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Recent progress in understanding the structure of neural representations in the cerebral cortex has centred around
the application of multivariate classification analyses to measurements of brain activity. These analyses have
proved a sensitive test of whether given brain regions provide information about specific perceptual or cognitive
processes. An exciting extension of this approach is to infer the structure of this information, thereby drawing
conclusions about the underlying neural representational space. These approaches rely on exploratory data-driven
dimensionality reduction to extract the natural dimensions of neural spaces, including natural visual object and
scene representations, semantic and conceptual knowledge, and working memory. However, the efficacy of these
exploratory methods is unknown, because they have only been applied to representations in brain areas for which
we have little or no secondary knowledge. One of the best-understood areas of the cerebral cortex is area MT of
primate visual cortex, which is known to be important in motion analysis. To assess the effectiveness of
dimensionality reduction for recovering neural representational space we applied several dimensionality reduc-
tion methods to multielectrode measurements of spiking activity obtained from area MT of marmoset monkeys,
made while systematically varying the motion direction and speed of moving stimuli. Despite robust tuning at
individual electrodes, and high classifier performance, dimensionality reduction rarely revealed dimensions for
direction and speed. We use this example to illustrate important limitations of these analyses, and suggest a
framework for how to best apply such methods to data where the structure of the neural representation is
unknown.

1. Introduction

Neuroimaging and multielectrode recordings enable simultaneous
measurement from neuronal populations. Collecting such measurements
for a large stimulus set produces large, multidimensional data sets. To
effectively extract meaningful information about the brain from these
rich data sets one must find ways to summarize the information, and do
so without obscuring the rich relationships in the data that these methods
are designed to reveal. One family of approaches to summarizing com-
plex data sets is dimensionality reduction methods, which re-represent
multi-dimensional data in a space defined by fewer dimensions than
the original data. Common examples of dimensionality reduction

methods include principal component analysis (PCA), multi-dimensional
scaling (MDS), and cluster analyses.

For large data sets, dimensionality reduction can be an effective way
of summarizing and visualizing population neural activity (for example,
Mazor and Laurent, 2005; Stokes et al., 2013). This allows for quick
sanity checks of the data, and can increase statistical power compared
with simple averaging across trials or electrodes/voxels (Cunningham
and Yu, 2014). Dimensionality reduction can also be helpful for navi-
gating intractably large stimulus spaces, and for generating models of
such spaces (Adolphs et al., 2016). These uses exemplify the strengths of
dimensionality reduction for summarizing data in a more acces-
sible format.
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Table 1

Summary of the dimensionality reduction methods from the Matlab function rotatefactors,
the FastICA package, and the Matlab Toolbox for Dimensionality Reduction. For methods
with free parameters, the values selected are shown in the column ‘Parameter Values’. In
every case the default parameter values were used. The setting ‘Normalize’ = ‘on’ indicates
that the rows of the PCA components were normalized to have a unit Euclidean norm prior
to rotation, then unnormalized after rotation. The variable k indicates the number of
nearest neighbors in a neighborhood graph. The variable sigma indicates the variance of a
Gaussian kernel. For descriptions of the remaining parameters, see the Matlab Toolbox for
Dimensionality Reduction.

Model name Full model name Parameter values

abbreviation
PCA Principal Component Analysis N/A
MDS Multi-Dimensional Scaling N/A
Varimax Varimax rotation on PCA components ‘Normalize’ = ‘on’
Quartimax Quartimax rotation on PCA components ‘Normalize’ = ‘on’
Parsimax Parsimax rotation on PCA components ‘Normalize’ = ‘on’
FastICA Fast fixed-point algorithm for Independent ‘type’ = ‘kurtosis’
Component Analysis
MaxKurtosisICA ~ Kurtosis-maximizing Independent N/A
Component Analysis
Isomap Isomap k=12
LLE Locally Linear Embedding k=12
LDA Linear Discriminant Analysis N/A
ProbPCA Probabilistic Principal Component Analysis max_iterations = 200
FactorAnalysis ~ Factor Analysis N/A
GPLVM Gaussian Process Latent Variable Model sigma = 1
Sammon Sammon mapping N/A
LandmarkIsomap Landmark Isomap k=12
percentage = 0.2
Laplacian Laplacian Eigenmaps k=12;sigma=1
HessianLLE Hessian Locally Linear Embedding k=12
LTSA Local Tangent Space Alignment k=12
DiffusionMaps  Diffusion maps t=1;sigma=1
KernelPCA Kernel Principal Component Analysis kernel = ‘gauss’
SNE Stochastic Neighbor perplexity = 30
SymSNE Symmetric Stochastic Neighbor Embedding perplexity = 30
tSNE t-Distributed Stochastic Neighbor perplexity = 30;
Embedding initial_dims = 30
LPP Locality Preserving Projection k =12; sigma =1
NPE Neighborhood Preserving Embedding k=12
LLTSA Linear Local Tangent Space Alignment k=12
Autoencoder Deep autoencoders lambda = 0
NCA Neighborhood Components Analysis lambda = 0
MCML Maximally Collapsing Metric Learning N/A
LMNN Large Margin Nearest Neighbor metric k=3

learning

A further, and more contentious, use of dimensionality reduction is to
infer something about the how the brain itself represents the world.
Before we proceed, it is important to distinguish three related but
importantly different concepts: features, feature spaces, and representa-
tional spaces in the brain. Features are properties of stimuli. Features can
be physical properties of stimuli, e.g. color, spatial frequency, motion
direction. They also can also be psychological constructs based on theory
and behavior, e.g. the constructs of valence and arousal in emotion
perception. A feature space is a multidimensional model in which feature
values correspond to coordinates in the space. Where a feature space has
defined dimensions, any novel stimulus may be assigned a location (or
locations) within the space based on its features; and for each point in the
space a stimulus with those feature values could be constructed. Feature
spaces can vary in how succinctly and intuitively they organize stimuli,
but there will often be multiple equally parsimonious feature spaces that
provide a good account of the stimulus set. For example, colors that are
discriminable to human observers can be captured in one of many
different three-dimensional features spaces: for example, the RGB space
of a computer display, or HSL (hue, saturation, lightness) space. These
color spaces may be suitable or not for a particular task, but are equally
valid as feature spaces. Importantly, feature models describe what is
being represented, but this may or may not bear any resemblance to the
way the brain actually represents information.

A key challenge for cognitive neuroscience is to understand how the
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brain represents this information, and so to infer the structure of repre-
sentational spaces in the brain. A representational space is the feature space
that corresponds to how a brain region is representing a given set of
stimuli under specific task conditions, where neural activity varies in
predictable ways along the dimensions of the space. If a feature space
defines what an organism is representing, the representational space
defines how the brain is representing this information. If we were to
accurately map the representational space of a given brain region we
should be able to predict the response of the region to practically limitless
variation in stimulus. Hypothesis-driven investigation of representa-
tional spaces choses a small set of feature dimensions and uses them to
construct a set of stimuli, with the aim of characterizing how the brain
represents stimuli along these dimensions. This leads to the concern that
hypothesis-driven approaches are only ever testing a small subset of any
possible feature space. Further, the way the brain carves up stimuli may
differ to how we find it natural to do so, and so large portions of feature
space may go unexplored.

This has motivated the use of ‘data-driven’ approaches for defining
the feature dimensions that are of relevance to the brain. In this context,
dimensionality reduction approaches have been employed to ‘discover’
the brain's representational space. This is an attractive concept since it
opens the possibility of circumventing the need to define stimulus di-
mensions a priori, and allows the generation of data that are not tied to a
particular model of the feature space. These data-driven approaches have
greatest potential for higher-order brain regions, where the natural di-
mensions of the feature space are unknown.

One field of research where such approaches have gained popularity
is that of visual object recognition. Kriegeskorte et al. (2008) applied
multidimensional scaling (MDS) and cluster analysis to inferotemporal
(IT) cortex responses in human and monkey, and presented their results
as “reveal[ing] the properties that dominate the representation of our
stimuli in the population code without any prior hypotheses”. They
further used this data to argue that animacy is a dominant categorical
feature in the representational space of IT. Similarly, Connolly et al.
(2012) employed cluster analysis to infer the presence of categorical
structure within the representation of different animate object classes.
Sha et al. (2015), again using similar methods, argue against animacy as a
categorical dimension in the representational space of ventral vi-
sual cortex.

In this search for the ‘true’ dimensions of objects representations in
ventral visual cortex, dimensionality reduction is treated as giving more
direct access to the underlying representational structure than can be
gained using hypothesis-driven methods. For example, Caspari et al.
(2014) applied a cluster analysis to data from occipito-temporal cortex in
order “to view the structure of the [data] ... without a bias for a-priori
defined stimulus classes”. Vul et al. (2012) applied a cluster analysis and
found clusters for face, place and body responses in ventral visual cortex
(an organisation hypothesized previously), and concluded that their
“discovery suggests that the observed dominance of these response pro-
files in the ventral visual pathways has not been due to the biases present
in the way the hypothesis space has been sampled in the past but to
inherent properties of the ventral visual pathway” (see also Lashkari
et al., 2010). In these ways, the consequence of treating dimensionality
reduction as ‘data-driven’ and ‘hypothesis-neutral’ is that the results can
be conferred a special status as being untainted by the experimenter's
preconceptions.

Dimensionality reduction has not only being applied in this way in the
field of visual object perception, it is also being applied to other fields of
research where the representational space of the brain is largely un-
known. These include understanding the representational structure of
face perception (e.g. Nestor et al., 2016), of prefrontal cortex during
working memory (Machens et al., 2010), of sensorimotor cortex during
speech production (Bouchard et al., 2013), and of conceptual semantic
representations (Zinszer et al., 2016; Huth et al., 2016a). A common
theme motivating such work is the hope that by using ‘data-driven’
methods we might discover previously unconsidered features of the
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Fig. 1. Summary of spike rate correlation for moving dot fields (A-B) and moving gratings (C-D). In each case, spike-rate dissimilarity values (1 — r) were calculated for a single pair of
stimuli, and then averaged according to the stimulus features labelled above. Spike-rate dissimilarity values were calculated within each data set, by correlating the pattern of spike rates
across electrodes during the stimulus-induced response (66-564 ms after stimulus onset). In A and B the average spike-rate dissimilarity values for moving dot field stimuli are shown as a
function of dot field speed (A) and direction (B). In C and D the average spike-rate dissimilarity values for moving grating stimuli are shown averaged across spatial and temporal frequency

(C) and direction (D).

brain's representational space, and that we can arrive at these findings in
a more timely manner than if we rely on a series of hypothesis-driven
experiments that test predefined dimensions. Kanwisher (2010) sum-
marises this viewpoint by noting “if we proceed by testing only the cat-
egories that seem plausible to us, then we risk getting trapped within the
confines of our own preconceptions.” Her suggested solution is to use
dimensionality reduction and other approaches which “circumvent these
biases by searching for structure in the functional responses of the ventral
visual cortex in a hypothesis-neutral fashion”.

As dimensionality reduction is gaining traction as a method for
analyzing higher-order representational spaces, we believe it is timely
and important to consider the strengths and limitations of this approach.
In this paper we seek to improve the usefulness of dimensionality
reduction by sharpening the conceptual definition of ‘data-driven’ versus
‘exploratory’ as applied to this context. We use an empirical example to
illustrate a number of practical challenges for interpreting the output of
dimensionality reduction. Finally, we outline a framework for how best
to employ dimensionality reduction for understanding neural represen-
tational spaces.

First, we outline some conceptual considerations. Since these
methods are unsupervised, the results of dimensionality reduction ana-
lyses are often interpreted as being a measure of the neural representa-
tional space that is ‘hypothesis-neutral’ (Kanwisher, 2010; Kriegeskorte
et al., 2008) and ‘bias-free’ (Caspari et al., 2014). However, we argue
here that such an approach is hypothesis-neutral and bias-free only if
both (1) the methods are unsupervised and (2) the stimulus set
adequately samples the relevant feature space.

Furthermore, even operating under the assumption that the stimulus
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set is unbiased, there are issues concerning the interpretation of data
from dimensionality reduction. Regardless of the input, dimensionality
reduction methods provide a solution — whether it is sensible or not. The
interpretation of the extracted dimensions is not necessarily straightfor-
ward (Adolphs et al., 2016), and it requires the experimenter to recognize
sensible structure in the output, which introduces further possibilities for
bias. The choice of method also has embedded issues and assumptions
that are often not given full consideration. For example, many dimen-
sionality reduction methods (including PCA and MDS) suffer from rota-
tional indeterminacy, i.e. the solutions obtained can be arbitrarily
rotated. The criteria used for selecting a solution could also affect a re-
searcher's capacity to “discover” structure in the data. The choice of
method also imposes assumptions of knowledge about the structure of
information in the representation. Cluster analyses, for example, assume
categorical structure in the representation, while other methods assume a
continuous feature representation.

The theoretical issues above weaken the claim that dimensionality
reduction is an “unbiased”/‘hypothesis-neutral’ approach for revealing
representational spaces. There is also a practical limitation for evaluating
their efficacy: as previously noted, these methods have mainly been
applied in cases where the underlying structure of the brain's represen-
tational space is unknown, meaning that it is impossible to evaluate how
successful these methods have been at extracting the representational
space of neural responses. Here we sought to fill that gap. We reasoned
that if dimensionality reduction is useful for revealing the structure of
neural representational spaces for complex, multidimensional stimulus
spaces, they should also be able to extract known feature dimensions in a
simpler case, where the stimuli systematically sampled a small number of


mailto:Image of Fig. 1|tif

E. Goddard et al.

Q)
$ o >
a E
~ 126 2
2 £
= 20 ®
. 31.75 =
a7 5
i =
S 504 13}
° £
& 80 a
Q.
%)
wn < © o o] -
o a4 N N g
N - -
(s
Speed of Stimulus 2 (DVA/s)

Q
%}
2 03,25 1 -
(%]
310,25 - B E
— w 01,77 =
» - =
5 20377 7]
S < —
3 (o)
E > 1077 B °
® G 01,25 £
(0] o
S 03,25 9]
= =
L 10,25 a
L
(45} 0w W WwN~NNNWL WY
aaa NNN NN
— 43S < dc T
S o~ o o~ © @

Stimulus 2
SF (cycles/DVA), TF (cycles/s)

(degrees from downward)

(degrees from downward)

Neurolmage 180 (2018) 41-67

30 Ml 90
s04 M @)
90 | )
120 [ ] 80 o
150 [ | @
180 I >
210 [ | 70 3
240 - =1 <
270 - [ | 8
300 ] 60 <
330! ! R
I B B B -

°C38833828RS8 50

AN NN m

Direction of Stimulus 2
(degrees from downward)

T T
o9 9o
[SRER-

300

T T T
Qo000
Do~ 3N
- - N A

120 —

Direction of Stimulus 2
(degrees from downward)

Fig. 2. Summary of classifier performance for moving dot fields (A-B) and moving gratings (C-D). In each case, classifiers were trained to discriminate a single pair of stimuli, so chance
performance is always 50% correct (darkest blue). Classifiers were trained on multiunit spike rates from a single animal within short (2 ms) time bins, and classifier performance is
averaged across the duration of the stimulus-induced response (66-564 ms after stimulus onset) and across data sets. In A and B average discriminability of moving dot field stimuli is
shown as a function of dot field speed (A) and direction (B). In C and D average discriminability of moving grating stimuli are shown averaged across spatial and temporal frequency (C)

and direction (D).

feature dimensions.

Here we evaluated the effectiveness of dimensionality reduction
methods for ‘discovering’ the dimensions of a representational space
where we had clear predictions for the expected dimensions. We applied
a range of dimensionality reduction methods to analyze multi-electrode
recordings from middle-temporal area (MT) in anesthetized marmosets
who were presented with a range of simple moving stimuli that varied
systematically in motion direction, speed, spatial frequency and temporal
frequency. Area MT has been extensively studied, and contains a high
proportion of cells that are selective for motion direction and speed
(Maunsell and van Essen, 1983; Albright, 1984; Movshon et al., 1985),
the activity of which correlates with perception of motion (Newsome
et al., 1989; Salzman et al., 1990; Britten et al., 1996). We use the results
of these analyses to illustrate potential challenges for interpreting the
results of dimensionality reduction, and integrate these considerations
with a conceptual framework for using dimensionality reduction as an
exploratory and/or data-driven method for understanding neural repre-
sentational spaces.

2. Materials and methods

We analyzed spiking activity in multielectrode recordings from area
MT of 6 sufentanil-anesthetized marmoset monkeys, collected using
protocols that have been described previously (McDonald et al., 2014;
Solomon et al., 2015; Goddard et al., 2017). The same animals and data
sets used here have also been analyzed in previous work (Goddard et al.,
2017), without the use of dimensionality reduction methods. All data sets
(raw data spike counts and classifier performance) used here are freely

44

available for download from a Dryad database (http://dx.doi.org/10.
5061/dryad.6{8f0).

2.1. Experimental preparation

We obtained six adult marmosets (Callithrix jacchus; 5 males; weight
290-400 g) from the Australian National Health and Medical Research
Council (NHMRC) combined breeding facility. Procedures took place at
the University of Sydney and were approved by Institutional (University
of Sydney) Animal Ethics Committee and conform to the Society for
Neuroscience and NHMRC policies on the use of animals in neurosci-
ence research.

2.2. Electrophysiological recordings

In each animal, a craniotomy was made over area MT, a large dur-
otomy was made and extracellular recordings were obtained using a
10 x 10 grid of parylene-coated platinum iridium microelectrodes
(1.5 mm in length, spacing 0.4 mm; Blackrock Microsystems), pneu-
matically inserted to a depth of approximately 1 mm (Rousche and
Normann, 1992). Signals were band-pass filtered (0.3-6 kHz), and
sampled by a Tucker Davis Technologies RZ2 at 24 kHz. For all implants,
we identified electrodes that were likely to be located within area MT or
MTec based on the directional-sensitivity of the multi-unit recordings, and
using the trajectory of receptive field positions (Rosa and Elston, 1998),
as described in detail by Solomon et al. (2015). Across animals, 59-96 of
the possible 96 electrodes were located within area MT or MTc, and were
included in the analyses below.
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Fig. 3. Illustration of the expected/hypothetical dimensions for multi-unit responses to
moving dot fields (84 unique stimuli, of 12 directions and 7 speeds). The hypothetical
direction and speed dimensions are plotted individually (top left and bottom right) and
against one another (top right). The location of each moving dot field stimulus in these
spaces is given by the origin of an arrow, with the dot field direction and speed given by
the direction and color of the arrow respectively. In each plot all 84 unique stimuli are
plotted, although in the top left plot the arrows of same direction but different speed are
overlapping.

2.3. Visual stimuli

Visual stimuli were drawn at 8-bit resolution using commands to
OpenGL, by custom software (EXPO; P. Lennie) running on a G5 Power
Macintosh computer. Stimuli were displayed on a calibrated cathode ray
tube monitor (Sony G520, refresh rate 100 Hz, mean luminance
45-55 cd/m?, width 40 cm and height 30 cm). The monitor was viewed
at a distance of 45 cm. During measurements, one eye, usually the ipsi-
lateral eye, was occluded.

In one set of stimuli, white circular dots (Weber contrast 1.0; diameter
0.4 d.v.a (degrees visual angle)) moved across a quasi-circular area
(diameter 48 d.v.a.; cropped at 37 d.v.a. vertically); outside each dot, the
monitor was held at the mean luminance. Dots were presented at a
density of 0.3 dots/s/d.v.a. and moved with 100% coherence and infinite
lifetime. The position of each dot at the beginning of a trial was specified
by a random number generator; the same set of positions was used on
every trial. Each stimulus was presented for 500 ms; the screen was held
for 300 ms at the mean luminance between each trial There were 20
repeats of each stimulus type [7 speeds (5, 7.9, 12.6, 20, 31.8, 50.4 & 80
d.v.a. s~ 1) x 12 directions (30° steps)], giving a total of 1680 trials. A
total of 6 data sets were collected from 5 animals for the moving dot field
stimuli. The animals (using naming conventions from the previous pub-
lished work) were ma025 (contralateral and ipsilateral eyes), ma026
(contralateral), ma027 (contralateral), my145 (contralateral) and my147
(contralateral).

In the second stimulus set, a large sine-wave grating (Michelson
contrast 0.5) drifted within a circular window (diameter 30 d.v.a.) with
hard edges; outside the window, the monitor was held at the mean
luminance. The spatial frequency was either 0.1, 0.32 or 1 cycles/d.v.a.,
and temporal frequency was 2.5, 7.69 or 25 Hz. Each stimulus was pre-
sented for 500 ms; the screen was held for 50 ms at the mean luminance
between each trial. There were 20 repeats of each stimulus type [9
spatiotemporal frequencies x 12 directions (30° steps)], giving a total of

45

Neurolmage 180 (2018) 41-67

2160 trials. A total of 6 data sets were collected from 4 animals: ma025
(contralateral and ipsilateral eyes), ma026 (contralateral and ipsilateral
eyes), ma027 (contralateral) and my147 (contralateral).

Each stimulus set included interleaved ‘blank’ trials (1/13 of the total
number of trials) on which no stimulus was displayed, and the screen
remained at the mean luminance. Each set of stimuli, including these
blanks, were presented in pseudo-random order.

2.4. Preliminary data analysis

For each of the electrodes identified as being within area MT, we used
the Matlab function findpeaks to identify candidate waveforms with peak
amplitude that exceeded 3 standard deviations of the raw signal on that
channel. We did not sort spike waveforms into separate neuronal sources,
so spike rates were expressed as the number of spikes per electrode.

2.5. Spike rate correlation analysis

We considered the neural population response in three cases: moving
dot fields (6 data sets, n = 84 unique stimuli), moving grating stimuli (6
data sets, n = 108 unique stimuli) and both dot and grating stimuli (5
data sets from 4 animals, n = 192 unique stimuli). For each of dataset, we
defined an nxn ‘dissimilarity matrix’ based on ‘spike-rate dissimilarity’ (1
- Pearson correlation) between the spike-rates across electrodes (total of
59-96 per dataset) to a given pair of stimuli. We correlated the mean
pattern of spike-rates across electrodes to different stimuli. Within each
data set, we averaged spike-rates across stimulus trials of the same type,
and then averaged the spike-rate across the sustained period of the
stimulus induced response (66-564 ms), generating a single pattern of
spike-rates across electrodes for each stimulus. In previous analyses
(Goddard et al., 2017) we found that the population response to stimulus
features was relatively stable over this time, after dynamics around the
response onset.

Each cell of the dissimilarity matrix was the spike-rate dissimilarity (1
- r) between the response to stimulus A and stimulus B, where stimulus A
varied from 1 to n with column and stimulus B varied from 1 to n with
row. The dissimilarity matrices were by definition symmetric about the
diagonal, with a diagonal of zeros (i.e. 1 - r when r = 1). After measuring
the spike-rate dissimilarity separately for each dataset, we averaged these
values to obtain a group average dissimilarity matrix. These dissimilarity
matrices are akin to those used in previous studies (for example, Krie-
geskorte et al., 2008).

2.6. Classification analysis

As an alternative to the correlation-based dissimilarity matrices, we
also constructed dissimilarity matrices where the dissimilarity of the
neural responses was defined by classifier accuracy, which we have used
previously (Goddard et al., 2017). In our previous work we first down-
sampled the multi-unit activity of each channel to 500 Hz, extracting
the number of spike waveforms on that channel in each 2 ms time bin,
and repeated the classification process (described below) at each time
point (every 2 ms) in the 600 ms window in order to measure how
classification accuracy evolved over time. Here we retained the fine
temporal resolution of the original analysis in order to avoid ceiling ef-
fects in classifier performance, but averaged classifier performance across
the same portion of the stimulus induced response as used in the spike-
rate dissimilarity analysis (66-564 ms).

To perform the classification analysis we first reduced the dataset by
applying principal component analysis to the entire dataset for each
animal, comprising the entire 600 ms of neuronal response following
stimulus onset, for each of 2160 (gratings) or 1680 (dots) trials and up to
96 channels. Data from the first n components that accounted for 99% of
the variance were retained; data from remaining components were dis-
carded. Across animals and stimulus type (gratings and dots) n ranged
from 54 to 93. Note that the application of PCA to the raw data here was
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for data reduction, and is unrelated to the dimensionality reduction
described below.

We trained and tested classifiers (linear discriminant analysis, LDA)
to discriminate population responses on trials of different stimulus con-
ditions. We also repeated the entire analysis using a linear support vector
machine (SVM) classifier and obtained very similar results (data not
shown). For each possible pair of the 84 unique dot field stimuli we
trained the classifier to discriminate between two stimulus conditions
then measured classifier accuracy using 10-fold cross-validation. The
classification rule was learned using 90% of trials (18 trials of each type),
and the accuracy of this rule was tested on the remaining 10% of trials (2
trials of each type). This process was repeated for each of 10 partitions of
the data, such that all data were included in the test set once, and no data
were ever used in both the training and test set (leave-one-out train-
and-test).

Similarly, we trained classifiers to discriminate each pairing of the
108 unique grating stimuli, and again tested the classifier accuracy using
10-fold cross-validation. Finally, for those animals where both the
moving grating stimuli and moving dot stimuli were presented to the
same eye (ipsilateral or contralateral to the recorded MT), we repeated
the PCA and classification analysis for a single data set of 3840 trials
(with 192 unique stimuli).

In every case the entire classification analysis was performed sepa-
rately for each animal, and the average classification accuracy was ob-
tained by averaging classifier performance (in units of d') across animals.

2.7. Dimensionality reduction

From the spike-rate dissimilarity analysis and the classification
analysis we obtained two alternative dissimilarity matrices for each of
the 3 cases: moving dot fields (average of 6 data sets, n = 84 unique
stimuli), moving grating stimuli (average of 6 data sets, n = 108 unique
stimuli) and both dot and grating stimuli (average of 5 data sets, n = 192
unique stimuli). We applied a range of dimensionality reduction tech-
niques to each of these six dissimilarity matrices.

For each dissimilarity matrix, we treated the matrix as a space with n
dimensions, each with n observations, and applied the 30 dimensionality
reduction methods listed in Table 1 to reduce the data from an n
dimensional space to a m dimensional space, where m varied fromm =1
to m = n-1. To implement multidimensional scaling (MDS) of our
dissimilarity matrices we used the Matlab function mdscale. For inde-
pendent component analysis (ICA) we used the ‘FastICA’ package
(downloaded from MathWorks, version: 14 January, 2017, see http://
research.ics.aalto.fi/ica/fastica/), from which we used the fast, fixed-
point algorithm for Independent Component Analysis, as well as the
kurtosis maximization ICA. ICA is conceptually similar to PCA in that it
seeks orthogonal dimensions that explain variance while reducing the
dimensionality of the dataset. The difference is that ICA iteratively
maximizes the absolute value of kurtosis, rather than explained variance.
In principle, this should make it better able than PCA to identify mean-
ingful dimensions in a dataset, particularly if the values on those di-
mensions are not normally distributed. We applied the Matlab function
rotatefactors to the results of our Principal Component Analysis (PCA) to
obtain the ‘Varimax’, ‘Quartimax’ and ‘Parsimax’ rotations. Each of these
factor analytic rotations aim to discover any latent sources of variance
whose signals are likely to be mixed in the components extracted by PCA.
For example, ‘Varimax’ maximizes the variance of the squared loadings
of each factor on all the dimensions, which aims for a solution where
each factor has either a large or a small loading on each data dimension,
ideally yielding optimal separability and interpretability. The remaining
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24 dimensionality reduction methods we implemented using ‘The Matlab
Toolbox for Dimensionality Reduction’ (version 0.8.1b, March 21, 2013,
see van der Maaten and Hinton, 2008).

To evaluate how well the extracted dimensions correlate with the
expected dimensions of each representational space, we generated hy-
pothetical dimensions for each case and correlated these hypothetical
dimensions with the observed dimensions using Kendall's tau (a rank
correlation). In each case, we generated hypothetical dimensions for each
of the stimulus dimensions that varied in the stimulus set. We assumed
that for an extracted dimension to correspond to this feature dimension
there should be ordering of the stimuli along the extracted dimension so
that stimuli of greater feature difference are further apart than those of
smaller feature difference. For the moving dot field stimuli, we generated
‘direction’ and ‘speed’ dimensions, for moving grating stimuli we
generated ‘direction’, ‘spatial frequency (SF)’, ‘temporal frequency (TF)’
and ‘speed (that is, TF/SF)’ dimensions. For the case with both moving
dot field and moving gratings we included ‘direction’, ‘SF’, ‘TF’, ‘speed’
and ‘category’, where the ‘category’ dimension was a binary classifica-
tion of the stimuli into dot fields and gratings. Examples of these hypo-
thetical dimensions are plotted in Figs. 2 and 6. For each of these
dimensions, we were interested in whether the extracted dimensions
would show the same ordering of stimuli according to the feature values.
Since there is no a priori reason for the order to be ascending or
descending (for example, for speed to increase or decrease along an
extracted ‘speed’ dimension), we specified a pair of hypothetical di-
mensions for each of these stimulus features, where one hypothetical
dimension was a mirror reversal of the other.

Similarly, since direction is a circular dimension, and there were 12
directions in our stimulus set, we generated 12 alternatives for the hy-
pothetical direction dimensions, where each started with a different di-
rection. We then mirror reversed each of these possibilities, to give a total
of 24 hypothetical direction dimensions.

Finally, when we included both moving dot field and moving grating
stimuli in a single data set, we needed to predict how the dot fields, which
are broadband in SF and TF, should be ordered relative to the gratings of
a single SF and TF. To avoid assuming a single correct solution, we
created 4 alternatives for the hypothetical SF and TF dimensions, where
the dot field stimuli were either the first or last along the dimension,
intermediate to the first and second SF/TF, or intermediate to the second
and third SF/TF. We mirror reversed each of these 4 possibilities to create
8 hypothetical SF and TF dimensions in the case where dot fields and
gratings were considered as a single data set.

To measure how well the extracted dimensions corresponded to these
hypothetical dimensions, we rank correlated the extracted dimensions
with each of the 2, 8 or 24 alternatives, and used the maximum corre-
lation value across the alternatives as the measure of the extracted di-
mension's correlation with that feature dimension. When assessing the
significance of the correlations, we used a Bonferroni correction to adjust
the p values of these tests for the number of alternatives tested in each
case. For the moving dot field data we calculated these correlation values
for the first 4 dimensions from each method, and for the moving grating
and combined cases we considered the first 6 dimensions. By using a rank
correlation between the hypothetical dimensions and the observed di-
mensions we were testing simply for an ordering of the stimuli according
to their feature values, rather than testing how the feature values were
spaced along the dimension. We chose to use rank correlations to avoid
making assumptions about whether (for example) a neural representa-
tion of stimulus speed should be mapped onto physical speed in a linear,
logarithmic, or other monotonic relationship.

For the combined moving dot field and grating data we also executed

Fig. 4. Correlation between data-defined dimensions and the known stimulus dimensions of dot field direction and speed. Here we correlated the known stimulus dimensions with the
dimensions extracted when dimensionality reduction was applied to the dissimilarity matrix based on spike-rate dissimilarity values. For each dimensionality reduction method tested, we
considered only the top 4 dimensions that were extracted, and correlated these with each of the hypothetical direction and speed dimensions. Filled diamonds show correlation values that
were significantly (p < 0.05) above zero, with Bonferroni correction for the multiple hypothetical stimulus dimensions that were compared with each data-driven dimension (see Materials

and Methods for details).
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Fig. 5. Correlation between known stimulus dimensions and the data-defined dimensions extracted from the dissimilarity matrix based on classifier performance. Plotting conventions as

in Fig. 4.
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a clustering algorithm (the Matlab function linkage with the default
nearest distance method) to generate a hierarchical cluster tree of the
dissimilarity matrix.

3. Results

To evaluate the effectiveness of dimensionality reduction for recov-
ering the dimensions of neural feature representations, we applied these
methods to a brain region where the feature dimensions should be well
defined: area MT responses to simple moving stimuli. We analyzed multi-
unit activity in multielectrode recordings from area MT of 6 sufentanil-
anesthetized marmoset monkeys. Each animal was shown stimuli from
one or both of two stimulus sets: a set a moving dot fields of varying
direction and speed, and a set of moving gratings of varying direction,
spatial and temporal frequency. For every pair of unique stimuli, we used
a correlation-based measure of the dissimilarity in the pattern of spike-
rates across electrodes (spike-rate dissimilarity = 1-r, see Fig. 1) and
we measured the discriminability of the population responses within
each animal using multivariate pattern classification analysis (see Fig. 2).
To avoid ceiling effects in classifier performance, we performed the
analysis on spike counts from 2 ms bins, then averaged classifier per-
formance across the stimulus-induced response (66-564 ms after stim-
ulus onset). Even with short time bins, classification performance was
high (see Fig. 2).

3.1. Response dissimilarity increased with increasing stimulus feature
difference

As expected, both measures of response dissimilarity tended to in-
crease with increasing stimulus feature difference. Spike-rate dissimi-
larity tended to increase when the spike-rates were in response to stimuli
that were more different along one or more dimensions. Similarly, clas-
sifier accuracy tended to increase when the stimuli it was trained to
discriminate were more different along one or more feature dimensions.
For moving dot fields, spike-rate dissimilarity and classifier performance
were lowest when the stimuli were separated by only a single step in
direction and/or speed (the blue/green diagonals in the matrices in
Figs. 1 and 2). For speed (Figs. 1A and 2A), spike-rate dissimilarity and
classifier performance generally increased as the speed difference
increased, and were lowest for stimuli of highest speed. For dot field
direction (Figs. 1B and 2B), spike-rate dissimilarity and classifier accu-
racy were greatest when the dot fields were 180° apart (moving in
opposite directions). Note that since direction is a circular variable, when
the stimuli were 30° and 330° from downward they are only 60° apart.
This pattern of results is consistent with the existing literature on area
MT, namely that it encodes both the speed and direction of mov-
ing patterns.

For moving grating stimuli, classifier accuracy tended to increase
when the spatial and/or temporal frequency difference increased
(Fig. 2C), and was lowest for stimuli of high spatial frequency and/or
high temporal frequency. This pattern was less clear in the correlation
results (Fig. 1C). Compared with the moving dot fields, the average spike-
rate dissimilarity and classifier accuracy for moving gratings was more
uniform across direction differences, although it was still lowest for
stimuli of the same or smallest (30°) direction difference (Figs. 1D
and 2D).

In previous work (Goddard et al., 2017) we used the classification
accuracy data to demonstrate the dependence of the population response
on direction, speed, spatial and temporal frequency, and how the
encoding of these features evolves over time. Our analyses confirmed
what can also be seen by inspecting Fig. 2, that there is information about
each of these stimulus features in the population response, consistent
with a population response that varies systematically with each of these
stimulus feature dimensions. We next asked whether standard dimen-
sionality reduction methods could independently recover the feature
dimensions that were systematically varied in the stimulus set, and which
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appear to be encoded systematically in the population response.

3.2. Dimensionality reduction applied to neural responses to moving dot
stimuli

To evaluate the effectiveness of dimensionality reduction for
‘discovering’ the dimensions of a neural representational space we first
considered the classifier responses to moving dot fields. This is the
simplest case in our data, where the stimuli varied along only 2 di-
mensions (direction and speed), and there was a robust increase in
classifier performance as the stimuli differed along either of these
dimensions.

First we generated the simplest possible hypothetical dimensions that
would lead to the interpretation that the representational space of MT
neurons is defined by speed and direction. These hypothetical di-
mensions are plotted in Fig. 3. We arrived at these dimensions by
assuming that direction and speed should be extracted as orthogonal
dimensions, and that there should be ordering within along both these
dimensions so that stimuli of greater feature difference are further apart
along the relevant dimension. Since direction is a circular dimension, the
solution in Fig. 3 is one of 12 equally correct solutions, in which the
leftmost direction is a different direction in each case. Similarly, for both
the speed dimension and each of the 12 correct direction dimensions, a
left-right flipping of the order along the dimension is equivalently cor-
rect. This gave us 2 speed dimensions and 24 direction dimensions that
we treated as correct solutions.

We tested a large range of dimensionality reduction approaches (see
Figs. 4 and 5, details in Table 1), including the commonly used Principal
Component Analysis (PCA) and Multi-Dimensional Scaling (MDS). For
each of these methods we rank correlated each of the hypothetical di-
rection and speed dimensions with each of the first 4 dimensions from the
dimensionality reduction. The maximum correlation between each of
these data-defined dimensions and any one of the direction and speed
dimensions is plotted in Fig. 4 (fo