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Abstract

Resolving tradeoffs between smaller immediate rewards and larger delayed rewards is ubiquitous 

in daily life and steep discounting of future rewards is associated with several psychiatric 

conditions. This form of decision-making is referred to as delayed reward discounting (DRD) and 

the features of brain structure associated with DRD are not well understood. The current study 

characterized the relationship between gray matter volume (GMV) and DRD in a sample of 1038 

healthy adults (54.7% female) using cortical parcellation, subcortical segmentation, and voxelwise 

cortical surface-based group analyses. The results indicate that steeper DRD was significantly 

associated with lower total cortical GMV, but not subcortical GMV. In parcellation analyses, less 

GMV in 20 discrete cortical regions was associated with steeper DRD. Of these regions, only 

GMV in the middle temporal gyrus (MTG) and entorhinal cortex (EC) were uniquely associated 

with DRD. Voxelwise surface-based analyses corroborated these findings, again revealing 

significant associations between steeper DRD and less GMV in the MTG and EC. To inform the 

roles of MTG and EC in DRD, connectivity analysis of resting state data (N=1003) using seed 

regions from the structural findings was conducted. This revealed that spontaneous activity in the 

MTG and EC was correlated with activation in the ventromedial prefrontal cortex, posterior 

cingulate cortex, and inferior parietal lobule, regions associated with the default mode network, 

which involves prospection, self-reflective thinking and mental simulation. Furthermore, meta-

analytic co-activation analysis using Neurosynth revealed a similar pattern across 11,406 task-
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fMRI studies. Collectively, these findings provide robust evidence that morphometric 

characteristics of the temporal lobe are associated with DRD preferences and suggest it may be 

because of their role in mental activities in common with default mode activity.
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1. INTRODUCTION

Delayed reward discounting (DRD) refers to a person’s preferences for smaller immediate 

rewards versus larger delayed rewards (i.e., how much a reward is discounted by virtue of its 

delay in time) (Bickel and Marsch, 2001; Madden and Bickel, 2009). Steep discounting of 

future rewards is considered a form of impulsivity and has been associated with a variety of 

different behaviors in normative samples, such as credit card debt (Meier and Sprenger, 

2010) and completing regular health screenings (Bradford, 2010). Furthermore, precipitous 

DRD has been consistently associated with psychiatric disorders such as substance use 

disorders, gambling disorder, and attention deficit hyperactivity disorder (Amlung et al., 

2016b; Jackson and MacKillop, 2016; MacKillop et al., 2011; Reynolds, 2006).

Two fMRI meta-analyses suggest that neural networks involved in cognitive control (e.g., 

dorsolateral prefrontal cortex, anterior cingulate cortex), valuation of reward (e.g., ventral 

striatum, orbitofrontal cortex, insula, ventral tegmental area), and self-reflective and future 

oriented thought (e.g., medial prefrontal cortex, posterior cingulate, tempoparietal junction, 

lateral and medial temporal lobe; referred to as the default mode network (DMN)) are 

activated by completing DRD tasks (Carter et al., 2010; Wesley and Bickel, 2014). However, 

in contrast to the relatively numerous fMRI studies on DRD, there have been surprisingly 

few studies the relationship of brain structure with DRD. One modestly-sized study reported 

that DRD was associated with GMV in the ventromedial prefrontal cortex, the anterior 

cingulate, and the ventral striatum (Cho et al., 2013). This latter association was reported 

also in a subsequent study investigating only subcortical regions of the brain (Tschernegg et 

al., 2015). However, two other studies both found associations with the lateral prefrontal 

cortex, but not the medial prefrontal cortex (Bjork et al., 2009; Mohammadi et al., 2015). 

The largest study to date found DRD to be associated with GMV in the frontal pole, 

dorsolateral prefrontal cortex, medial orbitofrontal cortex, parahippocampal gyrus, striatum, 

temporal pole, precuneus, and precentral gyrus (Wang et al., 2016). Collectively, these initial 

studies suggest the brain regions in which structure is associated with DRD are those 

involved in subjective reward valuation (striatum, insula), self-reflective and prospective 

thought (DMN; medial frontal cortex, posterior cingulate, lateral temporal lobe), and 

cognitive control (dorsolateral frontal cortex, anterior cingulate cortex).

However, there are a number of inconsistencies across studies and limitations to the 

literature in general. To start, there has been limited investigation of whether aggregated 

neurostructural indices, such as total cortical or total subcortical GMV, are related to DRD. 

Instead, most studies have exclusively focused on a priori brain regions that are based on 
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functional magnetic resonance imaging (fMRI) studies and do not consider the whole brain. 

This means that there may be other regions that are as important (or more) but are missed. In 

addition, because of high levels of correlation among cortical regions, a priori regions may 

be artifactually implicated because of interdependence with other unexamined regions, 

creating false positives. Additionally, the majority of previous studies have only investigated 

regions defined by an atlas, meaning that there may be relationships of brain structure and 

DRD that don’t fit neatly within these frameworks. Finally, the vast majority of studies to 

date have been relatively small. Given the increasing acceptance of the potential pitfalls of 

small sample sized neuroimaging studies (Button et al., 2013), there is clearly a need to 

address these issues and systematically examine the morphometric correlates of DRD.

The goal of the current study was address a number of these limitations in a large cohort of 

healthy adults (N = 1038). Using data from the Human Connectome Project (Van Essen et 

al., 2013a) and a method that models boundaries between gray and white matter throughout 

the brain, we employed two strategies to characterize the relationship between GMV and 

DRD. The first strategy used cortical parcellation and subcortical segmentation, first 

examining total cortical and subcortical GMV in relation to DRD and then exploring 

neurostructural regions defined by the Desikan atlas, which putatively reflect discrete areas 

of structural specialization. The second strategy used a voxelwise cortical surface analysis to 

test associations between GMV in individual voxels and DRD. The two strategies were 

considered complementary, as the cortical parcellation/subcortical segmentation approach 

emphasizes regional specialization, whereas the voxelwise approach is atheoretical and 

makes no assumptions about discrete structural subunits. Together, the two strategies balance 

the respective benefits and costs, and permit identifying both converging and diverging 

findings across methodologies. In addition to these primary aims, two follow-up strategies 

were used to inform the roles of the implicated regions: examination of the patterns of 

functional connectivity during resting state and generation of a co-activation meta-analysis 

from other fMRI studies.

2. RESULTS

2.1 Cortical Parcellation and Subcortical Segmentation Analyses

In all instances of significant associations between gray matter volume (GMV) and mean 

area under the curve for both discounting tasks (mAUC, the primary metric of DRD used; 

see Methods, section 4.2; note that smaller AUC reflects more impulsive DRD), the 

relationship between GMV and AUC was positive, indicating that higher levels of GMV 

were associated with less steep DRD (i.e., more AUC, lower impulsivity). Partial 

correlations, incorporating demographic covariates, between total cortical gray and total 

subcortical GMV with mAUC indicated that mAUC was associated with total cortical GMV 

(r = .124, p = 6E-5; scatterplot in SI Figure 1), but not total subcortical GMV (r = −.010, p 
= .748). To confirm the lack of association between subcortical GMV and mAUC extended 

to individual regions (i.e., prevent type II error), we also tested the association of GMV with 

mAUC in each subcortical region using partial correlations without multiple comparison 

correction (SI Table 1). No significant associations were found between mAUC and any 

subcortical regions (all raw/uncorrected p-values > .05).
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For completeness, when these analyses were completed with the two individual indices of 

DRD, area under the curve for $200 (AUC200) and area under the curve for $40,000 

(AUC40K), the same general results were found. Both AUC200 and AUC40K were 

associated with total cortical GMV (ps ≤ .001) and neither was associated with total 

subcortical GMV (ps > .05). Additionally, neither AUC200 nor AUC40K were associated 

with any individual subcortical region (all p-values > .05).

Significant partial correlations between cortical parcellation regions and mAUC following 

FDR correction are listed in Table 1 (associations between all regions and mAUC are listed 

in SI Table 2). AUC200 and AUC40K were associated with similar regions; regions 

associated with these indices and associated statistics can be found in SI Table 3. Effect sizes 

were slightly larger for AUC200 though the same general pattern of regions emerged as 

significant in both analyses.

In order to determine which regions contributed uniquely to DRD, regression analysis was 

completed for significant regions in partial correlations. Specifically, regions surviving FDR 

correction were added to a single regression model of age, sex, income, and intracranial 

volume to identify regions that were uniquely associated with mAUC. Regions were entered 

simultaneously and those uniquely predicting mAUC were retained. To evaluate the risk for 

multicollinearity within the regression models, bivariate correlations were conducted on the 

five sets of regions which were bilaterally related to mAUC (i.e., bilateral MTG, EC, 

precentral gyrus, inferior temporal gyrus, lateral orbitofrontal cortex). These revealed large 

and significant associations between right and left hemisphere in these regions (rs=.57–.86, 

ps < .001; exact correlations reported in SI Table 4). As a result, bilateral regions were 

consolidated (i.e., summed) to avoid multicollinearity (the consolidated regions are 

henceforth referred to as bilateral [region name]).

In the regression, only bilateral MTG and bilateral EC were uniquely associated with mAUC 

(Table 2). An intermediate model that includes the other regions from partial correlations is 

provided in supplemental materials (SI Table 5). The final model, which included bilateral 

MTG and bilateral EC (and covariates), accounted for 7.7% of the total variance in DRD; 

partial regression scatterplots between AUC and both regions are in Figure 1 (including sex, 

age, income and total intracranial volume in the models). Also of note, bilateral MTG (β = .

21, t = 3.62, p = 8E-4) and bilateral EC (β = .16, t = 4.34, p = 6E-5) remained uniquely and 

significantly associated with mAUC when Total Cortical GMV was added to a follow-up 

model and the addition of total cortical GMV did not improve the model (R2Δ = 0.000, p = .

87). Collectively, the regression results indicate that GMV in the bilateral MTG and bilateral 

EC accounts for unique variance in mAUC beyond GMV in other regions and GMV 

throughout the cortex. They also indicate that no other region, nor overall cortical GMV, 

accounted for additional variance in mAUC beyond bilateral MTG or bilateral EC. Bilateral 

MTG and bilateral EC were also the only unique predictors for AUC200 and AUC40K (SI 

Table 6).

2.2 Voxelwise Cortical Surface Analysis

Clusters in which GMV was significantly associated with mAUC at clusterwise p < .05 are 

presented in Table 3 and displayed in in Figure 2. These included clusters in the left MTG, 
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left lingual gyrus, left EC, left lateral occipital cortex, right fusiform gyrus, right EC, right 

precentral gyrus, and two clusters in the right MTG. Similar clusters were found for 

AUC200 while only two clusters in the MTG were associated with AUC40,000 (SI Table 7 

and SI Figure 2).

2.3 Resting State Functional Connectivity Analysis

To better understand the role of the morphometric regions that were uniquely associated 

with mAUC (MTG and EC), resting state functional connectivity of these regions was 

examined (Figure 2). Seeds for the MTG and EC, denoted by white spheres, were chosen 

based on the coordinates of peak significance in the regions from the voxelwise cortical 

surface analysis of mAUC and GMV. Maps of voxelwise time-course correlations with the 

seeds in the MTG (panels A and B) showed strong positive correlation between the MTG 

and the medial prefrontal cortex, the posterior cingulate cortex, and inferior parietal lobule, 

as well as the medial temporal lobe (including the EC). These regions are considered key 

nodes of the DMN. Negative correlation with the MTG was demonstrated in regions 

associated with cognitive control including the lateral prefrontal cortex, the supplementary 

motor area, and the angular gyrus. Similarly, maps for the seeds in the EC (panels C and D) 

also showed strong positive correlation between the EC and the medial prefrontal cortex, the 

posterior cingulate cortex, and inferior parietal lobule, as well as the MTG. Negative 

correlation with the EC was also demonstrated in regions associated with cognitive control 

including the lateral prefrontal cortex, the supplementary motor area, and the angular gyrus, 

as well as the precuneus.

3.4 Neurosynth Co-activation Meta-analysis

Finally, to leverage existing data to better understand the association between MTG and EC, 

task co-activation meta-analyses were completed in Neurosynth. Here, the patterns of co-

activation with the seeds used previously for MTG and EC were similar to those found in the 

resting state functional connectivity analysis of these regions (Figure 3). The MTG seeds 

showed co-activation with medial prefrontal cortex, the posterior cingulate cortex, and the 

inferior parietal lobule, as well as the medial temporal lobe, including the EC. Again, these 

regions are typically considered part of the DMN. The EC seeds also showed co-activation 

with the medial prefrontal cortex, the posterior cingulate cortex, and the inferior parietal 

lobule, as well as the lateral temporal lobe including the MTG.

3. DISCUSSION

The goal of this study was to investigate the neurostructural features of the brain that are 

associated with DRD preferences using both cortical parcellation/subcortical segmentation 

and total cortical surface area voxelwise approaches. Results of the parcellation analyses 

indicated associations of DRD with total cortical GMV and GMV in specific focal cortical 

regions. DRD was associated with GMV in 20 cortical regions including bilaterally in the 

MTG and EC. However, unique variance in DRD was only predicted by bilateral MTG and 

EC. Voxelwise cortical surface analyses converged with the parcellation findings, indicating 

associations between DRD and GMV in bilateral MTG and EC, but also implicating the 

precentral gyrus, fusiform gyrus, lingual gyrus, and lateral occipital cortex. Follow-up 

Owens et al. Page 5

Neuroimage. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analyses exploring resting fMRI functional connectivity and task fMRI co-activation 

between the coordinates of the MTG and EC that were most associated with DRD indicated 

that these regions are highly (positively) correlated with neural activity in the medial 

prefrontal cortex, posterior cingulate cortex, and inferior parietal lobule, both at rest and 

during a variety of tasks. Collectively, these regions are considered key nodes of the DMN 

(Buckner et al., 2008).

In terms of the specific brain regions whose GMV was found to be associated with DRD, 

this study’s findings that the regions most strongly and uniquely associated with DRD are in 

the temporal lobe diverge somewhat from the previously reported findings. Studies using 

with smaller sample sizes have reported relationships between DRD and GMV in different 

regions, such as prefrontal cortex, insular cortex, and striatum (Bjork et al., 2009; 

Mohammadi et al., 2015; Tschernegg et al., 2015; Wang et al., 2016). Here, the bilateral 

orbitofrontal cortex and left insula were associated with mAUC after FDR correction and 

others of these regions were represented among significant associations in the parcellation 

analysis (e.g., superior frontal gyrus, frontal pole), but did not survive multiple comparison 

correction. Critically, however, the variance in DRD accounted for by these regions was not 

significant beyond that captured by MTG and EC. This suggests that some or all of these 

prior findings could be due to their collinearity with total cortical GMV or GMV in the 

MTG or EC. That neither total subcortical GMV nor any specific subcortical regions 

(particularly the striatum) were even nominally related to DRD was somewhat surprising 

given prior studies. However, the only prior structural studies to find association between 

striatal GMV and DRD had considerably smaller sample sizes. It is possible that these 

findings were false positive or that there is an important unmeasured moderating variable 

that is responsible for whether DRD is related to striatal GMV. Regarding the numerous 

fMRI studies findings that activity in the ventral striatum is important to DRD, there is 

sufficient reason to believe that structure and function do not always overlap, particularly 

regional GMV and regional task-based activity. For example, a relatively large study 

(N=156) found no relationship between regional cortical thickness and BOLD fMRI 

activation in any region of the brain during a working memory task (Squeglia et al., 2013). 

In addition, other studies directly investigating the relationship between structure and 

function have found evidence for both convergence and divergence (Honey et al., 2010; Lu 

et al., 2009).

The most robustly linked regions in the present study and the only ones to predict DRD 

beyond all other regions and total cortical GMV were the MTG and EC, regions that 

converge with the largest previous morphometric study (Wang et al., 2016), but have 

generally not been emphasized in understanding the brain structures associated with DRD. 

Nonetheless, in prior fMRI meta-analyses on DRD, the MTG was shown be active during 

DRD tasks across studies, but was not interpreted as part of the key networks identified: the 

DMN, reward valuation network, and cognitive control networks (Carter et al., 2010; Wesley 

and Bickel, 2014). However, outside the DRD literature, statistical and theoretical models of 

the DMN often include the lateral and medial temporal lobe, regions which include the 

MTG and EC (Andrews-Hanna et al., 2014, 2010; Buckner et al., 2008; Yeo et al., 2011). A 

recent model of the DMN that provides meta-analytic evidence that the MTG and EC both 

serve as hubs of DMN subsystems (Andrews-Hanna et al., 2014). According to this model, 
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the lateral temporal lobe (including MTG) is a part of the dorsal medial subsystem, a 

component of the DMN that is specifically pertinent to semantic knowledge and self-

generated cognitive processes such as theory of mind, and reflection on one’s own mental 

state, preferences, beliefs, desires, and emotions (Andrews-Hanna et al., 2014; Binder et al., 

2009; Denny et al., 2012; Lieberman, 2007). The medial temporal lobe (including EC) is a 

hub of the medial temporal subsystem, a component of the DMN that is essential to 

autobiographical and episodic memory, simulation of potential future experiences, and 

construction of mental images (Andrews-Hanna et al., 2014; Bar, 2007; Hassabis et al., 

2007; Hassabis and Maguire, 2007; Schacter et al., 2012).

The cognitive functions of these two DMN subsystems can be readily understood in the 

context of DRD, a process that involves both imagining the future and reflecting on one’s 

own preferences. In other words, these data do not suggest DRD is a default cognitive state, 

but rather recruits certain cognitive functions in common with default mode processing. This 

theoretical model of the role the MTG and EC on DRD is supported by the resting state 

functional connectivity analyses and co-activation meta-analysis that were conducted as part 

of this study. One hypothesis for why GMV in these temporal lobe regions uniquely is 

associated with DRD is that they exert a disproportionate impact on the function of the rest 

of the DMN during DRD. Future studies should explicitly examine how GMV in these areas 

relates to their activation and connectivity during DRD tasks. More broadly, the current 

results suggest that these regions’ place in the DMN should not be overlooked in future 

neuroimaging studies of DRD.

Several considerations pertain to the current findings. The study was cross-sectional in 

design and therefore cannot make claims regarding the causality of the observed 

relationships. Our assumption is that variation in brain morphology gives rise to the 

observed DRD, but it is also possible that alternative processes shape a person’s DRD 

preferences and in turn give rise to morphological changes. Future longitudinal studies 

should address this question. In addition, the functional connectivity and meta-analytic co-

activation analyses were exploratory strategies to better understand the primary 

morphometric findings. They should be taken as empirical conjecture, but not direct 

evidence for structural characteristics of MTG and EC as determinants of functional activity 

in DMN. Another consideration pertaining to the healthy population used in the current 

study is that these results do not speak to how clinical populations with elevations in DRD 

might differ in brain morphometry. Future studies should attempt to extend these findings in 

clinical populations and determine if GMV in these regions is associated with the etiology or 

prognosis of clinical disorders. This is an important question to be addressed given robust 

evidence that DRD preferences predict treatment response (MacKillop and Kahler, 2009; 

Sheffer et al., 2014) and highly impulsive DRD appears to be a trans-disease process that is 

relevant not only to addiction, but other psychiatric disorders (Liu et al., 2012; Urošević et 

al., 2016; Weller et al., 2014) and health behaviors (Amlung et al., 2016a; Celio et al., 2016; 

Daugherty and Brase, 2010).

Acknowledging these considerations, it is worth noting that this study had a number of 

strengths including a large, well-characterized sample and converging evidence from two 

complementary morphometric approaches and two connectivity/co-activation approaches. 

Owens et al. Page 7

Neuroimage. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While the fMRI literature on DRD is quite developed, the structural literature is not. Thus, 

the current study makes a significant contribution to understanding the morphometric 

correlates of DRD. Addressing the considerable collinearity of GMV among brain regions 

and conducting voxelwise cortical surface analysis to look for associations between cortical 

GMV and DRD that are not preordained by a neurostructural atlas, it suggested a clear 

conclusion that the MTG and EC are uniquely associated with DRD. Further elucidation of 

the MTG and EC in DRD (and related processes) is clearly warranted in future studies. 

More broadly, these findings illuminate both the similarities and differences in the regions 

implicated in a behavioral phenomenon using structural MRI and fMRI.

4. METHODS

4.1 Participants

Structural MRI data were collected from 1113 participants at Washington University in St. 

Louis over the course of two days as part of the Human Connectome Project between 

August 2012 and October 2015, and released in full on March 1, 2017. Informed consent 

was obtained for all participants (consent procedure detailed in (Van Essen et al., 2013a). 

Participants were 22–35 years old and had no significant history of psychiatric disorder, 

substance abuse, neurological disorder or damage, cardiovascular disease, or Mendelian 

genetic disease (e.g., cystic fibrosis). They also did not have any contraindications for 

receiving an MRI such as metal devices in the body or claustrophobia. For full details of 

inclusion and exclusion criteria, see (Van Essen et al., 2013b). Of these participants, income 

for 2 participants was not collected and 8 did not complete the DRD tasks. In addition, 

adequate task attention and effort was defined as no more than three inconsistent points of 

indifference (out of 10 possible) on the two DRD tasks combined, resulting in the exclusion 

of 65 participants (5.8% of total sample). Thus, the primary sample for this study comprised 

1038 participants (Table 4).

4.2 Delayed Reward Discounting Task

Two DRD tasks were administered with participants selecting between smaller amounts of 

money available immediately or larger amounts in the future (e.g., “would you rather have 

$40 today or $100 in six months)”. Both tasks used an adaptive adjusting-amount approach 

in which the delay time was held constant and the immediate dollar amount varied on a trial-

by-trial basis in accordance with participants’ responding (Estle et al., 2006; Green et al., 

2007). One task used a larger delayed amount of $200 and the other used $40,000. For both 

tasks, participants’ points of indifference were determined for six periods of time: one 

month, six months, one year, three years, five years, and ten years. These points, defined in 

units of dollars, represent the immediate amount at which an individual is indifferent 

between receiving an immediate reward or delay reward (in this case $200 or $40,000) for 

the given period of time and is conceptualized as the subjective value of a given amount of 

money at a given delay. For example, a point of indifference of $40 for $100 in 6 months 

suggests that an individual subjectively values $100 at 40% of the nominal value when it is 

delayed by six months. In turn, a graphical plot of empirical DRD preferences was generated 

for each participant using their points of indifference. The plotting of these preferences into 

a curve permits calculation of the area under that curve using geometry to create trapezoids 

Owens et al. Page 8

Neuroimage. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between points of indifference and calculating the area of each. The resulting index, area-

under-the-curve (AUC), provides a single measure of DRD that is model-free (not reliant on 

exponential, hyperbolic, or hyperbaloid modelling approaches). Greater area represents less 

steep DRD and less area represents more steep DRD (Myerson et al., 2001). Greater 

explanation and justification for the DRD task and index used can be found in the 

manuscript released by the Human Connectome Project on the behavioral tasks included 

(Barch et al., 2013).

Each AUC was inspected for distribution and outliers using an outlier threshold of Z = ±4.00 

(i.e., four standard deviations above or below the mean) with no outliers being found for 

either. AUC200 was normally distributed as was AUC40K. DRD performance was highly 

correlated between the two magnitudes (r = .668, p = 2E-135), so the primary variables was 

an average of the two was used as a single index of DRD, subsequently referred to as 

mAUC. mAUC was normally distributed (skewness = .408, kurtosis = −.545) and included 

no outliers at Z = ±4.00.

4.3 MRI Data Acquisition

High-resolution structural images were collected on a 3T Siemens Skyra scanner (Siemens 

AG, Erlanger, Germany) with a 32-channel head coil. T1-weighted structural images were 

acquired with a resolution of 0.7 mm3 isotropic (FOV = 224x240, matrix = 320x320, 256 

sagittal slices; TR = 2400 ms and TE = 2.14 ms). Data were reconstructed and preprocessed 

using a modified version of the Freesurfer pipeline (Dale et al., 1999; Fischl et al., 2004, 

1999a) in FreeSurfer Image Analysis Suite version 5.3 (http://surfer.nmr.mgh.harvard.edu)

(Fischl, 2012) and using Chris Rorden’s DICOM to NIFTI conversion software (Rorden, 

2007). For details of acquisition parameters, reconstruction, and preprocessing of the Human 

Connectome Project structural MRI data, see (Glasser et al., 2013; Van Essen et al., 2013b).

All structural images were reviewed by a technician immediately following acquisition to 

ensure scans did not have any significant problems (i.e., artefacts, substantial movement). If 

problems were found, structural scans were reacquired immediately. Within hours of the 

initial acquisition, scans were examined by quality control specialists who assessed them for 

image crispness, blurriness, motion and other artifacts, and accuracy of defacing. Based on 

these factors, scans were rated on a 1 to 4 scale (poor to excellent). In all cases where 

structural scans were below 3 (good), new structural scans were reacquired on the 

participant’s second study day. Through this process, all subjects collected had high quality 

structural imaging data. For full explanation of HCP quality control, see Marcus et al., 2013.

Resting state BOLD fMRI data were collected on the same scanner as structural MRI with a 

novel multi-band EPI pulse sequence that collects multiple slices simultaneously. Images 

were acquired with a resolution of 2 mm3 isotropic (FOV = 208 x 180 x 144, matrix = 104 x 

90 , 72 axial slices; TR = 720 ms and TE = 33 ms). Four runs of 15 minutes each were 

collected in two separate fMRI session with Right-to-Left and Left-to-Right phase encoding 

done on alternating scans in a counterbalanced fashion. During scans, subjects were asked to 

lie with eyes open and look at a white fixation cross while thinking of nothing and not 

falling asleep. Data were spatially and temporally preprocessed in a pipeline designed by 

Human Connectome Project scientists that utilizes tools from FSL, Freesurfer, and their in-
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house software Workbench. From these, a group map is generated allowing for 

instantaneous correlation of the time-course of any coordinate in the brain with the time-

courses of other voxels of the cortical surface, which is available for download on the HCP 

website (http://www.humanconnectome.org). For full details of acquisition procedures and 

preprocessing pipeline see (Smith et al., 2013).

4.4 Primary Data Analysis

The principal measure of DRD was mAUC in all analyses, with age, gender, income, and 

total intracranial volume (ICV) used as covariates in all analyses. These covariates were 

chosen due to their potentially confounding relationship with DRD and GMV. DRD is 

known to become less steep (less impulsive) as an individual grows older and GMV is 

known to decline; men general have steeper DRD than women; income is often related to 

DRD in monetary tasks as those of lower incomes are often in need of money more 

immediately for survival reasons; ICV is used to account for differences in GMV due to 

head and body size. Morphometric analyses were completed using FreeSurfer Image 

Analysis Suite version 5.3 (http://surfer.nmr.mgh.harvard.edu) (Fischl, 2012) and for all 

morphometric analyses data was preprocessed using Freesurfer’s standard recon-all pipeline 

(Fischl et al., 2001, 1999b).

4.4.1 Cortical parcellation and subcortical segmentation analyses—Cortical 

parcellation was used to extract estimates of gray matter volume (GMV) in cortical regions 

defined by the Desikan atlas (Desikan et al., 2006) and in the cortex as a whole. Subcortical 

segmentation was used to extract estimates of GMV in subcortical regions and in the 

subcortical structures as a whole. GMV values for each cortical and subcortical region were 

then exported into Statistical Package for Social Sciences (SPSS) for analysis with mAUC.

After exporting GMV values for cortical and subcortical structures derived from the atlas, 

we first conducted the parcellation and segmentation analyses. Covariate-adjusted partial 

correlations were completed to test the associations of total cortical GMV and total 

subcortical GMV with mAUC. Then, covariate-adjusted partial correlations were examined 

between specific brain regions and mAUC (see Supplemental Table 1 for full list of regions). 

Given the large number of cortical regions in the Desikan atlas (n = 68), a two-tailed false 

discovery rate correction (Benjamini and Hochberg, 1995) of q = .05 was implemented to 

reduce inflation of type I error rate.

To determine which of the regions in from the previous analysis was uniquely associated 

with DRD (i.e., associated beyond common variance shared among regions) multiple 

regression was applied to the regions surviving FDR correction in partial correlation 

analysis. In this regression, age, sex, income, and ICV were entered into the model first. 

Then the regions associated in previous partial correlations with mAUC were entered 

simultaneously and those associated with mAUC beyond the other regions were retained in 

the model to determine the change to R2 resulting from adding these regions to the model. 

As a part of this analysis, bivariate correlations were conducted to explore multicollinearity 

between the five sets of regions which were bilaterally related to mAUC (i.e., bilateral MTG, 

bilateral EC, precentral gyrus, inferior temporal gyrus, lateral orbitofrontal cortex), revealing 
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substantial associations between in all bilateral sets (see Supplemental Table 2). As a result, 

these regions were consolidated (i.e., summed) in the final regression analyses to avoid 

multicollinearity problems in subsequent multiple regression models.

4.4.2 Voxelwise Cortical Surface Analysis—Subsequently, cortical surface voxelwise 

analysis was used to assess the relationship of GMV with mAUC voxel-by-voxel in an 

approach that was atheoretical following the procedure described by Fischl and Dale (Dale 

et al., 1999; Fischl et al., 1999a). This was done entirely in FreeSurfer with the final output 

being a brain map of correlations between GMV and mAUC and a table of all clusters of 

correlation between GMV and mAUC found. This approach allows for the statistical 

comparison and visualization of volume in analogous regions across subjects using a 

common space based on the 2D surface of the brain rather than a 3D template of the brain, 

which is considered to be superior given inherent differences in brain topography from 

subject to subject. In the first step of this procedure cortical surfaces of the brains of 

individual subject were divided into voxels using triangular tessellation, with each voxel 

associated with a specific value representing the GMV at that voxel. Voxels in this approach 

are triangular in order to map them onto a 2D surface (whereas traditional voxel based 

morphometry uses 3D square voxels). Then subjects’ brains were aligned based on the 

patterns of cortical surface features (e.g., sulci and gyri) and transformed into a standard 

space. Then voxel-by-voxel general linear modeling was completed to determine cluster of 

voxels for which there was a significant correlation between GMV (in mm3) and mAUC. 

Clusterwise correction for multiple comparisons was then completed using Monte Carlo 

simulations (Hagler et al., 2006). In this process, data are tested against a null distribution of 

maximum cluster size with an initial cluster-forming threshold of p < .001. This yields 

clusters corrected for multiple comparisons based on the total number of comparisons on the 

surface. Using this method, regions in which GMV was associated with mAUC at a cluster 

corrected p-value of less than .05 were determined. For further explanation of the 

interpretation of GMV in voxelwise cortical surface analyses, see Winkler et al., 2012.

4.5 Supplementary Connectivity and Co-Activation Analyses

After completing primary analyses investigating DRD’s relationship with regional GMV, 

two supplementary analyses were conducted to explore the network connectivity of regions 

in which GMV was uniquely associated with DRD in multiple regression analysis. First, as a 

means of inferring the functional network to which the relevant regions belonged, functional 

connectivity analysis was performed on resting state fMRI from the available HCP 

participants (N = 1003). This subsample did not differ demographically from the sample 

included in GMV analyses (see SI Table 8 for full demographic information). Using the 

resting state correlation map described above (section 4.3), coordinates of the peak 

association of mAUC and GMV in the right and left MTG and EC were drawn as seed 

regions of interest (ROI) that were 6mm in diameter. The correlations of the timecourse of 

these seed ROIs with the timecourses from each voxel in the cortical surface were then 

calculated. From this, brain maps were derived showing the functional connectivity of each 

seed.
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Second, to attempt to confirm the networks to which the regions predicting mAUC 

belonged, the online database Neurosynth (www.neurosynch.org) was used to conduct a 

large-scale automated meta-analyses of co-activation for the regions in which GMV was 

found to be uniquely predictive of DRD in multiple regression analyses (Yarkoni et al., 

2011). Coordinates of the peak association of mAUC and GMV in the left and right MTG 

and EC were used as regions of interests (ROIs) in co-activation analysis. Neurosynth was 

used to conduct meta-analyses of all the fMRI studies in its database for co-activation for 

within 10mm from the ROIs input. This generated whole brain z-score maps showing the 

likelihood a voxel co-activated with the ROI. The studies used in this analysis were task 

fMRI studies and the results, therefore, reflect putative network connectivity during a variety 

of tasks. This differs from the resting state fMRI analysis which measured co-activation at 

rest. However, prior research suggests that these two analyses should be comparable as brain 

networks are thought to represent permanent functional units whose activation patterns hang 

together in most-to-all circumstances (Yeo et al., 2015). Since Neurosynth is continuously 

updating, it is worth noting that this analysis was conducted on April 18th, 2017 when 

Neurosynth had 11,406 studies, and 150,000 brain locations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Partial regressions of mean delayed reward discounting area under the curve in relation to 

bilateral middle temporal gyrus (Panel A) and bilateral entorhinal cortex (Panel B); sex, age, 

income and intracranial volume are included in the models.
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Figure 2. 
Whole brain correlation of gray matter volume and area under the curve. All clusters 

represent a positive correlation of mean area under the curve and regional gray matter 

volume. Panel A presents a lateral view of the left hemisphere, panel B presents a medial 

view of left hemisphere, panel C represents lateral view of the right hemisphere, panel D 

represents medial view of the right hemisphere. aMTG = anterior middle temporal gyrus; 

pMTG = posterior middle temporal gyrus.
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Figure 3. 
Resting state functional connectivity for seeds based on the structural analyses in the Human 

Connectome Project (N=1003) total sample. Each image shows a voxelwise correlation of 

all voxels on the cortical surface (no subcortical regions) with a seed identified from the 

voxelwise cortical surface analysis of GMV and mAUC (shown as a white sphere). Seeds 

were A) left middle temporal gyrus B) right middle temporal gyrus C) left entorhinal cortex 

D) right entorhinal cortex. Panel E displays the color scale used.
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Figure 4. 
Neurosynth co-activation meta-analysis of MTG and EC, thresholded at false discovery rate 

criterion of p < .05. Neurosynth had 11,406 studies, 150,000 brain locations, and 413,429 

activations at time of analysis (April 18th, 2017). Red activation represents positive co-

activation with seed region (white corresponds with the seed). No negative co-activation was 

found in any of the analyses completed. Maps show co-activation of the following seed 

regions: A) left middle temporal gyrus; B) right middle temporal gyrus; C) left entorhinal 

cortex D) right entorhinal cortex.
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Table 1

Partial correlations of a gray matter volume in segmented regions (based on Desikan atlas) with area under the 

curve controlling for gender, age, income, and total intracranial volume. Only regions with significant p-values 

after FDR are included (p < .05).

Rank Hemi Region R p

1 L Entorhinal Cortex .151 1E-7

2 R Middle Temporal Gyrus .141 1E-6

3 L Middle Temporal Gyrus .140 1E-6

4 R Entorhinal Cortex .125 .1E-5

5 R Fusiform Gyrus .107 .001

6 L Lateral Occipital Cortex .101 .001

7 R Inferior Temporal Gyrus .098 .002

8 L Precentral Gyrus .098 .002

9 L Postcentral Gyrus .095 .002

10 L Precuneus .094 .003

11 L Inferior Temporal Gyrus .089 .004

12 R Banks of Superior Temporal Sulcus .087 .005

13 L Lateral Orbitofrontal Cortex .087 .005

14 R Lateral Orbitofrontal Cortex .086 .006

15 L Insula .083 .008

16 L Transverse Temporal Cortex .082 .008

17 R Superior Frontal Gyrus .080 .010

18 L Temporal Pole .079 .011

19 R Parahippocampal Gyrus .077 .014

20 R Precentral Gyrus .075 .016
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Table 2

Final regression model of parcellation regions of interest as predictors of mean area under the curve. Model 1 

R2 = .035, p = 2E-7; Model 2 R2 = .077, p = 1E-10. Significant variables are in boldface.

Independent Variables β t p

Model 1

Sex .06 1.42 .16

Age −.04 1.27 .21

Income .13 4.03 6E-5

Total Intracranial Volume .14 3.57 3E-4

Model 2
Bilateral Middle Temporal Gyrus .20 4.363 1E-5

Bilateral Entorhinal Cortex .16 4.504 7E-6

Dependent Variable: mean area under the curve for DRD of $200 and $40,000 USD.
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Table 4

Demographic characteristics of sample (N = 1038)

DEMOGRAPHIC CHARECTERISTIC M (SD) or %

Sex

 Male 45.3%

 Female 54.7%

 Age 28.86 (3.69)

Race

 White or Caucasian 75%

 Black or African American 14.7%

 Asian American, Native Hawaiian, or other Pacific Islander 5.7%

 Native American .2%

 More than one race 2.6%

 Not sure or unknown 1.8%

Ethnicity

 Hispanic or Latino 8.4%

 Not Hispanic or Latino 90.4%

 Not sure or unknown 1.3%

Income

 $1,000–$9,999/year 7.2%

 $10,000–$19,999/year 7.7%

 $20,000–$29,999/year 11.9%

 $30,000–$39,999/year 12.1%

 $40,000–$49,999/year 10.3%

 $50,000–$74,999/year 20.9%

 $75,000–$99,999/year 13.8%

 $100,000–$149,999/year 16.0%

Years of Education 14.94 (1.80)
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