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Abstract

Moving from group level to individual level functional parcellation maps is a critical step for 

developing a rich understanding of the links between individual variation in functional network 

architecture and cognitive and clinical phenotypes. Still, the identification of functional units in the 

brain based on intrinsic functional connectivity and its dynamic variations between and within 

subjects remains challenging. Recently, the bootstrap analysis of stable clusters (BASC) 

framework was developed to quantify the stability of functional brain networks both across and 

within subjects. This multi-level approach utilizes bootstrap resampling for both individual and 

group-level clustering to delineate functional units based on their consistency across and within 

subjects, while providing a measure of their stability. Here, we optimized the BASC framework for 

functional parcellation of the basal ganglia by investigating a variety of clustering algorithms and 

similarity measures. Reproducibility and test-retest reliability were computed to validate this 

analytic framework as a tool to describe inter-individual differences in the stability of functional 

networks. The functional parcellation revealed by stable clusters replicated previous divisions 

found in the basal ganglia based on intrinsic functional connectivity. While we found moderate to 

high reproducibility, test-retest reliability was high at the boundaries of the functional units as well 

as within their cores. This is interesting because the boundaries between functional networks have 

been shown to explain most individual phenotypic variability. The current study provides evidence 

for the consistency of the parcellation of the basal ganglia, and provides the first group level 

parcellation built from individual-level cluster solutions. These novel results demonstrate the 

utility of BASC for quantifying inter-individual differences in the functional organization of brain 

regions, and encourage usage in future studies.
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1. Introduction

The basal ganglia (BG) is a functionally heterogeneous structure that interacts with the 

cortex to produce a wide range of motor, cognitive, and affective functions (Alexander, 

DeLong, & Strick, 1986; Coxon et al., 2016; Goble et al., 2011; Goble et al., 2012; Graybiel, 

2008; Hikosaka, Nakamura, Sakai, & Nakahara, 2002; Hoshi, Tremblay, Feger, Carras, & 

Strick, 2005; Postuma & Dagher, 2006). The BG’s functional diversity is also supported by 

its involvement in a wide range of psychiatric and neurological dysfunction (e.g., Parkinson 

disease, Huntington disease, major depression, obsessive compulsive disorder, Tourette 

Disorder, addiction (Albin, Young, & Penney, 1989; DeLong & Wichmann, 2007; Dogan et 

al., 2015; Graybiel, 2008; Hyman, Malenka, & Nestler, 2006; Ikemoto, Yang, & Tan, 2015; 

Simpson, Kellendonk, & Kandel, 2010; Worbe et al., 2015; Yu, Liu, Wang, Chen, & Liu, 

2013). Understanding how the BG supports these myriad functions requires a detailed 

understanding of the architecture of this complex brain region. While discrete anatomical 

nuclei have been identified by postmortem studies, such findings provide little insight into 

variations among individuals in cortical interactions that could contribute to differences in 

cognitive, motor, and affective function and dysfunction.

Such anatomical brain parcellations can present significant confounds to the specification of 

functional networks (Blumensath et al., 2013; Smith et al., 2011) and have been 

demonstrated to be not detailed enough to result in adequate models of functional data 

(Thirion, Varoquaux, Dohmatob, & Poline, 2014). Due to these issues, efforts have focused 

on the delineation of BG sub-regions based upon patterns of functional co-activation or 

connectivity and have proven to be particularly promising (Postuma & Dagher, 2006). Task 

based meta-analytic approaches have used large sets of coactivation maps to clusters of BG 

voxels (Pauli, O’Reilly, Yarkoni, & Wager, 2016; Postuma & Dagher, 2006). Other studies, 

such as Di Martino et. al. 2008 used functional connectivity based methods for delineating 

subdivisions of the BG in resting state fMRI. Following this initial study of BG connectivity, 

a number of papers have generated voxel-level connectivity-based parcellations of the BG 

using a range of techniques, including independent component analysis (Kim, Park, & Park, 

2013), graph theory (Barnes et al., 2010), network-based voting strategies (Choi, Yeo, & 

Buckner, 2012), and cluster analysis (Jung et al., 2014). Despite differences in 

methodologies, the results of these studies have been largely consistent with one another, 

with the findings of the previously discussed co-activation studies, and with the larger body 

of work from animal models. While an important step beyond anatomical atlases, group 

level functional parcellations do not accurately reflect an individual subject’s functional 

anatomy (Blumensath et al., 2013; Smith et al., 2011). Obtaining functional atlases at the 

individual level is a critical step towards understanding the organization of the functional 

anatomy and relationship with phenotypic variation (Devlin & Poldrack, 2007; Laumann et 

al., 2015).

Individual level maps of the brain’s functional architecture are fundamental for deriving how 

individual differences in cognition are associated with functional brain architecture (Cohen 

et al., 2008; Di Martino, Shehzad, et al., 2009; Kelly et al., 2009). In clinical realms, where 

individuals can vary dramatically from group atlases, the development of individual level 

functional maps become an important source of in-vivo information about the brain for a 
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range of clinical procedures such as surgery and brain stimulation (Fox et al., 2014; Fox, 

Liu, & Pascual-Leone, 2013; Frost et al., 1997; Goulas, Uylings, & Stiers, 2012; Opitz, Fox, 

Craddock, Colcombe, & Milham, 2016; Wang et al., 2015). Furthermore, for successful 

application in cognitive and clinical domains, within-subject reproducibility is an important 

criterion for individual level functional mapping (LaConte et al., 2003; Thirion et al., 2014; 

Wang et al., 2015). Defining inter-individual variation in BG connectivity patterns may yield 

important insight into putative biomarkers for BG dysfunction. Prior efforts have targeted 

the establishment of individual level functional mapping of the cortex (Blumensath et al., 

2013; Wang et al., 2015), though establishing individual level parcellations of the basal 

ganglia remains elusive.

While prior works have demonstrated mapping individual functional differentiations among 

BG subdivisions driven by group-level connectivity is feasible (Janssen, Jylänki, Kessels, & 

van Gerven, 2015; Jaspers, Balsters, Kassraian Fard, Mantini, & Wenderoth, 2016), these 

individual-level solutions have not yet been examined, nor has the reliability of differences 

obtained across individuals been established or quantified. We leverage the “bootstrap 

analysis of stable clusters” (BASC) framework (Bellec, Rosa-neto, Lyttelton, Benali, & 

Evans, 2010) to assess both individual differences in BG parcellations and stability of BG 

parcellations at the group level. BASC is unique in its ability to provide a probabilistic 

measure of clustering properties at a single-subject level as well as stable clustering 

solutions at a group-level. In addition to group-level measures of stability for parcellations, 

BASC provides measures of stability of individual-level parcellation results. Assessment of 

test-retest reliability is particularly relevant to efforts focused on biomarker identification. 

Recent works focused on cortical parcellation have suggested that functional boundaries 

detected during rest are reliable and may vary meaningfully across individuals (Glasser et 

al., 2016; Gordon, Laumann, Adeyemo, & Petersen, 2015; Van Essen & Glasser, 2014; Xu 

et al., 2016). Accordingly, the present work emphasizes the test-retest reliability for the 

findings obtained using the BASC framework. We use BASC to replicate our parcellation 

across multiple clustering methods, data types, and acquisition parameters to establish a 

methodologically agnostic map of the stability of BG subdivisions. We demonstrate that 

BASC can provide individual level functional maps of the BG are reliable across scans, and 

we establish the basis for cognitive and clinical endeavors that rely on mapping functional 

architecture at the individual level.

2. Methods

2.1 Datasets

We employed two independent test-retest datasets currently available for open science 

investigations. The NYU TRT includes data from 25 right-handed participants (11 males; 

mean age 20.5±8.4) downloaded from the www.nitrc.org/projects/nyu_trt. Participants had 

no history of psychiatric or neurological illness, as confirmed by a psychiatric assessment. 

The second dataset, NKI TRT, includes data from 23 participants (17 males; 19 right-

handed; mean age 34.4±12.9) downloaded from http://fcon_1000.projects.nitrc.org/indi/pro/

eNKI_RS_TRT. This sample included 6 patients with current or past psychiatric diagnosis, 

as confirmed by a psychiatric assessment. The institutional review boards of the New York 
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University School of Medicine, New York University, and of the Nathan Kline Institute 

approved the NYU and NKI studies, respectively. In all cases, signed informed consent was 

obtained prior to participation, which was compensated.

2.1.2 fMRI Acquisition

NYU TRT.: Three resting state scans were acquired on each of 25 participants using a 

Siemens Allegra 3.0 Tesla scanner equipped with echo planar imaging (EPI) (TR = 2000ms; 

TE = 25ms; flip angle = 90; 39 slices, matrix 64×64; FOV = 192mm; acquisition voxel = 3 × 

3 × 3 mm; 197 volumes; 6 min 34 sec). Scans 2 and 3 were acquired in a single scan session 

45 min apart, 5–16 months (mean = 11±4 months) after scan 1 was acquired. During the 

scans, participants were instructed to rest with eyes open while fixating on the word “Relax” 

which was centrally projected in white, against a black background. A high-resolution T1-

weighted anatomical image was obtained in each session using a magnetization prepared 

gradient echo sequence (MPRAGE, TR = 2500ms; TE = 4.35 ms; TI = 900 ms; flip angle = 

8; 176 slices, FOV = 256 mm) for spatial normalization and localization.

NKI TRT.: Two 10-minute resting-state scans were collected from each participant in two 

different sessions using a 3T Siemens TIM Trio scanner equipped with a 32-channel head 

coil. The fMRI time-series data were acquired using multiband (MB) accelerated (Moeller et 

al., 2010) echo-planar imaging, giving a whole-brain temporal resolution of 0.645 seconds 

(TE = 30ms; flip angle = 90; 40 slices; FOV = 222mm; acquisition voxel = 3 × 3 × 3 mm; 

930 volumes). Scan 1 and scan 2 were completed two weeks apart. A high-resolution T1-

weighted anatomical image was also acquired during each session using a magnetization 

prepared gradient echo sequence (MPRAGE, TR = 2500ms; TE = 4.35 ms; TI = 900 ms; flip 

angle = 8; 176 slices, FOV = 256 mm) for spatial normalization and localization.

2.2 fMRI Data Analysis

2.2.1 Image Preprocessing—Data processing was performed using Analysis of 

Functional NeuroImaging (AFNI; http://afni.nimh.nih.gov/afni) (Cox, 1996) and FMRIB 

Software Library (FSL; www.fmrib.ox.ac.uk). AFNI image preprocessing comprised slice 

time correction for interleaved acquisitions (only for the NYU TRT sample); 3-D motion 

correction with Fourier interpolation; despiking (detection and compression of extreme time 

series outliers); while FSL preprocessing comprised spatial smoothing using a 6mm FWHM 

Gaussian kernel; mean-based intensity normalization of all volumes by the same factor; 

temporal bandpass filtering (0.009 – 0.1 Hz); and linear and quadratic detrending.

We used FSL to perform high-resolution structural image registration to the MNI152 

template using a two-stage procedure that begins by first calculating a linear transform using 

the FSL tool FLIRT (Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson & Smith, 

2001), which was then refined using FNIRT nonlinear registration (Andersson, Jenkinson, & 

Smith, 2007; Andersson, 2007). Linear registration of each participant’s functional time 

series to the high-resolution structural image was performed using FLIRT. The functional-

to-anatomical and anatomical-to-MNI transforms were concatenated to produce a single 

transform from functional to MNI space.
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2.2.2 Nuisance Signal Regression—To control for the effects of physiological 

processes (such as fluctuations related to cardiac and respiratory cycles) and motion, we 

regressed each participant’s 4-D preprocessed volume on nine predictors that modeled 

nuisance signals from white matter, CSF, the global signal, and six motion parameters. The 

residuals from nuisance signal regression were written into MNI152 standard space at 2mm 

isotropic resolution using the transformation calculated from the corresponding anatomical 

image.

2.3 Bootstrapping Analysis of Stable Clustering

The main advantage of BASC is that it provides a probabilistic measure of the stability of 

individual and group-level cluster analysis results. Here, we provide an overview of the 

BASC analytic framework; more detailed information can be found in (Bellec, Rosa-neto, 

Lyttelton, Benali, & Evans, 2010). Given that BASC is not dependent on the choice of 

cluster analysis methods, we describe the approach in a more generic fashion; later sections 

will describe the specific cluster analysis strategies employed in the present work. In the 

current work, BASC is implemented from NIAK, written in Octave (http://

niak.simexplab.org/). More recently, we have developed a version of BASC in Python 

leveraging a suite of Python tools for neuroimaging such as Nipype (Gorgolewski et al., 

2011), Nilearn (http://nilearn.github.io/authors.html), Nibabel (http://nipy.org/nibabel/). By 

using the C++ compile libraries of Numpy, and vectorizing portions of our code we have 

sped up computations by several orders of magnitude. This implementation can be found on 

our Github repository (https://github.com/AkiNikolaidis/BASC).

2.3.1 Individual-level BASC—At the individual level, BASC estimates the stability of 

clustering individual participant data by generating several surrogate datasets (bootstrap 

replicates) from the data, clustering voxels within each of these surrogates, and measuring 

the stability across clustering solutions. Bootstrap replicates are generated using a circular 

block bootstrapping (CBB) procedure that randomly perturbs the data time series while 

preserving its spatial correlations and temporal autocorrelations (Bellec, Marrelec, & Benali, 

2008). CBB begins by dividing an fMRI time series into fixed-length blocks of functional 

volumes. Blocks that occur at the end of the time series wrap around to include volumes 

from the beginning of the time series. Blocks are randomly drawn from the original data 

with replacement and concatenated to generate a bootstrap replicate that contains the same 

number of time points as the original data. Since the random selection of blocks occurs with 

replacement, some functional volumes will be repeated in the bootstrap replicate and others 

will be left out. As time-points for the beginning of each block are chosen with a uniform 

probability, there is a corresponding probability that blocks will overlap, and the amount of 

block overlap is not fixed a priori.

A previous investigation found that block length has a minor impact on the bootstrap 

distribution and that setting it to the square root of the time series length works well (Bellec 

et al., 2008). For the present work, we chose a block length of 12, which roughly 

corresponds to the square root of the NYU dataset length. This was used for both datasets to 

maximize the comparability of results between them.
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For each bootstrap replicate, cluster analysis yields an adjacency matrix (a voxel by voxel 

matrix), which contains a ‘1’ for voxel pairs assigned to the same cluster and ‘0’ otherwise. 

Following their calculation, adjacency matrices are averaged across bootstrap replicates, 

producing a stability matrix, which represents the frequency with which pairs of voxels 

appear in the same cluster across replicates. The quality of stability estimates is dependent 

on the number of bootstrap replicates, and improves with greater number of replications 

(Bellec et al., 2010). Individual stability matrices were estimated using 80 bootstrap 

replications as a compromise between computation time and estimation accuracy.

2.3.2 Group-level BASC—To detect stable cluster solutions at the group-level, BASC 

uses bootstrapping to approximate the distribution of human functional parcellations, from 

the finite sample of participants included in a given study. The bootstrap procedure in BASC 

mimics the random variations of the individuals recruited within the group by drawing 

individuals from the real sample with replacement to generate a surrogate dataset featuring 

the same number of individuals as the original. The difference between the original and 

bootstrap dataset is that some individuals may be absent in a particular bootstrap sample 

while others may be duplicated. This bootstrap scheme is repeated 100 times to generate an 

estimation of group-level stability. For each bootstrap sample, a group-level stability matrix 

is calculated by averaging the individual-level stability matrices and then clustered to 

generate a group-level adjacency matrix for that bootstrap. Finally, the adjacency matrices 

are averaged across bootstraps to generate an overall stability matrix, which is then clustered 

to generate a final group-level functional parcellation (Figure 1).

2.3.4 Stability Maps—Stability matrices depict the consistency with which two voxels 

are assigned to the same cluster. We can also estimate a stability map for a given functional 

unit that depicts the consistency of a voxel belonging to that cluster. An individual stability 

map can be calculated by combining the final stable cluster assignment with the individual 

stability matrix. For each voxel of the brain structure, the value in the stability map for a 

given functional unit is defined as the mean of stability values for that voxel and all the 

voxels within the given unit (Figure 1). Because the stability maps are based on the same 

group-level parcellation, individual differences in the stability for a given functional unit can 

be quantified by comparing the individual stability maps for that unit.

2.4. Implementation Specifics

The objective of cluster analysis is to partition a set of data points into k non-overlapping 

subsets such that observations assigned to the same subset are more similar to one another 

than observations assigned to different subsets. In the context of resting-state functional 

connectivity (RSFC), clustering algorithms have been used to partition voxels based on the 

similarity of whole-brain correlation maps (Craddock, James, Holtzheimer, Hu, & Mayberg, 

2012; Kelly et al., 2010; Margulies et al., 2009) and on similarity of time courses (Bellec et 

al., 2010; Craddock et al., 2012). The methods have been applied to whole brain data in 

order to identify large-scale patterns of functional connectivity (Bernard et al., 2012; van den 

Heuvel, Mandl, & Pol, 2008) as well as with dimensionality reduction techniques to enable 

connectome analyses (Bellec et al., 2010; Craddock et al., 2012). Additionally, these 
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methods have been applied within sub-regions of the brain in an attempt to identify 

fundamental sub-units of brain function (Kelly et al., 2010; Margulies et al., 2009).

Several parameters must be specified when performing a clustering analysis. The sub-region 

of the brain (or the entire brain) to be clustered must be defined. Additionally, a metric must 

be specified for measuring the similarity between voxels, and one of many different 

available clustering algorithms must be chosen. Here we constrain the clustering to the basal 

ganglia, and compare various metrics for measuring similarity, and different clustering 

algorithms as described in the following subsections.

2.4.1 Clustering Mask Definition—The basal ganglia was defined as the brain areas 

comprising putamen, caudate, nucleus accumbens and globus pallidus, obtained by setting a 

threshold of 50% on probability of belonging to these subcortical structures per the Harvard-

Oxford Atlas (http://www.fmrib.ix.ac.uk/fsl/). We excluded the subthalamic nucleus and 

substantia nigra due to concerns regarding resolution. We focused our analyses on a single 

hemisphere to avoid the generation of non-contiguous clusters; given the high degree of 

similarity for connectivity patterns observed in homotopic areas of the striatum, we limited 

the scope of examination and reporting in the present work to the left hemisphere. The left 

hemispheric mask also enabled us to use more computationally extensive bootstrapping.

2.4.2 Similarity Metrics—We used two different metrics to measure similarity between 

voxels for clustering the BG (1438 voxels in the left BG). The spatial correlation (rs) 

between two voxels was computed by the Pearson’s correlation of whole-brain connectivity 

maps derived from the voxel time series. Temporal correlation (rt) between two voxels was 

measured by the Pearson’s correlation between their time series. Complementarily, we 

computed the eta2 statistic (1), which is identical to Pearson’s correlation for standardized 

variables but is shifted to be non-negative:

Eta2 = SumofSquaresBetween/SumofSquaresTotal (1)

Before clustering, an r≥0.2 threshold was applied to rs and rt similarity metrics, which 

corresponds to a p<0.05 significance level calculated from the degrees of freedom of the 

fMRI time-series. By applying this threshold, we avoid negative and weak correlations 

contributing to the clustering analysis. Since functional units defined based on homogeneity 

of the RSFC maps and those obtained from BG voxels’ time-series yielded highly similar 

results, rs was arbitrarily chosen to be reported in the main figures, but all the figures 

obtained with rt are shown in the supplementary material.

2.4.3 Clustering Algorithm—Several approaches have been proposed for clustering R-

fMRI data, such as normalized-cut spectral clustering (NCUT) (van den Heuvel et al., 2008), 

K-means (Mezer, Yovel, Pasternak, Gorfine, & Assaf, 2009), and hierarchical clustering 

(Goutte, Toft, Rostrup, Nielsen, & Hansen, 1999) (see Supplementary Figure 7). NCUT 

clustering has been shown to perform well at generating whole brain fMRI atlases based on 

spatially constrained spectral clustering on resting-state data (Craddock et al., 2012). As 

such, our primary analyses that focused on test-retest reliability and reproducibility 
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exclusively used the NCUT algorithm for the individual- and group-level cluster analysis 

approaches. The spectral clustering (NCUT algorithm) Matlab toolbox by Verma & Meila 

(available at http://www.stat.washington.edu/spectral/) was specifically employed to 

partition each participant’s basal ganglia into k clusters.

2.4.4 Resolution Selection—Given the size of the brain region of 1438 voxels, a k 
range of 2 to 9 units was arbitrary chosen as results at higher resolution would be hard to 

interpret. We used a modified Silhouette index (MSI; 2) and the Davis-Bouldin index (3) to 

compare the performance of different clustering solutions within this range (k = 2 to 9). The 

modified Silhouette validation index (MSI) provides a measure of the similarity of voxels 

within a cluster to their similarity to voxels in other clusters:

S k =
min 1 − ηbk − min 1 − ηwk
max 1 − ηwk − min 1 − ηbk

(2)

In this equation, ηwk corresponds to the mean value describing the similarity between all 

voxels within a cluster, while ηbk corresponds to the K-1 mean values describing the 

similarity between all pairings of voxels within cluster k and voxels within other clusters. 

We also applied the Davis-Bouldin validation index (Davies & Bouldin, 1979):

DB ≡ 1/N ∑
i = 1

N
max Si + S j /Mi, j (3)

In this equation, Si is a measure of scatter within cluster i and Mi,j is a measure of separation 

between cluster i and j, and N corresponds to the number of clusters. The DB (Davis-

Bouldin) index therefore corresponds to a ratio of the within-cluster distance to the mean 

distance between cluster centers, weighted by the number of clusters. Resolutions that 

represented local maxima for MSI and local minima for DBI are often identified as best 

performing resolutions.

2.4.5 Alternative Clustering Strategies—A key concern of any study employing 

clustering methodologies is the possible dependency of findings on the specific clustering 

algorithm or similarity measure employed. In order to address these concerns, we employed 

two alternative analytic strategies, one differing with respect to clustering algorithms 

(mimicking those initially used by Bellec et al., 2010) and the other differing with respect to 

the similarity measure employed (using eta2, similar to Cohen et al., 2008b; Kelly et al., 

2012) (see Supplementary Figure 7).

2.5 TRT Reproducibility

Between-session reproducibility of BASC-derived stability matrices was estimated using the 

NYU TRT dataset, in which scans 2 and 3 were collected in a single session several months 

after scan 1. We also repeated our assessment of TRT reproducibility using the NKI TRT 

dataset. For the first measure of reproducibility, the Pearson correlation coefficient was 
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calculated between each subject’s stability map calculated from scan 1 and the average of 

the stability maps calculated from scan 2 and scan 3.

The Dice coefficient (4) is the second measure of reproducibility that was employed, and 

was calculated between binarized stability maps calculated from scan 1 and the binarized 

map calculated from the average stability maps from scans 2 and 3. Stability maps were 

binarized by assigning the value 1 to a voxel for which the stability value was maximal 

across functional units, and a 0 to the same voxel in all other functional units. The Dice 

coefficient is calculated as the ratio of twice the number of connections common to both 

matrices, divided by the total number of connections present in both matrices:

dice = 2 ⋅ A − m ∩ Am
A − m + Am (4)

Dice’s coefficient varies between zero and one, where one corresponds to perfect 

correspondence between matrices and zero corresponds to no similarity (Dice, 1945).

2.6 TRT Reliability

The TRT reliability of individual level BASC stability maps was estimated at the voxel level 

using intraclass correlation (ICC) (Shrout & Fleiss, 1979). For the NYU TRT dataset, we 

calculated ICC between the stability maps at scan 1 and stability maps from scans 2 and 3, 

which were averaged together to provide a more accurate estimate of functional 

connectivity, which is consistent with prior work (Shehzad et al., 2009; Zuo, Di Martino, et 

al., 2010; Zuo, Kelly, et al., 2010). In order to offer a more standard ICC demonstration we 

also applied ICC between scans 1 and 2 for the NKI TRT. To control for potential changes in 

the time courses produced by motion estimates from the data (Power, Barnes, Snyder, 

Schlaggar, & Petersen, 2012), we regressed the mean frame displacement out of stability 

maps for each session at the group-level before computing ICC. Here, ICC is used as an 

indicator of scanning reliability across sessions and defined as the proportion of variability 

between subjects relative to the total variability in the data. The calculation used here is a 

further extension of the classical definition of ICC varieties, which is based on linear mixed-

effects modeling with restricted maximum likelihood (REML) estimates, which always 

generates non-negative ICC values (Zuo, Di Martino, et al., 2010).

2.7 Semantic Decoding

To interpret the functional significance of obtained clusters, we adopted the approach of 

Pauli et al., (2016) and used the Neurosynth meta-analytic decoder to generate a semantic 

map for the 5- and 9-cluster solutions. We used the decoder to list the top terms associated 

with each cluster, and created a list of the top terms across clusters. The radar plots in 

Figures 9 and 10 convey the relative commonality of each term for each BG parcel. For the 

five-cluster solution we chose the six terms with the highest representation in each cluster, as 

in Pauli et al. (2016), and for the nine-cluster solution we chose the three most represented 

terms per cluster.
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3 Results

3.1 Functional Units and Resolution Selection

Using the multi-level BASC framework, we parcellated the BG into different functional 

units based upon the consistency of RSFC networks within and across individuals. Best 

performing cluster resolutions were selected using a combination of two independent 

metrics: the Davis-Bouldin Index measuring within-cluster dissimilarity, and the modified 

Silhouette Index measuring between-clusters dissimilarity. Determination of the best 

performing cluster number using the two approaches was facilitated by the high degree of 

concordance between resolutions that minimized the Davis-Bouldin Index and maximized 

the modified Silhouette Index. Regarding functional divisions based upon rs, 2, 4, 8 and 9 

were the best solutions for scan 1, while 2, 7 and 9 were the best solutions for scan 2, and 2, 

5 and 9 performed best for scan 3. Similarly, for functional divisions based on rt, 2, 4 and 9 

were best performing resolutions for scan 1; 2, 7 and 9 for scan 2; and 2, 5 and 8 for scan 3. 

Because k=2 and k=9 were the most frequently repeated best performing solutions, and k=5 

is the most descriptive mid-scale resolution of the resulting optimal outcomes, these 3 

resolutions were selected.

Group-level cluster analysis of the BG in scans 1, 2 and 3 from the NYU TRT dataset led to 

similar functional units, regardless of whether they were based upon spatial (rs) or temporal 

correlation (rt) (see Figure 2 and Supplementary Material Figure 1). As Figure 2 shows, the 

caudate and putamen were divided across all cluster solutions, regardless of resolution, 

consistent with the primacy of this distinction suggested by anatomical and functional 

studies. While resolution k=5 divides the caudate into ventral, dorsal and anterior areas, the 

putamen is partitioned into anterior and posterior divisions. The k=9 resolution further 

segregates the nucleus accumbens from the caudate and the globus pallidum from the 

putamen, while maintaining the 3 caudate divisions of the k=5 resolution and dividing 

putamen into anterior, central, dorsal, and posterior units.

Given that k=2, k=5 and k=9 appeared to be the most appropriate resolutions across the rs 

and rt methods for the two validation indices, they are used in the following sections to 

assess stability, reproducibility and reliability of BASC for BG parcellation. The modular 

organization of these three resolutions and for both rs and rt revealed similar functional units 

across the three TRT sessions.

3.2 Mean Group Stability and Individual Variation

Figures 3a and 3b show the average of the stability maps across subjects for all clusters in 

resolutions k=2, k=5 and k=9 (target cluster is delineated by a white wireframe on the render 

and highlighted in the first column renders) for scans 1, 2 and 3. All three scans show similar 

mean stabilities, with highest values within the target cluster and lower values distant from 

it, regardless of whether the computation was based upon rs or rt. Likewise, to assess the 

variability of stability across subjects, we calculated the coefficient of variation defined as 

the standard deviation across participants divided by the average stability. Complementarily 

in the right part of Figures 3a and 3b, the maps show the coefficient of variation of the 

stability maps across subjects for all the target clusters in the resolutions k=2, k=5 and k=9. 
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Again, scans 1, 2 and 3 show similar coefficients of variation, with lowest values within the 

target cluster turning into higher values for voxels distant from it.

We find that areas with greatest within-cluster mean stability also have the lowest coefficient 

of variation between individuals, suggesting that these clusters are stable both within and 

across individuals. While prior attempts at functional parcellation of the BG primarily used 

pooled group level data (Janssen et al., 2015; Kim et al., 2013), our group-level parcellation 

is comprised of individual-level cluster stability maps, and thus it demonstrates the 

consistency of our group solution at the individual level as well. In the two cluster solution, 

we find that the caudate-nucleus accumbens cluster separates cleanly from the putamen-

pallidum cluster (Figure 3A). In the five cluster solution, we find a more detailed breakdown 

of these regions, but with some areas of lower within-cluster stability and greater between-

subject variation. For example, we find that within both anterior and posterior putamen 

clusters, our results show that portions of the pallidum demonstrate lower stability and 

higher CV compared to the remainder of the cluster. We also find that the dorsal caudate 

shows relatively low mean stability compared to the other caudate clusters, which have mean 

stability values mostly > 0.8 and CV values ~ 0.2. In the nine cluster solution, the pallidum 

and nucleus accumbens broke into individual clusters, and each clustered region 

demonstrates selectively high mean stability and low CV in within-cluster voxels (Figure 

3B). This suggests that compared to the lower resolution 5-cluster solution, the nine cluster 

solution may create clusters that are more easily separable from one another, and have better 

cluster coherence across individuals, making them better markers for investigating individual 

differences.

3.3 TRT Reproducibility

To quantify the extent to which the stability of the modular organization of the BG within an 

individual would be repeated if the resting state fMRI were collected at a different time, we 

used the NYU TRT dataset to compute the Pearson correlation coefficient and Dice 

coefficient between stability maps estimated from scan 1 and the average of those estimated 

from session 2 (the average of scans 2 and 3 was used to provide the best possible estimate 

of session 2). Figure 4 illustrates the reproducibility measured by Pearson correlation and 

Dice coefficient for each subject across stability maps obtained for resolutions k=2, k=5 and 

k=9; the colors of the scatter plots indicate the represented clusters. Most subjects showed 

reproducibilities between 0.6–0.9 as measured by both Pearson correlation coefficient and 

Dice coefficient. These data reveal moderate to high reproducibility of the stability maps 

obtained through BASC on rs across different scans. While Figure 4 represents results 

obtained from rs, Supplementary Figure 5 shows equivalent representations of 

reproducibility for the stability maps obtained by BASC on rt. In sum, we found that the 

reproducibility indicated by Pearson correlations and Dice coefficients was moderate to 

high, with most subjects displaying values over 0.6.

3.4 TRT Reliability

Similarly, to validate the utility of the BASC framework to study inter-individual differences 

in the stability of functional organization among regions, the NYU TRT dataset was also 

used to compute ICC at a voxel-level between stability maps obtained in scan 1 and the 
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average of those obtained in session 2. TRT reliability showed a strong sensitivity to head 

motion effects. ICC values measured at a voxel level across the stability maps obtained for 

scan 1 and the averaged stability map of scans 2 and 3 for resolution k=5 are shown in 

Figure 5 (target clusters delineated by a white line for the slice view and a white wireframe 

on the render). Figure 6 shows ICC maps for resolution k=9. The graph placed next to each 

cluster’s ICC map represents the distribution of frequencies of the ICC values obtained when 

ICC was computed after having regressed out mean frame displacement for each subject (in 

black), and also when ICC was calculated without regressing that parameter out (in red).

It is interesting to note the regional specificity of high ICC values. These are particularly 

found both near the boundaries of the target cluster and within the target cluster. Despite the 

low between-subject variability shown by the coefficient of variation within the target 

cluster, TRT reliability is shown to be high in these areas, representing that a high proportion 

of the total variability across subjects is explained by high between-session correlation 

within each individual. However, the low stability in voxels distant from the target cluster 

combined with high between-subject variation might contribute to the low ICC values in BG 

areas located far from the target cluster. Therefore, the boundaries and target clusters show 

enough within-subject stability as well as between-subject variability to allow for a 

proportion of variability within subjects to be significant across the total variability of the 

data. TRT reliability and ICC value distributions were equivalent for corresponding clusters 

in results obtained from rs and those obtained from rt (see Figure 7). While Figures 5 and 6 

report results obtained from rs, Supplementary Figures 4 and 5 show similar figures for 

results obtained from rt. To further demonstrate the TRT reliability and generalizability of 

this technique, Supplementary Figure 6 shows the ICC obtained by applying BASC to the 

medial wall of the frontal cortex. We see ICC values > 0.6 within each cluster and in regions 

proximal to the clusters. These results demonstrate that high ICC values can be obtained in 

cortical regions as well, suggesting that BASC is capable of deriving stable and reproducible 

clusters on an individual level.

Given the availability of the multiband NKI TRT dataset with a rapid TR of 645 ms, we 

repeated our ICC analysis on this dataset to evaluate the impact on cluster stability of higher 

temporal resolution (and additional observations) afforded by this emerging technology. 

Consistent with the reliability measure on the NYU TRT, Figure 8 confirms the pattern 

shown by Figures 5 and 6 in a multiband TRT dataset with a TR of 645 ms: high ICC values 

were particularly found in proximity of the boundaries of the target cluster as well as within 

the target cluster. Consistent across methods and datasets, high reliability of the stability 

measures obtained through the BASC framework was found particularly within the target 

unit and on the boundaries of that unit.

3.5 Semantic Mapping

To facilitate interpretation of the clusters obtained, we display semantic loadings for each 

cluster in Figures 9 and 10, obtained using the Neurosynth meta-analytic semantic decoder 

(Pauli et al., 2016; Yarkoni, Poldrack, & Nichols, 2011). For the five-cluster solution, each 

region is largely associated with one or more of the major functions of the BG commonly 

reported in the literature (e.g., reward and value, motor movement). In the nine-cluster 
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solution we see a further differentiation of motor control from motor execution in the 

posterior and dorsal putamen, respectively, and this solution also recapitulates expected 

functions of the BG, such as valence, reward and error processing in the nucleus accumbens 

and ventral and anterior caudate clusters.

4 Discussion

4.1 Reliability of Individual-Level and Group Parcellations

Establishing reliable functional atlases at the individual level is a critical step towards 

understanding both function-anatomy associations and relationships between variations in 

both cognitive and clinical phenotypes and functional network architecture. The present 

work demonstrates a method for establishing such reliable parcellations at the individual 

level. Specifically, our quantification of test-retest reliability and reproducibility of findings 

obtained with the BASC framework, over the short- and long-term, supports its ability to 

capture inter-individual differences in the functional subdivisions within complex brain 

structures, such as the BG (Chang & Glover, 2010). In particular, our findings demonstrate 

that high mean stability also exists at the borders between subdivisions (Figures 3A & 3B). 

This finding is supported by recent parcellations highlighting the greatest source of 

individual variance in parcellations lies at the boundaries of parcels (Xu et al., 2016). 

Importantly, as the number of clusters in a solution increased, we found notable variation 

among clusters with respect to the distribution of maximal mean stability (e.g., within the 

cluster, surrounding regions, distant region; Figure 3B), highlighting the importance of 

assessing reliability before applying these approaches to a particular region of interest. The 

clusters created through BASC were not only highly stable within participants, but also 

reliably stable across participants, as demonstrated by low within-cluster coefficient of 

variation (Figure 3A, 3B), enabling more accurate between-subject comparisons of BG 

clustering. Therefore, such parcellations derive reliable indicators of individual differences 

in BG connectivity, and such parcellations may be used in further work to more reliably 

assess how phenotypic differences manifest in the basal ganglia.

We found moderate to high reproducibility between sessions for the BASC framework, 

providing further support for the assertion that these parcellations are stable indicators of 

individual differences in the BG. We also found that between-sessions reliability revealed an 

interesting regional distribution specific for the target cluster and the unit’s boundaries. This 

regional distribution of highly reliable voxels in the maps suggests that the consistency of 

the functional organization within a given functional unit, as well as in the boundaries 

between functional units indicated by sharp changes in their FC patterns (Cohen et al., 

2008a), contain information that is stable and distinctive from other individuals (Figure 5 & 

6). This is particularly exciting given that modules’ boundaries do not seem to follow 

structural variation but rather differences in functional task-related activity (Cohen et al., 

2008a; Mennes et al., 2010), behavior shown by phenotypic variables (Chabernaud, Mennes, 

Kelly, & Nooner, 2013; Cox et al., 2012; Di Martino, Ross, et al., 2009; Di Martino, 

Shehzad, et al., 2009; Koyama et al., 2011) and development (Kelly et al., 2009). This 

pattern of high reliability (ICC>0.5) within the target cluster and on the transition zones was 
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replicated on a different test-retest sample with a faster TR (645 ms; see Figure 8). This 

replication is a strong demonstration of the reliability of this technique.

4.2 Validation of Prior Work

Based upon data-driven cluster analysis approaches, the BASC framework successfully 

recapitulated previously observed BG subdivisions (Barnes et al., 2010; Di Martino et al., 

2008), while providing a greater degree of detail and simultaneously assessing their 

reliability at the individual level. The 5-cluster parcellation of the BG into body and tail of 

the caudate, nucleus accumbens, and anterior and posterior putamen is consistent with 

results from invasive tracing studies in nonhuman primates (Haber, 2003; Künzle, 1977). 

This solution is also consistent with a BG parcellation calculated using probabilistic 

tractography of diffusion-weighted MRI data (Draganski et al., 2008). It is also consistent 

with R-fMRI functional connectivity analyses that found markedly different functional 

connectivity patterns for superior and inferior ventral striatum and dorsal caudate, seeds that 

fall into different functional units in the 5-cluster solution (Di Martino et al., 2008).

Our parcellation also supports and extends previous attempts to segment the BG using R-

fMRI (Barnes et al., 2010). For example, our high resolution 9-cluster solution was able to 

reliably delineate regions of the BG with similar global connectivity patterns, splitting the 

nucleus accumbens from the caudate, the globus pallidus from the putamen, and refining the 

putamen into four distinct regions: anterior, posterior, dorsal, and central putamen. Our 

stability maps also demonstrate the reliability of each of these parcels, suggesting that these 

more detailed separations are not only anatomically coherent, but may also reflect a more 

detailed differential pattern of global connectivity between neighboring areas of the BG that 

are not commonly analyzed separately (Barnes et al., 2010; Di Martino et al., 2008). 

Furthermore, the stability of each region in the 9-cluster solution was equal to or better than 

the 5-cluster solution. Given that prior work has demonstrated decreasing stability in 

clustering at higher resolution (Craddock et al., 2012), our results suggest that the 9-cluster 

solution offers a depiction of BG connectivity patterns that are more reliable and accurate 

than prior depictions, and these cluster solutions are highly stable and conserved at the 

individual level.

Our results also demonstrate that the stability of these clustering solutions holds regardless 

of whether voxels were clustered according to similarity of their timeseries (rt) or similarity 

of their connectivity maps (rs). Our results were replicated in Supplementary Figure 5, with 

Figure 7 directly assessing the similarity between the rt and rs results. The multi-level BASC 

method comprises a group-level analysis that bootstraps the set of all individual stability 

matrices (Bellec et al., 2010). The goal of this second level of bootstrapping is to obtain a 

group-level stability matrix that contains only the most stable voxel pairings, thus assuring 

homogeneity at a group-level, based on homogeneity at an individual-level. Obtaining such 

highly reproducible clustering solutions is important for both scientific and clinical 

endeavors. We found that stable clusters obtained from the multi-level BASC described 

almost identical functional organizations across scans, which supports the reliance on this 

method to define the organization of a brain area based on the most stable clusters both 

across and within subjects. To test the consistency of the group-level solutions across 
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sessions we computed the Dice coefficient of group level stability maps, obtaining values of 

0.99, 0.86 and 0.90 for the k=2, 5 and 9 resolutions, respectively. Highly reproducible 

findings across scans reflect low measurement error, which enables us to more accurately 

detect cross-sectional differences ascribable to underlying disease etiology rather than to 

measurement artifact. Furthermore, we can examine longitudinal changes more accurately 

that occur as a result of treatment because treatment or development-induced changes are 

less likely to be conflated with measurement noise.

4.3 Reliability Across a Range of Methods

The BASC framework is flexible with respect to the specific cluster analysis approach 

employed. This configurability makes the framework particularly appealing, though different 

implementations may influence findings, increasing the need to compare the reliability of 

different implementations. An array of alternative cluster analysis and data reduction 

approaches exists. For example, in our supplementary analyses we compared findings from 

spectral clustering to k-means and hierarchical clustering approaches – two of the most 

common algorithms. While all had moderate to high test-retest reliability, spectral clustering 

resulted in the highest ICC values. A potential concern with the spectral clustering method 

used is the potential for a bias towards creating clusters of similar size in regions of the brain 

where a clear clustering is not obvious (Craddock et al., 2012). In the present work, this did 

not appear applicable as the organization of the BG at the group-level resulted in functional 

units of different sizes with good anatomic validity. Further, the group-level NCUT results 

bore a striking similarity to those obtained with other approaches.

Beyond selection of the cluster algorithm, another key decision was the similarity measure. 

In particular, one needs to decide between temporal and spatial indices of similarity, which 

were quantified with correlation in the present work. While Craddock et al. (2012) indicated 

that spatial and temporal correlations differ in their distribution as well as in their validation 

indices, our findings suggest that such differences have minimal effect on reproducibility 

and reliability in the context of clustering the BG. In fact, Figure 7 directly compared ICC 

values for corresponding functional units in the temporal and the spatial analyses, yielding 

high correlations. Moreover, the stability maps, coefficients of variation and parcellations 

appeared to be equivalent when obtained through spatial and temporal similarity. This aligns 

also with the Craddock et al. 2012 findings, which demonstrated that while the correlation 

distributions can be quite different, using rs or rt had minimal impact on the cluster solutions 

themselves. Arbitrarily, our spatial similarity results are displayed on the main figures and 

temporal results in the supplementary material. However, in terms of computational cost, we 

recommend the use of temporal similarity for further application of the BASC framework.

An alternative to correlation as a similarity index is the eta2 statistic (Cohen et al., 2008a). 

This statistic is identical to Pearson correlation for standardized variables but it is shifted to 

be non-negative and maintains scalar differences. Although group-level results obtained with 

eta2 were comparable to those obtained with correlation, examination of inter-individual 

differences using ICC suggested that eta2 engendered markedly lower reliabilities (see 

Supplementary Material Figure 7). Future work should investigate alternative metrics of 

similarity (e.g., concordance correlation coefficient).
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Another key decision in the BASC framework is the selection of graph construction 

algorithms. The work of Craddock et al. (2012), upon which our clustering strategy was 

based, used an epsilon neighbor approach, for the explicit purpose of ensuring contiguous 

clusters, given their focus on identification of functional units. Although justified in their 

application, for the purposes of the present work such a constraint would decrease the 

biological plausibility of findings. Moreover, spatial constraints are not optimal while 

delineating functional boundaries (Cohen et al., 2008b; Kelly et al., 2010) because a 

functional network comprises regions with homogeneous FC patterns without any spatial 

restriction. Similar to the findings of Craddock et al. (2012), we found only contiguous 

clustering. One caveat is that we analyzed the left hemisphere exclusively; had right and left 

BG been included in the same analysis with a fully connected graph, strong homotopic 

connectivity patterns would have undoubtedly emerged.

Power and colleagues (2012) demonstrated that subject motion produces substantial 

artifactual changes in the time-courses of RSFC data, even after compensatory spatial 

registration and regression of motion estimates. Many long-distance correlations are 

decreased by subject motion, while short-distance correlations are increased. To avoid 

artifacts introduced by micro-movements in the different sessions, the mean frame 

displacement (FD) was regressed out of the stability maps of every individual. We 

performed an additional analysis without this regression to evaluate the impact of movement 

on the between-sessions ICC values produced by the BASC framework. The plots in Figures 

5, 6 and 8 show an improved ICC for mean FD regression, compared to results that did not 

include this procedure. Thus, taking into account micro-movements improves the reliability 

of inter-individual differences in the brain functional organization of iFC networks.

4.4 Limitations and Future Directions

Prior work has raised concerns about the potential for signal bleed that can impact findings 

(Choi et al., 2012; Curtis, Hutchison, & Menon, 2014). Unfortunately, to date, there is not an 

optimal or established approach for accounting for and removing this phenomena. While a 

regression-based approach was recently suggest, the authors noted this to be an imperfect 

solution; an ample space of possibilities for correction exist, and their impact on the validity 

and reliability of findings is yet to be established. Future work would benefit from 

comprehensive testing and evaluation of the impact of bleeding and correction strategies. 

Given the role the basal ganglia plays in the development of a range of motor, cognitive, and 

affective functions, another important future application of BASC could be in the assessment 

of BG clusters over child and adolescent development, as the executive, attention, and limbic 

networks mature into their adult phenotypes. We expect that BASC may offer important 

insight into the reorganization of the BG that mirror the significant cognitive development 

that occurs during this time period. Prior work has also demonstrated that the connectome 

displays significant state-sensitivity (Craddock et al., 2013; Mennes, Kelly, Colcombe, 

Castellanos, & Milham, 2013). Therefore, an important avenue of future work would be to 

apply BASC on the basal ganglia during rest to a range of motor, executive, attention tasks. 

We expect that clustering the BG based on single networks may be specifically sensitive to 

task demands. Furthermore, important individual differences may lie in the stability of these 

cluster solutions, for example cluster, cluster stability may be associated with individual 
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differences in network dynamics that play a role in a range of cognitive processing (Byrge, 

Sporns, & Smith, 2014; Cole et al., 2013; Nikolaidis & Barbey, 2016). Future work should 

therefore interrogate how individual differences in reproducibility across individuals also 

vary across regions and whether these differences are associated with cognition as well.

5 Conclusion

Reliable Individual-level mapping of the functional architecture of the brain is a critical step 

towards understanding complex cognitive systems and developing biomarkers and 

treatments in a wide range of clinical domains. The present study provides support for using 

BASC to quantify inter-individual differences in the functional organization of regions of 

interest. Demonstration of test-retest reliability satisfies a prerequisite for future work 

attempting to relate variations in each region’s modular organization, behavioral traits, 

experimental manipulations of state, development, aging or psychopathology (e.g., Attention 

Deficit/Hyperactivity Disorder, Autism Spectrum Disorder or schizophrenia, even from the 

first psychotic episode).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Analysis chart of BASC. Each individual’s time-series was sampled 80 times using circular 

block bootstrap. Whole-brain correlations were computed for every BG voxel at each 

replication, and similarity among all possible pairs of BG voxels was calculated using spatial 

and temporal correlations. Spectral clustering was then applied to derive clusters in 

resolutions from k=2 to k=9, and an adjacency matrix was created. Next, for each individual, 

the 80 adjacency matrices were averaged to create a stability matrix which quantifies the 

stability with which voxels were placed in the same functional unit across replications. To 

obtain group-level clusters, we generated 100 surrogate datasets featuring the same number 

of subjects as the original, and we derived an average stability matrix for each dataset. Each 

of the 100 stability matrices was then clustered, and a group stability matrix was generated. 

Finally, clustering was applied to the group stability matrix to produce a final set of group-
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level clusters. Stability maps were obtained for each individual by averaging the individual 

stability values across the voxels included in each group-level functional unit.
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Figure 2. 
Functional parcellation units. The group-level parcellation of the BG in scans 1, 2 & 3 derive 

very similar functional units. The 3D renders and sagittal views reveal a main partition of 

caudate and putamen in k=2, that remain in every resolution. While resolution k=5 divides 

the caudate in ventral, dorsal and anterior areas into 2 units each, the putamen was sectioned 

into anterior and posterior units. The k=9 resolution showed a functional unit comprising 

nucleus accumbens and one for globus pallidum, while maintaining the tripartite caudate 

division of the k=5 resolution and dividing putamen into anterior, dorsal, central, and 

posterior units. Moreover, the Davis-Bouldin Index, a measure of within cluster 

dissimilarity, and the Modified-Silhouette Index, a measure of between-clusters 

dissimilarity, points to 2, 4, 6 and 8 as best performing solutions for scan 1, while 2, 7 and 9 

for scan 2 and 2, 5 and 9 are the best performing resolutions for scan 3.
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Figure 3. 
(A) Mean stability and coefficient of variation for resolutions k=2 and k=5. The panels and 

renders show the average of the stability maps across subjects for the 2 and 5 target clusters 

(shown on the first column renders and delineated by a white wireframe on the render) of the 

k=2 and k=5 resolutions. All three scans show very similar mean stabilities, with highest 

values within the target cluster and lower values distant from it. The right columns show the 

coefficient of variation (standard deviation relative to mean) of the stability maps across 

subjects for the 2 and 5 target clusters in the k=2 and k=5 resolutions. Again, all three scans 

show very similar coefficients of variation, with lowest values within the target cluster and 

higher values for voxels distant from it. (B) Mean stability and coefficient of variation for 

k=9 resolution.
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Figure 4. 
Reproducibility of stability maps. The 3D renders show the group-level functional units 

obtained for scan 2. The plots indicate the reproducibility measured by Pearson correlation 

for each subject across stability maps obtained for k=2, k=5 and k=9 resolutions. The Dice 

coefficients measured on binarized stability maps, in which 1 represents the most stable 

cluster, are also shown. These data reveal strong reproducibility of the stability maps 

obtained through BASC across different scans.
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Figure 5. 
Reliability of the stability maps measured by the intraclass correlation (ICC). We examined 

reliability at every voxel level through ICC in the stability maps, defined as the proportion of 

variability across subjects relative to the total variability in the data. The calculation used 

here is a further extension to the classical definition, which is based on linear mixed-effects 

modeling with restricted maximum likelihood estimates, that always generates all non-

negative ICC values. ICC values between the stability maps obtained from scan 1 and the 

average of scans 2 and 3 at k=5 resolution are shown here (target clusters are delineated by a 

white line for the slice view and a white wireframe on the render). High ICC values are only 

found in proximity to the target cluster. The graph placed next to each cluster’s ICC map 

represents the distribution of frequencies of the ICC values obtained when ICC was 

computed after having regressed out mean frame displacement for each subject (in black), 

and also when ICC was calculated without regressing that parameter out (in red).
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Figure 6. 
Reliability of the stability maps measured by the ICC. ICC values between the stability maps 

obtained from scan 1 and the average of scans 2 and 3 at resolution k=9 are shown here 

(target clusters are delineated by a white line for the slice view and a white wireframe on the 

render). High ICC values are only found in proximity to the boundaries of the target cluster. 

The low between-subject variability shown by the coefficient of variation within the target 

cluster, as well as the low stability in voxels distant from the target cluster might explain this 

regional distribution of ICC values in the BG, where the boundaries show enough within-

subjects stability as well as between-subject variability to allow for a proportion of 

variability across subjects to be significant across the total variability of the data. The graph 

placed next to each cluster’s ICC map represents the distribution of frequencies of the ICC 

values obtained when ICC was computed after having regressed out mean frame 
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displacement for each subject (in black), and also when ICC was calculated without 

regressing that parameter out (in red).
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Figure 7. 
The plots show the correlation between the ICC values obtained from the spatial correlation 

similarity measure and those obtained from the temporal correlation similarity measure for 

each of the five clusters with resolution k=5. The colors of the scatter plot points match the 

cluster colors.
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Figure 8. 
Reliability of the stability maps measured by ICC in a multi-band dataset with a rapid TR of 

645 ms for a different TRT sample. ICC values between sessions 1 and 2 for the stability 

maps derived from the resolution k=5 are shown. Target clusters are delineated by a white 

line for the slice view and a white wireframe on the render. High ICC values are again only 

found in the proximities of the boundaries of the target cluster. The graph placed next to 

each cluster’s ICC map represents the distribution of frequencies of the ICC values obtained 

when ICC was computed after having regressed out mean frame displacement for each 

subject (in black), and also when ICC was calculated without regressing that parameter out 

(in red).
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Figure 9. 
The radar plot shows the relative commonality of each term used in studies that included 

activation in one of the parcels in the 5-cluster solution. Clusters with values close to the 

center of the plot have low representation with that semantic label, while clusters in which 

coloration extends to the border of the plot have the highest relative presentation of the 

semantic label. We see that the semantic labels fall into categories that largely recapitulate 

the major discriminations of functions in the BG, including motor function in the posterior 

putamen, reward and goal oriented cognition in the ventral caudate and nucleus accumbens.
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Figure 10. 
The radar plot shows the relative commonality of each term used in studies that included 

activation in one of the parcels in the 9-cluster solution. Clusters with values close to the 

center of the plot have low representation with that semantic label, while clusters in which 

coloration extends to the border of the plot have the highest relative presentation of the 

semantic label. We see that this solution demonstrates further delineation of semantic labels 

into sub-categories that may present more nuanced functional roles for each region.
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