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Abstract

The fiber g-ratio is the ratio of the inner to the outer diameter of the myelin sheath of a myelinated axon. It has a limited
dynamic range in healthy white matter, as it is optimized for speed of signal conduction, cellular energetics, and spatial constraints.
In vivo imaging of the g-ratio in health and disease would greatly increase our knowledge of the nervous system and our ability to
diagnose, monitor, and treat disease. MRI based g-ratio imaging was first conceived in 2011, and expanded to be feasible in full
brain white matter with preliminary results in 2013. This manuscript reviews the growing g-ratio imaging literature and speculates
on future applications. It details the methodology for imaging the g-ratio with MRI, and describes the known pitfalls and challenges
in doing so.
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1. Introduction

The g-ratio is an explicit quantitative measure of the relative
myelin thickness of a myelinated axon, given by the ratio of the
inner to the outer diameter of the myelin sheath. Both axon di-
ameter and myelin thickness contribute to neuronal conduction
velocity, and given the spatial constraints of the nervous system
and cellular energetics, an optimal g-ratio of roughly 0.6-0.8
arises (Rushton, 1951; Waxman, 1975; Chomiak & Hu, 2009).
Spatial constraints are more stringent in the central nervous sys-
tem (CNS), leading to higher g-ratios than in peripheral nerve
(Chomiak & Hu, 2009). Study of the g-ratio in vivo is interest-
ing in the context of healthy development, aging, learning, and
disease progression and treatment. In demyelinating diseases
such as multiple sclerosis (MS), g-ratio changes and axon loss
occur, and the g-ratio changes can then partially recover dur-
ing the remyelination phase (Albert et al., 2007). The possibil-
ity that the g-ratio is dependent on gender during development,
driven by testosterone differences, has recently been proposed
(Paus & Toro, 2009) and investigated (Pesaresi et al., 2015; Per-
rin et al., 2009). Possible clinical ramifications of a non-optimal
g-ratio include “disconnection” syndromes such as schizophre-
nia (Paus & Toro, 2009), in which g-ratio differences have been
reported (Uranova et al., 2001; Du et al., 2014).

The g-ratio is expected to vary slightly in healthy neuronal
tissue. The relationship between axon size and myelin sheath
thickness is close to, but not exactly, linear (Berthold et al.,
1983), with the nonlinearity more pronounced for larger axon
size (Hildebrand & Hahn, 1978), where the g-ratio is higher
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(Graf von Keyserlingk & Schramm, 1984). During develop-
ment, axon growth outpaces myelination, resulting in a decreas-
ing g-ratio as myelination catches up (Schröder et al., 1988).
There is relatively little literature on the spatial variation of the
g-ratio in healthy tissue. Values in the range 0.72-0.81 have
been reported in the CNS of small animals (mouse, rat, guinea
pig, rabbit) (Benninger et al., 2006; Duval et al., 2016a). Other
primary pathology and disorders may lead to an abnormal g-
ratio. These include leukodystrophies and axonal changes, such
as axonal swelling in ischemia.

There are many outstanding questions in demyelinating dis-
ease that could be best answered by imaging the g-ratio in vivo.
For example, in MS, disease progression is still the topic of ac-
tive research. Most histopathological data are from patients at
the latest stages of the disease. Therapies designed to promote
remyelination are being developed to augment immunomodu-
latory and immunosuppressive treatments. Since remyelination
of chronically demyelinated axons would be neuroprotective,
this may help slow progression in MS. Detailed longitudinal
study of the extent of remyelination can therefore aid in choos-
ing avenues for therapy. While techniques exist for measure-
ment of the g-ratio ex vivo (Graf von Keyserlingk & Schramm,
1984), measurement of the g-ratio in vivo is an area of active
research.

Many MR imaging contrasts are sensitive to changes in the
g-ratio, in that they are sensitive to changes in, e.g., the total
myelin content or total fiber content. The purpose of the g-ratio
imaging formulation is to decouple the fiber density from the
g-ratio, such that a more complete and specific picture of the
microstructural detail can be achieved. In recent work (Stikov
et al., 2011, 2015b), it has been shown that the combination of
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an MRI marker that is sensitive to the myelin volume fraction
(MVF) and an MRI marker that is sensitive to the intra-axonal
volume fraction or axon volume fraction (AVF) is sufficient
to compute a g-ratio for each voxel, i.e., an aggregate g-ratio,
without explicit estimation of axon diameter and myelin sheath
thickness. The aggregate g-ratio is a function of the ratio of the
MVF to the AVF. g-Ratio imaging does not involve the acquisi-
tion of a novel contrast, but is a specific computation using the
parameters (MVF and AVF) extracted from existing contrasts.
The challenge then becomes how to estimate the MVF and
the AVF precisely and accurately with MRI. The g-ratio imag-
ing framework, coupled with independent microstructural mea-
sures such as axon diameter (Assaf et al., 2008; Zhang et al.,
2011), comprises the field of in vivo histology of white mat-
ter. The ultimate goal is to describe microstructure in detail on
a scale much finer than an imaging voxel, as a distribution or
single aggregate value for each the voxel.

2. Methodology

2.1. The g-ratio formulation
As previously defined, the g-ratio is the ratio of the inner to

the outer diameter of the myelin sheath of a myelinated axon
(see Fig. 1). It has been shown in recent work (Stikov et al.,
2011, 2015b) that the aggregate g-ratio can be expressed as a
function of the myelin volume fraction and the axon volume
fraction, and hence can be estimated without explicit measure-
ment of these diameters:

g =

√
1

1 + MVF/AVF
. (1)

This formulation applies to any imaging modality (e.g., elec-
tron microscopy (EM) and scanning electron microscopy (SEM),
where the MVF and AVF can be measured after segmentation
of the image - see Fig.1), but it is of particular interest to be able
to estimate the g-ratio in vivo. MRI provides us with several dif-
ferent contrast mechanisms for estimation of these volume frac-
tions, and given MVFMRI and AVFMRI , we can estimate gMRI .
Hereon, we sometimes refer to gMRI as “the g-ratio”, but note
that it is derived from MRI images with certain contrasts sen-
sitive but not equivalent to the MVF and AVF. We forego the
subscript MRI on the MVF and AVF acronyms, but it should be
clear from context when these are MR estimates. Estimation of
these quantities is discussed in the next sections.

2.2. Axon volume fraction
Diffusion MRI is particularly well suited to aid in the es-

timation of the axon volume fraction. As we will see later, it
cannot estimate the absolute AVF, because there is very little
signal from the myelin in a typical diffusion MRI experiment.
However, the relative AVF can be estimated, because diffu-
sion MRI is sensitive to the displacement distribution of wa-
ter molecules moving randomly with thermal energy, and this
displacement distribution is affected by the cellular structure
present in the tissue. As the molecules impinge on the cellu-
lar membranes, organelles, and cytoskeleton, the displacement

= 1/ (1+MVF / AVF)g-ratio = r / R1 µm
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Figure 1: Original (top left) and segmented (top right) scanning electron mi-
crograph showing axons of white matter, the intra-axonal space (blue), and the
myelin (red). The segmentation was performed with AxonSeg (Zaimi et al.,
2016). In the SEM image, the myelin appears white because of osmium prepa-
ration. The fiber g-ratio is the ratio of the inner to the outer radius of the myelin
sheath surrounding an axon. The aggregate g-ratio can be expressed as a func-
tion of the myelin volume fraction (MVF) and the axon volume fraction (AVF).
The myelin macromolecules, myelin water, and intra- and extra-axonal water
compartments all have distinct properties, which can be exploited to generate
MRI images from which the respective compartment volume fractions can be
estimated.

distribution takes on a unique shape depending on the environ-
ment. Intra-axonal diffusion is said to be restricted, resembling
free Gaussian diffusion at short diffusion times, but departing
markedly from Gaussianity at longer times, where the displace-
ment distribution is limited by the pore shape. There will be a
sharp drop in the probability of displacement beyond the cell
radius. Extra-axonal diffusion is said to be hindered, resem-
bling free Gaussian diffusion, but with a smaller variance due
to impingement of motion.

Many diffusion models exist for explicit estimation of the
relative cellular compartment sizes. These include neurite ori-
entation density and dispersion imaging (NODDI) (Zhang et al.,
2012), the composite hindered and restricted model of diffusion
(CHARMED) (Assaf & Basser, 2005), diffusion basis spec-
trum imaging (DBSI) (Wang et al., 2011), restriction spectrum
imaging (RSI) (White et al., 2013), white matter tract integrity
(WMTI) from diffusion kurtosis imaging (DKI) (Fieremans et al.,
2011), temporal diffusion spectroscopy (Xu et al., 2014), mi-
croscopic anisotropy obtainable from multiple pulsed field gra-
dient MRI (Shemesh et al., 2012; Zhou et al., 2013; Avram
et al., 2013), the spherical mean technique (Kaden et al., 2016),
the distribution of anisotropic microstructural environments in
diffusion-compartment imaging (DIAMOND) (Scherrer et al.,
2016), and many others (Rokem et al., 2015; Stanisz et al.,
1997). It is also possible to perform NODDI with relaxed con-
straints (NODDIDA) (Jelescu et al., 2016a), and to do this cal-
culation analytically (LEMONADE) (Novikov et al., 2016).
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Another approach, termed the apparent fiber density (AFD),
uses high diffusion weighting to virtually eliminate the hin-
dered diffusion signal, leaving only intra-axonal water (Raffelt
et al., 2012). It has been used to estimate the relative axon vol-
ume fraction of different fiber populations in a voxel. A modifi-
cation, termed the tensor fiber density (TFD), can be performed
with lower diffusion weighting (Reisert et al., 2013).

The simplest diffusion MRI models do not differentiate be-
tween the tissue compartments. For instance, the diffusion ten-
sor (Basser et al., 1994) models the entire displacement dis-
tribution as an anisotropic Gaussian function. The parameters
defining this function will change if the intra-axonal volume
fraction changes, but to what extent is it practical to extract
meaningful quantitative compartment volume fractions from the
tensor? Recently, a framework called NODDI-DTI has been
developed, in which the proximity of DTI-based parameters to
the computed NODDI parameters is assessed (Edwards et al.,
2016), given certain assumptions. The FA and the mean diffu-
sivity (MD) are highly correlated in straight, parallel fiber bun-
dles, and will change with changing AVF, leading to estimates
of the relative intra-axonal volume. However, this formulation
is probably an oversimplification of the microstructural situa-
tion, and more detailed modeling is a better choice to ensure
specificity to white matter fibers.

All of the diffusion models above are potential candidates
for use in g-ratio imaging. They have strengths and weak-
nessess that will not be detailed here. The original full-brain
gMRI demonstration (Stikov et al., 2015b) employed the NODDI
model of diffusion. It was chosen because of its suitability
in the presence of complex subvoxel fiber geometry, including
fiber divergence, which may occur to a significant scale in al-
most all imaging voxels (Ghosh et al., 2016), and its suitabil-
ity on clinical scanners with relatively low gradient strength.
Having a fast implementation of the model fitting with numer-
ical stability is important for large studies, hence, the convex-
optimized AMICO implementation is beneficial (Daducci et al.,
2015).

While diffusion MRI is a modality of choice for imaging
microstructure, it can only measure the displacement distribu-
tion of water molecules that are visible in a diffusion MRI ex-
periment. This limits us to water that is visible at an echo time
(TE) on the order of 50-100 ms, and therefore excludes water
that is trapped between the myelin bilayers, which has a T2 on
the order of 10 ms. Hence, the estimates provided by these
models are of the intra-axonal volume fraction of the diffusion
visible volume. Myelin does not figure in the models. Given,
e.g., the NODDI model outputs, a complementary myelin imag-
ing technique must be used to estimate the absolute axon vol-
ume fraction. The AVF is given by

AVF = (1 − MVF)(1 − viso)vic , (2)

where viso and vic are the isotropic and restricted volume frac-
tions from the NODDI model, and the MVF is obtained from
one of many possible myelin mapping techniques, examples of
which are discussed below.

Diffusion contrast may not be our only window onto the

axon volume fraction. Recent work has shown that it is possible
to disambiguate the myelin, intra-axonal, and extra-axonal wa-
ter compartments using complex gradient echo (GRE) images
(Sati et al., 2013; Wu et al., 2016). The myelin water is sep-
arable from the combined intra- and extra-axonal water using
multicomponent T∗2 reconstruction, providing a myelin marker
(see below). However, incorporation of the phase of the GRE
images potentially allows us to separate all three compartments
based on frequency shifts. Challenges include the fact that the
frequency shift is dependent on the orientation of the axon to the
main magnetic field B0. When the axon is oriented perpendicu-
lar to B0, the myelin water will experience a positive frequency
shift, the intra-axonal water a negative frequency shift, and the
extra-axonal water will not experience a frequency shift.

Note that the AVF as defined by these diffusion MRI mod-
els is specific to white matter. While it makes sense to define
an axon volume fraction in grey matter, the models in general
cannot distinguish between axons and dendrites. The NODDI
model’s vic parameter, for example, is “neurite density”, i.e.,
the density of all cellular processes that can be assumed to have
infinitely restricted diffusion in their transverse plane. Hence,
gMRI from such MRI data is undefined in grey matter.

2.3. Fiber volume fraction

The fiber volume fraction (FVF), or fiber density, is the sum
of the AVF and the MVF. Can diffusion MRI, or any other
MRI contrast mechanism, measure the total fiber volume frac-
tion itself? Clearly, GRE images have potential, as discussed
above. Is diffusion imaging sensitive to the FVF, as opposed
to the AVF? While myelin water is virtually invisible in diffu-
sion MRI, diffusion MRI is not insensitive to myelin. First, the
ratio of the intra- to extra-axonal diffusion MRI visible water
in a voxel will change as the myelin volume fraction in that
voxel changes. In early work on the fiber g-ratio, it was shown
that assuming a simple white matter model of straight, parallel
cylinders, the fractional anisotropy (FA) of the diffusion tensor,
which weighs both intra-axonal and extra-axonal anisotropy, is
proportional to the total fiber volume fraction, with a quadratic
relationship (Stikov et al., 2011). The NODDI parameter vic

also changes with demyelination, even if all axons remain in-
tact. Second, diffusion acquisitions are heavily T2 weighted,
and T2 is myelin-sensitive. The total diffusion weighted signal
thus decreases as myelin content increases. However, to ro-
bustly quantify myelin volume fraction, it is necessary to add a
second contrast mechanism, even if it is additional T2 weighted
images, to the scanning protocol. This is discussed below.

Despite the nomenclature, as noted above, even the Appar-
ent Fiber Density and Tensor Fiber Density are in fact relative
axon densities. They would provide a relative FVF only if the
g-ratio is constant. In a recent study of the g-ratio (Mohammadi
et al., 2015), the TFD was equated with the FVF, not the AVF,
for input to the g-ratio formula. The g-ratio is a function of the
ratio of the MVF to the AVF (Eq. 1), or alternately, the ratio of
the MVF to the FVF:

g =
√

1 − MVF/FVF. (3)
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This means that conclusions reached about the variation of the
g-ratio found by equating the TFD with the FVF will be robust
in the above case. Absolute g-ratios in the above case were
calibrated to have a mean of 0.7 in healthy white matter.

We note that if diffusion MRI were capable of estimating
the absolute FVF (or AVF) as well as the ratio of the intra-
axonal to extra-fiber water, the g-ratio could immediately be es-
timated from these two quantities, without further myelin imag-
ing. This has yet to be done robustly, and it is therefore prefer-
able to use a more robust independent myelin marker.

2.4. Myelin volume fraction
There are many different contrasts and computed parame-

ters that are sensitive to myelin (Laule et al., 2007). The possi-
ble sources of signal from the myelin compartment are the ultra-
short T2 protons in the macromolecules of the myelin sheath
itself (T2 ∼ 10µs) and the short T2 water protons present be-
tween the phospholipid bilayers (T2 ∼ 10ms, see Fig. 1). Most
MRI contrast mechanisms are sensitive to myelin content, but
few are specific, for reasons that are detailed in section 3.3. The
myelin phospholipid bilayers create local Larmor frequency vari-
ations for water protons in their vicinity due to diamagnetic
susceptibility effects. This results in myelin content modulated
transverse relaxation times T∗2 (Hwang et al., 2010) and T2, and
longitudinal relaxation time T1. It has been shown that macro-
molecular content is the dominant source of variance in T1 in
the brain (Rooney et al., 2007). The local Larmor field shift
(fL) and the susceptibility itself (χ) can be computed as well
(Liu et al., 2015). Ultra-short TE (UTE) imaging can be used to
image the protons tightly bound to macromolecules (Wilhelm
et al., 2012; Du et al., 2014). An alternate approach to isolating
the myelin compartment is magnetization transfer (MT) imag-
ing, where the ultra-short T2 macromolecular proton pool size
can be estimated by transfer of magnetization to the observable
water pool.

MT based parameters sensitive to macromolecular protons
include the magnetization transfer ratio (MTR) (Wolff et al.,
1991), the MT saturation index (MTsat) (Helms et al., 2008,
2010), the macromolecular pool size (F) from quantitative mag-
netization transfer (Sled & Pike, 2001; Yarnykh, 2002; Ramani
et al., 2002), single-point two-pool modeling (Yarnykh, 2012),
and inhomogeneous MT (Varma et al., 2015).

Alternately, the myelin water can be imaged with quan-
titative multicomponent T2 (MacKay et al., 1994) or T∗2 (Du
et al., 2007; Alonso-Ortiz et al., 2016) relaxation, which yields
the myelin water fraction (MWF) surrogate for myelin density.
Variants include gradient and spin echo (GRASE) MWF imag-
ing (Does & Gore, 2000; Prasloski et al., 2012), linear combina-
tion myelin imaging (Jones et al., 2004; Vidarsson et al., 2005),
T2 prepared MWF imaging (Oh et al., 2006), multi-component
driven equilibrium single point estimation of T2 (mcDESPOT)
(Deoni et al., 2008), direct visualization of the short transverse
relaxation time component via an inversion recovery prepara-
tion to reduce long T1 signal (ViSTa) (Oh et al., 2013), and a
fast adiabatic T2-prep and spiral readout approach (FAST-T2)
(Nguyen et al., 2016). Other alternate approaches exploiting
myelin-modulated relaxation times include combined contrast

imaging (T1W /T2W ) (Glasser & Van Essen, 2011) or indepen-
dent component analysis (Mangeat et al., 2015). Proton density
is also sensitive to macromolecular content, and the proton-
density based macromolecular tissue volume (MTV) (Mezer
et al., 2013) has been used as a quantitative myelin marker.

While these MRI measures have been shown to correlate
highly with myelin content (Thiessen et al., 2013; Schmierer
et al., 2007; Gareau et al., 2000; Laule et al., 2006; Mottershead
et al., 2003), they have not been incorporated in a specific tissue
model in a manner similar to the diffusion signal, and hence
some calibration is needed. This is still a topic of research.
Caveats of improper calibration of the MVF are discussed in
section 3.3.

Above, we have discussed imaging techniques for both diffusion-
visible microstructure and myelin. Any multi-modal modal imag-
ing protocol with contrasts such as these, sensitive to the axon
and myelin volume fractions, is sensitive to the g-ratio (e.g.,
(Molina-Romero et al., 2016; Nossin-Manor et al., 2015; De San-
tis et al., 2016a; Bells et al., 2011)). The purpose of the explicit
g-ratio formulation is to create a measure that is specific to the
g-ratio. It provides us with a metric that is independent of the
fiber density, which none of the MRI contrasts sensitive to the
MVF and AVF separately accomplish. It is interesting to ask
whether we could use a technique such as deep learning (Ben-
gio, 2009) to estimate the g-ratio, skipping explicit modeling
completely.

2.5. MRI acquisition protocol: an example

Given the large number of MRI contrasts that could poten-
tially be used in the g-ratio imaging framework, we cannot pre-
scribe an exact protocol for g-ratio imaging here. However,
in the following sections, we illustrate several important points
about g-ratio imaging using experimental data acquired at our
site. The following describes the acquisition protocol we have
used.

We acquired data from healthy volunteers and from multi-
ple sclerosis patients. These data were acquired on a Siemens
3T Trio MRI scanner with a 32 channel head coil. A T1W struc-
tural MPRAGE volume with 1 mm isotropic voxel size was ac-
quired for all subjects. For diffusion imaging, the voxel size
was 2 mm isotropic. For most experiments, the NODDI diffu-
sion protocol consisted of 7 b=0 s/mm2, 30 b=700 s/mm2, and
64 b=2000 s/mm2 images, 3x slice acceleration, 2x GRAPPA
acceleration, all acquired twice with AP-PA phase encode re-
versal. For the other experiments, as detailed below when they
are introduced, the slice acceleration and phase encode reversal
were not employed. For a dataset optimized for diffusion tensor
reconstruction, a dataset with 99 diffusion encoding directions
at b=1000 s/mm2 and 9 b=0 s/mm2 images was acquired.

For magnetization transfer images, we also used 2 mm iso-
tropic voxels to match the diffusion imaging voxel size. For
MTR, one 3D non-selective PD-weighted RF-spoiled gradient
echo (SPGR) scan was acquired with TR=30 ms and excita-
tion flip angle α = 5◦, and one MT-weighted scan was acquired
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with the same parameters and an MT pulse with 2.2 kHz fre-
quency offset and 540◦ MT pulse flip angle. For MTsat com-
putation, these same MT-on and MT-off scans were used, with
one additional T1-weighted scan with TR=11 ms and excitation
flip angle α = 15◦. For qMT computation, 10-point logarith-
mic sampling of the z-spectrum from 0.433-17.235 kHz fre-
quency offset was acquired, with two MT pulse flip angles for
each point, 426◦ and 142◦, and excitation flip angle α = 4.5◦.
The qMT acquisition was accelerated with 2x GRAPPA accel-
eration. Additional scans for correction of the maps included
B1 field mapping using the double angle technique (Boudreau
et al., 2017; Stollberger & Wach, 1996), with 60◦ and 120◦ flip
angles, B0 field mapping using the two-point phase difference
technique, with TE1/TE2 = 4.0/8.48 ms, and T1 mapping us-
ing the variable flip angle technique (Fram et al., 1987), with
flip angles 3◦ and 20◦. Additional T2-FLAIR and PDW images
were acquired for the MS subjects to aid in lesion segmentation.

3. The pitfalls: outstanding technical challenges

In this section, we discuss pitfalls and outstanding issues
in g-ratio imaging. These include the challenge of combining
multiple different contrast mechanisms, limitations in diffusion
modeling, specificity and calibration of myelin markers, and the
limitation of estimating a single g-ratio metric in the presence
of subvoxel heterogeneity. Experimental results are included in
these sections to illustrate these problems. In the experiments,
we focus on the NODDI and DTI models and MT-based myelin
imaging because they were used in the early g-ratio imaging
publications (Stikov et al., 2011, 2015b), but many of these con-
cerns apply to any chosen AVF and MVF markers.

3.1. Confounds in multi-modal image acquisition

The computation of the g-ratio metric includes several pre-
processing steps, including distortion and field inhomogene-
ity correction, that deserve further discussion. The MT-based
contrasts are acquired with spin-warp acquisition trains, and
the diffusion-based contrasts are acquired with single-shot EPI.
When any acquisition details are changed, the distortions in
the images change, and co-registration of voxels for voxelwise
quantitative computations becomes more difficult.

The blip-up blip-down phase encode strategy (section 2.5)
allows for precise correction of susceptibility-induced distor-
tion in the diffusion images (Andersson et al., 2003). Lack of
correction for this distortion leads to visible bands of artifactu-
ally high gMRI near tissue-CSF interfaces (see, e.g, (Campbell
et al., 2014; Cercignani et al., 2016a)). This was illustrated by
Mohammadi et al. (Mohammadi et al., 2015) (see Fig. 2). Un-
corrected diffusion MRI data leads to g-ratios in the vicinity of
unity at the edge of the genu of the corpus callosum, caused
by voxels where the AVF is artifactually high (containing little
or no CSF), and the MVF low (because the correctly localized
voxels actually contain CSF). The white matter - CSF boundary
is a region of obvious misregistration, but much of the frontal
lobe suffers from susceptibility induced distortion, and would
therefore have incorrect g-ratios.

a	

b	

c	

d	

e	

f	

Figure 2: Misregistration artifact due to susceptibility-induced distortion in
diffusion weighted images. At left is an MTsat image with white matter outlined
in red, for one slice (a) and a cropped region at the genu (b). In the center (c,d) is
an original EPI diffusion scan with no diffusion weighting and contrast inverted
(ib0). The misregistration with the MTsat-defined white matter boundary is
marked. At right (e,f) is the g-ratio computed with these contrasts. Uncorrected
diffusion MRI data leads to g-ratios in the vicinity of unity at the edge of the
genu, caused by voxels where the AVF is artifactually high (containing little
or no CSF), and the MVF low (because the correctly localized voxels actually
contain CSF). Reproduced from (Mohammadi et al., 2015).

Multi-modal imaging protocols are a powerful tool for in-
vestigation of microstructure. We have thus far discussed com-
bining multiple images with partially orthogonal contrasts in
order to estimate the g-ratio. However, problems such as the
above misregistration issue arise. Can a single acquisition train
provide multiple contrasts? One such approach was described
recently for simultaneous mapping of myelin content and dif-
fusion parameters (De Santis et al., 2016a). It consists of an
inversion-recovery preparation before a diffusion weighted se-
quence, allowing for fitting of a model that incorporates both
T1 (a myelin marker (Stüber et al., 2014)) and axonal attributes.
This approach is conceptually extensible to other myelin-sensitive
preparations or modifications of a diffusion weighted sequence,
such as quantitative T2 estimation (Kim et al., 2016) or MT
preparation (Gupta et al., 2003).

Can the g-ratio be estimated using a single contrast mech-
anism? This could also offer inherent co-registration, as well
as possibly increasing the acquisition speed. As discussed in
section 2.2, analysis of complex GRE images may lead us to
a technique for estimating the MVF and AVF volume fractions
from one set of images.

Making a multi-modal imaging protocol short enough for
the study of patient populations and use in the clinic is a con-
siderable challenge. In section 3.3, we investigate the MT satu-
ration (Helms et al., 2008) as a more time efficient replacement
for qMT. There exist other short MT-based approaches, such as
single-point two-pool modeling (Yarnykh, 2012) and inhomo-
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geneous MT (Varma et al., 2015). Another approach could be
to use compressed sensing (Lustig et al., 2007) for MT-based
acquisitions (McLean et al., 2017). Recent advances in myelin
water fraction imaging (Nguyen et al., 2016) may make MWF
estimation more efficient, and GRE-based myelin water frac-
tion approaches (Alonso-Ortiz et al., 2016) may also offer a
faster approach for estimating the MWF, with the possibility, as
mentioned above, to eliminate the diffusion imaging part of the
protocol.

Diffusion imaging has benefited from many acceleration ap-
proaches in recent years, including parallel imaging, which can
also be used in the myelin mapping protocols, slice multiplex-
ing (Setsompop et al., 2012), and hardware advances such as
the CONNECTOM gradient system.

3.2. Diffusion modeling
3.2.1. Model parameters

The diffusion MRI post-processing techniques described in
section 2.2 give a range of outputs. Some are physical quanti-
ties (such as the diffusion displacement distribution; kurtosis),
while some are parameters of detailed biological models (such
as the intra-axonal volume fraction). Models are valuable, but
the user has to be aware of the assumptions made.

The parameter space in existing models ranges from three
free parameters in NODDI to six (Assaf & Basser, 2005), twenty
three (Jespersen et al., 2010), and thirty one (Novikov et al.,
2016; Jelescu et al., 2015) in other models, with the maximum
dependent on acquisition details. Recent analysis hypothesizes
that the lower number of free parameters in, e.g., NODDI and
CHARMED, may be matched to the level of complexity pos-
sible on current clinical systems (Ferizi et al., 2015), while
high gradient strength, high b-values, and more b-shells may
be necessary for more complex models (Jelescu et al., 2015),
and would make them more optimal. This is a general prob-
lem with multi-exponential models when diffusion weighting
is weak (Kiselev & Il’yasov, 2007). On standard MR systems,
relaxing the constraints on fixed parameters has been shown to
lead to degeneracy of solutions (Jelescu et al., 2016a). Regular-
ization approaches such as the spherical mean technique (SMT)
(Kaden et al., 2016) have been employed in an attempt to make
the problem less ill-posed.

One of the fixed parameters in the NODDI model is the par-
allel diffusivity in the intra- and extra-axonal space, both set to
the same fixed value. Other models explicitly model these as
unequal; for instance, WMTI assumes that the intra-axonal dif-
fusivity is less than or equal to the extra-axonal diffusivity. The
actual values are unknown, however simulations have shown
that the assumption of equal parallel diffusivities leads to a 34-
53% overestimation of the intra-axonal compartment size if the
diffusivities are in fact unequal (Jelescu et al., 2015), with the
intra-axonal diffusivity either greater than or less than the extra-
axonal diffusivity. If the fixed diffusivities are incorrect, the
intra-axonal compartment size estimated by the NODDI model
will be non-zero even if there is no anisotropy (Lampinen et al.,
2017).

Independent of whether the intra- and extra-axonal parallel
diffusivities are equal, another source of this bias is the tor-

tuosity model (Szafer et al., 1995) employed by many models,
including NODDI, DIAMOND, and the SMT. This model com-
putes the perpendicular extra-axonal diffusivity as a function of
the diffusion-visible intra-axonal volume fraction of the non-
CSF tissue (vic in the NODDI model). This tortuosity estimate
is bound to be inaccurate because the tortuosity is expected to
vary as the absolute fiber volume fraction of the non-CSF tissue,
not the diffusion-visible fiber volume fraction (Jelescu et al.,
2015). These two quantities are very different, as the myelin
and axon volume fractions are almost equal in healthy tissue
(Stikov et al., 2015b). The MVF could be explicitly included
in the equation, and would be expected to result in a myelin
volume dependent reduction in vic. However, in healthy tissue,
where the FVF should scale roughly as the vic parameter, the
tortuosity model of Szafer et al. does not appear to hold when
applied to experimental data with independent estimates of the
parallel and perpendicular extra-axonal diffusivities (Novikov
et al., 2016). The model is probably not correct for varying
packing density on the sub-voxel scale (Novikov et al., 2011);
it has been shown to depend on the packing arrangement and
breaks down for tight axon packing (Fieremans et al., 2008;
Novikov & Fieremans, 2012). This might explain the discrep-
ancy between model and experiment mentioned above, because
the geometry of axonal packing can vary considerably for a
given average volume fraction.

Another fixed parameter in the NODDI model is the T2 re-
laxation time of all tissue, assumed to be the same, even in CSF.
This leads to an overestimation of viso, which can be corrected
(Bouyagoub et al., 2016) given T2 estimates from, e.g., a T2
mapping technique such as mcDESPOT (Deoni et al., 2008).

3.2.2. Geometry in diffusion imaging
Diffusion MRI is exquisitely sensitive to fiber geometry.

The fractional anisotropy may be more sensitive to geometry
than to any microstructural feature (Hutchinson et al., 2016).
Hence, microstructural models must be careful to take geome-
try (crossing, splaying, curving, microscopic packing configu-
ration) into account. A typical diffusion imaging voxel is roughly
8 mm3, while the axons probed by microstructural models are
on the order of one micron.

Early work on the fiber g-ratio investigated the human cor-
pus callosum, where it was assumed that the white matter fibers
were effectively straight and parallel (Stikov et al., 2011). The
use of this model that assumes straight, parallel fibers suffers
from several problems. First, the regions of the brain where this
model can be expected to hold at all are very limited, as there
are crossing or splaying fibers in up to 95% of diffusion MRI
voxels in parenchyma (Jeurissen et al., 2010; Behrens et al.,
2007; Ghosh et al., 2016), and curvature is almost ubiquitous at
standard imaging resolution. Even the axons of callosal fibers
are not straight and parallel, with splay up to 18◦ (Ronen et al.,
2014; Mollink et al., 2016). Second, the model assumes a rel-
atively uniform, if random, packing of axons on the scale of
the MRI voxel. Due to the nonlinear nature of the FA, it will
depend strongly on the packing geometry. If two voxels, one
with densely packed axons and one with sparsely packed ax-
ons, are combined into one, the FA for that voxel will be less
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Figure 3: Simulated fibers in straight, parallel configuration (left) vs. crossing
(right), with equal fiber volume fraction and similar distributions of axon diam-
eter and position. The NODDI model underestimates the FVF by 3.8 ± 0.3%
in the crossing fiber case, whereas the DTI model underestimates the FVF by
58.7 ± 3.2%.

than the average of the two original voxels, whereas the fiber
density will be the average of the fiber densities. Third, FA is
in practice acquisition and b-value dependent.
3.2.2.1 Experiments: AVF from NODDI in the presence of
crossing fibers

The NODDI model that has been used in several g-ratio
imaging studies to date assumes there is a single fiber popu-
lation with potential splay or curvature, but does not explicitly
model crossings. To what extent does the fiber dispersion model
of NODDI handle crossing fiber bundles? We have employed
the diffusion MRI simulator dSim (Sveinsson & Dougherty,
2011) to investigate this question (Campbell et al., 2014). We
simulated realistic axonal packing (Aboitiz et al., 1992) in vox-
els with straight, parallel fibers and with two equal size bun-
dles of straight fibers crossing at 90◦ (See Fig.3). Fiber vol-
ume fractions were set equal for both configurations and were
varied from 0.3 to 0.7. g-Ratios were varied from 0.7 to 0.9.
The diffusion weighted signal was generated, and the NODDI
model parameters computed using the NODDI Matlab toolbox
(NODDI Matlab Toolbox, 2013). The FVF was computed from
the NODDI parameters using the known MVF. The computed
FVF was 3.8 ± 0.3% lower in the crossing fiber case for the
NODDI-based FVF. This demonstrates that the NODDI model,
while not explicitly designed for crossing fibers, gives accept-
able results in this case, and can be used for full-brain g-ratio
estimation at standard voxel size with significant subvoxel fiber
crossing, with only a small decrease in the estimated FVF due
to partial volume averaging of fiber orientations.
3.2.2.2 Experiments: Comparison of DTI and NODDI for
FVF estimation

NODDI works optimally with diffusion MRI measurements
made on at least two shells in q-space, i.e., two different nonzero
b-values, although recent work has proposed solutions for sin-
gle shell data, at least where certain assumptions can be made
about the tissue, or where high b-values are used (Grussu et al.,
2014; Magnollay et al., 2014). In contrast, the diffusion ten-
sor can be robustly fitted and the fiber volume fraction inferred
(Stikov et al., 2011) (see section 2.3) using a much more sparsely
sampled, single shell dataset. Many research programs have

large databases of single-shell diffusion data, often with limited
angular sampling of q-space as well. It is therefore of interest
to explore to what extent such data, using the diffusion tensor
model, can be used in investigation of the g-ratio.

In the simulations described above, we also computed the
diffusion tensor using in-house software (mincdiffusion, 2013).
The FVF (FVFDT I) was computed from the FA using the quadratic
relationship determined from previous simulations (Stikov et al.,
2011). As expected, the FA is not a predictor of FVF in the
presence of crossing fibers: the computed DTI-based FVF was
58.7 ± 3.2% lower in the crossing fiber case compared to the
parallel fiber case.

To compare NODDI and DTI in vivo, diffusion and qMT
data were acquired as described in section 2.5 for one healthy
volunteer, without slice acceleration or phase encode reversal.
The qMT data were processed with in-house software and the
NODDI parameters as described above. Additionally, the dif-
fusion tensor was calculated using the b=1000 s/mm2 diffusion
shell. The AVF, MVF, and gMRI were computed voxelwise from
the diffusion and qMT data as described in section 2.1: the
NODDI-based FVF (FVFNODDI) is the sum of the MVF and
the AVF computed from Eq. 2, and FVFDT I was calculated
from the fractional anisotropy of the diffusion tensor using the
quadratic relationship (Stikov et al., 2011). The corpus callo-
sum was skeletonized on the FA image and a voxel-wise corre-
lation between the FVF computed from DTI and from NODDI
and qMT was performed for these voxels. The coefficient of
proportionality between F and MVF was determined from pre-
vious EM histological analysis (Stikov et al., 2015b).

Fig. 4 shows the FVF computed using both NODDI and the
FA from DTI in the skeleton of the healthy human corpus callo-
sum. The Pearson correlation coefficient between the FVF mea-
sured using the two techniques was r=0.79, with FVFNODDI =
1.15 ∗ FVFDTI + 0.00. This indicates a slight discrepancy be-
tween the FVF using NODDI compared to DTI, and a reason-
ably high correlation between techniques on the skeleton.

Possible explanations for the higher estimates using NODDI
appear in section 3.2.1, although without ground truth is is dif-
ficult to say which approach is more accurate. Additionally,
because the FA does not explicitly model compartments, it is
subject to partial volume effects. While partial volume aver-
aging with CSF will decrease the FA, the FA-based quadratic
FVF model appears to break down in this case. This effect
could possibly be reduced by applying the free water elimi-
nation technique (Pasternak et al., 2009) to obtain the correct
FVF for the non-CSF compartment and then scaling to reflect
the partial volume averaging with CSF afterward. To conclude,
while the FA is generally a poor indicator of FVF, it may be
a reasonable surrogate in certain special cases when data are
limited.

It is interesting to consider how useful imaging a cross-
section of a white matter fascicle may be, regardless of the
model used. If the g-ratio can be assumed to be constant along
an axon, measurement of a cross-section is useful. However, in
many pathological situations, such as Wallerian degeneration,
it is of interest to study the entire length of the axon.
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Figure 4: Correlation between DTI- and NODDI-derived fiber volume fraction
on the skeleton of the corpus callosum. FVFDT I was calculated from the frac-
tional anisotropy of the diffusion tensor using a quadratic relationship (Stikov
et al., 2011), and FVFNODDI is the sum of the MVF from qMT and the AVF
computed from Eq. 2.

3.2.3. Restricted extracellular diffusion
Most existing diffusion models assume that extra-axonal

diffusion is Gaussian, hindered by the structures present, but not
restricted. However, observation of tightly packed axons in mi-
croscopy (e.g., Fig.1) indicates that the intra- and extra-axonal
spaces may not be as distinguishable as the models assume.
It is unclear to what extent the extra-axonal diffusion is non-
Gaussian. If axons are packed tightly together, is extra-axonal
diffusion non-Gaussian? It is not clear whether the water mobil-
ity through the tight passageways between fibers is distinguish-
able from the restricted diffusion within spaces surrounded by
contiguous myelin. If signal from the extra-axonal space is er-
roneously attributed to the intra-axonal space, the model output
will be incorrect.

Some models make no attempt to distinguish between intra-
and extra-cellular restricted diffusion, meaning the pore size es-
timates may reflect a mixture of the two (Ning et al., 2016).
Time-dependent (i.e., non-Gaussian) diffusion has recently been
observed in the extra-axonal space using long (Fieremans et al.,
2016; De Santis et al., 2016b) and short (Xu et al., 2014) diffu-
sion times. This may be due to axon varicosity, axonal beading,
or variation in axonal packing (Fieremans et al., 2016). In order
for the intra- and extra-axonal compartment fractions to be esti-
mated, the diffusion MRI signal from these compartments must
be distinguishable with the experimental paradigm and model-
ing used.

Diffusion modeling is an active field, and advances in the
near future will hopefully improve precision and accuracy of
AVF estimates using diffusion MRI. Histological validation may

aid in understanding the strengths and limitations of these esti-
mates. At present, the limitations of these models propagate to
the g-ratio, as do the limitations of MVF estimates, which are
discussed below.

3.3. MVF calibration

In this section, we investigate the effect of imperfect cali-
bration of MRI markers of the MVF. As an example, we present
detailed experimental analysis of the magnetization transfer ra-
tio (MTR), which is a commonly used myelin marker that is
implemented on clinical scanners and would be a logical first
choice for g-ratio imaging in the clinic. Computing a precise
and accurate MVF from the MTR is, however, challenging, as
is detailed below. We also investigate the performance of MTsat

(Helms et al., 2008) as a potential time-efficient replacement for
qMT in the estimation of the MVF. Care must be taken in the
use of any myelin marker in quantitative g-ratio computation.

How do we make a quantitative estimate of the MVF from
myelin sensitive MRI markers? Linear correlations have been
shown between the individual myelin sensitive metrics (such as
F (Thiessen et al., 2013; Schmierer et al., 2007), MTR (Gareau
et al., 2000; Schmierer et al., 2004), R1 (Mottershead et al.,
2003), MWF (Laule et al., 2006), and MTV (Duval et al., 2016b))
with the MVF from histology. Given the linear correlations that
have been established, a logical first approximation is to assume
a linear relationship between the chosen myelin-sensitive met-
ric and the MVF. Then, using the macromolecular pool size F
as an example, the relationship is

MVF = cF + b, (4)

with c and b constants. While a non-zero value for b has been
indicated by some studies (Thiessen et al., 2013; West et al.,
2017), this may be an artifact due to the inherent bias in linear
regression. The assumption of a linear relationship hinges on
the assumption that non-myelin macromolecular content scales
linearly with myelin content, but this relationship can break
down in disease, or even in healthy tissue. In disease, astrocyte
scarring, glial cell processes, and inflammatory cell swelling
could all modulate the relationship between a marker of macro-
molecular content and the MVF. If the myelin and non-myelin
macromolecular content do scale linearly, as is assumed here,
a theoretical prior that b = 0 is reasonable. However, b could
reflect a fixed population of macromolecules that are uncorre-
lated with myelin content. It would most likely be negative, i.e.,
F could be positive with MVF=0.

There is evidence that even if a simple scaling relation-
ship exists between F and MVF, it is dependent on acquisi-
tion and post-processing details. For instance, a recent study
calibrated F at two different sites, and found a different scal-
ing factor for each (Cercignani et al., 2016a). These scaling
factors in turn differ from those obtained from other investiga-
tions (Stikov et al., 2015b; Dula et al., 2010; Thiessen et al.,
2013). Hence, careful calibration for each study must be per-
formed. Several studies have calibrated scaling factors based
on a given expected g-ratio in healthy white matter (Cercignani
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et al., 2016a; Mohammadi et al., 2015). However, the g-ratio in
healthy white matter is not precisely known.

None of the myelin-sensitive MRI markers is 100% spe-
cific to myelin, and most are sensitive to myelin in a slightly
different way. Magnetization transfer contrast is specific to
macromolecules, and more specific to lipids than to proteins
(Kucharczyk et al., 1994). Macromolecules in the axon mem-
brane itself, in neurofilaments within the axons, and in glial cell
bodies, will contribute to the MT signal, with myelin constitut-
ing only 50% of the macromolecular content in healthy white
matter (Bjarnason et al., 2005). Additionally, MT-based met-
rics such as the magnetization transfer ratio will have residual
contrast from other mechanisms. We expect the MTR contrast
to vary linearly with macromolecular content, but also with T1
(Vavasour et al., 2011). T1 has the opposite sensitivity to myelin
than does the MT effect (Mottershead et al., 2003), meaning
that these effects work against each other, reducing the dynamic
range and power of MTR as a marker of myelin. Furthermore,
T1 is sensitive to iron and calcium content, intercompartmen-
tal exchange, and diffusion, and hence sensitive to axon size
(Harkins et al., 2016) and axon count (Schmierer et al., 2008).
This means the relationship between MTR and MVF may not
be monotonic, and is certainly nonlinear. This nonlinearity is
evident in published plots of MTR vs. F, e.g., that shown by
Levesque et al. (Levesque et al., 2005), and the lack of dy-
namic range of MTR is also evident (Levesque et al., 2005;
Garcia et al., 2012). The MTsat technique aims to remove the
T1 dependence in MTR. Both MTR and MTsat depend on the
offset frequency used in the acquisition. ihMT shows promise
as a more myelin-specific MT marker due to its sensitivity to
specific molecules in myelin that broaden the z-spectrum asym-
metrically, although it has recently been shown that asymmetric
broadening is not essential to generate a non-zero ihMT signal
(Manning et al., 2016), and the technique suffers from low sig-
nal. qMT is the most comprehensive of the MT-based myelin
markers, although its use is impeded by long acquisition times,
and its parameters appear to be sensitive to the specific model
and fitting algorithm.

Proton-density based techniques (Mezer et al., 2013) will,
like MT, be sensitive to all macromolecules, with a different
weighting on these macromolecules compared to the lipid dom-
inated MT signal. Relaxation-based myelin markers are also
not 100% specific to myelin. The confounds with using T1 di-
rectly were mentioned above, and the dependence on iron and
calcium concentration, intercompartmental exchange and diffu-
sion will also affect T2. T∗2 is also sensitive to iron concentra-
tion, as well as fiber orientation (Cohen-Adad, 2014). Isolat-
ing the short T2 or short T∗2 compartment enhances specificity
to myelin, but MWF estimates vary nonlinearly with myelin
content as the sheath thins and exchange and diffusion proper-
ties are modulated (Levesque & Pike, 2009; West et al., 2014;
Harkins et al., 2012). Variants may suffer from reduced accu-
racy or precision, for example, the mcDESPOT technique has
been shown to overestimate the MWF (Bouhrara et al., 2016)
and lack precision (Lankford & Does, 2013). Combining T1
and T2 in various ways (Glasser & Van Essen, 2011; Mangeat
et al., 2015) may increase specificity, although this approach

relies on myelin being the dominant source of contrast. In the
UTE technique, it is as yet unclear how to map the signal di-
rectly to myelin content. In addition to these confounds, most
of these myelin markers have recently been shown to have ori-
entation dependence. These include T∗2, χ (Rudko et al., 2014;
Liu et al., 2015), and T2 of the macromolecular pool (Pampel
et al., 2015).

While these myelin imaging techniques are certainly pow-
erful tools in the study of healthy and diseased brain, can they
be used reliably in the g-ratio imaging framework? As an il-
lustration of the effects of miscalibration of myelin markers,
consider the following scenario (Campbell et al., 2016). We
investigate three MT-based myelin markers: MTR, MTsat, and
macromolecular pool size F. We assume a simple linear scal-
ing between our MRI marker and the MVF. As described in
previous work (Stikov et al., 2015b), we calibrate F using com-
bined in vivo MRI acquisition ex vivo electron microscopy in
the macaque. We then calibrate MTR and MTsat to match the
mean F-based MVF in white matter. We subsequently com-
pute gMRI , using the NODDI model of diffusion and the MVF
derived from the myelin markers (Eq.s 2,1).

3.3.1. MVF calibration: Experimental Methods
MTR, MTsat, qMT, and NODDI data were acquired for five

healthy volunteers and one MS patient, as described in section
2.5. Additionally, for two of the healthy subjects, we acquired
one MT-on image with an offset frequency of 1.2 kHz, which
is the standard MTR sequence used at our site. For the MS pa-
tient, the MTsat images were computed from the qMT MT-off
and MT-on (MT pulse offset 2.732 kHz, flip angle 142◦) im-
ages and one additional T1W image with TE=3.3 ms, TR=15 ms,
and excitation flip angle α = 20◦. The diffusion images were
preprocessed using FSL (Smith et al., 2004), and the NODDI
parameters were computed using the NODDI matlab toolbox
(NODDI Matlab Toolbox, 2013). The qMT computation of the
macromolecular pool size F was performed using in-house soft-
ware (Sled & Pike, 2001; Cabana et al., 2015), including B0 and
B1 correction. MTsat was computed according to Helms et al.
(Helms et al., 2008, 2010), using the 2.2 kHz offset frequency
data, and also the 1.2 kHz offset frequency data where avail-
able. MTR was computed for both offset frequencies where
available. A semi-empirical B1 correction was made (Weiskopf
et al., 2013) to correct for higher order B1 effects. Binary seg-
mentation of white and grey matter was performed using an
in-house pipeline, using the MPRAGE image only. Lesion seg-
mentation for the MS subject was performed with in-house soft-
ware.

The combined MRI/histology dataset (Stikov et al., 2015b)
was used to scale each myelin marker (MTR, MTsat, and F) to
give the MVF, with the assumption of a linear relationship (Eq.
4) with intercept b=0. Correlations between the three myelin
markers were computed in brain parenchyma. Percent differ-
ences were computed between healthy white matter and healthy
grey matter for each of the three myelin markers. The AVF was
computed using Eq. 2, and g-ratios were computed in the MS
and healthy brains using Eq. 1. Average g-ratios were com-
puted in healthy white matter, normal appearing white matter
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Figure 5: MTR plotted versus F (left) and MTsat plotted versus F (right) in
parenchyma for one subject at 2.2 kHz offset frequency. The MTR vs. F plot
shows a marked nonlinearity (r=0.62 over five subjects; r=0.57 for the subject
shown in this plot), as is expected. MTsat increases the linearity of the relation-
ship (r=0.80 over five subjects; r=0.78 for the subject shown in this plot) and
the dynamic range.

(NAWM), and MS lesions.
A theoretical computation was also performed, varying the

mapping of an arbitrary myelin metric to MVF using Eq. 4. We
separately varied the slope (c) and the intercept (b) for a range
of fiber volume fraction values and mapped the computed g-
ratio as a function of FVF. When varying the slope, the intercept
was fixed at the origin.

3.3.2. MVF calibration: Results
For the 2.2 kHz offset frequency (Helms et al., 2008), the

average correlation of MTR with F was r=0.62 (p<0.001), and
of MTsat with F was r=0.80 (p<0.001) in parenchyma. The
relationship between MTsat and F is more linear than the rela-
tionship between MTR and F (p<0.0001). Fig. 5 shows plots of
MTR versus F (left) and MTsat versus F (right) in parenchyma
for one subject at 2.2 kHz offset frequency. Of note, the plot of
MTR versus F has a distinctive nonlinear shape, similar to that
seen in the literature (Levesque et al., 2005). When T1 effects
are reduced using MTsat, the linearity and dynamic range in-
crease. For the two subjects in which the lower, 1.2 kHz offset
frequency was also used to compute both MTR and MTsat, the
average correlation of MTR with F was 0.55 and of MTsat with
F was 0.73.

In healthy brain, the percent difference between white and
grey matter was 15.02% for MTR, 40.08% for MTsat, and 45.86%
for F. The narrower dynamic range of the MVF derived from
MTR can also be seen in Fig. 6, where grey matter has markedly
higher values. If this simple scaling to obtain the MVF is used
in the g-ratio formula, the g-ratio in healthy white matter is rela-
tively constant. However, when lesions exist, the contrast using
the different MVF markers is very different. In the MS patient,

Figure 6: Left: Plots of the MVF derived from (from left to right) MTR, MTsat ,
and F, in healthy brain. Right: The MTsat calculation estimates a map of the
apparent T1 and removes the T1 effects from the MTR map. T1 has the opposite
contrast than does magnetization transfer, so these two effects work against
each other in the MTR map, and the MTsat map therefore has more contrast
and a greater dynamic range. The inhomogeniety visible in the T1 map is due
to B1 inhomogeniety, which is largely cancelled out in the MTsat computation
(Helms et al., 2008), although further correction for residual B1 effects is often
performed (Weiskopf et al., 2013).

Figure 7: Plots of gMRI computed using (from left to right) MTR, MTsat , and F,
in the MS patient. The arrow indicates a lesion in which the apparent g-ratio is
lower than in NAWM when using MTR, but higher than in NAWM when using
MTsat and F.

the mean g-ratio in normal appearing white matter (NAWM)
was 0.76 for all three MVF markers. In MS lesions, the mean
g-ratio was 0.65, 0.80, and 0.80, for MTR, MTsat, and F, re-
spectively. Fig. 7 shows the spatial distribution of g-ratios in
the MS patient for the three MVF markers.

Fig. 8 shows the theoretical effect of having an improper
slope (top) or intercept (bottom) in the relationship between an
arbitrary myelin marker and the MVF, in the case where the
(theoretical) relationship is in fact linear. The plots show that
the computed g-ratio becomes fiber density dependent, in addi-
tion to being incorrect.

3.3.3. MVF calibration: Discussion
The MTR is a commonly used myelin marker, however, due

to T1 sensitivity, it lacks dynamic range. This results in unre-
alistic g-ratios in MS lesions that are lower than in NAWM.
T1 is one of the possible MR-based myelin markers, but in the
context of the MTR experiment, it confounds the contrast, be-
cause the MT effect dominates but is diminished by the T1 con-

10



Figure 8: Effect of having an improper slope (top) or intercept (bottom) in the
relationship between an arbitrary myelin marker and the MVF, in the case where
the (theoretical) relationship is in fact linear. The plots show that the computed
g-ratio becomes fiber density dependent, in addition to being incorrect.

trast, which works against it. MTsat correlates more highly with
F, which is obtained from an explicit qMT model designed to
isolate the macromolecular tissue content. It is important to
note, however, that this correlation may be driven to some ex-
tent by the different B1 sensitivities of the techniques as the
MTR was not corrected for B1 induced variability (Volz et al.,
2010; Yarnykh & Khodanovich, 2015). Independent of this
demonstration of the potential of MTsat for myelin mapping, re-
searchers have found that MTsat may be more sensitive to tissue
damage than MTR in multiple sclerosis, with higher correlation
with disability metrics (Lema et al., 2017). MTsat has recently
been used by other groups in g-ratio imaging of healthy adults
(Mohammadi et al., 2015).

If the MVF is miscalibrated in this g-ratio imaging formula-
tion, there will be a residual dependence on fiber volume frac-
tion in our formulation. This reduces the power of the g-ratio
metric, which ideally is completely decoupled from the fiber
density. Independent of specificity of the myelin marker, if the
myelin calibration is inaccurate, this residual dependence on
fiber volume fraction occurs. It is clear that the g-ratio metric
we will compute is g-ratio weighted, and the better the calibra-
tion, the more weighted to the g-ratio it will be. Until quantita-
tive myelin mapping is accurate, the g-ratio metric will not be
specific to the g-ratio.

There is evidence that fiber density drops precipitously in
some MS lesions (Stikov et al., 2015b). In Fig. 7, this was the
case, and we can see that MTR does not drop enough, making
MS lesions appear to have a lowered g-ratio instead of a higher
g-ratio as expected. Inspecting the bottom (red) curve in Fig.
8, we see that even if there is a linear relationship between the
myelin marker of choice and the MVF, miscalibration leads to
an apparent g-ratio metric that is elevated in regions of lower
fiber density, and significantly lower in regions of healthy fiber
density. This occurs when in fact all of the fibers have the same
g-ratio, and could easily be interpreted as hypomyelination in
an MS subject or population.

As noted above, the problem of miscalibration of the myelin
marker exists independent of the specificity of the myelin marker.
However, specificity is itself a major confound, as previously
detailed. In the case of demyelinating disease, one must also
consider that, with many myelin markers, all myelin will affect
the MR signal, even if it is not part of an intact fiber. Research
indicates that in MS, there is acute demyelination followed by
a period of clearance of myelin debris, followed by effective
remyelination. During clearance, remyelination can occur, but
this myelin is of poor quality (Lampron et al., 2015). On the
scale of an MRI voxel, there can be myelin debris, poor re-
myelination, and higher quality remyelination. The extent to
which myelin debris affects the myelin volume estimates may
depend on the myelin mapping technique chosen. It is also not
clear how well the estimates of MVF, and also AVF, behave at
very low fiber density.

One possible solution for MVF calibration is to calibrate
the g-ratio to a known value in certain regions of interest (Mo-
hammadi et al., 2015; Cercignani et al., 2016a), as mentioned
above. However, care must be taken that this step is not ad-
justing for differences in the diffusion part of the pipeline (e.g.,
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different implementations of the diffusion model (Cercignani
et al., 2016a)), and therefore still leaving a fiber density de-
pendence. Additionally, the correct value in these regions of
interest must be known. Calibration based on expected MVF
would remove this sensitivity, but is subject to error due to par-
tial volume averaging of white matter with other tissue. If the
relationship between the myelin-sensitive metric and the MVF
is not a simple scaling, such calibration will fail. Particular care
needs to be taken when studying disease.

If the assumed relationship between the myelin marker and
the MVF is incorrect, the computed g-ratio will be incorrect. Is
it possible to compute a g-ratio that is correct to within a scaling
factor, and not sensitive to the fiber density? This would require
that the AVF or FVF be estimated independent of the MVF.
Simple models such as the diffusion tensor, apparent fiber den-
sity (Raffelt et al., 2012), and tensor fiber density (Reisert et al.,
2013), are indicators of fiber or axon density, but detailed mod-
eling is most likely superior. Consideration of contrasts other
than diffusion MRI, such as gradient-echo based approaches
(Sati et al., 2013), might also help with this problem. The g-
ratio is a function of the ratio of the MVF to the AVF, and a
technique that measures this ratio directly would be optimal.
However, due to the extremely short T∗2 of myelin, GRE based
estimates would be of the myelin and axon water fraction, and
hence would still need to be calibrated using the volumetric oc-
cupancy of water in these tissues.

In summary, both specificity and accuracy are important for
both AVF and MVF estimation. For both AVF and MVF es-
timation, more sophisticated models may be required. For ex-
ample, we have thus far ignored cell membranes. The axon
membrane should technically be included in the AVF, and its
volume is up to 4% of the AVF (Sepehrband et al., 2015), but
it would most likely be included in the MVF using MT-based
MVF estimation. It is also important to keep in mind the dif-
ferent sensitivities of different MRI markers (e.g., MWF from
relaxometry vs. MT-based parameters), because these will not
be expected to give identical gMRI metrics. The determination
of which MRI markers are most optimal for g-ratio imaging
is still the topic of active research (Ellerbrock & Mohammadi,
2017).

3.4. g-Ratio distribution
The g-ratio imaging paradigm extracts a single g-ratio met-

ric per voxel. At typical imaging resolution feasible for the con-
stituent MR images, a voxel contains hundreds of thousands of
axons. As with the axon diameter, the g-ratio really applies to
an individual axon, and takes on a broad distribution of val-
ues in tissue (Graf von Keyserlingk & Schramm, 1984) (see
Fig. 9, which shows the g-ratio distribution in the macaque
corpus callosum, measured using electron microscopy). The
range of myelination includes some unmyelinated axons within
healthy white matter. The g-ratio distribution may broaden and
become bi-modal in disease. Even within a single axon with
intact myelin, the g-ratio may vary due to organelle swelling.
Fiber bundles that cross within one voxel may have different
g-ratio distributions. In development, some fibers within one
fiber bundle will fully develop, while others will be pruned,

Figure 9: g-Ratio distributions from electron microscopy of the cynamolgus
macaque corpus callosum, samples 1-8 from genu to splenium. Reproduced
from (Stikov et al., 2015a).

resulting in an interim bimodal g-ratio distribution within the
fascicle. The current MRI-based g-ratio framework will not be
able to distinguish these cases, as it reports only an intermedi-
ate g-ratio value. It is robust to crossing fibers, in that it will
report the same intermediate g-ratio value whether the separate
bundles cross or lie parallel to each other. The broad g-ratio
distribution is in part a resolution problem, but the g-ratio is ex-
pected to be heterogeneous on a scale smaller than we can hope
to resolve with MRI.

The aggregate g-ratio we compute in the case of a distri-
bution of values is not precisely fiber- or axon-area weighted,
but is close to axon area weighted within a reasonable range of
values (West et al., 2016b). Larger axons will have a greater
weight in the aggregate g-ratio metric we measure. Simply put,
the aggregate g-ratio is the g-ratio one would measure if all ax-
ons had the same g-ratio.

In the case of an ambiguous g-ratio distribution, what tech-
niques can we use to infer what situation is occurring? In multi-
ple sclerosis, for example, two possible scenarios probably oc-
cur frequently. One is patchy demyelination, on a scale much
smaller than a voxel and smaller than the diffusion distance,
and the other is more extensively and uniformly distributed thin
myelin. These two scenarios could give rise to equal AVF,
MVF, and aggregate g-ratio measurements. One possible way
to differentiate these cases could be to look more closely at pa-
rameters available to us from diffusion models. It has been
shown that the extra-axonal perpendicular diffusivity is rela-
tively unchanged by patchy demyelination in a demyelinating
mouse model (Jelescu et al., 2016b), because diffusing molecules
encounter normal hindrance to motion on most of their trajec-
tory, whereas the axon water fraction is sensitive to this patchy
demyelination. Hence, the discrepancy between these two mea-

12



sures can be taken as a measure of patchy demyelination. Alter-
natively, one can scan subjects longitudinally and infer disease
progression. From the ambiguous timepoint described above,
the axons in the patches that are demyelinated may die, leav-
ing a decreased AVF and MVF, and a return to a near-healthy
g-ratio. In the case of uniformly thin myelin, the remyelina-
tion may continue, leaving a near-healthy AVF, MVF, and g-
ratio. Note that the g-ratio metric still does not distinguish these
pathologically distinct cases. There are two unknowns - the
fiber density and the g-ratio (or, alternately, the MVF and the
AVF), and one must consider both to have a full picture of the
tissue. Looking at the time courses, one can hypothesize what
the g-ratio distribution was at the first timepoint.

It would be technically challenging to measure the g-ratio
distribution in vivo. Even with an estimate of a distribution
of diffusion properties, and an estimate of the distribution of
a myelin-sensitive metric, the g-ratio distribution is ill-defined.
However, several recent acquisition strategies may help us get
closer to this aim. One approach is to take advantage of the
distinguishable diffusion signal between different fiber orienta-
tions. In the IR-prepared diffusion acquisition described above
(De Santis et al., 2016a), the model specifies multiple fiber pop-
ulations with distinct orientations, each with its own T1 value.
This means the diffusion properties, including the restricted
pool fraction (a marker of intra-axonal signal from the CHARMED
model), are paired with a corresponding T1 for each fiber orien-
tation. Hence, a g-ratio metric could be computed for each fiber
orientation. This could be of benefit in, e.g., microstructure
informed white matter fiber tractography (e.g., (Girard et al.,
2015)) of fiber populations with distinct g-ratios. “Jumping”
from one fiber population to another is very common in tractog-
raphy (Campbell & Pike, 2013; Descoteaux et al., 2016; Maier-
Hein et al., 2016), and constraining tractography to pathways
with consistent microstructural features could help reduce false
positives in regions of closely intermingling tract systems.

It may be possible, conceptually, to estimate the g-ratio dis-
tribution via a 2D diffusion-relaxation spectroscopic approach.
While extremely acquisition intensive, 2D spectroscopy of T2
and the diffusion coefficient (Callaghan et al., 2003) has been
demonstrated recently as a probe of microstructure (Kim et al.,
2016). The acquisition involves making all diffusion measure-
ments at different echo times. If a distribution of a myelin vol-
ume sensitive metric (here, T2) can be estimated simultaneously
in 2D with a distribution of a diffusion-based metric sensitive
to the axon volume, it may be possible to infer the distribution
of g-ratios.

This has been an incomplete but useful list of pitfalls. Now,
we will consider the promise of imaging the aggregate g-ratio
weighted metric, despite its pitfalls. g-Ratio imaging is being
explored in many different contexts, described below.

Figure 10: gMRI in healthy white matter, imaged using qMT and NODDI.

4. The promise: g-ratio imaging studies

The promise of g-ratio imaging is its potential to provide us
with valuable in vivo estimates of relative myelination. In the
last few years, studies showing the potential of this framework
have begun to emerge.

4.1. Healthy white matter

Fig. 10 shows an image of gMRI in healthy white matter
using our qMT and NODDI g-ratio protocol (see section 2.5).
With our protocol, in healthy subjects, the gMRI map is rela-
tively flat, with a mean gMRI of 0.76 (SD=0.05). Other groups
have explored these and other MVF and AVF sensitive contrasts
for g-ratio mapping in healthy white matter. These include a
study of the effects of age and gender in a population of sub-
jects aged 20 to 76 using qMT and NODDI (Cercignani et al.,
2016b), studies of healthy adults using MTsat and the TFD (Mo-
hammadi et al., 2015) and MTV and DTI (Berman et al., 2017),
and a study of healthy subjects using the ViSTa myelin water
imaging technique and NODDI (Jung et al., 2016).

A variation of the g-ratio with age appears to be detectable
with this methodology (Cercignani et al., 2016b). A variation
with gender has not been seen, and if it exists in adolescence
(Paus & Toro, 2009), a study designed for sufficient statistical
power at a precise age will be required to detect it. In addi-
tion to exploring the effect of age and gender, spatial variability
of the g-ratio has been investigated. An elevated g-ratio at the
splenium of the corpus callosum has been seen (Stikov et al.,
2015b; Mohammadi et al., 2015). The splenium has been re-
ported to contain axons of very large diameter (LaMantia &
Rakic, 1990), and these would be expected, due to the non-
linearity of the g-ratio (Hildebrand & Hahn, 1978), to have
relatively thinner myelin sheaths. Electron microscopy in the
macaque (Stikov et al., 2015b) (see Fig. 11) confirms this; the
“super-axons” dominate the aggregate g-ratio measure, which
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Figure 11: Existence of very large axons in the splenium of the corpus cal-
losum. Top: drawing based on histology by Aboitiz et al. (reproduced from
(Aboitiz & Montiel, 2003)), showing large diameter at the splenium. Bottom:
EM of the g-ratio in the cynamolgus macaque showing one sample from the
genu (left) and one sample from the splenium (right). The splenium contains
much larger diameter axons, and these will dominate the aggregate g-ratio mea-
sure, which was elevated in the splenium using both EM measurements and
MRI of the same tissue shown here (Stikov et al., 2015b).

was seen to be elevated in the splenium using both EM mea-
surements and MRI of the same tissue (Stikov et al., 2015b).

g-Ratio imaging has also been performed in the healthy hu-
man spinal cord (Duval et al., 2015), where there are consid-
erable technical challenges, such as motion, susceptibility, and
the need for significantly higher resolution than we have de-
scribed for cerebral applications. Duval et al. acquired g-ratio
data at 0.8 mm x 0.8 mm inplane voxel size. This study used
the CHARMED model of diffusion, more accessible on scan-
ners with high gradient strength, on a CONNECTOM scanner.
It used the MTV myelin marker. Of interest, the g-ratio was
not found to vary significantly across white matter tracts in the
spinal cord, while the diffusion metrics (restricted fraction, dif-
fusivity of the hindered compartment, and axon diameter) and
the MTV metric did vary across tracts. This is expected, as
heterogeneity in packing and axon diameter is expected to be
greater than heterogeneity of the g-ratio, and the g-ratio is also
robust to partial voluming effects.

Multiple groups have studied the g-ratio in vivo in the devel-
oping brain (Dean et al., 2016; Melbourne et al., 2016). Axon
growth outpaces myelination during development, and there-
fore a decreasing g-ratio is expected as myelination reaches ma-
turity, as was seen in these studies.

4.2. Multiple sclerosis

Imaging the g-ratio in vivo in multiple sclerosis has been ex-
plored by several groups (Stikov et al., 2015b; Cercignani et al.,
2015; Hori et al., 2016) and is of interest for several reasons. It

can possibly help assess disease evolution, and can help moni-
tor response to treatment. It has the potential to aid in the devel-
opment of new therapies for remyelination. It can also help us
understand which therapies might be more fruitful avenues of
research. While currently available therapies are immunomod-
ulatory or immunosuppressive in nature, several remyelinating
therapies are in clinical trials. Preventing MS-related demyeli-
nation (via immunomodulatory therapies) is always preferred
at earlier disease stages. Once demyelination has occurred, re-
myelinating therapies may help protect demyelinated (but not
transected) axons from delayed degeneration due to the loss of
trophic factors no longer received from myelin. Given that re-
myelination can occur only when demyelinated but still viable
axons are present, interpretation of MRI markers of remyelina-
tion would be improved by including a marker of axonal in-
tegrity. Thus, the g-ratio framework would be useful in the
evaluation of remyelinating therapies. In particular, dynamic
changes of g-ratio over time could be measured within new
and chronic lesions (as detected on conventional MRI) and the
(temporally aligned) timecourses compared between treatment
arms.

Despite the promise of imaging the g-ratio in vivo with MS,
it is important to remember the pitfall of specificity and miscali-
bration of the myelin metric when interpreting g-ratio estimates
in MS. In our own preliminary experience imaging MS, the re-
lationship between the g-ratio in lesions and in NAWM appears
to be complex. In section 3.3, we detailed our observations in
one MS patient for whom we acquired a full qMT protocol.
In a total of four subjects for whom we have acquired MTsat

data, we observed heterogeneity in the gMRI values within and
across subjects. The average (± standard deviation) g-ratio in
lesions compared to NAWM was not always higher than that in
NAWM, with (gMRI(lesions),gMRI(NAWM))=(0.80±0.07,0.76±0.05),
(0.72±0.05,0.77±0.03),
(0.74±0.06,0.75±0.05), (0.75±0.08,0.78±0.04) for the four sub-
jects. On average in these patients, gMRI was 0.75 in lesions and
0.76 in NAWM. This variability of gMRI in lesions compared
to NAWM is consistent with preliminary findings from other
groups using MT contrast for MVF (Cercignani et al., 2015),
and could indicate that variable levels of non-myelin macro-
molecular content may confound the g-ratio metric. The g-ratio
itself is not expected to be lower than in NAWM, but may ap-
pear so because other macromolecular content is confounding
the MT measurements.

Further studies of MS are ongoing, including pediatric pop-
ulations, optic neuritis, and studies investigating whether gadolin-
ium enhancing lesions have a distinct g-ratio.

4.3. Other potential applications
g-Ratio imaging has potential to aid in the understanding

and treatment of multiple other diseases. White matter abnor-
malities may underlie many developmental disorders. These
include Pelizaeus Merzbacher disease and Sturge-Weber syn-
drome (Hori, 2016). An increased apparent g-ratio could result
from axonal changes that occur with intact myelin (for exam-
ple, axonal swelling due to infarction). g-Ratio differences have
been seen in schizophrenia using electron microscopy (Uranova
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et al., 2001), and researchers hope to be able to study such
changes in vivo in schizophrenia and other psychiatric disor-
ders. Another potential application of g-ratio imaging is bridg-
ing the gap between microstructure and large-scale functional
measures such as conduction delays. Adding a g-ratio mea-
sure to the human connectome could result in a framework for
evaluating delays. Finally, g-ratio imaging offers the possibility
to quantify plastic changes in myelin thickness due to learning
and adaptation to injury or disease. MRI has been used to mea-
sure such changes, with the hypothesis that myelin thickness
is changing (Reid et al., 2016), but quantitative g-ratio mea-
surement could help describe the neural changes in plasticity in
more detail.

Of note, when examining the g-ratio compared to conduc-
tion velocity or functional metrics, linear correlation would not
be expected to be a good statistic. The g-ratio has an optimal
value, hence, both decreases and increases from this optimum
would be expected to decrease function. In the future, assuming
sufficient reproducibility, establishment of an age-dependent at-
las of normal g-ratio values could help determine whether an
individual lies within the normal range.

4.4. Ex vivo g-ratio imaging
One major application of ex vivo g-ratio imaging is valida-

tion of the technique for use in vivo, which should help elu-
cidate the true promise of g-ratio imaging. Ex vivo validation
has been performed, in order to investigate the g-ratio explicitly
(Stikov et al., 2015b,a; West et al., 2016a), or one or both of the
individual metrics used to compute it (Duval et al., 2016b; Je-
lescu et al., 2016b; Jespersen et al., 2010; West et al., 2017,
2014; Schmierer et al., 2008; Scherrer et al., 2016; Sepehrband
et al., 2015; Wood et al., 2016). These studies compare in
vivo or ex vivo MRI metrics to electron microscopy, optical
microscopy, myelin staining, immunohistochemistry, and co-
herent anti-Stokes Raman spectroscopy (CARS). While no mi-
croscopy technique is perfect, microscopy provides a reason-
able validation for imaging techniques, taking into account the
possibility for tissue shrinkage and distortion, limitations in
contrast and resolution, and segmentation techniques (Zaimi
et al., 2016).

Interpretation of findings of demyelinating models should
take into account the particularities of the demyelinating chal-
lenge. Jelescu et al. have shown that the extra-axonal diffu-
sivity perpendicular to axons correlates with the g-ratio in a
cuprizone demyelinating model in mice (Jelescu et al., 2016b).
This is probably driven by a fiber volume fraction decrease, be-
cause little axon loss would be expected in this model. In other
words, the extra-axonal diffusivity is not specific to the g-ratio
per se, but to the fiber volume fraction (i.e., size of the extra-
cellular space), but these two quantities correlate highly in this
particular case. Similarly, West et al. have shown a correlation
between the discrepancy between F and MWF and the g-ratio
in a knockout model in mice (West et al., 2014). This is proba-
bly a correlation with absolute myelin thickness, via exchange
effects, as opposed to the g-ratio per se.

Ex vivo g-ratio imaging could also be of use for the study of
neural tissue independent of validation of in vivo imaging. MRI

is far more suited to imaging large samples of tissue than are
other ex vivo imaging techniques, such as electron microscopy.

5. Conclusion

Computing a g-ratio metric is an effective way to interpret
any combination of myelin-weighted and axon/fiber-weighted
MR data. In this article, we have discussed the considerable
promise of g-ratio imaging to help us understand disease, de-
velop therapies, and monitor disease progression. Additionally,
we have shown how the g-ratio framework can provide a win-
dow onto the study of normal brain variability, development,
aging, plasticity, and functional dynamics. We have also ex-
plored the pitfalls of g-ratio imaging, which include MR arti-
facts, lack of specificity, low spatial resolution, and long ac-
quisition times. Keeping these confounds in mind, it is clear
that what we are currently measuring is an aggregate g-ratio
weighted metric that is strongly dependent on the MRI markers
used to compute it. The framework described in this article pro-
vides information on two quantities: the fiber density and the g-
ratio (equivalently, the myelin and axon volume fractions), and
attempts to decouple these two quantities to the best of the abil-
ity of our current imaging technology. To improve upon this
description of the microstructure, one needs to fully decouple
the g-ratio from the fiber density, and to provide precise and ac-
curate measures of the myelin and the axon volume fractions.
This task is at the frontier of microstructural MRI, showing the
way for the future of multi-modal brain imaging.
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