulus-defined dimensions is replotted (from Fig. 5) for MDS.
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representational space. For example, MDS was one of the better methods
for isolating temporal frequency from other dimensions in the moving
gratings data (Fig. 10), but it isolated temporal frequency on the 5th
dimension. It is unclear whether a naive observer could realize that this
dimension was capturing important information about the representa-
tional space when most of the variance appears to be explained by fewer
dimensions (the metric stress for the MDS solution is approaching an
asymptote by the 5th dimension, as seen in Fig. 13A).

It may be tempting to conclude that close enough is good enough in
these results, for example, when looking at the results of PCA for moving
dots data (Fig. 6). However, aside from the problems of choosing which
method has revealed useful structure, and which of the extracted di-
mensions are the most relevant, there is a further problem. Even for this
very simple case where the moving dot stimuli varied along only 2 di-
mensions, the PCA requires at least 3 of the extracted dimensions to
account for the data, and both dimension 2 and 3 are misleading unless
they are combined into a circular dimension in a Cartesian plane. This is
unsurprising: by definition PCA will extract orthogonal linear di-
mensions. Yet when it comes to interpretation, a naive observer could not
know whether the feature space is best captured by linear, circular, or
other dimensions. When considering a stimulus set with 3 or 4
-dimensional scaling (MDS) of the dissimilarity matrix based on classifier performance, for
e MDS solution where increasing numbers of dimensions were allowed. B: Data for the 84
re the MDS solution was restricted to 4 dimensions. C: The correlation between the ‘data-
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Fig. 10. Correlation between data-defined dimensions extracted from the dissimilarity matrix based on classifier performance and the known stimulus dimensions of moving grating
direction, spatial frequency (SF), temporal frequency (TF), and speed (TF/SF). For each dimensionality reduction method tested, we considered only the top 6 dimensions that were
extracted, and correlated these with each of the hypothetical direction and speed dimensions (see Materials and Methods for details). Plotting conventions as in Fig. 4.
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Fig. 11. Summary of the representational space resulting from dimensionality reduction by principal component analysis (PCA) of the dissimilarity matrix based on classifier performance,
for responses to moving gratings, with plotting conventions as in Fig. 6, except that in B the direction of each arrow indicates the direction of the stimulus, while its width indicates the SF
(thick ¼ low, thin ¼ high), and its color indicates TF (red ¼ low, blue ¼ high).

E. Goddard et al. NeuroImage 180 (2018) 41–67

57

mailto:Image of Fig. 11|tif


Fig. 12. Summary of the representational space resulting from dimensionality reduction by principal components analysis (PCA) with Varimax rotation applied to the dissimilarity matrix
based on classifier performance, for responses to moving gratings, with plotting conventions as in Fig. 11.
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Fig. 13. Summary of the representational space resulting from dimensionality reduction by multi-dimensional scaling (MDS) of the dissimilarity matrix based on classifier performance, for
responses to moving gratings, with plotting conventions as in Fig. 8, and definition of the arrows as in Fig. 11.
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dimensions (in the gratings data, and the combined data) the result is
even less clear.

4.3. Stimulus selection: a chicken and egg problem

A distinct but related worry involves the choice of stimuli. As we
knew (some of) the parameters of the representational space of MT, we
could take care to vary the stimuli parametrically across these di-
mensions, and to ‘tile’ this feature space so that each combination of
features was included. An alternative but valid approach (perhaps more
appropriate when the underlying space is less clear) would be to
randomly sample across combinations of levels, so as to approach
adequate coverage (see Judd et al., 2012). Within the time constraints of
a standard experiment, even a random sampling will most likely be a
random sampling of a very small feature space (e.g. Nestor et al., 2016),
or else a very sparse sampling of a larger space. Thus even with a random
sampling, the experimenter makes choices about feature sampling that
will likely alter the extracted representational spaces.

A related issue for stimulus selection is that the true dimensions of the
representational space may covary with a spurious stimulus dimension
that is mistakenly interpreted as the true dimension. For example, if we
covaried direction and color of the moving dots, we might mistakenly
conclude that area MT systematically responds to color. While such a
stimulus set is easily rejected as flawed, since direction and color are
recognizable stimulus dimensions, this becomes a non-trivial problem
where the stimulus dimensions are unknown.

These two desiderata—adequately sampling a feature space on the
one hand, and not inadvertently mixing up features on the other—seem
like they should be basic preconditions for an adequate data-driven
analysis. We were able to meet them because, again, we knew what we
were looking for. But the goal of a data-driven analysis is to discover such
dimensions precisely when the dimensions are unknown and these pre-
conditions are difficult to meet. In this way, a data-driven analysis on an
unknown feature space faces a chicken-and-egg problem. Without
knowing the feature space, it is difficult to know whether one has
appropriately sampled the feature space, but one cannot determine an
unknown feature space without appropriate sampling.

Although the stimulus sets are often large, they are usually not large
enough or random enough for warrant the conclusion that the results are
‘data-driven’. The stimulus sets are typically selected to sample a stim-
ulus range that covers the dimensions of interest for the experimenter.
Stimulus selection is difficult, for example when taking into account the
fact that there are low level visual similarities between objects of the
same category when investigating object perception (Groen et al., 2012,
2013). Further, in many cases, experimenters choose the stimuli because
they appear to vary in ways that are perceptually salient to us. But then
are we really extracting the dimensions of the underlying feature
space—that is, what the brain actually represents—or could we be using
brain data to recapture and summarize features of the stimulus? Or to
summarize feature dimensions that were perceptually salient to the
experimenter?

When the dimensions and stimulus categories of interest are already
defined in the stimuli, this makes it impossible to judge whether the
dimensions that are recovered are simply describe the stimulus set, or
whether they are true dimensions that the underlying neural populations
represent. This may appear to be a subtle distinction, but it has significant
consequences for how the results of these analyses should be interpreted.

Data-driven methods promise a way to extract feature spaces without
the experimenter introducing any direct hypotheses about the feature
space. Yet without an independent method to guide stimulus selection,
there is always the possibility that the choice of stimulus set constitutes
Fig. 14. Correlation between dimensions extracted from the dissimilarity matrix based on cl
mensions based on grating stimulus direction, spatial frequency (SF), temporal frequency (TF), s
dimensionality reduction method tested, we considered only the top 6 dimensions that were ext
(see Materials and Methods for details). Plotting conventions as in Fig. 4.

61
an indirect hypothesis about the feature space. In some cases the indirect
hypothesis is clear, for example in Caspari et al. (2014) when the stim-
ulus set was designed to contain equal numbers of a small number of
different categories. In such cases we believe it is inappropriate to treat
this as bias-free or hypothesis-neutral confirmation: at best, it shows that
dimensionality reduction is able to extract structure that we already
assumedwas there. Conversely, onemight reject a proper tiling of feature
space as uninterpretable. Consider again our results: if one did not have
prior knowledge of the feature, one might be tempted to blame the
stimulus set for the lack of clear representational structure or (worse)
tweak it until more intelligible results were found.

We reiterate that both of these problems have arisen for a straight-
forward case, where we have a good sense of what the underlying brain
region represents, and we selected our stimuli accordingly. It is even less
probable that these methods could uncover meaningful novel structure
when they are applied to brain areas with unknown dimensions of in-
terest, using stimulus sets which may vary along hundreds of dimensions.
In many ways the data here are a best case scenario for the dimension-
ality reduction methods, with a robust neural signal measured for a
systematic stimulus set. The issues found here will likely only get worse
for data where neural signals are weaker, or the stimuli have not been
systematically varied along behaviorally relevant orthogonal
dimensions.

4.4. What next? The merit of exploratory analyses and 3 recommendations
for data-driven approaches

We do not aim to paint a completely bleak picture. Nor do we want to
reject existing literature where dimensionality reduction has been used
to reveal compelling and reasonable structure in the brain's representa-
tional space (for example, Kriegeskorte et al., 2008; Vul et al., 2012;
Caspari et al., 2014). Instead, we suggest, most previous work should be
interpreted as exploratory rather than data-driven. Dimensionality
reduction analyses lay on a scale from the exploratory to the truly data-
driven. Even exploratory analyses play an important role: danger arises
when mistaking an analysis for one that is stronger than it actually is.

An exploratory analysis, in the simplest form, gives you evidence that,
for the stimuli, parameters, and contexts that were examined, there is a
feature space that can capture the variation in those parameters. That
feature space may not generalize to other stimuli, it may be a distorted
projection of a high-dimensional feature space, and it may fail in
different contexts (e.g. a move from dots to naturalistic stimuli, or if there
were a different sampling of the same feature space). As per above, the
feature space that is extracted may also be one of many ways to capture
that variation. The conclusion is therefore quite weak. However,
exploratory analyses play an important role because they suggest further
hypotheses regarding representational spaces and can be used to
generate testable models (for example, Machens et al., 2010), which is a
nontrivial advantage.

We think that many previous results that were described as data-
driven are likely better considered to be exploratory analyses, meaning
that the extracted structure may reflect the design of the stimulus set
rather than purely reflecting the feature dimensions that are of most
importance to the neural population (Kriegeskorte et al., 2008; Vul et al.,
2012; Caspari et al., 2014). This does not mean that the results are failing
to reveal real structure, but it does mean that they should not be
considered hypothesis-neutral and therefore given undue weight when
evaluating evidence for the functionality of a brain region. As exploratory
analyses, the analyses do not carry any weight as evidence for a given
representational structure, but the revealed structures can be followed up
with more traditional hypothesis tests which seek to disambiguate the
assifier performance and the known stimulus dimensions in the data. We considered di-
peed (TF/SF) and form category (DotVsGrat: moving dot field or moving grating). For each
racted, and correlated these with each of the hypothetical direction and speed dimensions



Fig. 15. Summary of the representational space resulting from dimensionality reduction by principal component analysis (PCA) of the dissimilarity matrix based on classifier performance,
for responses to the total stimulus set, with plotting conventions as in Fig. 6. The definition of the arrows is as in Fig. 9, with the addition that dotted arrows are dot field stimuli, and solid
arrows are grating stimuli.
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Fig. 16. Summary of the representational space resulting from dimensionality reduction by principal components analysis (PCA) with Varimax rotation applied to the dissimilarity matrix
based on classifier performance, for responses to the total stimulus set, with plotting conventions as in Fig. 15.
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Fig. 17. Summary of the representational space resulting from dimensionality reduction by multi-dimensional scaling (MDS) of the dissimilarity matrix based on classifier performance, for
responses to the total stimulus set, with plotting conventions as in Fig. 15.
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Fig. 18. Result of the cluster analysis of the dissimilarity matrix based on classifier performance, for responses to the total stimulus set. In A–E the same hierarchical tree is plotted, where each vertical line at the base of the tree indicates the
response to a single stimulus. In A–E the lines are shaded according to stimulus category (dot field versus grating), direction, SF, TF and speed, respectively.
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hypothesized model from alternative accounts.
Especially when used as an exploratory approach, the interpretability

of the extracted dimensions will likely be enhanced by relating them to
expected dimensions of the neural representation, defined either by
stimulus dimensions, measures of behavior, or other independently
definedmeasurements (Nestor et al., 2016; Mante et al., 2013; Cohen and
Maunsell, 2010). For example, (Mante et al., 2013) used dimensionality
reduction as an intermediate step in relating their population neuronal
data to the task-defined space. Similarly, Cohen and Maunsell (2010)
related an extracted dimension to behavioral performance and used this
dimension as an index of attentional state in their task. Churchland and
Cunningham (2014) use ‘hypothesis-guided’ dimensionality reduction as
a means of distinguishing between alternate models for motor cortex
responses during reaching. However, even when comparing extracted
dimensions with independently defined dimensions, the interpretability
is limited by the impossibility of distinguishing between a deficient
model of the brain region's representational space and a failure of the
dimensionality reduction methods to uncover the true dimensions.

What can be done to move towards a full data-driven analysis,
especially when the underlying feature space is unknown? In addition to
the stimulus selection considerations outlined above, we think there are
several options, and that work on dimensionality reduction ought to
concentrate on producing more.

First, our results show that a single dimensionality reduction is of
questionable value. More useful might be the application of a range of
dimensionality reduction approaches to check how robust the findings
are across different methods. Evaluating the suitability of different
dimensionality reduction methods is beyond the scope of this paper, but
it is likely more important to use a range of possible methods than to
identify the single most appropriate one. Our results show that the
relationship between different approaches is unlikely to be straightfor-
ward agreement. If that is the case, then the experimenter ought to justify
why one particular approach is the best—or, more likely, talk about the
relationships between the dimensions extracted by different techniques
and what they might mean for the underlying representational structure.

Second, for each of these methods, it would be instructive to consider
a range of the extracted dimensions, rather than only the first few. More
generally, it would be good to develop principled ways to determine the
number of dimensions that are considered, and for excluding some from
the search. A running theme of the above has been that it is easy to see
structure where there is none, and easy to dismiss as noise or failed
technique what is actually unexpected structure. Similarly, it is appro-
priate to plot each of the dimensions that are explaining considerable
variance, since although some may not have readily interpretable
structure, there may be structure that is seen by others, or that can be
interpreted in light of future findings. Also consider that there may be
latent dimensions in the representational space that are circular, or
comprise some other interaction between 2 or more of the extracted
dimensions.

Third and finally, if the extracted dimensions capture true features of
the underlying space, they should be replicable across a range of different
data sets. Extracting a feature space that captures variation within the
stimulus set is useful. But unless this is tested with other stimuli, and in
other contexts, it is unclear whether the dimensions are meaningful for
understanding the representational space, and predicting neural re-
sponses to novel stimuli.

The MT data presented here demonstrate that even when the stimulus
set clearly varies parametrically along feature dimensions, the methods
do not necessarily extract these dimensions in any straightforward way.
This highlights the importance of ensuring that any extracted dimensions
are reliable, stable, and robust across a range of factors including
dimensionality reduction method and stimulus set. Determining stability
and robustness across stimulus set is an extension of cross-validation
techniques. At a minimum, if the recovered structure is robust it
should be replicable when the stimulus set is divided in half and tested
separately, or when applied to an entirely new data set (for example, see
66
Huth et al., 2016b). As discussed above, when aiming to be as ‘data-
driven’ as possible, a good stimulus set should be as large, diverse and
randomly structured as feasible.

In summary, dimensionality reduction is a potentially useful tool for
understanding the structure of neural representations, particularly suited
to exploratory analyses. Such exploratory analyses are especially useful
for identifying the most promising avenues in which to invest future ef-
forts. To maximize the usefulness of dimensionality reduction, re-
searchers should interpret results from these approaches in accordance
with the extent to which their design is exploratory or data-driven. For
data-driven designs, the aim should be to reveal representational struc-
tures that randomly or evenly sample a large stimulus space, and that are
reliable, stable and robust to methodological and stimulus variations.
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