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Abstract

Biophysical modeling of macroscopic diffusion-weighted MRI (dMRI) signal in terms of 

microscopic cellular parameters holds the promise of quantifying the integrity of white matter. 

Unfortunately, even fairly simple multi-compartment models of proton diffusion in the white 

matter do not provide a unique, biophysically plausible solution. Here we report a nontrivial 

diffusion MRI signal dependence on echo time (TE) in human white matter in vivo. We 

demonstrate that such TE dependence originates from compartment-specific T2 values and that it is 

a promising “orthogonal measure” able to break the degeneracy in parameter estimation, and to 

yield important relaxation metrics robustly. We thereby enable the precise estimation of the intra- 

and extra-axonal water T2 relaxation values, which is precluded by a limited signal-to-noise ratio 

when using multi-echo relaxometry alone.
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Introduction

Along with the appreciation of the clinical significance of the human white matter (WM), in 
vivo imaging of the human brain has been made possible by the development of Magnetic 

Resonance Imaging (MRI). MRI can visualize cubic millimeters of tissue, but that spatial 

resolution is still thousand times coarser than cell dimensions of microns. Nonetheless, MRI 

is capable of investigating cellular structure, by virtue of sensing the voxel-averaged mean 

squared displacement of diffusing proton-carrying molecules extending over a few μm and, 

as such, probing the hindrances and restrictions of the underlying cell architecture (Tanner, 

1979; Callaghan et al., 1988; Cory and Garroway, 1990). Interpreting the macroscopic 

diffusion-weighted MRI (dMRI) signal in terms of microscopic cellular parameters in vivo 
is bound to be indirect, based on biophysical models of the MRI signal, but holds the 

promise of quantifying the integrity of the WM (e.g. Szafer et al., 1995; Stanisz et al., 1997; 
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Kroenke et al., 2004; Assaf and Basser, 2005; Jespersen et al., 2007; Assaf et al., 2008; 

Alexander et al., 2010; Jespersen et al., 2010; Yablonskiy and Sukstanskii, 2010; Fieremans 

et al., 2011; Zhang et al., 2012; Sotiropoulos et al., 2012; Jensen et al., 2016; Novikov et al., 

2016b; Reisert et al., 2016; Kaden et al., 2016; Novikov et al., 2016a).

Compartmentalization, that is, the representation of MR signal as a sum of independent 

contributions from separate pools of water, corresponding to locally anisotropic intra- and 

extra-axonal spaces, underpins most biophysical MR models of proton diffusion in the WM. 

During the past decades, the community adopted the picture of restricted diffusion in an 

array of axons, represented by a collection of dispersed “sticks” (Kroenke et al., 2004; 

Jespersen et al., 2007; Veraart et al., 2016b; McKinnon et al., 2017) embedded in the extra-

axonal water, whereas the contribution of myelin water is considered to be negligible due to 

its short T2 (Vasilescu et al., 1978; Menon and Allen, 1991; Fischer et al., 1990; Mackay et 

al., 1994). Unfortunately, the ubiquitous presence of water in all cell types and the 

permeability of most tissue interfaces make it so far impossible to distinguish changes in 

dMRI caused by alterations in specific cell types, e.g. neurons or glia. Indeed, even fairly 

simple multi-compartment models accounting for the different compartments and cell types 

do provide more than one biophysically plausible solution (Jelescu et al., 2016a).

Similar multi-compartment models have been studied in the context of T2 relaxometry. By 

exploring a wide range of echo times (TE) during multi-echo acquisitions, one aims to 

quantify volume fractions of myelin water, intra-/extra-axonal water, and free water 

compartments (Meiboom and Gill, 1958; Mackay et al., 1994; Whittall et al., 1997). The 

inverse Laplace transform of the associated signal attenuation is expected to lead to a 

(multimodal) spectrum of T2 values, which ideally reduces to a sum of delta peaks in case of 

superposed exponential decays. Unfortunately, the inverse Laplace transformation is ill-

posed and, as such, unstable to small fluctuations in the measured data (Epstein and 

Schotland, 2008). Therefore, despite being a promising technique to quantify myelin water 

fractions, it has been shown that limited SNR precludes resolving the intra- and extra-axonal 

water peak using multi-echo relaxometry alone (Stanisz and Henkelman, 1998).

Differences in compartmental T2 values would complicate the interpretation of diffusion 

models of white matter. For example, it has been observed that one of the model parameters 

of interest, i.e. the intra-axonal water fraction shows TE-dependency (Buckley et al., 1999; 

De Santis et al., 2016). We will refer to the T2-weighted intra-axonal water fraction as f 
(TE). The TE dependency of biophysically meaningful parameters not only hampers inter-

study comparison, but it also restricts the validation of biophysical models using histology.

In this work, we evaluate the dMRI signal dependence on TE in the human brain in vivo. We 

demonstrate empirically that exploiting such TE dependence by incorporating a 

compartmental T2 decay into biophysical modeling is a promising way to break the 

degeneracy in dMRI parameter estimation, and to yield compartmental relaxation metrics 

robustly and specifically. The specific assignment of nerve water T2 components by 

simultaneously considering compartmental diffusion and transverse relaxation properties 

was already studied by Beaulieu et al. (1998) and Peled et al. (1999) in myelinated nerves of 

the garfish and frog sciatic nerve tissue, respectively. Despite some discrepancies (e.g. Kim 
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et al., 2017), more and more evidence is given for the T2 relaxation time constants of intra- 

and extra-axonal water to be different from each other with the T2 of the intra-axonal water 

component being the larger one (Peled et al., 1999; Wachowicz and Snyder, 2002; Dortch et 

al., 2010; Bonilla and Snyder, 2007); see also Discussion.

Our combined diffusion and relaxation approach is inspired by the vast literature on 

multidimensional methods of nuclear magnetic resonance (NMR) spectroscopy for the study 

of porous media, e.g. Diffusion-Relaxation Correlation Spectroscopy (DR-COSY) 

(Hürlimann et al., 2002; Hürlimann and Venkataramanan, 2002; Callaghan et al., 2003; 

Galvosas et al., 2007; Godefroy and Callaghan, 2003; Bernin and Topgaard, 2013). 

DRCOSY is a 2D NMR spectroscopic method that encodes diffusion and relaxation 

parameters jointly, and substantially improves the ability to distinguish different 

compartments. Clinical MR application of the technique were lacking due the associated 

cost in terms of data acquisition. Recent work of Benjamini and Basser (2016) and Kim et 

al. (2017) extended the spatially non-resolved method to an imaging technique by applying 

physical or spatial constraints, respectively. Benjamini and Basser (2016) proposed to use a 

priori information from the 1D projections of spectra to reconstruct the 2D spectrum. 

Because those marginal distributions provide physical constraints on the reconstruction of 

the 2D spectrum, the data requirements can be highly reduced in comparison with 

conventional 2D approaches.

In line with the spectroscopic approaches, we also aim to (a) resolve the different T2 and 

diffusion compartments robustly, while (b) maintaining clinical feasibility by minimizing 

scan requirements. However, our methods is fundamentally different as we rely on a 

biophysical model to extract diffusion and relaxation parameters from a pre-defined set of 

compartments. By doing so, we reduce the number of parameters to be estimated, thereby 

increasing the precision of the parameter estimators and achieving a specific assignment of 

the compartments. Moreover, by adopting rotationally-invariant non-Gaussian basis 

functions to describe the underlying diffusion process in anisotropic neuronal compartments 

(Novikov et al., 2016b; Reisert et al., 2016), we can parameterize the non-Gaussianity of 

each compartment due to axonal dispersion more accurately than spectroscopic methods that 

rely on exponential basis functions.

1. Materials and Methods

1.1. Model assumptions—We here adopt a widely used two-compartment biophysical 

model of water inside narrow impermeable sticks (e.g. Jespersen et al., 2007), embedded in 

an extra-cellular matrix. The stick compartment – “intra-axonal space” – is assumed to 

represent axons (and possibly glial processes) inside which diffusion is locally one-

dimensional. The second compartment – “extra-axonal space” – covers an effective 

connective tissue space inside which diffusion of water molecules is assumed to be hindered. 

The exchange between intra- and extra-axonal water is assumed to be negligible at the time 

scales of the measurements.

Stanisz et al. (1997) suggested to include an additional isotropically restricted compartment 

to represent stationary water, e.g. protons trapped glial cells. Others stated that glial water 

can be considered part of the effective extra-axonal space because glia cells might be in fast 
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exchange with the extra-axonal space due to the presence of aquaporin water channels 

(Arcienega et al., 2010; Nielsen et al., 1997; Nilsson et al., 2013; Pfeuffer et al., 1998). This 

hypothesis has recently been questioned by Yang et al. (2017). Nonetheless, after studying 

the functional form of the diffusion-weighted signal decay at b-values up to 10 ms/μm2, we 

concluded that the signal fraction of such an isotropically restricted compartment is not 

significant given clinically relevant diffusion times (Veraart et al., 2016b). This conclusion is 

in agreement with Dhital et al. (2015), who observed a nearly monoexponential decay of the 

isotropically weighted diffusion data. Therefore, we here omit such a third diffusion 

compartment.

1.2. TEdDI—We extend the two-compartment model of diffusion in white matter by 

including the compartment-specific T2-relaxation parameterized by T2
a and T2

e for the intra- 

and extra-axonal compartments, respectively, following the notation of Novikov et al. 

(2016b):

Sg(b, TE) = S(0, 0) · ∫
∣ n ∣ = 1

dn𝒫(n)𝒦(b, TE, g · n), [1]

that is, a convolution between ℘(n̂), the axonal orientation distribution function (ODF), and

𝒦(b, TE, ξ) = f 0e
−TE/T2

a − bDaξ2
+ (1 − f 0)e

−TE/T2
e − bDe

⊥ − b(De
‖ − De

⊥)ξ2
, [2]

the signal response of an individual fiber fascicle; ∫ dn̂℘(n̂) ≡ 1. In Eq. 2, S (0, 0) denotes 

the proton density, b the diffusion-weighting strength, Da the intra-axonal diffusivity, De
‖ and 

De
⊥ the axial and radial extra-axonal diffusivity, respectively, and f0 ≡ f (TE)|TE=0 the non-T2-

weighted intra-axonal water fraction that relates to the T2-weighted, TE-dependent relative 

fraction f (TE) as follows:

f (TE) =
f 0e

−TE/T2
a

f 0e
−TE/T2

a
+ (1 − f 0)e

−TE/T2
e . [3]

We build upon the recently introduced rotationally invariant (“RotInv”) framework (Novikov 

et al., 2016b; Reisert et al., 2016) that allows limiting the dimensionality of the parameter 

space by factoring out the ODF. Basically, we solve the following non-linear least squares 

estimation problem:
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x = arg minx ∑
l = 0, 2, ⋯

L
‖Sl(b, TE) − plKl(b, TE; x)‖2, [4]

with x = S(0, 0), f 0, Da, De
‖, De

⊥, pl, T2
a, T2

e , the 8-tuple of estimated model parameters. The 

projections Kl(b, TE) of kernel  (b, TE, ξ) onto Legendre polynomials include explicit TE 

dependence. Note that the simultaneous estimation of diffusion and relaxation metrics 

requires that both the b-values and TE vary during the acquisition. In Eq. [4], the rotational 

invariants

Sl
2(b, TE) = 1

4π(2l + 1) ∑
m = − l

l
∣ Slm(b, TE) ∣2 [5]

are computed from shells of the signal that are characterized by a unique b and TE 

combination. The rotational invariants are constructed from the lth order, with a maximum of 

L, spherical harmonic coefficients S lm(b, TE) that are estimated from the shelled data with b 
the shell radius (Tournier et al., 2004). The full ODF can be described by spherical harmonic 

coefficients plm, which constitute, e.g., 5, 14, or 27 parameters for l = 2, 4, or 6, respectively. 

Instead, for each order l, only a single rotationally invariant parameter pl is derived from that 

representation:

pl
2 = 1

4π(2l + 1) ∑
m = − l

l
∣ plm ∣2, [6]

if l > 0; p0 ≡ 1. Only even orders are considered because of the antipodally symmetric 

diffusion. Novikov et al. (2016b) and Reisert et al. (2016) showed recently that the 

dispersion angle of the ODF can be computed as cos−1 (2p2 + 1)/3. The L = 0 rotational 

invariant K0 has been studied before for a fixed TE (Lasič et al., 2014; Jespersen et al., 2013; 

Kaden et al., 2016). Here we include invariants K0,2 up to the 2nd order, thereby quantifying 

the axonal dispersion metric p2, by solving Eq. 4 for L = 2. In contrast to earlier work of 

Kaden et al. (2016) and Zhang et al. (2012), we also lift constraints such as the tortuosity 

model (Sen and Basser, 2005) or fixed diffusivities (Alexander et al., 2010).

Combining the invariant Kl, up to the 2nd order, and an experimentally varying TE 

constitutes a novel parameter estimation framework that we refer to as TEdDI, TE 

dependent Diffusion Imaging.

1.3. Simulations—We evaluate the accuracy and precision of TEdDI in a single-voxel 

simulation using 2500 noise realizations. The acquisition protocol matches the real data 

protocol. For underlying parameter values, we chose f0 = 0.45, Da = 2.2 μm2/ms, 
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De
‖ = 2 μm2/ms, De

⊥ = 0.5 μm2/ms, p2 = 0.6, T2
a = 90 ms, and T2

e = 60 ms in agreement with our 

in vivo observations. The SNR for S (0, 105 ms) is fixed to 50. We added Gaussian noise to 

exclude Rician noise biases from this analysis. Each fit was initiated with a single randomly 

chosen starting point, considering a biophysically plausible parameter range (such as 0 ≤ f ≤ 

1, 0 ≤ p2 ≤ 1, 0 ≤ D ≤ 3 for all diffusivities, and 20 ≤ T2
a, T2

e ≤ 150)

For each of the model parameters, the standard deviation across the different noise 

realizations was computed. We repeated this simulation for two diffusion-only 

representations, i.e. K0 and K0,2, with a fixed TE = 105 ms to mimic realistic SNR values. 

The total number of diffusion-weighted images was kept constant by including more 

averages.

1.4. Data—Five healthy volunteers underwent imaging on a Siemens Prisma 3T MR 

scanner using a 64-channel receiver head coil with an EPI readout diffusion-weighted 

sequence. The subjects were scanned after obtaining informed consent as approved by our 

Institutional Review Board. Monopolar diffusion gradients were applied along 30 

isotropically distributed directions for b = 0.5, 1, 2, 3, and 4ms/μm2. This diffusion protocol 

was repeated for TE = 69, 90, 120, and 150 ms. However, due to scan limitations, the b = 

4ms/μm2 could not be acquired for TE = 69 ms. The diffusion time was not fixed during the 

acquisition: δ/Δ = 20/35 and 59/75 ms for TE = 69, and 150 ms, respectively. Additionally, 

50 non-diffusion-weighted images, b = 0, were acquired with 11 different TE’s, which were 

equidistantly distributed between 55 and 145 ms. The following imaging parameters were 

kept constant: TR = 4000 ms, bandwidth: 2470 Hz/pixel, matrix: 88 × 88, NEX: 1, in-plane 

resolution: 2.5 × 2.5mm2, slice thickness: 2.5 mm, slices: 50, parallel imaging: GRAPPA 

with acceleration factor 2, reconstructed using the adaptive combine algorithm to ensure 

Rician data distribution, multiband acceleration with factor 2, and no partial Fourier. The 

total scan time per volunteer was 60 minutes.

1.5. Data processing—First, we strongly reduced the noise in the data and we estimated 

the noise map by exploiting the inherent redundancy in diffusion MRI data for each TE 

separately (Veraart et al., 2016a,c). The positive signal bias, inherent to low-SNR magnitude 

MR data, was removed by using the method of moments, where the denoised signal was 

used as a proxy for the Rician expectation value (Gudbjartsson and Patz, 1995). Denoised 

and Rician bias corrected images were subsequently corrected for Gibbs ringing (Kellner et 

al., 2015), geometric eddy current distortions and subject motion (Andersson and 

Sotiropoulos, 2015).

Second, for each TE specific subset of the dMRI data, we estimated the fractional anisotropy 

(FA) and mean diffusvity (MD) using diffusion kurtosis imaging (DKI) (Jensen et al., 2005) 

(we excluded all b > 2ms/μm2 for the DKI analysis), and f (TE) using RotInv up to the 

second order, K0,2. For the latter, we initiated the fit by five randomly chosen starting points 

within biophysically or mathematically plausible bounds for each voxel.

Third, we estimated all TEdDI parameters x̂ by solving Eq. 4 for each voxel by fitting the 

TEdDI model to all available dMRI data, including the different TE’s. We initialized each fit 
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using one random starting point sampled from following parameter ranges: 0 ≤ f ≤ 1, 0 ≤ p2 

≤ 1, 0 ≤ D ≤ 3 for all diffusivities, and 20 ≤ T2
a, T2

e ≤ 150).

Finally, anatomical WM regions of interest were selected from the Johns Hopkins University 

WM atlas (Mori et al., 2005). The diffusion MR data, represented by the associated FA 

maps, were registered to the standard FA map in FSL (Smith et al., 2004) using FNIRT, the 

non-linear registration tool, after affine initialization of the registration. The inverse of the 

resulting warp fields were applied to the WM atlas to transform the ROI’s into the subject 

spaces. The ten anatomical ROIs of our interest are the genu (GCC), splenium (SCC), and 

body (BCC) of the corpus callosum, anterior corona radiata (ACR), superior corona radiata 

(SCR), posterior corona radiata (PCR), the anterior and posterior limb of the internal capsule 

(ALIC and PLIC, respectively), the external capsule (EC), and the superior longitudinal 

fasciculus (SLF).

2. Results

2.1. TE dependency of diffusion signal—In Fig. 1 we show the logarithm of S (b, TE)|

b=0 as a function of TE in the range of TE = 55 to 150 ms, averaged over all voxels in the 

PLIC. The nonlinearity of log S (b, TE)|b=0 uncovers non-monoexponential T2 decay and 

indicates the existence of multiple T2 components within this TE range. At this point, we 

expect that CSF contributions can be disregarded due the imposed FA threshold of FA > 0.5 

on the selected voxels. We quantified the nonlinearity of the log-signal decay by fitting a 

second order polynomial, αTE
2 + βTE + γ, to the ROI-averaged log-signal. The 2nd order 

coefficient α was statistically larger than zero. Indeed, for all subjects, the 95% confidence 

interval for α excluded zero.

We also observe an increase of f (TE), as a function of TE, ranging between 5 and 15%. For 

each TE, the f (TE) was estimated from the associated dMRI data up to b = 4ms/μm2 using 

RotInv up to the L = 2 and the median across all voxels within the PLIC is shown.

Finally, we show the average MD in the PLIC as a function of TE. Interestingly, the TE-

dependency is less pronounced and less consistent across the subjects. Four subjects show a 

decrease in MD as a function of TE that is significantly smaller in magnitude (2 to 4%) than 

the TE-dependency of f. However, one subjects show an MD increase (up to 9%) that is 

slightly stronger than the increase observed for the corresponding f.

2.2. Simulations: noise propagation—In Fig. 2, scatter plots show the relation 

between each pair of parameters, estimated using K0, K0,2, and/or TEdDI. First, K0 and K0,2 

are biased in the estimation of the f0 due to its intrinsic T2-weighting if the compartmental 

T2 values are different. Second, the degeneracy and low precision in the estimation of the 

model parameters (Novikov et al., 2016b; Reisert et al., 2016), as observed for K0 and K0,2, 

is still present in TEdDI. However, most parameters, including all diffusion parameters, have 

similar or improved precision. Moreover, the T2
a and Da of the spurious family of solutions 

are outside a biophysically plausible range of values. Disregarding the estimates with 

implausible diffusion or T2 metrics is effective for TEdDI, whereas such criteria are more 

Veraart et al. Page 7

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



difficult to assign for K0 and K0,2. Indeed, the T2 values are the better discriminator to 

distinguish between spurious and correct results of the fit. Here, we exclude all solutions 

with compartmental T2 values outside the range 25 to 180 ms. The analysis of the omitted 

solutions revealed Da ≥ 4 μm2/ms in each case (not visible in Fig. 2).

In Fig. 3, we show the coefficients of variation (cv), a unit-less metric computed as the ratio 

between the standard deviation and the reference value of the respective parameters. The 

results confirm that K0 and K0,2 suffer from poor precision in estimating the diffusion model 

parameters if no constraints are applied. However, it is shown that exploiting the TE 

dependency often improves the precision in the estimation of the diffusion parameters. 

TEdDI also shows high precision in the estimation of both T2 values, especially if the 

biophysically implausible solutions are trimmed away (“trimmed TEdDI”). To put these 

results in perspective: attempts to estimate the compartmental T2 values using a constrained 

biexponential model, nonlinearly fitted to the S (b = 0, TE) only, resulted in a cv that was an 

order of magnitude larger.

2.3. Experiments—In Fig. 4, we show the T2
a and T2

e maps as estimated with TEdDI. 

Although the maps are only shown for one subject, the histograms of compartmental T2 

values that cover all WM voxels are shown for all subjects in the bottom row. Next, we redid 

the fitting after imposing following hard constraint T2 ≡ T2
a ≡ T2

e. The resulting map and 

histograms of T2 are shown for comparison. However, most importantly, we compared the 

goodness-of-fit of the bi- and mono-exponential T2 version of TEdDI using the corrected 

Akaike Information Criterion (AICc; Burnham and Anderson, 2002); 

AICc = 2k + n log (‖ε‖2) + 2k(k + 1)
n − k − 1  with ε the vector of residuals after model fitting, n the 

number of T2- and diffusion-weighted MR signals (n = 52 in this study) and k the number of 

model parameters, k = 8 if T2
a and T2

e are model parameters, while k = 7 if the constraint, that 

is, mono-exponential T2 decay is imposed. We show the threshold map of the differences 

between the AICc for the constrained and unconstrained version to indicate which model is 

statistically more likely to describe the data better. An AICc difference of 2 or more is 

considered significant (Burnham and Anderson, 2002). With exception of CSF or CSF-

dominated voxels, the unconstrained version of TEdDI, that is, the one including the 

compartmental T2 values, fits the data statistically better. This observation is very consistent 

in all WM voxels.

Both the maps and histograms reflect that generally T2
a > T2

e. Despite some locally smooth 

maps, the compartmental T2 values vary across different regions-of-interests (ROIs). A more 

quantitative and ROI specific overview of T2
a and T2

e is given in Fig. 5. The inter-subject 

differences in the estimation of T2
a and T2

e are smaller than the inter-ROI differences and 

inter-compartment differences.

We evaluated the potential impact of contributions from myelin water or intra-/extra-axonal 

water exchange by varying the minimal and maximal TE, respectively (see Fig. 6). By 

gradually increasing the minimal TE of both the non-diffusion weighted and diffusion-
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weighted data from 55 to 85 ms, we do not see significant changes in the compartmental T2 

measurements (top row). Similarly, by enforcing a variable upper bound on the TE’s 

included in the analysis, from 125 to 155 ms, we again see a consistent estimation of T2
a and 

T2
e (bottom row). Therefore, we conclude that both effects can probably be neglected in the 

chosen TE range.

Fig. 7 shows the maps of the diffusion parameters of a single subject, whereas Fig. 8 

provides a more detailed ROI and inter subject analysis. Although a detailed study of those 

parameters and their reproducibility is beyond the scope of this study, we make following 

observations. First, the axonal water fraction f0 is approximately 0.5, indicating that the 

intra-axonal and extra-axonal water fractions are almost equally represented in WM voxels 

if myelin water is excluded. Second, Da ≠ De
‖, but the the sign and magnitude of the 

differences between them vary across all subjects and ROIs. A systematic behavior is not 

observed in our data.

Discussion

In this work, empirical evidence is given for the T2 relaxation time constants of intra- and 

extra-axonal water to be different, up to a factor of two, by simultaneously exploiting the 

transverse relaxation and diffusion properties of the different compartments. Although no 

consensus has been reached on the nature or origin of multiple T2 components, our 

observation of T2
a > T2

e is in agreement with earlier work that studied T2 relaxometry in 

excised nerve tissue, as we discuss below.

T2 relaxation

Despite a general trend to capture both extra- and intra-axonal water in the same distribution 

or peak of T2 values using multi-echo relaxometry studies, Whittall et al. (1997) already 

showed that intra- and extracellular water might exhibit distinct T2-values in white matter 

structures such as the PLIC. Such experiments are challenged by limited SNR or insufficient 

number of echoes to resolve the intra- and extra-axonal water peak. Nonetheless, in the past 

two decades, considerable evidence from several laboratories has been given to support the 

hypothesis that the T2 relaxation time constants of intra- and extra-axonal water are 

different. A lack of TE dependency of apparent diffusion coefficients precluded Beaulieu et 

al. (1998) from the specific interference of T2 compartmentalization. However, Peled et al. 

(1999) observed a component with intermediate T2 and unrestricted diffusion on a timescale 

of 100 ms and a neural component with long T2 and restricted diffusion. The latter is 

consistent with intra-axonal water, whereas the former is compatible with an extracellular 

space. The abundance of collagen in the sciatic nerve has been hypothesized to be the origin 

of the fast relaxation of the extra-axonal water. Wachowicz and Snyder (2002) made a 

similar assignment by altering the molecular composition of water components of the 

amphibian peripheral nerve using paramagnetic agents.

Although the microscopic structure of peripheral nerve differs from that of WM, it could be 

anticipated that distinct peaks, corresponding to myelin water, extracellular water and axonal 
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water, should also be distinguishable in WM. However, it was only after the administration 

of Chromium in the rat WM and optic nerve that Dortch et al. (2010) were able to separate 

the compartmental T2 peaks. Based on the postulation that the myelin sheath reduces the 

intra-axonal access of paramagnetic Chromium, resulting in smaller contrast-enhancement 

of intra-relative to extra-axonal water, the spectral component with the longest relaxation 

times is believed to be intra-axonal water. Bonilla and Snyder (2007) introduced cellular 

swelling in the rat optic nerve by bathing the nerves in a glutamate solution. They observed 

that the size of the slowest relaxing component increased and, as such, T2
a > T2

e.

The biophysical underpinnings of this finding are not yet well understood. The fast exchange 

of protons between either the intra- or extracellular space and the myelin sheath might be a 

contributing factor. The axonal membrane might slow down the exchange relative to the 

extra-axonal space, as such, the apparent T2 values. Moreover, the larger surface-to-volume 

ratio in the extra-cellular space and the associated larger surface relaxation might contribute 

to the observation, but more experimental data is needed to support this hypothesis. Because 

factors such axonal packing and g-ratio determine the surface-to-volume ratio, we 

hypothesize TEdDI might provide sensitive, but not specific, biomarkers for such 

microstructural properties. Indeed, we expect that both a denser packing and higher g-ratio 

will increase the difference between the compartmental T2 values.

Diffusion

Without being sensitive to myelin fraction, we measured a T2 unweighted extra-/intra-axonal 

water fraction of approximately 50%. Hence, by assuming a myelin volume fraction of 

about 30% (Stanisz et al., 1999), we anticipate both an intra-and extra-axonal water fraction 

of ~35%. This result is in agreement with Tang et al. (1997), who reported a volume fraction 

of myelinated axons of 33% after studying age-related WM changes using stereological 

methods. Similarly, Jelescu et al. (2016b) reported myelinated axonal volume fraction in the 

murine GCC of 28–40% using electron microscopy. Note that it is not well established 

whether the intra-axonal water fraction captures both the myelinated and unmyelinated 

axons, or whether glial cells can be considered part of the extra-axonal space instead of 

having their own compartment. Targeted experiments that focus on unmyelinated nerve 

tissue might be necessary to evaluate the validity of the stick model, i.e. no exchange, for 

unmyelinated axons.

In agreement with our simulations, we notice anti-correlations between Da and De
‖ when 

considering different ROI’s across different subjects. Those correlations limit the 

reproducibility and interpretation of the individual parameters. Basically, this observation 

indicates that the model is too complex given the information encoded in the diffusion-

weighted data. Reisert et al. (2016) already raised concerns about the number of independent 

parameters that can be extracted. However, instead of imposing constraints, we promote the 

addition of an orthogonal measurement, e.g., varying TE in our case, using isotropically 

weighted diffusion MRI (Dhital et al., 2015) or qMAS (Eriksson et al., 2013), or exploring 

high b-values (Veraart et al., 2016b) to resolve the intrinsic correlations currently present in 

our data and to resolve the outliers we still observe in all the maps.
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In agreement with earlier work, we only observe a small TE-dependency of the mean 

diffusivity (Qin et al., 2009). Given two compartments, the trace of the diffusion tensor can 

be written as tr (D(TE)) = tr(De)+f (TE) (tr(Da) − tr(De)), with tr(Da) = Da and 

tr(De) = De
‖ + 2De

⊥ the trace of the intra- and extra-axonal tensor, respectively. Any TE-

dependency of f is scaled by the difference between the compartmental traces. However, 

Dhital et al. (2015) demonstrated that the traces of the intra- and extra-axonal compartments 

are similar when applying isotropically diffusion weighting and observing low kurtoses in 

the WM. Our results lean towards the same observation. The sign of the nearly zero 

difference was not consistent across the subjects though; hence the different, yet subtle, 

trends of tr (D(TE)).

Limitations

In addition to the model assumption discussed earlier, we assume that different T2 

components can be associated with the same two microstructural compartments, which were 

initially defined by their mesoscopic diffusion properties. However, one must be aware that 

the role of exchange between the intra- and extra-axonal compartments might be different 

for proton diffusion and relaxation. Empirical evidence is given for water exchange between 

the intra- and extra-axonal compartment to be negligible during a diffusion time of ~50 ms 

(Veraart et al., 2016b). However, with TE’s up to 150 ms, one cannot exclude exchange as a 

potential confounding factor in the compartmentalization of T2 weighted signal Yang et al. 

(2017). Currently, we lack accurate water exchange times in white matter to predict the 

magnitude of the effect (Lampinen et al., 2017). Nonetheless, by reducing the maximal TE in 

our study to 120 ms, we did not observe significant effects. Therefore, we believe that the 

role of water exchange is minimal.

Potential biases introduced by fixing the number of compartments are very visible in regions 

that exhibit partial voluming with the CSF. Elevated T2 values and diffusivities are a 

hallmark of CSF contamination. Therefore it was important to choose our ROI’s 

conservatively by imposing an FA threshold of 0.5 on top of the automated, atlas-based ROI 

delineation. The overall effect of myelin contribution on the estimation of the compartmental 

T2 values might be more subtle, yet significant, if the minimal TE is not chosen with caution. 

Myelin water is characterized by a T2 relaxation time of 10 – 20 ms (Vasilescu et al., 1978; 

Menon and Allen, 1991; Fischer et al., 1990; Mackay et al., 1994; Alonso-Ortiz et al., 2015; 

Stanisz et al., 1999) and therefore, we advise not to use TE < 50 ms. Nonetheless, it must be 

noted that slightly higher T2 relaxation times for myelin have been reported. For example, 

Beaulieu et al. (1998) reported a T2 for myelin water of 40 ms). Hence our advised minimal 

TE might need to be adjusted if more conclusive T2 measurement of myelin water appear 

(Zhang et al., 2015).

The lower bound on TE might be a limiting factor in light of recent technical advancements, 

i.e. strong gradient systems, that enable exploring a wider TE range. In-line with many 

estimation problems, a wider TE range will boost precision of associated parameter 

estimators. However, myelin water contributions might jeopardize the accuracy of the 

measurements, unless the myelin compartment is added to the model accordingly, together 

with its diffusive properties. To make sure that myelin did not contribute significantly to our 
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findings, we varied the minimal TE included in our analysis and found no significant effect 

by stepping from a minimal TE of 55 to 85 ms.

Another potential confounding factor in our study is that the diffusion time varies across the 

different TE’s. Although diffusion time dependency of diffusion MR has been observed 

before (Fieremans et al., 2016) in human white matter, we assume that its contribution to our 

findings might be minimal because of the minimal changes observed when using different 

TE ranges. We will explore the effect of diffusion time dependency on TEdDI in more detail 

as part of future work.

Optimal design

The data analyzed in this study is unusually rich because of a dense sampling in both b and 

TE. Of course, the one-hour-long protocol has limited value in a clinical setting. The effect 

of TE range and maximal b-value in terms of precision must be better understood before a 

clinical protocol can be designed. However, in comparison with previous optimal design 

studies, we added an extra layer of complexity, that is, the TE may vary across the b-shells. 

Indeed, more and more, diffusion MR data tend to include multiple b-shells, with an 

increasing trend towards high b exploration. Nowadays, the TE is kept constant for all b-

shells, and its value is chosen in order to accommodate the diffusion-encoding gradients 

needed to achieve the highest b-value. Obviously, one suffers from signal loss through T2 

relaxation and this is a high price to pay for the lower b-values that would allow shorter 

TE’s. In that respect, the ideal TEdDI protocol is likely to be more optimal in terms of SNR 

for the lower b-values.

The observation that T2
a > T2

e has some practical implications for protocol design. For 

example, tractography might benefit from longer TE, despite its intrinsically lower SNR. 

Indeed, the signal will be more dominated by the intra-axonal signal at longer TE and we 

hypothesize that the resulting signal orientation distribution function might be sharper in that 

case (Jensen et al., 2016). Moreover, the observed heterogeneity across different ROI’s put 

an upper bound on the accuracy of methods that rely on prior knowledge or globally fixing 

parameter (Zhang et al., 2012; Kaden et al., 2016), not to mention kernel-driven diffusion or 

tractography methods such as constrained spherical deconvolution (Tournier et al., 2004, 

2007). Instead, we advocate for tractography based on signal deconvolutions with a locally 

parameterized microstructural kernel (Jespersen et al., 2007; Reisert et al., 2014; Kaden et 

al., 2015; Reisert et al., 2016; Novikov et al., 2016b).

Conclusion

Varying the TE of a diffusion-weighted MR experiment enables the simultaneous estimation 

of compartmental diffusivities and T2 values. We provide experimental evidence for 

different T2 values of intra- and extra-axonal water in the living human brain. Although the 

ROI-specific compartmental T2 values may become useful parameters in studying WM 

microstructure, the heterogeneity and biophysical underpinnings of this phenomenon are not 

yet well understood. However, including compartmental T2 values provides a promising 

avenue to lift the degeneracy of biophysical modeling of water diffusion in the brain.
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Figure 1. 
The PLIC-averaged logarithm of non-diffusion weighted signal S (b = 0, TE) (left), the 

corresponding estimated T2-weighted axonal water fraction f (TE) (middle), and mean 

diffusivity (MD) are shown as a function of TE for each subject (different colors). The linear 

approximation of the log signal decay is shown in dashed lines. Despite a non-consistent TE-

dependency of MD across subjects, the statistically significant non-monoexponential signal 

decay and monotonically increasing f (TE) support the hypothesis of compartment-specific 

T2 values in WM.
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Figure 2. 
Simulations: Scatter plots between all estimated parameters using rotational invariants K0 

(blue), K0,2 (red), and TEdDI (green) are shown. The black dots indicate the ground truth 

values. TEdDI still results in multiple families of solutions. However, only one cluster of 

solutions is biophysically plausible and the T2 values are the best discriminator. Spurious 

correlations between different parameters decrease in comparison to just using K0 and K0,2. 

The compartmental T2 values are estimated with high accuracy and precision if non-

plausible solutions are ignored.
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Figure 3. 
Simulations: The coefficient of variation, cv, is shown for the model parameters estimated 

using K0 (blue), K0,2 (red), and TEdDI (green). TEdDI shows similar or improved precision, 

especially after removing the biophysically implausible solutions based on the T2 values 

(trimmed TEdDI). The compartmental T2 values can be estimated with high precision.
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Figure 4. 

Maps of T2
a, T2

e, and T2 for subject #1 (top) and the associated T2-distribution for all WM 

voxels, for all subjects (bottom). The corrected Akaike information criterion shows that 

unconstrained TEdDI provides a significantly better fit to the data in comparison to 

constrained version for which T2 ≡ T2
a ≡ T2

e (top right). Generally, T2
a > T2

e and the difference 

is ROI specific. Partial voluming with cerebrospinal fluid (CSF) that is characterized by high 

T2 render the two-compartment model, Eq. [2], inaccurate around e.g. the CC/CSF border.
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Figure 5. 
The median (bar) and standard deviation (error bar) of the compartmental T2 values for 

different major WM ROIs for each subject (different colors). The inter-subject differences 

are smaller than the inter-ROI and inter-compartment differences.
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Figure 6. 
Scatter plot for PLIC and one subject between the compartmental T2’s for different subsets 

of the data, whereby we varied minimal (top) and maximal (bottom) TE included in the 

fitting. The associated box plots show a lack of trends by varying the analyzed TE range. 

From this, we conclude that myelin water and intra/extra-axonal water exchange is likely not 

to interfere with the estimation of the T2’s.
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Figure 7. 
Maps of diffusion model parameters. Partial volume effects with the CSF introduce biases in 

the estimation of model parameters. The precision of the maps and presence of outliers 

indicates the need for an additional, orthogonal measurement, or, maybe, the use of higher b-

values.

Veraart et al. Page 23

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
The median (bar) and standard deviation (error bar) of the diffusion parameters for different 

major WM ROIs for each subject (different colors). Free diffusion at body temperature is 

indicated by the black horizontal lines.
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