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Abstract.	The	importance	of	the	hippocampus	in	the	study	of	several	neurodegenerative	diseases	
such	as	Alzheimer's	disease	makes	it	a	structure	of	great	interest	in	neuroimaging.	However,	few	
segmentation	methods	have	been	proposed	to	measure	its	subfields	due	to	its	complex	structure	
and	 the	 lack	 of	 high	 resolution	magnetic	 resonance	 (MR)	 data.	 In	 this	work,	we	present	 a	 new	
pipeline	 for	 automatic	 hippocampus	 subfield	 segmentation	 using	 two	 available	 hippocampus	
subfield	 delineation	 protocols	 that	 can	work	with	 both	 high	 and	 standard	 resolution	 data.	 The	
proposed	method	is	based	on	multi-atlas	label	fusion	technology	that	benefits	from	a	novel	multi-
contrast	patch	match	search	process	(using	high	resolution	T1-weighted	and	T2-weighted	images).	
The	 proposed	 method	 also	 includes	 as	 post-processing	 a	 new	 neural	 network-based	 error	
correction	step	to	minimize	systematic	segmentation	errors.	The	method	has	been	evaluated	on	
both	 high	 and	 standard	 resolution	 images	 and	 compared	 to	 other	 state-of-the-art	 methods	
showing	better	results	in	terms	of	accuracy	and	execution	time.	
	

1 Introduction	

The	hippocampus	 (HC)	 is	a	small	bilateral	brain	structure	 located	 in	 the	medial	 temporal	 lobe	at	
both	sides	of	the	brainstem	near	to	the	cerebellum.	Its	name	comes	from	its	similarity	to	the	sea-
horse.	 Starting	 from	 the	 upper	 end	 at	 the	 hippocampal	 sulcus	 we	 find	 the	 dentate	 gyrus	 (DG)	
followed	by	the	Cornu	Ammonis	 (CA)	which	 is	subdivided	 in	 four	consecutive	parts	 (CA4	to	CA1)	
and	the	Subiculum	at	the	bottom	end.	The	CA	 is	also	structured	 in	six	 layers	called	strata.	These	
layers	 are	 the	 Stratum	 oriens	 (SO),	 Stratum	 pyramidale	 (SP),	 Stratum	 lucidum	 (SLU),	 Stratum	
radiatum	(SR),	Stratum	lacunosum	(SL)	and	the	Stratum	molecuare	(SM).		

HC	is	involved	in	many	brain	functions	such	as	memory	and	spatial	reasoning	(Milner	et	al.,	1958;	
Schmajuk	1990;	Hafting	et	al.,	2005).	Several	studies	showed	that	it	has	an	important	role	in	many	
neurodegenerative	diseases	such	as	Alzheimer's	disease	(AD)	(Braak	et	al.,	1991)	or	schizophrenia	
(Altshuler	et	al.,	1998).	The	study	of	the	hippocampus	volume	is	of	great	interest	as	it	is	a	valuable	
tool	 for	 follow-up	 and	 treatment	 adjustment	 (Jack	 et	 al.,	 2000;	 Jack	 et	 al.,	 2005;	Dickerson	 and	
Sperling,	 2005).	 However,	 the	 HC	 anatomy	 is	 complex	 and	 variable,	 and	 the	 limits	 between	
different	 subfields	 have	 been	 described	 in	 the	 neuroanatomy	 literature	 using	 cytoarchitectonic	
features	 that	 require	 histological	 staining	 and	 microscopic	 resolution	 to	 visualize	 (Insausti	 and	
Amaral,	2004).		
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Due	 to	 the	 key	 importance	of	 this	 structure,	 several	 segmentation	methods	 and	protocols	 have	
been	developed	(Barnes	et	al.,	2008;	Collins	el	al.,	2010;	Coupe	et	al.,	2011).	However,	one	of	the	
main	problems	to	advance	in	this	field	was	the	disparity	of	HC	definitions	and	the	lack	of	manually	
labelled	cases.	Recently,	a	harmonized	full	hippocampus	protocol	has	been	proposed	(jointly	with	
120	1	mm3	resolution	manually	segmented	examples)	which	will	become	the	common	reference	
for	 the	 development	 and	 comparison	 of	 new	 segmentation	 methods	 (Boccardi	 et	 al.,	 2015).	
Classically,	due	to	the	limitations	in	MR	image	resolution,	the	studies	were	restricted	to	consider	
the	hippocampus	as	a	single	structure	(Chupin	et	al.,	2009).	Even	though	the	analysis	of	the	whole	
hippocampus	has	been	shown	to	be	a	good	approach	to	study	AD,	some	ex-vivo	studies	revealed	
that	normal	aging	and	AD	affects	the	subfields	differently	during	the	lifespan	(Braak	et	al.,	1991).		

Currently,	many	HC	 subfield	 segmentation	protocols	 have	been	developed	as	 a	 response	 to	 the	
advances	 in	MR	sequences	that	allow	acquiring	high	resolution	 images	making	possible	to	divide	
the	 hippocampus	 into	 its	 constituent	 parts.	 However,	 there	 is	 still	 little	 consensus	 between	 the	
different	 HC	 subfield	 protocols	 as	 shown	 in	 (Yushkevich	 et	 al.,	 2015a)	 where	 21	 delineation	
protocols	were	compared.	Some	of	these	protocols	have	been	used	to	create	anatomically	labeled	
MRI	 datasets	 which	 are	 a	 fundamental	 resource	 to	 develop	 new	 segmentation	 methods.	 For	
example,	 9.4	 T	 ultra-high	 resolution	 ex-vivo	 images	 were	 used	 to	 create	 an	 anatomical	 atlas	
(Yushkevich	 et	 al.,	 2009)	 including	 the	CA1,	 CA2-3,	 the	DG	and	 the	 vestigial	 hippocampal	 sulcus	
obtained	by	manual	delineation.	In	2013,	Winterburn	presented	a	new	in-vivo	high	resolution	atlas	
(Winterburn	 et	 al.,	 2013)	 to	 divide	 the	 hippocampus	 in	 five	 different	 subregions:	 CA1,	 CA2-3,	
CA4/DG,	 Stratum	 and	 Subiculum	 (jointly	with	 5	manually	 segmented	 examples,	we	 call	 this	 the	
Winterburn	 dataset).	 Later	 in	 2015,	 Kulaga-Yoskovitz	 developed	 another	 segmentation	 protocol	
(Kulaga-Yoskovitz	 et	 al.,	 2015)	 consisting	 of	 three	 structures:	 CA1-3,	 CA4/DG	 and	 Subiculum	
(jointly	with	25	manually	segmented	examples,	we	call	this	the	Kulaga-Yoskovitz	dataset).		

To	 conduct	 volumetric	 studies	 and	 apply	 these	 delineation	 protocols,	 automatic	 segmentation	
tools	are	necessary.	It	is	well	known	that	manual	delineation	of	a	new	case	represents	an	issue	in	
terms	of	reproducibility.	It	is	also	extremely	time	consuming	as	well	as	it	has	a	high	economic	cost	
(it	 can	 take	 from	 10	 to	 20	 hours	 of	 an	 expert	 rater	 time	 per	 subject	 to	manually	 segment	 the	
hippocampus	 subfields	 (Iglesias	 et	 al.,	 2015)).	 Since	 manual	 segmentation	 is	 not	 an	 affordable	
option,	 several	 automatic	methods	 have	 been	 developed	 in	 the	 last	 years.	 One	 of	 the	 first	 HC	
subfield	segmentation	methods	was	proposed	by	Van	Leemput	(Van	Leemput	et	al.,	2009)	using	a	
generative	 model	 of	 the	 hippocampus	 region.	 This	 model	 is	 produced	 using	 a	 mesh-based	
probabilistic	 atlas	 containing	 information	 about	 where	 the	 anatomical	 labels	 are	most	 likely	 to	
occur.	 The	 probabilistic	 atlas	 is	 learned	 from	 a	 set	 of	 ultra	 high	 resolution	 training	 images.	
Recently,	 Iglesias	 (Inglesias	et	al.,	2015)	continued	this	work	and	 improved	the	model	by	using	a	
more	accurate	atlas	generated	from	ultra-high	resolution	ex-vivo	MR	images	and	also	using	multi-
contrast	 data.	 Pipitone	 	 proposed	 a	multi-atlas-based	method	 (Pipitone	 et	 al.,	 2014)	 using	 T2w	
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images	 intended	to	segment	a	considerable	 large	dataset	 (targets)	using	a	 few	manually	 labeled	
cases	 (atlases).	 However,	 this	 method,	 named	 MAGeT	 (Chakravrty	 et	 al.,	 2013)	 has	 a	 high	
temporal	cost.	In	2015,	Yushkevich	proposed	another	method	(Yushkevich	et	al.,	2015b)	using	T2w	
images	where	a	multi-atlas	approach	is	combined	with	a	similarity-weighted	voting	and	a	boosting	
based	error	correction.	Unfortunately,	this	method	takes	hours	to	produce	a	segmentation	due	to	
the	 exhaustive	 use	 of	 non-linear	 registrations	 as	 in	 the	 case	 of	 MAGeT.	 Recently,	 in	 2016,	
Caldairou	presented	a	new	hybrid	method	(Caldairou	et	al.,	2016)	where	a	set	of	training	subjects	
are	non-linearly	registered	to	the	test	case.	Then,	using	patch-correspondences,	a	surface	mesh	is	
generated	from	the	manual	labels.	These	patch	correspondences	are	re-computed	for	each	mesh	
vertex	minimizing	the	error	to	adjust	a	deformable	model	to	the	case	to	be	segmented.	

In	 this	 paper,	 we	 propose	 a	 new	 patch-based	 segmentation	method	 which	 has	 been	 validated	
using	 two	 hippocampus	 subfield	 segmentation	 protocols	 with	 publically	 available	 datasets.	 Our	
method	uses	an	adaptation	of	MOPAL	 (Romero	et	al.,	2016),	a	multi-contrast	version	of	a	patch	
matching	 segmentation	 method	 OPAL	 (Giraud	 et	 al.,	 2016)	 to	 produce	 fast	 and	 accurate	
segmentations.	 The	 presented	method	works	 using	 high	 resolution	 (0.5x0.5x0.5	mm3)	 T1w	 and	
T2w	 images.	 It	 also	 works	 on	 standard	 resolution	 images	 as	 well	 as	 single	 T1w	 or	 single	 T2w	
images.	During	our	validation,	we	show	that	the	proposed	approach	performs	well	also	on	mono-
contrast	T1w	and	T2w	images	as	well	as	when	using	standard	resolution	images	upsampled	using	
the	 LASR	 (Manjón	 et	 al.,	 2010a;	 Coupe	 et	 al.,	 2013)	 superresolution	method.	 Our	method	 also	
includes	a	new	error	corrector	post	processing	step	based	on	 the	use	of	a	boosted	ensemble	of	
neural	networks	is	proposed	to	minimize	systematic	segmentation	errors	at	post-processing.		

2 Material	and	methods	

2.1 Image	data	

In	 this	 work,	 we	 have	 used	 two	 different	 datasets	 corresponding	 to	 two	 manual	 labeling	
hippocampus	 subfield	 segmentation	protocols,	both	with	high	 resolution	 (HR)	T1w	and	T2w	MR	
images.	An	example	of	these	images	and	their	manual	labels	can	be	seen	in	Figure	1.	

Kulaga-Yoskovitz	dataset	

This	 dataset	 includes	 25	 subjects	 from	 a	 public	 repository	 (http://www.nitrc.org/projects/mni-
hisub25)	 (31	±	7	yrs,	12	males,	13	 females)	with	manually-drawn	 labels	dividing	 the	HC	 in	 three	
parts	 (CA1-3,	 DG-CA4	 and	 Subiculum).	 MR	 data	 from	 each	 subject	 consist	 of	 an	 isotropic	 3D-
MPRAGE	 T1-weighted	 (0.6	 mm3)	 and	 anisotropic	 2D	 T2-weighted	 TSE	 images	 (0.4×0.4×2	mm3).	
Images	 underwent	 automated	 correction	 for	 intensity	 non-uniformity,	 intensity	 standardization	
and	 were	 linearly	 registered	 to	 the	MNI152	 space.	 T1w	 and	 T2w	 images	 were	 resampled	 to	 a	
resolution	of	0.4 mm3.	To	reduce	interpolation	artifacts,	the	T2w	data	was	upsampled	using	a	non-
local	superresolution	method	(Manjón	et	al.,	2010a).	For	more	details	about	the	labeling	protocol	
see	the	original	paper	(Kulaga-Yoskovitz	et	al.,	2015).	
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Winterburn	dataset	

This	 dataset	 contains	 5	 subjects	 with	 0.3x0.3x0.3	 mm3	 high	 resolution	 T1-weighted	 and	 T2-
weighted	 images	 obtained	 by	 2x	 interpolation	 of	 0.6x0.6x0.6	 mm3	 acquisitions.	 and	 their	
corresponding	 manual	 segmentations.	 The	 HR	 images	 are	 publicly	 available	 at	 the	 CoBrALab	
website	 (http://cobralab.ca/atlases).	 These	MR	 images	were	 taken	 from	5	healthy	 volunteers	 (2	
males,	3	 females,	 aged	29–57).	High-resolution	T1-weighted	 images	were	acquired	using	 the	3D	
inversion-prepared	 fast	 spoiled	 gradient-recalled	 echo	 acquisition	 (TE/TR=4.3	ms/9.2	ms,	 TI=650	
ms,	α=8°,	2-NEX	and	 isotropic	 resolution	of	0.6	mm3).	High-resolution	T2-weighted	 images	were	
acquired	using	the	3D	fast	spin	echo	acquisition,	FSE-CUBE	(TE/TR=95.3	ms/2500	ms,	ETL=100	ms,	
2NEX,	 and	 isotropic	 resolution	 of	 0.6	mm3).	 Reconstruction	 filters,	 ZIPX2	 and	 ZIP512,	were	 also	
used	 resulting	 in	 a	 final	 isotropic	 0.3	mm3	 dimension	 voxels.	 The	 hippocampi	 and	 each	 of	 their	
subfields	were	 segmented	manually	 by	 an	 expert	 rater	 including	 5	 labels	 (CA1,	 CA2/3,	 CA4/DG,	
(SR/SL/SM),	and	 subiculum).	 For	more	details	 about	 the	 labeling	protocol	 see	 the	original	paper	
(Winterburn	et	al.,	2013).	
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Figure	1:	Examples	from	Winterburn	and	Kulaga-Yoskovitz	datasets	showing	T1w,	T2w	and	manual	
segmentations.	

2.2 Proposed	method		

2.2.1 Preprocessing	

	

The	 images	 used	 for	 this	 work	 were	 preprocessed	 to	 locate	 them	 in	 a	 common	 intensity	 and	
coordinate	space.	For	this	we	applied	the	following	steps:	Denoising	using	the	Spatially	Adaptive	
Non-local	Means	 Filter(Manjón	 et	 al.,	 2010b).	 This	 filter	 is	 able	 to	 automatically	 deal	with	 both	
stationary	and	spatially	varying	noise	levels.	Intensity	inhomogeneity	correction	using	the	N4	bias	
field	correction	(Tustison	et	al.,	2010).	

The	 images	were	moved	 to	a	 common	coordinate	 space	 to	better	match	 the	anatomy	between	
library	 subjects	 and	 the	 case	 to	 be	 segmented.	 To	 achieve	 this,	 the	 images	 were	 first	 linearly	
registered	 to	 the	 Montreal	 Neurological	 Institute	 (MNI)	 space	 by	 applying	 the	 Advanced	
Normalization	 Tools	 (ANTs)	 (Avants	 et	 al.,	 2009).	 This	 registration	was	 estimated	 using	 the	 T1w	
MNI152	 template	 and	 the	 T1w	 images,	 and	 applied	 to	 both	 T1w	 and	 T2w	 images	 (a	 rigid	
transformation	 from	 T2w	 to	 T1w	 was	 first	 estimated	 and	 later	 concatenated	 with	 T1w	
transformation	to	perform	a	single	interpolation	step	when	registering	both	T1w	and	T2w	images).	
Note	that	when	processing	HR	images	(voxel	size	smaller	than	1x1x1	mm3)	a	HR	MNI152	template	
version	was	used	(0.5x0.5x0.5	mm3)	instead	of	the	classical	one	(1x1x1	mm3	resolution).	As	we	will	
describe	later,	the	segmentation	is	performed	always	at	0.5x0.5x0.5	mm3	resolution.	

The	 images	were	 intensity	normalized	so	brain	 tissues	have	similar	 intensity	 levels	across	all	 the	
subjects	 of	 the	 library.	 For	 this	 purpose,	 we	 applied	 a	 histogram	 matching	 method	 (Nyúl	 and	
Udupa,	 1999). Then, to	 reduce	 the	 memory	 requirements	 and	 the	 computational	 cost,	 the	
images	 were	 cropped	 around	 HC	 area.	 For	 this	 procedure	 a	 bounding	 box	 surrounding	 the	
hippocampus	was	calculated	(using	a	margin	of	5	voxels	in	each	direction)	in	the	MNI	space	from	
the	 manual	 segmentations	 to	 ensure	 that	 all	 the	 manual	 segmentations	 were	 included	 in	 this	
bounding	box.	

If	the	resolution	of	a	new	case	to	be	segmented	is	lower	than	0.5x0.5x0.5	mm3,	the	cropped	data	
must	be	first	upsampled	to	produce	HR	0.5x0.5x0.5	mm3	resolution	data.	This	is	performed	using	a	
patch-based	 super-resolution	 technique	 called	 LASR	 (Coupé	 et	 al.,	 2013).	 If	 HR	 data	 is	 used	 as	
input	this	step	is	skipped.	

To	achieve	a	better	match	between	the	different	subjects	anatomy,	a	non-linear	deformation	was	
estimated	between	the	cropped	regions	of	every	subject	and	the	HC	cropped	MNI125	template.	
For	this,	we	used	a	multi-contrast	registration	framework	using	T1w	and	T2w	images	having	both	
equal	weights.	The	non-linear	deformation	 is	estimated	using	 the	Advanced	Normalization	Tools	
(ANTs)	(Avants	et	al.,	2009)	using	cross	correlation	metric	and	pyramidal	framework	at	8x	4x	2x	1x	



6	
	

scales	 and	 200,	 200,	 200	 and	 0	 iterations	 at	 each	 scale.	 This	 registration	 process	 introduces	
blurring	due	to	the	interpolation	used	to	apply	the	transformations.	This	has	a	negative	impact	in	
the	segmentation	step.	For	this	reason,	to	enhance	the	images,	we	sharpened	both	T1w	and	T2w	
images	by	adding	the	laplacian	of	each	image.	

2.2.2 Library	construction	

The	proposed	method	requires	the	construction	of	a	training	library	of	manually	annotated	images	
located	in	the	same	intensity	and	geometrical	space	that	new	case	to	be	segmented.	To	this	end,	
we	 constructed	 a	 training	 atlas	 library	 by	 preprocessing	 each	 atlas	 as	 previously	 described.	
Additionally,	after	the	cropping	step,	the	images	were	left-right	flipped	to	double	up	the	number	
of	cases.	To	segment	a	new	case,	it	is	preprocessed	in	the	same	way	than	the	library	cases.	Once	
the	 preprocessing	 is	 done,	 we	 have	 a	 set	 of	 cropped	 images	 (and	 their	 corresponding	 manual	
segmentations)	 and	 their	 non-linear	 transformations	 to	 the	 cropped	MNI	 space	 and	 a	 cropped	
case	 to	 be	 segmented	 and	 its	 non-linear	 transformation	 to	 the	 cropped	 MNI	 space.	 Then,	 we	
generate	a	subject	specific	library	by	concatenating	the	direct	non-linear	transformation	of	every	
library	case	with	the	inverse	non-linear	transformations	of	the	case	to	be	segmented.	This	way	we	
move	the	entire	library	to	the	new	case	space	(note	that	previous	to	the	non-linear	registration,	an	
affine	registration	to	the	MNI	space	was	done	so	the	segmentations	is	performed	in	the	linear	MNI	
space)		as	done	in	a	previous	work	(Romero	et	al.,	2017).	

2.2.3 Labeling		

Multi-contrast	Optimized	PatchMatch	(MOPAL)	

Our	 segmentation	method	 is	 based	on	 the	 idea	of	 non-local	 patch-based	 label	 fusion	 technique	
(Coupe	et	al.,	2011)	were	patches	of	the	subject	to	be	segmented	are	compared	with	patches	of	
the	training	library	to	look	for	similar	patterns	within	a	defined	search	volume	to	assign	the	proper	
label	v	as	can	be	seen	in	equations	1.	

𝑣 𝑥# =
%('(,'*,+)-*,++∈/(

0
*12

%('(,'*,+)+∈/(
0
*12

																																		(1)	

where	Vi	corresponds	to	the	search	area,	N	is	the	number	of	subjects	in	the	template	library,	ys,j	is	
a	possible	label	from	the	voxel	xs,j	at	the	position	j	in	the	library	subject	s	and	w(xi,	xs,j)	is	the	patch	
similarity	defined	as:	

𝑤 𝑥#, 𝑥4,5 = 𝑒𝑥𝑝
89(,+,*
:; 																																																										(2)	

𝐷#,5,4 = 𝑃 𝑥# − 𝑃(𝑥4,5) ?
?
																																																				(3)	

where		P(xi)	is	the	patch	centered	at	xi,	P(xs,j)	the	patch	centered	at	xj	in	the	templates	and	||.||2	is	
the	 normalized	 L2	 norm	 (normalized	 by	 the	 number	 of	 elements)	 calculated	 from	 the	 distance	
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between	each	pair	of	voxels	from	both	patches	P(xi)	and	P(xs,j).	h	is	a	normalization	parameter	that	
is	estimated	from	the	minimum	of	all	patch	distances	within	the	search	area.		

However,	 	 exhaustive	 patch	 comparison	 process	 is	 very	 time	 consuming	 (even	 in	 reduced	
neighborhoods).	To	reduce	the	computational	burden	of	this	process,	we	have	used	an	adaptation	
of	 the	OPAL	method	 (Giraud	 et	 al.,	 2016)	 that	 is	 a	 3D	 adaptation	 of	 the	 PatchMatch	 technique	
(Barnes	et	 al.,	 2009).	 This	 technique	 is	 an	efficient	 algorithm	 to	 finds	 correspondences	between	
patches	of	two	images	(in	our	case	a	target	 image	A	and	a	 library	of	 image	subjects	B)	using	the	
concept	 of	 Approximated	 Nearest	 Neighbor	 Field	 (ANNF).	 It	 consists	 of	 three	 steps:	 First,	 an	
initialization	 is	made	 and	 random	 correspondences	 are	 assigned	 to	 each	 patch	 A	 using	 patches	
randomly	selected	from	the	library	B.	Then,	a	propagation	is	done	based	in	the	hypothesis	that	if	a	
patch	x	from	A	has	a	good	match	with	a	patch	y	of	B,	then	adjacent	patches	of	x	will	probably	have	
good	matches	 in	 adjacent	 patches	 of	 y.	 Finally	 a	 restricted	 local	 random	 search	 is	 also	 done	 to	
avoid	 local	minima.	The	second	and	third	steps	are	repeated	iteratively	to	 improve	the	matches.	
We	refer	the	reader	to	the	original	paper	for	more	details	(Giraud	et	al.,	2016).	

Multi-scale	label	fusion	

In	 the	 original	 OPAL	 method,	 label	 probability	 maps	 are	 estimated	 using	 two	 independent	
processes	 with	 two	 different	 patch	 sizes	 to	 account	 for	 multi-scale	 features.	 This	 maps	 are	
uniformly	 averaged	 (process	 called	 late	 fusion)	 to	 obtain	 the	 final	 probability	map.	 In	 this	 new	
variant	 of	 the	 algorithm,	 that	 we	 called	 MOPAL,	 we	 use	 label	 dependent	 multi-scale	 mixing	
coefficients	α	to	balance	the	different	scale	contributions	per	label	(eq.	4).	

𝑝(𝑙) = 𝛼 𝑙 𝑝B	(𝑙) + (1 − 𝛼(𝑙))𝑝? 𝑙 																																																				(4)	

where	p1(l)	 is	 the	 probability	map	 corresponding	 to	 scale	 1	 for	 label	 l,	p2(l)	 the	 probability	map	
corresponding	to	scale	2	for	 label	 l,	p(l)	 is	the	resultant	combined	probability	map	for	 label	 l	and	
𝛼(𝑙) ∈ [0,1]	is	the	mixing	coefficient	for	label	l.	These	coefficients	are	optimized	using	a	gradient	
descent	technique.	For	this	optimization,	we	minimized	the	segmentation	error	calculated	as	1	-	
DICE	coefficient	as	done	in	(Romero	et	al.,	2017).	

Multi-contrast	patch	similarity	

The	patch	matching	process	can	benefit	from	the	use	of	multiple	contrast	data	(Xiao	et	al.,	2015;	
Fisher	and	Oliver,	1995).	As	we	work	with	T1w	and	T2w	images	we	have	improved	the	matching	
process	 by	using	 a	multi-contrast	 similarity.	 This	modified	 similarity	measure	 takes	 into	 account	
information	 derived	 from	 two	 channels,	 T1w	 and	 T2w	 images,	 in	 order	 to	 compute	 patch	
correspondences	 in	 a	 robust	 manner.	 OPAL	 estimates	 the	 quality	 of	 a	 match	 by	 computing	 a	
distance	as	 the	 sum	of	 squared	differences	 (SSD)	 (eq.	 3).	Our	proposed	multi-contrast	 similarity	
consists	 on	 a	 SSD-based	 semi-norm	 (one	 SSD	 per	 channel)	 that	 takes	 into	 account	 the	
discriminative	power	of	each	channel	locally.	We	called	this	multi-contrast	semi	norm	(MSN):	
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Where	A	and	B	represent	the	target	image	for	T1w	and	T2w,	Aʹ	and	Bʹ	represent	the	libraries	for	
T1w	and	T2w	respectively,	P(Ai)	∈	A	is	a	patch	form	image	A	centered	on	the	coordinates	i,	P(Bj)	∈	
B	is	a	patch	from	image	B	centered	on	the	coordinates	j,	s	represents	the	subject	number	and	M	is	
the	number	of	voxels	per	patch.	

2.2.4 Systematic	error	correction	

Any	segmentation	method	is	subject	to	random	and	systematic	errors.	The	former	can	be	typically	
minimized	using	aggregation	 techniques	 leading	 to	 the	 reduction	of	 classification	error	 standard	
deviation.	This	is	the	case	of	MOPAL	where	a	high	number	of	votes	per	voxel	are	used	to	reduce	
the	 classification	 error.	 Unfortunately,	 systematic	 errors	 cannot	 be	 reduced	 using	 this	 strategy	
since	they	are	not	random.	However,	this	systematic	bias	can	be	learned	to	correct/calibrate	the	
segmentation	output.	In	2011,	Wang	et	al.,	realized	about	this	issue	and	proposed	his	well-known	
SegAdapter	method.	This	method	is	based	on	the	use	of	an	Adaboost	classifier	which	locally	learns	
and	corrects	systematic	errors	using	spatial	(coordinates)	and	intensity	information	(patches).		

Inspired	by	 the	pioneer	work	of	Wang	et	al.,	we	propose	an	error	corrector	method	based	on	a	
patch-based	ensemble	of	neural	networks	 (PEC	 for	Patch-based	Ensemble	Corrector)	 to	 increase	
the	 segmentation	 accuracy	 by	 reducing	 the	 systematic	 errors	 produced	 by	 our	 segmentation	
method.	The	neural	network	ensemble	 is	 trained	with	 image	patches	of	sizes	3x3x3	voxels	 (fully	
sampled)	and	7x7x7	voxels	(subsampled	by	skipping	two	voxels	at	each	dimension)	from	T1w,	T2w	
images,	the	automatic	segmentations,	a	Euclidean	distance	value,	and	their	x,y	and	z	coordinates	
in	MNI	space.	The	Euclidean	distance	map	was	calculated	for	the	whole	hippocampus	as	the	lower	
distance	in	voxels	from	each	point	to	the	hippocampus	edge.	This	results	in	a	feature	vector	of	166	
features	 that	are	mapped	to	a	patch	of	manual	segmentations	of	size	3x3x3	voxels.	We	used	an	
overcomplete	patch-based	classification	as	proposed	in	a	previous	work	(Manjón	et	al.,	2016).	We	
also	used	a	multilayer	perceptron	with	two	hidden	layers	of	size	83	and	55	neurons	resulting	in	a	
network	 with	 a	 topology	 of	 166x83x55x27	 neurons.	 An	 ensemble	 of	 10	 neural	 networks	 was	
trained	using	a	boosting	strategy.	Each	new	network	was	trained	with	a	different	subset	of	data	
which	 was	 selected	 by	 giving	 a	 higher	 probability	 of	 appearance	 to	 the	 samples	 that	 were	
misclassified	in	the	previous	ensemble.		

Differently	from	SegAdapter	method,	we	used	2	patches	per	location	which	allows	us	to	be	point	
specific	while	having	also	context	information	and	topological	information	from	the	geodesic	map.	
Our	patch-based	overcomplete	correction	scheme	also	increases	the	number	of	votes	making	the	
estimation	more	robust.	Finally,	although	the	number	of	networks	used	 in	the	ensemble	(M=10)	
may	 seem	 low	 compared	 to	 the	 500	 trees	 used	 in	 SegAdapter	method,	 it	 has	 to	 be	 noted	 that	
neural	 networks	 are	 much	 stronger	 classifiers	 than	 trees.	 Figure	 2	 shows	 an	 example	 of	 the	
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proposed	 error	 correction	 output.	 We	 have	 named	 our	 proposed	 multi-contrast	 segmentation	
method	(including	PEC)	as	HIPS	(for	HIPpocampus	subfield	Segmentation).						

3 Experiments	and	results	

In	this	section,	the	parameters	of	the	proposed	method	and	its	results	are	presented.	The	method	
parameters	 has	 been	 adjusted	 independently	 to	 work	 with	 the	 two	 different	 segmentation	
protocols/datasets	 and	 it	 has	 been	 compared	 to	 other	 related	 state-of-the-art	 methods.	 To	
evaluate	 the	 segmentation	 accuracy,	we	 have	 used	 the	DICE	 coefficient	 (Zijdenbos	 et	 al.,	 1994)	
measured	in	the	linear	MNI	space.	In	order	to	evaluate	the	significance	of	the	results	we	applied	a	
Kruskal-Wallis	test	to	find	out	if	any	of	the	configurations	present	significant	differences.	Finally	a	
pair-wise	Wilcoxon	test	was	applied	to	find	the	specific	differences.	

3.1 MOPAL	parameters	

In	all	the	experiments,	we	used	patch	sizes	of	3x3x3	and	7x7x7	voxels,	for	each	scale	respectively.	
The	 search	 volume	 was	 set	 to	 7x7x7	 voxels.	 We	 used	 64	 independent	 Patch	 Matches	 with	 4	
iterations	 each.	 All	 these	 parameters	were	 optimized	 for	 both	 datasets	 in	 as	 similar	manner	 as	
done	in	(Romero	et	al.,	2017).	

Winterburn	dataset	

In	all	 the	experiments	using	this	dataset	we	used	the	 following	multi-scale	mixing	coefficients	 (5	
structures	 +	 background)	 being	 α=[0.4711,	 0.3443,	 0.3826,	 0.3900,	 0.8439,	 0.7715].	 These	
coefficients	have	been	optimized	doing	a	Leave-Two-Out	Cross-Validation		consisting	of	5	rounds	
of	optimization	leaving	the	case	under	study	and	its	flipped	version	out	(5	rounds	of	8	subjects	for	
optimizations	and	1	subject	for	validation).	The	result	were	5	sets	of	coefficients	that	we	used	in	
the	 following	 experiments.	 For	 the	 sake	 of	 simplicity,	 the	a	 values	 provided	 correspond	 to	 the	
mean	of	the	5	optimization	rounds	as	done	in	(Romero	et	al.,	2017).	

In	table	1,	it	can	be	seen	the	results	(measured	through	a	LOOCV)comparing	both	versions	of	the	
mono-contrast	method	(T1w	and	T2w)	and		the	multi-contrast	version	based	on	SSD	and	MSN.	We	
found	 that	 for	 this	 dataset,	 T1w	MR	 has	 a	 low	 contribution	 in	 the	 segmentation	 process	 as	 no	
significant	 differences	 were	 found	 between	 T2w	mono-contrast	 and	multi-contrast.	 This	 makes	
sense	 since	 T2w	 images	 from	 this	 dataset	 have	 better	 contrast	 than	 T1w.	 In	 fact,	 manual	
delineation	was	performed	over	the	T2w	images	only.	
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Table	 1:	Mean	DICE	 in	 the	MNI	 space	 and	 standard	deviation	 for	 each	 structure	 segmentation	using	high	
resolution	 T1w,	 T2w	 and	 Multi-contrast	 respectively	 over	 the	 Winterburn	 dataset.	 Best	 results	 in	 bold.	
Kurskal-Wallis	test	revealed	that	for	each	row	(Average,	structures	and	Hippocampus)	there	exist	differences.	
Significant	differences	are	marked	with	*	 for	T1w	and	T2w,	 Ɨ	 for	T1w	and	T1w+T2w	MSN,	 	ǂ	 for	T2w	and	
T1w+T2w	and	φ	for	T1w+T2w	SSD	and	T1w+T2w	MSN		(p<	0.05).	

Structure	 T1w	HR	 T2w	HR	 T1w+T2w	HR	
SSD	

T1w+T2w	HR	
MSN	

Average	 0.6222	±	0.0946	 0.6830	±	0.0727*	 0.6803	±	0.0711	 0.6943	±	0.0689	Ɨ	

CA1	 0.6633	±	0.0455	 0.7394	±	0.0287	*	 0.7321	±	0.0270	 0.7468	±	0.0285	Ɨ	

CA2\CA3	 0.5186	±	0.0788	 0.5916	±	0.0511	*	 0.5893	±	0.0494	 0.5965	±	0.0483	Ɨ	

CA4\DG	 0.7242	±	0.0254	 0.7727	±	0.0277	*	 0.7542	±	0.0282	 0.7686	±	0.0294	Ɨ	

SR\SL\SM	 0.5245	±	0.0566	 0.6604	±	0.0389	*	 0.6229	±	0.0378	 0.6604	±	0.0373	Ɨ	φ	

Subiculum	 0.6805	±	0.0439	 0.6510	±	0.0629	 0.7032	±	0.0427	 0.6992	±	0.0412	ǂ	

Hippocampus	 0.8717	±	0.0284	 0.8925	±	0.0105	*	 0.9019	±	0.0133	 0.9056	±	0.0114	Ɨǂ	

	

Kulaga-Yoskovitz	dataset	

For	this	dataset,	we	estimated	again	the	optimal	value	for	the	4	multi-scale	mixing	coefficients	(3	
structures	+	background)	being	α=[0.4,	0.5,	0.5,	0.9].	These	coefficients	have	been	optimized	in	the	
same	way	that	Winterburn	ones	doing	a	Leave-Ten-Out	Cross-Validation		consisting	of	5rounds	of	
optimization	 leaving	 five	 cases	 (and	 its	 flipped	 version)	 out	 (5	 rounds	 of	 40	 subjects	 for	
optimization	and	10	subjects	 for	test).	The	result	were	5	sets	of	coefficients	 that	we	used	 in	the	
following	experiments.	For	the	sake	of	simplicity,	the	a	values	provided	correspond	to	the	mean	of	
the	10	optimization	rounds	as	done	in	(Romero	et	al.,	2017).	

In	 table	 2,	 it	 can	 be	 seen	 the	 results	 (measures	 using	 a	 using	 also	 a	 LFOCV)	 comparing	 both	
versions	 of	 the	mono-contrast	method	 (T1w	 and	 T2w)	 and	 the	multi-contrast	 version	 based	 on	
SSD	and	MSN.	We	found	that	T2w	presents	little	contribution	to	the	segmentation	process	as	no	
significant	 differences	 were	 found	 between	 T1w	 mono-contrast	 and	 multi-contrast.	 Again,	 this	
makes	 sense	 since	 T2w	 images	 from	 this	 dataset	 present	 artifacts	 from	 the	 acquisition	process.	
We	assume	that	this	is	the	reason	why	manual	delineation	was	performed	using	T1w	images	only	
in	this	dataset.	

Table	 2:	Mean	DICE	 in	 the	MNI	 space	 and	 standard	deviation	 for	 each	 structure	 segmentation	using	high	
resolution	 T1,	 T2	 and	 Multi-contrast	 respectively	 over	 the	 Kulaga-Yoskovitz	 dataset.	 Best	 results	 in	 bold.	
Kurskal-Wallis	test	revealed	that	for	each	row	(Average,	structures	and	Hippocampus)	there	exist	differences.	
Significant	differences	are	marked	with	*	 for	T1w	and	T2w,	 Ɨ	 for	T1w	and	T1w+T2w	MSN,	 	ǂ	 for	T2w	and	
T1w+T2w	and	φ	for	T1w+T2w	SSD	and	T1w+T2w	MSN		(p<	0.05).	
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Structure	 T1w	HR	 T2w	HR	 T1w+T2w	HR	
SSD	

T1w+T2w	HR	
MSN	

Average	 0.8797	±	0.0265	 0.8426	±	0.0304	*	 0.8753	±	0.0228	 0.8826	±	0.0259	ǂ	

CA1-3	 0.9088	±	0.0153	 0.8727	±	0.0208	*	 0.9015	±	0.0144	 0.9115	±	0.0151	ǂ	φ	

CA4\DG	 0.8571	±	0.0321	 0.8429	±	0.0476	 0.8600	±	0.0349	 0.8616	±	0.0339	Ɨǂ		

Subiculum	 0.8733	±	0.0209	 0.8120	±	0.0381	*	 0.8645	±	0.0238	 0.8746	±	0.0236	ǂ	φ	

Hippocampus	 0.9583	±	0.0073	 0.9202	±	0.0152	*	 0.9507	±	0.0075	 0.9581	±	0.0067	ǂ	φ	

	

3.2 Systematic	error	corrector	

Finally,	we	evaluated	our	proposed	error	corrector	and	compared	it	with	the	SegAdapter	method	
(Wang	et	al.,	2011).	For	this	comparison,	we	used	the	1.9	version	of	the	SegAdapter	method	with	
optimal	parameters	empirically	obtained.	For	the	Winterburn	dataset,	we	used	a	dilation	radius	of	
1	to	obtain	the	uncertainty	ROI,	a	sampling	rate	of	0.15,	a	patch	size	of	7x7x7	voxels	and	T1w	and	
T2w	 images	 as	 features.	 For	 Kulaga-Yoskovitz	 dataset,	 we	 used	 also	 a	 dilation	 radius	 of	 1,	 a	
sampling	rate	of	0.1,	a	patch	size	of	7x7x7	voxels	and	T1w	images	as	features	(T2w	images	did	not	
help	the	correction	in	this	dataset).	

For	the	Winterburn	dataset,	we	trained	both	SegAdapter	and	PEC	method	5	times	in	a	leave-two-
out	cross	validation	(L2OCV)	strategy	by	removing	each	pair	of	hippocampus	(left	and	right)	from	
each	case	being	evaluated.	For	the	Kulaga-Yoskovitz	dataset,	a	L2OCV	would	result	in	5	labels	x	25	
subjects	=	125	training	rounds	which	supposes	several	weeks	of	processing	so	we	performed	only	
two	training	rounds	splitting	the	dataset	in	two	groups	with	15	and	10	subjects	and	cross	validated	
them.	

Tables	3	and	4	show	the	DICE	coefficient	achieved	by	the	correction	methods	over	both	datasets.	
Note	that	PEC	performed	well	for	both	datasets.	However,	the	increment	obtained	for	Winterburn	
dataset	was	higher.	This	makes	sense	since	Winterburn	results	had	more	room	for	 improvement	
than	 Kulaga-Yoskovitz	 (0.6943	 against	 0.8826)	 and	 the	 library	 size	 was	 quite	 small.	 Also,	
Winterburn	 protocol	 structures	 are	 smaller	 in	 its	 definition	 than	 Kulaga-Yoskovitz	 ones	 so	 small	
changes	have	a	greater	impact	in	DICE	coefficient.	The	improvement	provided	by	segAdapter	was	
quite	small	 for	 the	Kulaga-Yoskovitz	dataset	while	 it	had	a	negative	 impact	with	 the	Winterburn	
dataset.	This	was	counterintuitive	so	extensive	experiments	were	performed	to	assess	the	validity	
of	the	conclusions.	We	can	only	suppose	that	maybe	SegAdapter	method	is	not	well	adapted	to	HR	
data	as	it	was	developed	for	standard	resolution	data	and	also	that	the	small	number	of	training	
data	 (Winterburn	 dataset	mainly)	may	 introduce	 some	 overfitting	 problems.	We	 also	 evaluated	
the	methods	excluding	a	subset	of	labels	from	the	correction	process.	We	found	that	PEC	performs	
better	over	the	Kulaga-Yoskovitz		dataset	by	excluding	the	CA4\DG	so	the	correction	is	not	applied	
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to	this	structure.	We	didn´t	apply	this	selection	on	SegAdapter	method	since	this	method	requires	
all	labels	to	be	corrected	at	the	same	time	(no	partial	correction	is	allowed).	

Table	3:	Mean	DICE	 in	the	MNI	space	 for	HIPSS	segmentation	after	applying	SegAdapter	and	PEC	over	the	
Winterburn.	 Kurskal-Wallis	 test	 revealed	 that	 there	 exist	 differences	 for	 CA1	 and	 SR\SL\SM	 structures.	
Significant	 differences	 are	marked	with	 *	 for	 HIPSS	 and	 HIPSS	 +	 PEC,	 Ɨ	 between	 HIPSS	 +	 SegAdapter	 and	
HIPSS	+	PEC.	No	significant	differences	were	found	between	HIPSS	and	HIPSS	+	SegAdapter.	

Structure	 HIPS(no	correction)	 HIPS	(	SegAdapter)	 HIPS	(PEC)	

Average	 0.6943	±	0.0689	 0.6822	±	0.0786	 0.7158	±	0.0652Ɨ	

CA1	 0.7468	±	0.0285	 0.7470	±	0.0226	 0.7762	±	0.0251*Ɨ	
CA2\CA3	 0.5965	±	0.0483	 0.5683	±	0.0512	 0.6179	±	0.0630	
CA4\DG	 0.7686	±	0.0294	 0.7622	±	0.0317	 0.7750	±	0.0307	
SR\SL\SM	 0.6604	±	0.0373	 0.6489	±	0.0274	 0.7018	±	0.0191*Ɨ	
Subiculum	 0.6992	±	0.0412	 0.6844	±	0.0418	 0.7082	±	0.0597	
Hippocampus	 0.9056	±	0.0114	 0.9003	±	0.0117	 0.9111	±	0.0098Ɨ	

	

Table	4:	Mean	DICE	 in	the	MNI	space	 for	HIPSS	segmentation	after	applying	SegAdapter	and	PEC	over	 the	
Kulaga-Yoskovitz.	 Kurskal-Wallis	 test	 revealed	 that	 there	 exist	 differences	 for	 Subiculum.	 Significant	
differences	are	marked	as	*	between	HIPSS	and	HIPSS	+	PEC	and	Ɨ	between	HIPSS	+	SegAdapter	and	HIPSS	+	
PEC.	No	significant	differences	were	found	between	HIPSS	and	HIPSS	+	SegAdapter.	

Structure	 HIPS(no	correction)	 HIPS	(	SegAdapter)	 HIPS	(PEC)	

Average	 0.8826	±	0.0259	 0.8833	±	0.0247	 0.8879	±	0.0271	

CA1-3	 0.9115	±	0.0151	 0.9115	±	0.0126	 0.9158	±	0.0145	
CA4\DG	 0.8616	±	0.0339	 0.8656	±	0.0286	 0.8616	±	0.0339	
Subiculum	 0.8746	±	0.0236	 0.8727	±	0.0226	 0.8863	±	0.0206*Ɨ	
Hippocampus	 0.9581	±	0.0067	 0.9573	±	0.0061	 0.9595	±	0.0064	
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Figure	2:	Error	correction	example	from	Kulaga-Yoskovitz	dataset	showing	the	anatomical	T1w,	the	
automatic	 segmentation	 and	 the	 PEC	 correction.	 Arrows	 pointing	 to	 areas	 where	 PEC	 made	
changes	in	the	segmentation.	

	

3.3 Standard	resolution	vs.	High	resolution	

The	proposed	method	works	with	high	resolution	MR	images	but	these	sequences	are	not	always	
available	either	in	research	or	in	clinical	environments.	However,	it	would	be	desirable	to	be	able	
to	analyze	legacy	data.	For	these	reasons,	we	have	evaluated	the	method	over	standard	resolution	
(1x1x1	 mm3)	 images	 upsampled	 to	 0.5x0.5x0.5	 mm3	 using	 B-spline	 interpolation	 and	 a	 recent	
super-resolution	technique	called	LASR	(Coupé	et	al.,	2013).	To	do	this,	we	reduced	the	resolution	
of	 the	 HR	 images	 by	 a	 factor	 2	 and	 later	 upsampled	 them	 using	 the	 described	 methods.	 We	
performed	this	experiment	using	two	configurations:	the	proposed	multi-contrast	method	(tables	
5	and	7)	and	also	a	mono-contrast	(using	T1w)	version	(tables	6	and	8)	as	it	better	represents	the	
application	to	legacy	data	which	usually	consist	of	T1w	sequences.	
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Tables	5,	6,	7	and	8	show	the	results	for	both	datasets.	The	results	confirm	that	HIPS	can	produce	
competitive	results	when	using	standard	resolution	 images.	Note	that	the	results	using	LASR	are	
better	 than	 using	 B-spline	 interpolation	 for	 the	 Kulaga-Yoskovitz	 dataset.	 However,	 this	
improvement	 is	 small	 despite	 the	 statistical	 significance.	Moreover,	 the	 segmentation	 accuracy	
obtained	using	images	up-sampled	with	LASR	is	close	to	the	accuracy	obtained	using	HR	data	as	no	
significant	differences	were	found.	This	important	result	shows	that	the	proposed	framework	can	
efficiently	process	usual	1x1x1	mm3	MR	data.	On	the	other	hand,	one	may	think	that	the	method	
is	using	heavy	prior	 information	 instead	of	 following	 the	anatomical	 references	contained	 in	 the	
image.	Our	analysis	of	the	results	suggest	that	this	 is	not	the	case	because	just	 looking	at	the	SR	
data,	image	features	such	as	the	hippocampus	“dark-band”	(T1)	are		visible	after	the	up-sampling	
process	(see	figures	3	and	4).	Besides,	differences	between	SR	and	B-spline	interpolated	data	can	
be	only	explained	due	to	the	effect	of	the	SR	process.	Figures	3	and	4	show	an	example	of	HR	and	
SR	based	segmentation	and	how	anatomy	is	partially	recovered.	

Table	5:	Mean	DICE	in	the	MNI	space	and	standard	deviation	for	each	structure	segmentation	using	the	high	
resolution	 library	 applying	 B-spline	 interpolation	 and	 LASR	 to	 the	 previously	 downsampled	 image	 to	 be	
segmented.	 Segmentation	 produced	 using	 the	 multi-contrast	 version	 of	 the	 method	 over	 the	Winterburn	
dataset.	No	significant	differences	were	found	between	B-spline	and	LARS,	B-spline	and	HR	and	LASR	and	HR.	
Best	results	in	bold..Results	using	the	HR	images	are	also	provided	for	comparison.	

Structure	 B-spline	
T1w	+	T2w	

LASR		
T1w	+	T2w	

HR		
T1w	+	T2w	

Average	 0.7078	±	0.0659	 0.7108	±	0.0647	 0.7158	±	0.0652	

CA1	 0.7690	±	0.0267	 0.7707	±	0.0267	 0.7762	±	0.0251	
CA2\CA3	 0.6108	±	0.0741	 0.6170	±	0.0655	 0.6179	±	0.0630	
CA4\DG	 0.7690	±	0.0306	 0.7732	±	0.0305	 0.7750	±	0.0307	
SR\SL\SM	 0.6871	±	0.0230	 0.6903	±	0.0216	 0.7018	±	0.0191	
Subiculum	 0.7030	±	0.0668	 0.7025	±	0.0614	 0.7082	±	0.0597	
Hippocampus	 0.9080	±	0.0089	 0.9119	±	0.0130	 0.9111	±	0.0098	

	

Table	6:	Mean	DICE	in	the	MNI	space	and	standard	deviation	for	each	structure	segmentation	using	the	high	
resolution	 library	 applying	 B-spline	 interpolation	 and	 LASR	 to	 the	 previously	 downsampled	 image	 to	 be	
segmented.	 Segmentation	 produced	 using	 the	 mono-contrast	 (T1w)	 version	 of	 the	 method	 over	 the	
Winterburn	dataset.	No	significant	differences	were	found	between	B-spline	and	LARS,	B-spline	and	HR	and	
LASR	and	HR.	Best	results	in	bold.	Results	using	the	HR	images	are	also	provided	for	comparison.	

Structure	 BSpline	T1w	 LASR	T1w	 HR	T1w	
Average	 0.6082	±	0.0986	 0.6176	±	0.0953	 0.6222	±	0.0946	
CA1	 0.6590	±	0.0504	 0.6638	±	0.0478	 0.6633	±	0.0455	
CA2\CA3	 0.5011	±	0.0823	 0.5154	±	0.0787	 0.5186	±	0.0788	
CA4\DG	 0.7139	±	0.0278	 0.7166	±	0.0236	 0.7242	±	0.0254	
SR\SL\SM	 0.5046	±	0.0531	 0.5154	±	0.0521	 0.5245	±	0.0566	
Subiculum	 0.6626	±	0.0472	 0.6769	±	0.0437	 0.6805	±	0.0439	
Hippocampus	 0.8741	±	0.0186	 0.8765	±	0.0205	 0.8717	±	0.0284	
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Table	7:	Mean	DICE	in	the	MNI	space	and	standard	deviation	for	each	structure	segmentation	using	the	high	
resolution	 library	 applying	 B-spline	 interpolation	 and	 LASR	 to	 the	 previously	 downsampled	 image	 to	 be	
segmented.	Segmentation	produced	using	the	multi-contrast	version	of	the	method	over	de	Kulaga-Yoskovitz	
dataset.	 Kurskal-Wallis	 test	 revealed	 tha	 there	 exist	 differences	 for	 the	 average	 DICE,	 the	 CA1-3	 and	 the	
whole	hippocampus.	Significant	differences	are	marked	with	*	for	B-spline	and	LASR,	Ɨ	for	LASR	and	HR	and	ǂ	
for	B-spline	and	HR.	Best	results	in	bold.	Results	using	the	HR	images	are	also	provided	for	comparison.	

Structure	 BSpline	
T1w	+	T2w	

LASR		
T1w	+	T2w	

HR		
T1w	+	T2w	

Average	 0.8803	±	0.0288	 0.8828	±	0.0280*	 0.8879	±	0.0271Ɨǂ	

CA1-3	 0.9100	±	0.0146	 0.9120	±	0.0137*	 0.9158	±	0.0145Ɨǂ	
CA4/DG	 0.8525	±	0.0331	 0.8563	±	0.0325	 0.8616	±	0.0339	
Subiculum	 0.8783	±	0.0226	 0.8800	±	0.0220	 0.8863	±	0.0206	
Hippocampus	 0.9552	±	0.0070	 0.9566	±	0.0065*	 0.9595	±	0.0064Ɨǂ	

	

Table	8:	Mean	DICE	in	the	MNI	space	and	standard	deviation	for	each	structure	segmentation	using	the	high	
resolution	 library	 applying	 B-spline	 interpolation	 and	 LASR	 to	 the	 previously	 downsampled	 image	 to	 be	
segmented.	Segmentation	produced	using	the	mono-contrast	 (T1w)	version	of	the	method	over	de	Kulaga-
Yoskovitz	 dataset.	 Kurskal-Wallis	 test	 revealed	 that	 there	 exist	 differences	 for	 the	 average	 DICE	 and	 the	
CA4/DG.	Significant	differences	are	marked	with	*	for	B-spline	and	LASR,	Ɨ	for	LASR	and	HR	and	ǂ	for	B-spline	
and	HR.	Best	results	in	bold.	Results	using	the	HR	images	are	also	provided	for	comparison	

Structure	 BSpline	T1w	 LASR	T1w	 HR	T1w	
Average	 0.8709	±	0.0314	 0.8732	±	0.0307	 0.8797	±	0.0265ǂ	
CA1-3	 0.9030	±	0.0159	 0.9052	±	0.0152	 0.9088	±	0.0153	
CA4/DG	 0.8403	±	0.0326	 0.8439	±	0.0326	 0.8571	±	0.0321ǂ	
Subiculum	 0.8693	±	0.0218	 0.8704	±	0.0214	 0.8733	±	0.0209	
Hippocampus	 0.9546	±	0.0080	 0.9566	±	0.0077	 0.9583	±	0.0073	
	



16	
	

Figure	 3:	 Example	 result	 of	multi-contrast	HIPS	 segmentation	 on	HR,	 B-spline	 interpolations	 and	
LASR	upsampling	(Winterburn	dataset).		

	

	

Figure	 4:	 Example	 result	 of	 multi-contrast	 HIPS	 segmentation	 on	 HR,	 B-spline	 interpolation	 and	
LASR	upsampling	(Kulaga-Yoshcovitz	dataset).	
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3.4 Methods	comparison	

We	 compared	 the	 proposed	 method	 HIPS	 with	 other	 recent	 methods	 applied	 to	 hippocampus	
subfield	segmentation	over	both	datasets.	We	compared	HIPS	results	on	the	Winterburn	dataset	
with	MAGeT	results	(Pipitone	et	al.,	in	2014)	as	reported	by	the	authors.	We	also	compared	HIPS	
results	on	Kulaga-Yoskovitz	dataset	with	ASHS	(Yushkevich	et	al.,	2015b)	and	SurfPatch	(Caldairou	
et	al.,	2016).	We	used	the	published	results	of	ASHS	and	SurfPatch	as	provided	in	(Caldairou	et	al.,	
2016)	in	the	comparison.	

	We	also	 included	human	rater	 information	 from	Winterburn	dataset	original	paper	 (Winterburn	
et	 al.,	 2013)	 and	 Kulaga-Yoskovitz	 dataset	 original	 paper	 (Kulaga-Yoskovtiz	 et	 al.,	 2015)	 as	 a	
reference.	 Table	 7	 shows	 results	 for	MAGeT	 and	HIPS	 on	 the	Winterburn	 dataset	while	 table	 8	
shows	results	for	ASHS,	SurfPatch	and	HIPS	on	the	Kulaga-Yoskovitz	dataset.	For	a	fair	comparison	
between	 considered	methods,	 all	 the	DICE	 coefficients	 for	 HIPS	 have	 been	 calculated	 using	 the	
segmentations	in	native	space	(using	the	corresponding	inverse	affine	registration).	

In	 case	 of	 comparison	 with	 MAGeT,	 Winterburn	 images	 were	 at	 a	 0.3x0.3x0.3	 mm3	 voxel	
resolution	but	MAGeT	provided	 segmentations	 at	 0.9x0.9x0.9	mm3	 resolution	 for	 efficiency.	 For	
this	reason,	we	downsampled	the	Winterburn	images	to	0.9x0.9x0.9	mm3	in	the	native	space	to	be	
able	 to	make	 a	 fair	 comparison.	 HIPS	 showed	 an	 overall	 improvement	 of	 2.6	 %	 in	 comparison	
reaching	an	overall	DICE	of	0.661.	

In	 the	 case	 of	 Kulaga-Yoskovtiz	 our	 proposed	 method	 improved	 clearly	 all	 the	 structures	 even	
surpassing	inter-rater	agreement	by	a	3	%	for	the	CA1-3	and	staying	only	a	1	%	below	the	overall	
with	an	average	DICE	of	0.8744.	Regarding	 to	 the	execution	 time,	 the	whole	HIPS	pipeline	 takes	
less	than	20	minutes	while	the	other	compared	methods	have	a	computational	burden	of	several	
hours	per	case.	

Table	7:	Mean	DICE	in	the	native	space	for	each	structure.	Segmentation	performed	by	MAGeT	and	HIPS	at	
0.9x0.9x0.9	mm3	 over	 the	Winterburn	 dataset.	 Best	 results	 (for	 automatic	 segmentation)	 in	 bold.	 Human	
rater	mean	DICE	at	0.3x0.3x0.3	mm3	is	also	provided	as	reference.	

Structure	
MAGeT	

(T1	0.9	mm)	
HIPS	

(T1+T2	0.9	mm)	
Intra-rater	
(T1	0.3	mm)	

Average	 0.526	 0.661	 0.742	

CA1	 0.563	 0.670	 0.780	

CA2\CA3	 0.412	 0.522	 0.640	

CA4\DG	 0.647	 0.763	 0.830	

SR\SL\SM	 0.428	 0.599	 0.710	

Subiculum	 0.580	 0.722	 0.750	

Hippocampus	 0.816	 0.876	 0.910	



18	
	

	

Table	8:	Mean	DICE	in	the	native	space	for	each	structure.	Segmentation	performed	by	ASHS,	SurfPatch,	HIPS	
and	human	rater	 (intra-rater	and	 inter-rater)	over	de	Kulaga-Yoskovitz	dataset.	Best	 results	 (for	automatic	
segmentation)	in	bold.	

Structure	 ASHS	 SurfPatch	 HIPS	 Inter-rater	 Intra-rater	

Average	 0.8513	 0.8503	 0.8744	 0.8833	 0.9113	

CA1-3	 0.8736	±	0.0197	 0.8743	±	0.0247	 0.9030	±	0.0138	 0.8760	±	0.048	 0.9290	±	0.010	

CA4\DG	 0.8254	±	0.0345	 0.8271	±	0.0285	 0.8497	±	0.0332	 0.9030	±	0.036	 0.9000	±	0.019	

Subiculum	 0.8548	±	0.0243	 0.8495	±	0.0245	 0.8705	±	0.0212	 0.8710	±	0.053	 0.9050	±	0.016	

4 Discussion	

One	of	the	contributions	of	this	work	is	a	new	multi-contrast	patch	similarity	consisting	on	a	multi-
contrast	SSD-based	semi-norm	(MSN).	Introducing	this	similarity	measure	in	OPAL	(now	MOPAL),	
we	 achieved	 good	 segmentation	 results	 using	 T1w+T2w	 images.	 By	 using	 the	 semi-norm	 to	
combine	 distances	 we	 obtain	 a	 robust	 and	 self-balanced	 similarity	 that	 takes	 benefit	 from	
information	coming	from	both	channels.	This	means	image	corruption	or	low	image	quality	in	one	
of	the	channels	can	be	overcome	using	the	proposed	similarity	properties.	This	contribution	makes	
the	method	more	robust	especially	when	applied	to	different	datasets/conditions.		

In	addition,	we	proposed	a	new	systematic	error	correction	method	using	an	ensemble	of	patch-
based	neural	networks	(PEC).	The	use	of	this	error	corrector	significantly	improves	the	results	over	
both	 datasets	 having	 an	 execution	 time	 overload	 of	 just	 a	 few	 seconds.	 Even	 though	 both	 are	
ensemble	methods,	 PEC	has	 shown	 to	 perform	better	 that	 SegAdapter	when	using	 a	 significant	
lower	number	of	base	classifiers.	Both	methods	use	a	boosting	technique	to	learn	the	misclassified	
patterns.	The	main	difference	of	PEC	 is	 the	use	of	patch-based	strong	classifiers	 instead	of	weak	
classifiers	 as	 done	 by	 SegAdapter	 jointly	 with	 a	 richer	 feature	 descriptor.	 We	 chose	 a	 neural	
network	 base	 classifier	 because	 its	 versatility	 and	 availability	 to	 perform	 structured	 prediction	
(patch	 correction	 vs	 voxel	 correction)	 enhancing	 label	 regularity.	 Furthermore,	 the	 chosen	
classifier	 strength	allowed	 to	converge	 rapidly	needing	only	10	networks	 to	 reach	 the	maximum	
accuracy.	 It	 is	 worth	 to	 note	 that	 using	 this	 correction,	 the	 proposed	 method	 almost	 reaches	
human	 rater	 accuracy	 for	 the	 Kulaga-Yoskovitz	 dataset	 where	 obtained	 a	 higher	 DICE	 than	 the	
inter-rater	 for	 the	 CA1-3	 (0.9030	 obtained	 by	 HIPS	 versus	 0.8760	 obtained	 by	 the	 inter-rater),	
almost	the	same	accuracy	for	the	Subiculum	(0.8705	obtained	by	HIPS	versus	0.8710	obtained	by	
the	 inter-rater)	and	presents	an	overall	dice	of	0.8744	which	 is	 considerably	close	 to	 the	0.8833	
obtained	by	the	inter-rater.	

Comparing	the	results	obtained	in	both	datasets,	it	is	expectable	to	see	an	improvement	over	the	
Winterburn	dataset	if	more	manually	delineated	cases	were	released.	Even	although	this	is	heavily	
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dependent	 on	 the	 application,	 we	 think	 (based	 in	 our	 previous	 works	 using	 multi-atlas	
segmentation)	that	optimal	results	can	be	obtained	using	at	least	20	reference	atlases.	We	plan	to	
add	 new	 manually	 labeled	 cases	 to	 the	 library	 to	 further	 leverage	 the	 method	 results.	 HIPS	
pipeline	will	be	made	publically	available	to	the	scientific	community	as	part	of	our	online	volBrain	
platform	(http://volbrain.upv.es).		

5 Conclusion	

In	this	work,	we	have	presented	a	new	method	for	HR	hippocampus	subfield	segmentation	called	
HIPS.	 It	 uses	 two	 publically	 available	 segmentation	 protocols	 and	 datasets	 (Winterburn	 and	
Kulaga-Yoskovitz).	Our	method	is	based	on	MOPAL,	a	multi-contrast	extension	of	the	OPAL	patch-
based	label	fusion	segmentation	method	and	a	novel	neural	network	based	error	corrector.	HIPS	
works	 in	a	 fully	automated	manner	providing	accurate	 results	 in	 less	 than	20	minutes	 thanks	 to	
MOPAL	that	performs	fast	segmentation	as	well	as	to	the	subject	specific	library	registration	that	
only	 requires	 estimating	 one	 non-linear	 registration	 over	 small-region	 to	 translate	 the	 whole	
library	to	the	case	to	be	segmented.	

Furthermore,	as	 it	has	been	shown,	our	proposed	method	is	able	to	produce	competitive	results	
on	standard	resolution	images.	This	is	an	important	feature	as	it	makes	the	method	a	suitable	tool	
for	standard	resolution	data	analysis	and	opens	the	door	 to	analyze	 large	 legacy	databases.	This	
contributes	to	the	method	scalability	as	well	as	the	use	of	a	library	of	manually	labeled	images	as	
knowledge	base.	The	system	can	 learn	new	anatomy	patterns	 just	by	extending	 this	 library	with	
new	 segmented	 cases.	 This	 way	 the	 method	 can	 be	 either	 extended	 or	 adapted	 to	 a	 specific	
dataset	or	pathology.		

From	the	robustness	point	of	view,	the	registration	is	a	key	step.	For	this	reason	we	used	a	multi-
contrast	registration	as	well	as	multi-contrast	segmentation.	This	way	we	covered	more	variability	
and	 reduced	 the	 results	 dispersion	 in	 terms	 of	 accuracy	 especially	 over	 the	 Kulaga-Yoskovitz	
dataset.	

We	 showed	 that	 HIPS	 outperforms	 other	 state-of-the-art	 methods	 in	 term	 of	 segmentation	
accuracy	achieving	an	overall	DICE	of	0.661	for	the	Winterburn	dataset	while	MAGeT	(Pipitone	et	
al.,	2014)	obtains	a	DICE	of	0.5260	and	an	overall	DICE	of	0.8744	for	Kulaga-Yoskovitz	while	ASHS	
(Yushkevich	 et	 al.,	 2015b)	 obtains	 0.8513	 and	 SurfPatch	 (Caldairou	 et	 al.,	 2016)	 obtains	 0.8503.	
HIPS	 is	 also	 faster	 than	 the	 other	methods	 taking	 an	 average	 execution	 time	 under	 20	minutes	
compared	to	several	hours	required	by	the	other	methods.	 It	 is	also	important	to	note	that	HIPS	
performance,	for	the	Kulaga-Yoskovitz	dataset,	is	close	to	the	human	rater	reaching	better	results	
than	 the	 inter-rater	 segmentation	 for	 the	 CA1-3	 sctructure.	 This	 does	 not	 happen	 for	 the	
Winterburn	dataset	which	can	be	explained	by	the	low	number	of	manually	labeled	cases	(only	5	
subjects)	as	well	as	the	higher	structural	complexity	of	the	segmentations.	
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