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A B S T R A C T

The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across
large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier
algorithms across all searchlights, which entails large computational costs especially when testing the statistical
significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian
Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all search-
lights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other
more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB
would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the
lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in
a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers.
In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting
the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers
performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more so-
phisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox)
could facilitate the more widespread use of searchlight analysis.
1. Introduction

Multivariate pattern analysis (MVPA) is increasingly applied to
functional magnetic resonance imaging (fMRI) data (Haynes, 2015).
Although all voxels in the brain can be used in MVPA (e.g. Valente et al.,
2014), it is frequent to ask if informative patterns are present in smaller
and more localized regions. One approach for this is to perform MVPA in
predefined regions of interest (ROIs), delineated either by anatomical
(e.g. a certain gyrus or sulcus), or by functional criteria (i.e. clusters of
activated voxels in an independent localizer task) (Saxe et al., 2006).
Unfortunately, one does not always have clearly predefined criteria for
ROIs in all situations -especially in new cognitive paradigms- nor can one
always obtain all the potentially interesting localizers in a single subject
(due to time constraints or simply the absence of a functional ROI in some
subjects) (Spiridon et al. 2006).

Searchlight MVPA (Kriegeskorte et al., 2006) allows testing for
localized informative patches in the brain without demanding the “a
priori” knowledge mandatory for traditional ROI definition. This method
sa).
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usually consists in training, and testing, a classification algorithm within
a small region that is displaced around the brain. These regions can be
spheres (Kriegeskorte et al., 2006) in the brain volume or disks over the
cortical surface (Oosterhof et al., 2011), which effectively comprise
small, overlapping ROIs covering the brain exhaustively. This helps
overcome the curse of dimensionality (Bishop, 2006) by reducing the
number of features included in each classification problem.

Despite its appeal, searchlight MVPA presents a number of challenges
(see reviews by Jimura and Poldrack, 2012, and Etzel et al. 2013),
including the problem of the number of searchlights. This number can be
very large especially when high-resolution fMRI data is collected (e.g.
more than 300 000 in the volume for 7 T fMRI). This entails lengthy
computations when classification algorithms are applied in a sequential
loop over all searchlights. Furthermore, cross-validation is necessary to
avoid overfitting (usually repeatedly splitting data into train and test
sets), which implies a further computational burden (Pereira
et al., 2009).

Extra costs arise from when assessing if classification accuracy across
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searchlights is significantly above chance. At first glance, a binomial or
multinomial test would be sufficient. However, as discussed in several
articles (Pereira and Botvinick, 2011; Stelzer et al., 2013; Noirhomme
et al., 2014; Jamalabadi et al., 2016) the distribution of MVPA accuracies
are usually ill-behaved (i.e. in binary choices the results do not follow a
binomial distribution, and sometimes the chance success rate is off 50%).
The preferred solution is to obtain an empirical null distribution of ac-
curacies by repeatedly applying the classifier after permuting the labels
with respect to the trials. Thus many computations of the classifier in
each searchlight are needed (usually around 103). But for more precise p
value estimation, a larger number of permutations are desirable (e.g.
>105) (Ojala and Garriga, 2010). These permutation tests were originally
conceived only for within-subject analyses. Nevertheless, recent pro-
posals incorporate the results of intra-individual permutations into sec-
ond level (group) tests. This was motivated by inadequacies of traditional
methods (e.g. Student t tests on accuracies in a group), the assumptions of
which are usually not met in MVPA classification studies (see Allefeld
and Haynes, 2014). Examples of this new approach are a fixed-effect
analysis on group median accuracy (Stelzer et al., 2013), and more
recently a random effect analysis for the prevalence of subjects carrying
information (Allefeld et al., 2016).

All these considerations mandate fast implementation of classifiers to
overcome this large computational burden, especially when the analyses
are performed in personal PCs outside of computer grids. An ideal al-
gorithm for rapid searchlight calculations is the Gaussian Naive Bayes
(GNB) classifier (Bishop, 2006), which is several orders of magnitude
faster than the popular Support Vector Machine (SVM) or Logistic
Regression classifiers. In GNB one assumes a diagonal covariance matrix
between features. This simplistic assumption is especially useful in high
dimensional scenarios, since it avoids the estimation of a full covariance
matrix. The estimation of the covariance matrix is problematic when the
number of samples is smaller than the number of features (a frequent
situation in fMRI experiments). Additionally, under this assumption, the
contribution of each voxel to the classification function is always the
same regardless of the different searchlights to which it belongs. This
means that the parameters for each voxel are estimated only once. A
further simplification is assume equal variance across different classes.

GNB was originally introduced for fast searchlight MVPA by Pereira
and Botvinick (2011) in their Searchmight toolbox, with a C code
implementation. Another speeded-up GNB implementation is part of the
CoSMoMVPA toolbox (Oosterhof et al., 2016). Here, a new computa-
tional (algorithmic) framework for the acceleration of GNB is presented
in which this classifier can be trained and evaluated at all searchlights
simultaneously in a few seconds. The computational framework is based
on the sparse relationship between searchlights and the space of voxels.
This allows summation of voxel contributions within each searchlight,
simultaneously across the brain, with sparse matrix multiplications.
Hence, it is possible to circumvent sequential calculations over the set of
searchlights. To gauge the gain in speed produced by massive-GNB, its
computational time was compared with the time of the GNB in both the
Searchmight and the CoSMoMVPA toolbox. Additionally, the combina-
tion of this new implementation with simple hardware-based paralleli-
zation was examined.

Greater speed would not be useful if the GNB classifier has poor
performance inMVPA, which is a concern some studies have raised. If the
data covariance matrix deviates from the diagonal or the variance is not
equivalent across classes, then the classification hyper-surface estimated
with GNBmight separate the different classes poorly, with a loss in power
for detecting information (Krzanowski, 1988). This possibility is consis-
tent with reports asserting that GNB is less sensitive than other classifiers
such as SVM (Ku et al., 2008; Misaki et al., 2010), even though other
studies find a similar performance in this comparison (Wang et al., 2004;
Pereira and Botvinick, 2011). Moreover, Raizada and Lee (2013) argue
that the informative patches found by GNB are smoother, and more
reproducible across different fMRI datasets, than those found by SVM.
Thus, despite some doubts about its performance, speeding up the GNB
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for searchlight analysis could be of real practical importance.
Previous evaluations of classifiers for MVPA have only compared

their relative accuracies under the assumption that larger values indicate
better performance, which means in the searchlight context that larger
accuracies in more units is better. But this ignores the possibility of false
positive searchlights. It would be better to rate different classifiers
against a “ground truth”. Here GNB performance was compared with that
of the SVM classifier in fMRI data from a lateral occipital complex (LOC)
localizer experiment. The cortical patches identified as informative in the
GNB and SVM searchlight analyses were compared with each other, but
also with the LOC defined by a meta-analysis of a large number of uni-
variate activation studies. This meta-analytic LOC was taken as “ground
truth”. In the real fMRI data, the simplicity of the GNB did not thwart
detection of the same informative clusters found with SVM and both
classifiers performed equivalently in reference to the meta-analysis.

2. Methods

2.1. Sparse representation of searchlights structures

A searchlight is defined by a central voxel and a set of voxels in its
neighborhood. The neighborhood structure of all searchlights can be
encoded in a sparse binary matrix S, whose size is number of voxels v x
number of searchlights s. Usually (but not necessarily) the magnitude of v
and s are equal. The S matrix has a non-zero entry at Sij if the voxel i is
included in searchlight j, and zero otherwise. A toy matrix formed by 4
voxels and 4 searchlights is presented in equation (1). For example,
searchlight 3 is formed by voxels 3 and 4:

s1 s2 s3 s4

Sv;s ¼

0
BB@

1 0 0 1
0 1 0 1
1 1 1 1
0 0 1 1

1
CCA

v;s

[1]

A whole brain MVPA analysis for high resolution fMRI data is typi-
cally in the order of 105 searchlights, which leads to a 105 � 105 sparse
matrix S in which less than 0.5% of the elements are non-zero. The level
of sparseness depends on the number of neighbors within each search-
light, which is usually less than a few hundreds of voxels. This is more
than three orders of magnitude smaller that the number of searchlights to
compute (i.e. 105).

The data in a searchlight classification problem consists of a matrix of
features which is split in training (Tr) data XTr

n;v (where n is number of
training trials, and v number of features or voxels) and test (Te) data XTe

m;v

(where m is the number of test trials), as well as the corresponding vector
of labels yTrn;1; y

Te
m;1. The most common features used in searchlight analysis

are voxel-wise beta or t values (see Misaki et al., 2010 for a comparison of
these two measures) obtained from a first level linear model, although
the maximal or average amplitude of the fMRI signal within a time
window posterior to the stimulus onset can be used as well.

2.2. Massive Gaussian Naïve Bayes (massive-GNB)

GNB is one of the simplest classification algorithms (Bishop, 2006). It
consists in assigning the label of the class that maximizes the posterior
probability of each sample, under the assumption that the voxel contri-
butions are conditionally independent and obey a Gaussian distribution.
The GNB decision rule is written in terms of the discriminant function for
each class k at each searchlight s (the searchlight index is omitted in the
next equation to avoid visual clutter). The discriminant function is
defined as the sum of the squared distances to the centroid of each class,
across all voxels in the searchlight, weighted by the variance, and the
logrithm of the a-priori probability ðpkÞ computed in the training set,
according to the Bayes rule (see equation (2)). The predicted class for
sample i in the test set is assigned by selecting the label of the class having
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the discriminant functionδki with the largest value, which implies
maximal posterior probability, within discriminant functions of
all classes:

ĉi ¼ arg maxk¼fa;bg
�
δki
�

δki ¼ �
Xv

j¼1

0
B@
�
xTeij � μ̂kj

�2

2σ̂2j

1
CAþ logðpkÞ

[2]

This equation for a binary classification problem with classes fa; bg
can be easily generalized for multiclass classification problems. Themean
and standard deviation fμ̂kj ; σ̂jg in each voxel j are computed over the
training set. When GNB is generalized to multiple searchlights the former
equation is written in one matrix product, using the sparse binary matrix
S that selects and sums the voxels contributions within each searchlight
in one operation:

Dk
m;s ¼ �Fk

m;vSv;s þ logðpkÞ [3]

The elements of the matrixFkare the voxel contributions to the
discriminant function (i.e. squared z-score distance) for each sample i in

the test set:f kj ¼ ðxTeij �μ̂kj Þ2
2σ̂2j

, which corresponds to the voxel-wise contribu-

tions of equation (2). Note that the contribution of each voxel is always
the same for all the searchlights it belongs to. The matrix Dk contains the
discriminant functions for the class k, and for each sample at each
searchlight. The massive-GNBmethod is numerically stable and produces
exactly the same results like as running the MATLAB classify function
sequentially (see Text S1 and Fig. S1 in Supplementary Information (SI)
for more details).

The GNB classifier is identical to a Linear Discriminant Analysis (LDA)
in which a diagonal covariance matrix between variables (voxels) and
identical across-class standard deviations are assumed. The assumption
of different standard deviations between classes, corresponds to a
Quadratic Discriminant Analysis (QDA), again under the assumption of a
diagonal covariance matrix. The computation of QDA in our massive
computational framework is straightforward, producing a discriminant
function analogous to the linear case.
2.3. The GNB in the Searchmight and CoSMoMVPA toolboxes

The Searchmight toolbox (Pereira and Botvinick, 2011) contains a
fast GNB implementation that uses mex compiled C code that can be
called from Matlab (http://www.princeton.edu/~fpereira/
Searchmight/). This variant of GNB has been recognized as one of the
fastest options for MVPA analysis (Hebart et al., 2015). This function
(SearchmightGNB.c) implements internally the cross-validation loop and
the permutation test loop, which notably reduces computation times
compared with the Matlab classify function. Nevertheless, the
searchmight-GNB algorithm computes the GNB classifier serially across
the searchlights. Likewise, the CoSMoMVPA toolbox has a rapid imple-
mentation of the GNB classifier (cosmo-GNB) in which the
cross-validation loop is also computed internally (Oosterhof et al., 2016).
This classifier is not numerically identical to the massive-GNB, neither to
searchmight-GNB, since it assumes different variance across classes.
2.4. Run time analysis

The computation times of the massive-GNB were compared with
those of searchmight-GNB and cosmo-GNB in high-resolution fMRI data
(voxel size¼ 1.1� 1.1� 1.1mm), that was obtained in an ultrahigh-field
7 T scanner (case 7 from Emmerling et al., 2016). On different trials the
subject was requested to imagine dots moving in one of four directions
(0�, 90�, 180�, and 270�), although only two directions were used here.
The time taken to compute classifiers discriminating these two directions
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was measured. Three parameters were varied in separate analyses: 1) the
number of volumetric searchlights, 2) the number of neighbors within
each searchlight (as a function of its radius), and 3) the number of
samples (trials) included in the training and in the test set. The number of
searchlights varied from 100 up to 234067 (the total number of voxels, as
in a whole brain analysis). The searchlights were obtained using the
function computeNeighboursWithinRadius from the Searchmight
toolbox. The radius (excluding the central voxel) was varied from 1 to 8
voxels, which produced searchlights of sizes that varied from 27 to 4913
neighbors. To explore the effect of sample size, the beta values for 100
trials were taken from the original fMRI dataset. This sample was
expanded in 10 trial steps by recurrent inclusion of random samples from
the original data set (to which standard normal white noise was added).
This was repeated until 190 trials were reached. When one parameter
was varied, the other two parameters were kept constant (at either
234067 searchlights, a radius of 2 voxels �125 neighbors-, or 100 sam-
ples). The computational times include all 5-fold cross-validations.

The gains in speed achieved by the massive-GNB algorithm can be
boosted if it is combined with hardware parallelization. Hardware based
parallelization is an art in itself, and significant progress have been made
in its application in neuroscience (Eklund et al., 2014). Here a simple
procedure was used to test acceleration of permutation tests based on
massive-GNB. The Matlab parfor instruction with a computer grid was
applied to send permutations across CPUs (workers), even though the
cross-validations were computed serially in each worker. The duration of
this computation was compared with the case in which both the per-
mutations and cross-validations were performed sequentially. This
analysis was performed for massive-GNB and Searchmight-GNB using
23407 searchlights (178-voxel in each), 100 samples (50 for each class)
and 103 permutations. These, and all other, calculations in this article
were performed on a grid containing 12 CPU cores (Intel(R) Xeon(R)
E5-2670 v3) each with 2.30 GHz Clock Speed and 48 Gb RAM.

2.5. Comparison of massive-GNB and SVM in real fMRI data

Massive-GNB and SVM classifiers were compared in data from a
standard localizer task for the LOC region (an area related to visual object
recognition, Grill-Spector et al., 2001), since this paradigm yields easily
reproducible findings. The data was obtained as part of a larger study,
currently underway as a collaboration between the Cuban Center for
Neuroscience and the University of Electronic Science and Technology of
China (UESTC). LOC is usually identified as the voxels in which larger
BOLD activations are produced for intact objects than for scrambled
objects. This analysis is performed on spatially smoothed data, and
evinces a cortical activation that is larger than usual searchlights sizes.
However, differences in activation patterns have been found between
different classes of objects in these same regions with unsmoothed data,
even when using correlation-based MVPA that eliminates the effects of
mean activations (e.g. Golomb and Kanwisher, 2011; MacEvoy and Yang,
2012). Thus, the existence within the LOC (defined by traditional acti-
vation methods) of fine-grained patterns distinguishing intact and
scrambled objects was expected. Consequently, LOC was used as “ground
truth” in order to compare the massive-GNB and SVM.

2.5.1. Participants
Twenty-six healthy students (9 females), with ages from 23 to 28

years (mean ¼ 25.7 sd ¼ 1.6), participated in the experiment. All were
university graduates, native Chinese speakers, and fluent English readers.
All had normal, or corrected-to-normal, vision and were right handed
(except for two cases). None had a history of neurological or psychiatric
disease. The experimental procedures were previously approved by the
UESTC ethics committees, were carried out in accordance with the
declaration of Helsinki, and all participants gave written
informed consent.

http://www.princeton.edu/%7Efpereira/Searchmight/
http://www.princeton.edu/%7Efpereira/Searchmight/
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2.5.2. Stimuli
Stimuli were generated using the Cogent Matlab toolbox (http://

www.vislab.ucl.ac.uk/cogent.php), projected on a screen near the sub-
ject's feet in the scanner, and viewed through an angled mirror fixed to
the MRI head-coil. To identify the LOC region, twenty black & white
drawings of objects (see Fig. S2 for examples) (Snodgrass and Vander-
wart, 1980), and their corresponding scrambled versions, were used.
These were projected at visual angles of about 5.5� � 5.5�. Scrambling
was achieved by dividing each object picture into 100 sectors, which
were randomly re-positioned. Four blocks of intact and 4 blocks of
scrambled pictures were alternated in each of 3 runs (for a total of 12
blocks of each type). A block included 20 stimuli, each lasting 300ms and
separated from each other by a 500 ms fixation point. Thus blocks lasted
16 s. They were separated from each other by a 16 s fixation point. The
subjects were instructed to detect a 1-back repetition of a randomly
selected stimulus within each block.

2.5.3. Data acquisition
Recordings were obtained at UESTC with a GE Discovery MR750 3 T

scanner (General Electric Medical Systems, Milwaukee, WI, USA), using
an 8 channel receiver head coil. Functional images were acquiredwith 35
slices covering all the head (except the vertex). A T2*- weighted echo
planar imaging sequence was used with the parameters: TR ¼ 3 s,
TE ¼ 40 ms, flip angle ¼ 90�, voxel size ¼ 3 � 3x3 mm, a gap between
slices of 3 mm, and an acquisition matrix ¼ 64 � 64. There were 90
images per run, fromwhich the initial 5 vol were discarded to stabilize T1
magnetization. A 262 slice anatomical T1-weighted image was also ob-
tained with the following parameters: voxel size ¼ 1 � 1x0.5 mm,
TR ¼ 8.10 ms, TE ¼ 3.16 ms, acquisition matrix ¼ 256 � 256, and
flip angle ¼ 12.

2.5.4. Image preprocessing and univariate analysis
White matter and pial surfaces were reconstructed from the

anatomical image for each subject using Freesurfer (http://surfer.nmr.
mgh.harvard.edu), then registered to the FsAverage template and sub-
sampled to 81924 nodes (vertices). A mid-gray surface was calculated as
the mean of white and pial surface node coordinates. A set of 5 mm discs
was defined around all nodes in the surface by means of the Surfing
toolbox (http://surfing.sourceforget.net). For all functional series, arti-
fact correction was performed with the ArtRepair toolbox (http://cibsr.
stanford.edu/tools/ArtRepair/ArtRepair.htm). Pre-processing was per-
formed with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) and included
slice-timing, head motion correction (with extraction of motion param-
eters) and unwarping. Each T1 image was co-registered with the mean
preprocessed-functional image, and the transformation matrix generated
in this step was used to project the mid-gray surface into each subject's
functional native space. Volume BOLD signals were interpolated at the
coordinates of the mid-gray nodes, producing surface time-series
(without spatial smoothing) that were high-pass filtered with cutoff of
128 s. A general linear model (GLM) was fit to the time-series of each
surface node using regressors for each stimulation block (i.e. square-
waves convolved with the canonical hemodynamic function), plus the
head movement parameters and mean signal in each session as nuisance
covariates. The beta parameters estimated for each block were used as
features in the subsequent MVPA analyses. Only data from the left
hemisphere was included in the analyses to reduce the duration of
computations.

2.5.5. Comparison of massive-GNB and SVM
Due to the possible disadvantages of the GNB classifier, examined in

the introduction, a comparison of the accuracy of our method in with the
widely used SVM was carried out. This classifier is considered by many
authors to be more sensitive than GNB in detecting informative brain
regions in MVPA (e.g. Ku et al., 2008). The libSVM library (Chang and
Lin, 2011) was used to calculate the SVM (with the default value of the
box-constraint, C ¼ 1). A permutation procedure was used, in which trial
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labels were swapped with a Monte Carlo scheme (n ¼ 1000), with the
restriction that exchanges were limited to the same experimental run. For
each permutation, classification accuracy was calculated in a leave
one-run out cross-validation scheme, and the results across the 3 folds
averaged. The significance of observed accuracies, in each searchlight
and in each subject, was estimated from the empirical null distribution.
This null distribution was built from the maximum accuracy across all
searchlights in each permutation (searchlight-wise correction for multi-
ple comparison, Nichols and Holmes, 2002). The sizes of clusters sur-
viving a threshold of 75% correct classifications (equivalent to p < 0.01
in the binomial test) in each permutation were measured, and their
empirical null distribution in each subject was used to estimate the sig-
nificance of the observed cluster sizes (i.e. cluster-level correction for
multiple comparison, Hayasaka and Nichols, 2003). In addition, to
guarantee that discrimination between conditions was not based on a
simple difference in mean activation, the data in each trial and search-
light were corrected by subtracting the mean activation in the search-
lights from the contributing cortical nodes in each trial (Coutanche,
2013). Thus the distinction between intact and scrambled objects could
not be based on lower spatial frequency patterns based on broad acti-
vations over the cortex.

To compare the two classifiers the kernel density of the bivariate
distribution of searchlight accuracies for massive-GNB and SVM was
calculated in all subjects and for the group median accuracies. The
concordance between massive-GNB and SVM maps of searchlights
significantly above chance (for both searchlight-wise and cluster-level
corrections) was compared across subjects using the Dice coefficient
(Dice, 1945). In addition to these within-subject comparisons, group
maps of significant effects were obtained using a random-effect preva-
lence method for accuracies (Allefeld et al., 2016), that incorporates the
maximum statistic across searchlights to correct for multiple compari-
sons. The SVM and massive-GNB group prevalence maps were also
compared with the Dice coefficient.

Furthermore, the sensitivity of both classifiers in identifying clusters
that overlapped the LOC was estimated, using as ground truth co-
ordinates identified from a meta-analysis of visual object recognition
based on coordinates from maxima of univariate activations in 708
published studies (http://www.neurosynth.org/). This meta-analytic
LOC was defined as the cortical voxels surviving FDR thresholding
(q¼ 0.01) in the Neurosynth reverse inference map for the term ‘Object’.
These voxels were mapped onto the left hemisphere FsAverage surface
template, and surface clusters with areas smaller than 100 mm2 were
eliminated. This procedure isolated a meta-analytic LOC (see Fig. S3).
Although the match between the LOC multivariate patterns in our sub-
jects and the LOC identified in the meta-analysis of activations may not
be perfect, there should be a large overlap between them, and any
disjunction would equally challenge both classifiers. The bivariate kernel
density was also estimated only for the searchlights within the meta-
analytic LOC in each subject as well as for the group median values.

The selectivity of the searchlight analysis for localizing the ground
truth of this experiment was evaluated within a Bayesian framework. The
intuition behind this analysis is that for a classifier to be selective of a
region, large accuracies should be observed at this ROI but not at other
regions. The posterior probability of a cortical node to be included in the
LOC region given its accuracy, Pr(LOCja), was estimated for the group
median values (equation (4)). In this equation, Pr(ajLOC) is the proba-
bility distribution of accuracies in the meta-analytic LOC, Pr(LOC) is the
prior probability of being a LOC node, and the denominator of the
equation is the probability distribution of accuracies across all nodes. The
probability densities were modeled using univariate kernel models for
each classifier separately.

PrðLOCjaÞ ¼ PrðajLOCÞxPrðLOCÞ
PrðajLOCÞxPrðLOCÞ þ Prðaj� LOCÞxPrð� LOCÞ [4]

This Bayesian analysis assumes that all searchlights in the LOC are

http://www.vislab.ucl.ac.uk/cogent.php
http://www.vislab.ucl.ac.uk/cogent.php
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfing.sourceforget.net/
http://cibsr.stanford.edu/tools/ArtRepair/ArtRepair.htm
http://cibsr.stanford.edu/tools/ArtRepair/ArtRepair.htm
http://www.fil.ion.ucl.ac.uk/spm/
http://www.neurosynth.org/
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governed by a common accuracy distribution under this cognitive task,
which is probably not valid. However, this is a useful approximation
since ROIs from fMRI localizers are considered homogenous from a
functional point of view.

3. Results

3.1. Run time analysis

Computational times for the massive-GNB, the searchmight-GNB and
the cosmo-GNB are shown in Table 1, for combinations of values of two
parameters. Massive-GNB was faster than the other two algorithms when
the largest number of searchlights was used. Since the cosmo-GNB was
always slower than the searchmight-GNB in this comparison, our method
was benchmarked only against the latter in the subsequent analyses.

The runtimes as a function of three parameters of searchlight analyses
are presented in Fig. 1, which shows that massive-GNB is always faster
than searchmight-GNB classifier except when very few searchlights were
included. The dependence of CPU time on the number of searchlights
showed slopes of 0.21 � 10�4 and 1.9 � 10�4 s/searchlight for the
massive-GNB and searchmight-GNB respectively (Fig. 1A). When all
searchlights were involved (the rightmost point), the massive-GNB
classifier was 6 times faster than the searchmight-GNB. The respective
times were 7.55 and 43.0 s. The dependence of the CPU runtime with the
searchlight radius (Fig. 1B) can be described with a power function with
exponents: 2.15 for the searchmight-GNB 1.82 and for the massive-GNB.
Both power models fitted the data for an alpha level of 0.05. This power
behavior is a consequence of the rapid increase in the number of
neighbors included in the searchlight when the searchlight radius is
augmented. The dependence of runtimes on the number of samples is
shown in Fig. 1C. As in the previous plots, the growth of runtime with the
parameter is much slower for massive-GNB than for searchmight-GNB.

Multithreading parallelization of the permutation loop reduced
computation time by a factor of 7.9 for the massive-GNB: from 139 min
(2.3 Hrs.) with no parallelization to 17.6 min when parallelized (see
Fig. 2). In similar conditions, the Searchmight- GNB computation time
was reduced from 691 min (11.5 Hrs) to 172 min (2.9 Hrs): a factor
of 4.0.

3.2. Comparison of massive-GNB and SVM

The permutation tests for the twenty-six participants in the LOC fMRI
localizer experiment took a total of about 4.3 days of computation,
whereas the massive-GNB only took about 7 h (0.13 days). The bivariate-
distribution of the group median accuracies (upper left panel of Fig. 3)
allows direct comparison of massive-GNB and the SVM performance
across searchlights. This bivariate distribution was well modeled by a
gaussian mixture model with two density components. The first one
(about 81% of the cortical nodes and probably corresponding to non-
informative searchlights), had only a moderate correlation (r ¼ 0.49)
between classifiers and mean accuracies near chance for SVM (0.539)
and GNB (0.542). The second component (about 19% of the nodes and
probably corresponding to informative searchlights), presented a high
correlation (r ¼ 0.92) between classifiers and somewhat larger mean
accuracies for both SVM (0.672) and GNB (0.676). This component
extended above the significance thresholds for searchlight-wise
Table 1
Times in seconds for three implementations of the GNB algorithm. Parameters: number of
searchlights (S) and mean number of neighbors within each searchlight (N) which corre-
spond to radii 1 and 2 respectively in volume space.

S ¼ 10000
N ¼ 27

S ¼ 234067
N ¼ 27

S ¼ 10000
N ¼ 125

S ¼ 234067
N ¼ 125

massive-GNB 1.82 3.76 1.99 6.82
searchmight-GNB 0.32 10.59 1.21 34.99
cosmo-GNB 2.62 22.85 4.46 115.39
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correction. In Fig. S4 equivalent plots for each of the participants are
shown, in which the concordance between the two classifiers in the
supra-threshold region was confirmed in most of the subjects.

The bivariate distribution of median accuracies of the searchlights
within themeta-analytic LOC are shown in the upper right panel of Fig. 3.
Most of the distribution values were above threshold for both massive-
GNB and SVM. Consequently, both classifiers identify a large propor-
tion of the meta-analytic LOC. However, the distribution extended
somewhat more below the main diagonal, indicating slightly larger ac-
curacies for SVM than GNB. To confirm these conclusions, the selectivity
(posterior probability) of both classifiers for the localizing the meta-
analytic LOC as a function of their accuracy is shown in the lower
panel of Fig. 3. Although for both classifiers all cortical nodes with ac-
curacies over 90% had a large posterior probability of falling within the
LOC, this probability was almost 1.0 for the SVM classifier but nearer
0.92 for the massive-GNB. More generally, when the accuracy was larger
than 75% SVM exhibited slightly more selectivity for LOC than GNB. This
posterior probability should be interpreted as the change in our belief
that a cortical node is part of LOC (which here had a prior probability
smaller than 0.3), after one has known the classifier accuracy.

The group prevalence maps for both classifiers are shown in the upper
row of Fig. 4. The threshold was p < 0.05 level (searchlight-wise cor-
rected), which corresponds to an above chance classification of at least
60% of the participants. In addition to the LOC, small informative
patches were also observed in other regions (principally the parietal
lobe). There was a moderate degree of overlap between the two
searchlight maps. About 34% more searchlights were significant with
SVM (n ¼ 993) than with the massive-GNB (n ¼ 740). However, tradi-
tional maps only plot searchlight centers, ignoring the substantial overlap
between searchlights. Correspondingly, smoothed versions of these maps
(obtained by painting all nodes belonging to significant searchlights)
exhibited an almost perfect agreement between the two classifiers (lower
row Fig. 4), with a larger Dice index than for the unsmoothed version.
The disagreement between these maps was concentrated at the borders of
LOC, with SVM occupying slightly more area (additional views of the
smoothed maps are presented in Fig. S5). These results support the idea
that SVM is a more sensitive classifier, thus producing broader infor-
mative patches.

The prevalence method uses only the searchlight-wise threshold
correction for multiple comparisons. Nonetheless, it is usual to make
inferences on topological features, not individual elements (see
Chumbley and Friston, 2009). Thus, the two classifiers were compared
under cluster-level corrections for multiple comparisons. Fig. 5 shows
boxplots of Dice indexes across participants for both searchlight-wise and
cluster-level corrections. This analysis was constrained to the anatomical
areas known to contain the LOC proper.

The first four rows of Fig. 5 show the comparison of the meta-analytic
LOC with searchlights maps thresholded by the permutation tests
(separately for searchlight-wise and cluster-level corrections). The SVM
and massive-GNB maps agreed only moderately with the meta-analytic
LOC (medians respectively 0.48 and 0.45) under searchlight-wise
correction, but were not significantly different from each other. Under
cluster-level correction, SVM andmassive-GNBmaps agreed significantly
more with the LOC (medians respectively 0.52 and 0.53) than their
searchlight-wise counterparts (SVM: p < 0.05; massive-GNB: p < 0.015),
while not disagreeing from each other.

The Dice indexes between searchlight-wise corrected SVM and
massive-GNB maps showed substantially agreement with each other
(median ¼ 0.71). Moreover, the corresponding cluster-level maps
showed almost perfect agreement (median ¼ 0.81), which was a highly
significant (p < 0.007) increase relative to the case for searchlight-wise
correction. A final comparison (see Fig. S7 and Text S2) showed that
the hit rate for LOC nodes in the permutation tests across participants was
equivalent for the two classifiers under searchlight-wise threshold
correction, but significantly higher for SVM, and even higher for massive-
GNB, under cluster-level correction.



Fig. 1. Runtime analysis for the massive-GNB (red) and searchmight-GNB (blue) while varying three parameters A) number of searchlights, B) mean number of neighbors in the searchlight
and C) number of samples (trials).

Fig. 2. Results of the parallelization study for searchmight-GNB and for massive-GNB. The
columns to the left show the CPU times for the sequential implementation. The columns to
the right show the results the distributing the permutation loop across 12 cores using the
Matlab parfor function.
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4. Discussion and conclusions

An algorithmic framework for GNBwas introduced here with the goal
of significantly accelerating computations for searchlight-based MVPA,
which can be very intensive in computer time. This is a requirement for
the widespread application of re-sampling statistical techniques to this
type of analysis. This framework is based on sparse matrix operations
(which are efficiently implemented in different programming languages),
taking advantage of the nature of the neighborhood structure of
searchlights. When compared with previous approaches, including the
Searchmight toolbox (to our knowledge the fastest publically available
GNB method), computational times were notably reduced. The advan-
tage in speed for massive-GNB over libSVM was even more striking
476
(about 34.3 times faster).
An exploratory analysis revealed an additional speed gain when

massive-GNB was combined with a simple hardware parallelization tools
in Matlab. Since the massive-GNB and the Searchmight toolboxes use
different programming languages (Matlab and Cþþ respectively), and
the codes were not optimized for parallelization, this comparison of
speed between methods should be taken with caution. Additional par-
allelization strategies should be explored, but are outside the scope of
this article.

When massive-GNB was compared with SVM (in an LOC localizer
fMRI experiment), classification accuracies tended to be slightly larger
for SVM than for massive-GNB analyses across individual searchlights.
Although both had large sensitivity in detecting the meta-analytic LOC in
the Bayesian analysis, the posterior probabilities for SVM were slightly
larger. The somewhat better accuracies found for SVM relative to the
massive-GNB across searchlights are in line with previous comparative
studies (Ku et al., 2008; Misaki et al., 2010). This superior detection may
be related to the greater ability of SVM to adjust the discrimination hy-
perplane to differences in the covariance matrix between conditions,
and/or the existence of covariance between cortical nodes within each
searchlight.

In the second-level prevalence test (based on searchlight-wise
correction for multiple comparisons), SVM maps also identified some-
what larger informative patches than massive-GNB maps, although they
presented almost perfect agreement in a smoothed version. The diver-
gence between the two classifiers was most apparent at the borders of the
group-level informative cortical patches. However, at the level of indi-
vidual participants, the searchlight-wise corrected maps for the two
classifiers did not differ significantly in their degree of agreement with
the meta-analytic LOC. In fact, the agreement of both methods with the
meta-analytic “ground truth” increased greatly under cluster-level
compared to searchlight-wise correction. Furthermore, the agreement



Fig. 3. Bivariate distributions (kernel density) of group median accuracies. In the upper left panel, the contour plot of the distribution of massive-GNB accuracy as a function of SVM
accuracy for all searchlights (left hemisphere only). In the upper right panel, the equivalent plot for the subset of searchlights whose centers fell within the LOC as defined by the
Neurosynth meta-analysis. The dotted lines indicate the thresholds for above chance accuracy (searchlight-wise corrected for multiple comparisons). Equal accuracy corresponds to solid
white lines. In the lower panel the posterior probability of a searchlight being in LOC given its accuracy for the two classifiers.
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between maps for the two classifiers was almost perfect under cluster-
level correction. The massive-GNB performed best in detecting infor-
mative clusters (instead of individual searchlights), both in the individual
participants and the group level. This indicates that the enhanced speed
of massive-GNB is of practical import for identifying informative clusters.

Perhaps the extent of clusters would be underestimated due to poorer
GNB performance at patch borders. However, this is a problem with any
cluster identification method, which all depend strongly on how
thresholds are (arbitrarily) fixed (Smith and Nichols, 2009). A recent
study found that GNB second-level maps were very consistent across
different experiments and subjects (Raizada and Lee, 2013), probably
due to the ability of GNB to “smooth” the individual accuracy maps
facilitating between subjects alignment. This would facilitate the reliable
detection of core areas of informative clusters across subjects.

Our results reinforce the idea that classifiers for searchlight MVPA
should be measured against a common “ground truth” (when it is
available), instead of merely comparing their accuracies. Recently Zhang
477
et al (2017) have shown that SVM can produce false positives in fMRI
data when classifying object categories, even in white matter ROIs, which
confirms that we cannot trust any classifier to be right always. A caveat is
that “ground truth” used here is based on the properties of LOC, which is
associated to very robust fMRI effects. More subtle differences in acti-
vation pattern in other experiments may show a greater advantage in
sensitivity and specificity for the SVM respect to GNB. However, our
results indicate that for certain goals and experiments the GNB can be
practically equivalent to SVM.

The huge gain in speed obtained with our massive-GNB approach,
enables carrying out the vast amount of calculations needed to solve the
challenges for searchlight analysis outlined in the introduction without
compromising validity (especially at the cluster-level or second-level
analyses). Permutation tests and different forms of cross-validation, are
some of the procedures that can now be performed rapidly on personal
PCs without the need for distributed processors (although their use lead
to an even greater gain in speed). The high demands of these methods on



Fig. 4. Prevalence group analysis. Searchlights that classify objects vs. scrambled objects above chance are mapped for GNB and SVM. Different colors indicate areas in which only GNB,
only SVM, and both classifiers were significant. In the top row a traditional map in which only the centers of significant searchlights are displayed. Below a smoothed map in which the full
extent of each significant searchlights is filled (clusters < 200 mm2 were omitted).

Fig. 5. Boxplot of Dice indexes across participants. Blue boxes correspond to maps with searchlight-wise thresholds, red boxes correspond to cluster-level thresholds. NS indicates that the
(Neurosynth) meta-analytic LOC map was involved. Box extremes indicate the 25 and 75 percentiles, whereas vertical lines depict the median, and horizontal lines the range. This analysis
was restricted to the anatomical mask shown in Fig. S6.
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computation time may discourage their more widespread use. Although
this result is of practical importance for fMRI data obtained at 1.5 and 3 T
field strength, it is even more important for the huge datasets obtained at
ultra-high field strengths. Finally, the methods developed in this article
are publically available at: https://github.com/mlsttin/massive_
gaussian_naive_bayes.
479
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