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Abstract

For people who cannot communicate due to severe paralysis or involuntary movements, 

technology that decodes intended speech from the brain may offer an alternative means of 

communication. If decoding proves to be feasible, intracranial Brain-Computer Interface systems 

can be developed which are designed to translate decoded speech into computer generated speech 

or to instructions for controlling assistive devices. Recent advances suggest that such decoding 

may be feasible from sensorimotor cortex, but it is not clear how this challenge can be approached 

best. One approach is to identify and discriminate elements of spoken language, such as 

phonemes. We investigated feasibility of decoding four spoken phonemes from the sensorimotor 

face area, using electrocorticographic signals obtained with high-density electrode grids. Several 

decoding algorithms including spatiotemporal matched filters, spatial matched filters and support 

vector machines were compared. Phonemes could be classified correctly at a level of over 75% 

with spatiotemporal matched filters. Support Vector machine analysis reached a similar level, but 

spatial matched filters yielded significantly lower scores. The most informative electrodes were 

clustered along the central sulcus. Highest scores were achieved from time windows centered 

around voice onset time, but a 500 ms window before onset time could also be classified 

significantly. The results suggest that phoneme production involves a sequence of robust and 

reproducible activity patterns on the cortical surface. Importantly, decoding requires inclusion of 

temporal information to capture the rapid shifts of robust patterns associated with articulator 

muscle group contraction during production of a phoneme. The high classification scores are 

likely to be enabled by the use of high density grids, and by the use of discrete phonemes. 

Implications for use in Brain-Computer Interfaces are discussed.
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1 Introduction

To function in life, it is critical to be able to communicate. Spoken and written language, as 

well as non-verbal expressions, allow people to interact socially. Expression of language in 

particular is crucial for communication of ones needs, ideas and opinions. People who are 

completely unable to express themselves are essentially excluded from society at every level 

(Bruno et al., 2011; Laureys et al., 2005; Rousseau et al., 2015). Although their numbers 

may be small, their predicament warrants research into ways to restore communication 

abilities (Chaudhary et al., 2016; Wolpaw et al., 2002). Disorders leading to severe 

communication disability include afflictions leading to total paralysis resulting from trauma, 

stroke and neurodegenerative diseases (Locked-In Syndrome)(Lulé et al., 2009), and loss of 

muscle coordination due to trauma or developmental disorders such as Cerebral Palsy. When 

some muscle control is preserved (however minimal), Assistive Technologies (AT) are 

available to maximally utilize intentional movements. When no control is preserved, there 

are no technologies available to meet the patients need for communication. In recent years 

attempts to achieve communication by means of a Brain-Computer Interface have increased, 

leading to promising avenues (Farwell and Donchin, 1988; Gallegos-Ayala et al., 2014; 

Kennedy and Bakay, 1998; McCane et al., 2015; Sellers et al., 2010, 2014) but not yet to 

standard treatment for communication loss. Recently, however, a first case was presented 

where a Locked-In, late-state ALS patient could successfully use a Brain-Computer 

Interface to communicate in daily life without requirement for presence of an expert 

(Vansteensel et al., 2016). The system was fully implanted, and allowed the patient to 

generate signals, obtained from electrodes directly on the motor cortex, to select items in 

spelling software. Non-invasive BCI solutions, using scalp EEG and the ‘P300 speller’, have 

also resulted in encouraging results (Farwell and Donchin, 1988; Kleih et al., 2011; McCane 

et al., 2015; Sellers et al., 2010), but these require considerable skill from caregivers to 

attach the scalp electrodes and initiate the system. The systems that currently work in select 

patients provide a coarse, but reliable, means to communicate, and do so by decoding 

specific events from the brain. They are, however, a far cry from restoring communication to 

a level where the user can interact with others in real-time. Nevertheless, a first step has been 

made on the road to restoring communication by extracting information from the cerebral 

cortex, encouraging further development

Application of decoding algorithms, if conducted appropriately, can also reveal the 

mechanism by which the human brain translates neuronal activity to perceptions and actions 

(Brunner et al., 2015; Sadtler et al., 2014). As such, the fact that many of the associated 

cortical regions exhibit a topographical representation encourages the notion that different 

percepts or actions are associated with different topographical distributions of activity. This 

has been investigated notably in primary cortices (V1, A1, S1 and, to a lesser degree, M1), 

and has yielded successful identification of stimulus features by means of classifying the 

stimulus-induced cortical activity patterns (Bleichner et al., 2016; Branco et al., 2016; 

Formisano et al., 2008; Kay et al., 2008; Polimeni et al., 2010). The fact that cortical activity 

patterns map onto specific stimulus features supports the notion that topography reflects an 

orderly distribution of specific functions along the cortex, with each function being 

associated with one or more specific neuronal ensembles (or cortical columns) (Hubel and 
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Wiesel, 1959; Markram, 2008; Mountcastle, 1997). Although such ensembles can be 

modulated in terms of response amplitude by selective attention and/or predictive 

mechanisms (Andersson et al., 2013; Brefczynski and DeYoe, 1999; Miall and Wolpert, 

1996), and can be subject to an attention-driven shift in the exact mapping onto sensory 

space (Klein et al., 2014), the fact that activity patterns identify stimulus features 

reproducibly and robustly, indicates a certain degree of segregation of neuronal ensembles 

and the sensory space they code for.

Several approaches have been adopted in attempts to decode cortical activity to restore a 

means of communication. For EEG signals, detection of brain states has been utilized to 

select icons on a computer screen, by identifying a specific sensory input sequence 

emanating from that particular icon (visual or auditory pulse sequences which differ for each 

icon)(Fazel-Rezai et al., 2012). The recorded neural response to the sequence (which 

constitutes an amplified representation thereof) reveals which icon the person is attending to. 

Decoding is then tightly coupled to deliberate sensory input. Decoding internally generated 

actions is currently best feasible from sensorimotor cortex. With EEG the decline in 

amplitude of the mu rhythm (8-12 Hz, event-related desynchronization) that accompanies 

attempted or actual movement (McFarland et al., 2000; Pfurtscheller and Neuper, 1997), can 

be used also as a brain-state detector of an intentional act. Detection is here often translated 

to selection of an icon during a sequential icon scanning scheme (‘switch scanning’) or a 

unidirectional cursor movement. Neither EEG method is of much use for exploiting the fine 

topographical organization of the cortex. With intracranial EEG, or electrocorticography 

(ECoG), topographical patterns can be probed (Crone et al., 1998; Jacobs and Kahana, 2010; 

Miller et al., 2012). ECoG decoding approaches utilize the distribution of functionally 

coherent regions as is the case in the motor cortex (Bleichner et al., 2016; Bouchard and 

Chang, 2014; Miller et al., 2009; Schalk and Leuthardt, 2011) or visual cortex (Andersson et 

al., 2011). Language regions and networks may not provide adequate points of reference for 

decoding elements of speech since they do not exhibit a coherent topographical map (Kellis 

et al., 2010; Pei et al., 2011b), as seems to be the case for associative cortex in general 

(although some topography has been reported such as in (Harvey et al., 2013). Decoding 

(attempted) language production, however, is not constrained to language regions. The final 

stage of language production heavily depends on the sensorimotor cortex, which generates 

the motor commands for speaking and, for that matter, sign language (Bleichner et al., 2016, 

2015; Crone et al., 2001). Given that both motor (Bleichner et al., 2016; Kellis et al., 2010; 

Siero et al., 2014) and somatosensory cortex (Branco et al., 2016; Sanchez-Panchuelo et al., 

2012) exhibit quite detailed topographies, and that speaking involves rapid sequential 

patterns of muscle contractions in the face and vocal tract, the sensorimotor cortex should 

conceptually provide rich and coherent spatial and temporal information about what a person 

wants to say (Bouchard et al., 2013). Interestingly, and crucial for BCI research, research has 

shown that the sensorimotor activity patterns that are generated by complex hand gestures 

(representing letters of the American sign language alphabet for deaf people), are also 

generated by attempts to make these gestures in arm amputees (Lotze et al., 2001; Raffin et 

al., 2012; Roux et al., 2003). This finding suggests that actual and attempted motor acts may 

yield equally decodable cortical information, and that therefore research on cortical 
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representations of speech is directly relevant for application in BCI technology for paralyzed 

people.

In this study, we tested the hypothesis that even the smallest elements of speech, phonemes, 

should provide decodable information from sensorimotor cortex for classification. This 

hypothesis relies on two assumptions. First, the cortical topographical representation of 

speech utterances such as phonemes maps onto the constellation of muscles or muscle 

groups that is required to produce the sound. Second, since speech involves rapid sequential 

schemes of muscle contractions even for phonemes, the contribution of time in the decoding 

algorithms should provide a significant contribution to phoneme classification (Bouchard et 

al., 2013; Jiang et al., 2016).

We report on a study on decoding of phoneme production from sensorimotor cortex in five 

patients implanted with high-density electrocorticography (ECoG) electrode grids. All 

patients had grids implanted for source localization of their seizures for subsequent surgical 

treatment of medically intractable epilepsy. In three patients, these grids were part of the 

clinical grid implantation plan, and in two patients the grid was placed as an addition to the 

clinical plan, for research purposes. All procedures were approved by the Medical Ethical 

Board of the hospital, and were in accordance with the Declaration of Helsinki of 2013. The 

ECoG grids over the sensorimotor face area had a high density of electrodes (3-4 mm center 

to center), allowing for detailed investigation of topographical representation of phoneme 

production. For decoding we focused on high-frequency broadband signal power (HFB, 

65-125 Hz) (Crone et al., 1998) since this feature of the electrophysiological signal contains 

the most detailed and neuronal firing rate-related information (Bleichner et al., 2016; Miller 

et al., 2009; Siero et al., 2014). It is thought to most accurately reflect activity of neuronal 

ensembles, compared to other signal features (Manning et al., 2009; Miller et al., 2009; Ray 

and Maunsell, 2011). The density has been shown to produce independent signals between 

adjacent electrodes for the HFB and thus provide rich information about underlying cortical 

topography (Muller et al., 2016; Siero et al., 2014)

2 Methods

2.1 Subjects & Data Acquisition

ECoG signal was collected from five intractable epilepsy patients (Table 1) who had grids 

implanted subdurally over the inferior sensorimotor cortex on their right (subjects R1 and 

R2) or left (subjects L1, L2, and L3) hemisphere (depending on the probable location of the 

source of seizures). We refer to these grids as high density (HD) ECoG grids due to their 

high electrode density (3-4 mm center-to-center). Grids were obtained from Ad-tech 

Medical and PMT Corporation. Electrodes had an exposed diameter of 1 or 1.2 mm. For 

comparison: standard clinical grids have 1 cm center-to-center and a 2.4 mm electrode 

diameter. Written informed consent for participation in this study was given in accordance 

with the Declaration of Helsinki, 2013 and the study was approved by the Medical Ethical 

Committee of the Utrecht University Medical Center.

The placement of the grids was targeted at the sensorimotor face area. Exact coverage and 

electrode grid depended on patient-specific surgical considerations, and is shown in Figure 
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1. All HD grids covered at least part of the face area (see also Figure 6). After implantation, 

the locations of electrodes on the cortex were determined using cortical surface 

reconstructions from pre-implantation anatomical MRI and post-implantation CT scans 

according to the method described by (Branco et al., 2016; Hermes et al., 2010). Grid 

positions shown in Figure 1 are based on this method.

A 128-channel Micromed recording system (Treviso, Italy) was used for continuous 

recording of the HD-ECoG signal at a sampling frequency of 512 Hz (22 bits, band pass 

filter 0.15-134.4Hz) for subjects R1, R2, L1, and L2. A 256-channel Blackrock Neuroport 

system was used for recording in subject L3, at 2000 Hz (16 bits, high pass filter 0.5 Hz). 

Video recordings saved with the electrophysiological recordings were used to extract audio 

signals produced during the phoneme production tasks. All electrode signals were evaluated 

by trained epilepsy neurologists for signs of epileptic activity (interictal spikes), and were 

discarded if such activity was observed. Electrodes with poor signal quality (poor contact) 

were also discarded. This led to 10 electrodes from subject L2 being excluded from analysis. 

In addition, the corner electrodes of the grids for subjects R2 and L1 (designed to be upward 

skull facing for alternative rereferencing) and the top 7 rows of electrodes from subject L3’s 

grid (located at or above the anatomical hand knob) were excluded (Figure 1 and Table 1).

2.2 Overt phoneme production Task

Patients, all of whom were native Dutch speakers, were visually cued using the 

Presentation® (Neurobehavioral Systems Inc) software package to pronounce the 

phonemes /p/, /k/, /u/, and /a:/ or remain silent and fixate on an asterisk on the screen (Figure 

2). A microphone recording of their voice was extracted from the synchronously recorded 

clinical video system (or as an additional channel in the Blackrock system for subject L3) to 

evaluate task performance. Only trials in which the cued phoneme could be correctly 

acoustically identified by the experimenter (or rest trials in which no audible sound was 

produced) were included. A degree of variance in the exact acoustic features, and hence the 

corresponding mouth positioning and movement was tolerated as long as the utterance could 

be identified as the correct phoneme. In addition, voice onset times (VOTs) were marked for 

trial alignment using the annotation program Praat (version 5.2.29, www.praat.org). The 

clinical setting and the subjects’ ability to perform the task led to variability in the number of 

task runs and trials per run. Subjects R1, R2, L1, L2 and L3 performed a total of 174, 70, 

153, 119 and 114 correctly spoken phonemes, plus 63, 16, 43, 30 and 30 rest trials 

respectively. Frequencies of each of the 5 classes ranged between18 and 22% for R2, L1,2 

and 3, and between 10 and 25% for R1. The average spoken response reaction time was 0.8s 

and the responses lasted 0.5s on average.

For three datasets (R1, R2 and L1) there was a systematic offset between the ECoG 

recordings and the video from which the auditory signal was extracted for the VOT. This 

offset was corrected by determining the exact time mismatch between the stimulus marker in 

the ECoG data file and the onset of the stimulus in the video recording (the patient task 

screen was recorded as Picture in Picture). This then also aligned the VOT’s to the ECoG 

data. For L2 and L3 the auditory signal was directly co-recorded with the ECoG data.
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2.3 Preprocessing

The HFB was extracted from each electrode recording in a five-step process. First, signal 

from each electrode was notch-filtered to remove line noise (using the ‘filtfilt’ and ‘butter’ 

function in Matlab for the ranges 49:51Hz and 97:103Hz), and periods of poor signal quality 

were removed (leading to the removal of only a single correctly performed trial from subject 

L3). Second, each electrode signal was re-referenced to the mean signal of all electrodes in 

the HD grid within a subject (common average re-referencing), which has yielded good 

decoding results in multiple HD ECoG studies (Bleichner et al., 2016; Branco et al., 2016). 

Third, the spectral response was computed using a Gabor Wavelet Dictionary (Bruns, 2004) 

by convolving Gabor wavelets with frequencies from 65 to 125Hz (in 1 Hz increments) and 

a full-width at half maximum of 4 wavelengths with the HD-ECoG signal. Fourth, the 

absolute values of the complex convolved responses were summed over the 61 frequencies, 

and the log of the sum signal was z-scored for each task run (the z-score was computed 

using the mean and standard deviation from all electrodes and not per individual electrode to 

preserve inter-electrode differences in HFB signal variance). Finally, the HFB responses 

were smoothed with a 100ms kernel and were divided into trials based on the VOT markers 

or rest trial temporal mid points. The period between 0.5s before and 0.5s after each VOT 

marker was used to form 1s trials of HFB response.

2.4 Spatial-Temporal Cortical Activation Pattern Classification

Classification scores of the broadband signals were computed using a leave-one-out 

approach and spatio-temporal Matched filter (STMF) classification was applied. In addition, 

basic Support Vector Machine (SVM) classifiers were trained and used for comparison to 

the STMF results. For classification, all trials except for one were used to screen the 

electrodes for inclusion in the STMFs. Electrodes with a significant difference in HFB 

power (averaged over the trial) between rest and any of the phonemes (p<0.05) were 

included in the feature set for training (Figure 3).

For STMF analyses, the mean HFB power trace for the 1s trial period was computed for 

each electrode across trials for each of the five classes (/p/, /k/, /u/, /a:/, and rest). The mean 

traces of electrodes were then concatenated into a single vector representing the STMF for 

each class. The correlation between the SMTF of each class and the concatenated HFB 

traces of the included electrodes of the left-out trial (the test trial) was then computed. The 

test trial was then classified according to the STMF it correlated highest with. The analysis 

was repeated for 500 ms windows to evaluate feasibility of decoding shorter periods before, 

centered at, and after VOT.

For SVM analyses, classifiers were trained using the same leave-one-out strategy as applied 

for the STMF classifiers. Electrodes were included where all phonemes together differed 

significantly from rest. The SVM used linear kernels and were trained for each class versus 

all other classes. Each trial was classified by computing the distance from the trial features 

to each ‘1 vs all’ other class boundaries and was given the class label that maximized the 

distance to the boundaries. The SVM classifier was implemented using the ‘fitcsvm’ 

function in the Matlab 2016a statistics toolbox.
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The classification accuracies were not weighted to account for differences in numbers of 

trials for each class. To assess the chance level of our classifications we computed a non-

parametric distribution of classification scores by randomly shuffling the trial labels 120 for 

SVM and 500 times for all other analyses (difference in numbers is due to computation 

time), and applying the leave-one-out procedure to each set of shuffled trials according to 

the procedure described in (Maris and Oostenveld, 2007). Chance levels were then 

determined to be the upper 95% confidence bound of the distribution. Classification results 

exceeding these chance levels are significant at the level p < 0.05, and become rapidly more 

significant with distance from these levels. Furthermore, since we did leave-one-out 

classification, the distribution of trials over classes for each training set does not change 

except that the training set sometimes had one trial less in a class.

2.5 Effects of temporal information

To assess the extent to which the temporal information of the HFB power response added to 

the classification results, a procedure identical to the one described in the section above was 

used, but here matched filters were computed not only as the means over different trials, but 

also averaging over a trial period. This resulted in purely spatial matched filter (SMF) 

patterns. Electrodes were included where all phonemes together differed significantly from 

rest.

2.6 Assessing locations of most informative electrodes

Given that the electrodes likely covered cortex that was not involved in phoneme production, 

we expected that individual electrodes would contribute to the classification to different 

degrees. To quantify the extent to which the individual neural populations covered by each 

electrode contributed to the classification results, we determined the relative contribution of 

each electrode to the classification scores. For this, we again applied a non-parametric 

sampling technique by choosing 5000 random subsets of the electrodes. For each subset, a 

number (Nr) of electrodes between 1 and the total number of electrodes included in the 

analysis for a given subject was randomly generated and a set of Nr electrodes was randomly 

selected from all analyzed electrodes of the corresponding subject. Hence, on average half of 

the electrodes were included. Next the above described STMF classification procedure was 

applied. For each of the random subsets the resulting leave-one-out classification score was 

recorded, which was assigned to all electrodes included in the subset. This way, each 

electrode had a range of classification scores assigned to it. Finally, the mean score over the 

distributions represented a quantitative contribution, for each electrode, to the classification.

To evaluate where cortical activity could be expected during phoneme production, we 

conducted a group analysis of previously acquired 7T fMRI data. These were obtained for 

an earlier study (Bleichner et al., 2015), but were not published. Twelve healthy volunteers 

sequentially generated, in a randomized scheme, four phonemes upon visual cues, at a rate 

of 1 per 15.6 seconds (10 repetitions per phoneme). The fMRI scans were analyzed with 

SPM8, with an event-related design and taking all phonemes together (no contrast between 

phonemes), and the generated b-maps (representing the degree to which each voxel responds 

to the task) were used for group analysis. After normalization to MNI space, all individual b-

maps were averaged into one group-b-map, which was finally displayed on the surface of the 
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average anatomical scan of 12 healthy subjects. All details of data acquisition and individual 

subject data analysis can be found in (Bleichner et al., 2015).

3 Results

3.1 Spoken phoneme ECoG classification

The main finding of our analysis was that the 5 classes (4 spoken phoneme classes plus rest) 

could be classified with STMF analysis, with a mean accuracy of 75.5% (sd 6.5%), at a 

mean empirically determined chance level of 26.4% (Table 2, Figure 4. Given that one 

condition may dominate the classification of rest versus active, we also calculated 

classification scores for phonemes combined versus rest, and for the 4 phonemes without 

rest (Table 2). This revealed that active versus rest trials could be classified at 87.6% (sd 

14.1%), and that 4 phonemes could be distinguished at a score of 71.9% (sd 8.8%). A mean 

confusion matrix for the 5-class classification (Figure 5) shows that although rest was 

distinguished the most, each of the phonemes was identified well above chance. Note that 

the chance levels were empirically determined and differed from theoretical levels due to 

non-equal numbers of trials per class.

For STMF, three 500 ms windows were evaluated for the 4- and 5-class datasets. All three 

yielded significant classification (Table 2), but for both 4- and 5-class analysis the window 

spanning 250 ms before to 250 after VOT, reached the same level of classification as the 

1000 ms analyses. The same 500 ms optimal window was analyzed with SMF for 

comparison, which resulted in slightly lower scores than for the 1000 ms window for SMF. 

The difference between STMF and SMF, however, remained the same, with STMF yielding 

well over 10 % better performance in all comparisons

To compare the STMF approach to SVM analyses, classification scores were obtained with 

SVM for each dataset. Classification based on SVM yielded similar results as the STMF 

analysis, as is shown in Table 2. Hence, despite the computationally simple nature of the 

STMF classifier scheme it was not outperformed by the SVM approach (paired t-test, p>0.3 

for 2-, 4- and 5-class analyses).

3.2 Informative electrodes

Evaluation of the distribution of most informative electrodes, based on their contribution to 

classification, shows that most of these electrodes were clustered along the central sulcus, 

essentially along the length of the inferior half, and with no particular preference for cortex 

located anterior versus posterior of the sulcus (Figure 6). The distribution of activity 

obtained with fMRI in healthy volunteers covers pre-and post-central gyri ranging from the 

most inferior aspect (abutting the Sylvian fissure) to below the typical hand knob (Figure 6). 

The vast majority of the most informative electrodes fall within this region, suggesting that 

indeed the sensorimotor cortex contributes to decoding. A verification was performed to 

ascertain that 5000 subsets were sufficient for determining the most informative electrodes. 

We found that after 3000 iterations the set of most informative electrodes did not change, 

indicating that 5000 was sufficient.
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3.3 Contribution of temporal information in decoding

When temporal information was not included in the Matched Filters (SMF), classification 

dropped considerably to 63.5% for the 5-class analysis (2-tailed paired t-test p=0.046) and 

60.3% for the 4-class analysis (2-tailed paired t-test p=0.064) (Table 2). Even for the Active 

versus Rest analysis, classification scores dropped by more than 10%. These findings 

corroborate the notion that phoneme production is accompanied by brief time-varying events 

across multiple electrodes, as different muscles are contracted in a specific sequence. Even 

so, SMF analysis did yield well-above chance classification of the phonemes (Table 2). As 

mentioned before, the difference between STMF and SMF analysis remained, also when 

comparing the optimal 500 ms window decoding (Table 2, significant for the 4- and the 5-

class classification at p<=0.05).

4 Discussion

We addressed the hypothesis that elementary components of speech production, phonemes, 

engage the sensorimotor cortex in a decodable fashion. To this end, we conducted research 

in epilepsy patients with implanted HD electrode grids placed on the sensorimotor face area, 

and asked them to perform a phoneme production task. The cortical spatiotemporal activity 

patterns generated during this task proved to be highly reproducible and phoneme-specific, 

as evidenced by a high 5-class classification score (75.5%). When omitting the temporal 

information, the evolution of activity over time within a single trial, classification dropped 

significantly to 63.5%, corresponding to the notion that the production of phonemes involves 

multiple sequential, rapidly changing, combinations of transient activity across multiple 

small cortical foci (Bouchard et al., 2013; Jiang et al., 2016). The fact that even without 

temporal information classification was highly significant, suggests that each phoneme 

engaged a different set of cortical foci, likely related to the collection of muscles contracted 

for production (Kellis et al., 2010). The significant improvement with the inclusion of 

temporal information and visual inspection of the STMFs (see figure 4) also indicates that 

the set of cortical foci overlapped between phonemes.

Of note, subject R1 did not benefit from adding temporal information in the classifiers. This 

subject gave the highest scores, over 80%, for the SMF analysis compared to the other 

subjects. This high score may reflect optimal grid placement combined with density of 

electrodes (3 mm). One explanation for the lack of benefit from temporal information could 

be that the trials were less well aligned, possibly due to varying durations of phoneme 

utterance or less accurate VOT determinations. This would cause a loss of temporal 

information in the STMFs due to temporal smoothing resulting from averaging poorly 

aligned trials. One way to solve this would be to align trials based on the timing of the HFB 

response, an example of which was reported recently for decoding gestures (Branco et al., 

2016). Alternatively, performance could be improved by machine learning algorithms that 

allow for variations in length of the HFB responses, such as advanced neural networks.

Since classification can be biased by a single class, in our case most likely the rest condition 

compared to any phoneme, the analyses were also conducted on only the phoneme trials 

(excluding rest trials), thus addressing directly the discriminability of the four phonemes. 

This analysis yielded only a slightly lower classification score (71.9% versus 75.5%, albeit 
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with different chance levels, see Table 2), which also holds when decoding the 500 ms 

window centered on the VOT and capturing the HFB response (Figure 4) as shown in Table 

2. As shown in Figure 5, rest trials are distinguished best from all phonemes. The vowels /u/ 

and /a:/ are least distinguishable (Figure 5), perhaps because they both lack plosives and 

differ only in lip positions, but this remains speculative.

The analysis with SVM yielded similar results in terms of classification scores. One would 

expect SVM to result in better scores given the more advanced algorithms to extract the 

most discriminative information, but in this study this was not the case. One explanation 

could be that the underlying neurophysiological spatiotemporal patterns are in effect quite 

robust and reproducible. In principle SVMs handle noise contributions better than template 

matching, suggesting that the reason for similar performance could be that classification 

performance was limited more by a variation in producing the phonemes than by noise 

sources. For aligning trials, we used the voice onset time based on the audio signal. Yet 

phonemes may well have been produced slightly different in terms of duration and exact 

pronunciation, hence capping classification performance for both STMF and SVM.

The robustness of our findings is further indicated by several results. First, a more advanced 

classification method, SVM, did not yield better results than the STMF technique. The fact 

that a straightforward averaging of the spatiotemporal patterns of same-phoneme trials 

provided quite discriminable features across phonemes, indicates that the neuronal activity 

patterns were considerably unique and reproducible across repetitions. Second, we found no 

clear difference in decoding performance for left versus right hemisphere. This suggests that 

there is no lateralization for phoneme productions, which in turn supports the notion that we 

decoded neuronal activity associated with bilateral muscle contraction. The comparison with 

only spatial patterns confirms a clear improvement when adding temporal information in the 

feature set. The higher density of electrodes (than the standard 1 cm spacing used in many 

studies) is likely to also explain the improved classification, as for each subject the most 

informative electrodes were clustered within spaces of a square cm around the central sulcus 

(Figure 6). Regarding the time window required for decoding phonemes, Jiang (Jiang et al., 

2016) found that a window of 500 ms (centered around VOT) yielded the best decoding 

results. Mugler noted that most of the information was obtained from a 400 ms window, also 

centered around VOT (Mugler et al., 2014). The current results corroborate these reports, 

indicating that optimal decoding of phonemes from sensorimotor cortex requires 400-500 

ms. Of note, the time needed for decoding a phoneme is associated with the seemingly 

sluggish temporal features of the HFB response, which thereby limits performance of shorter 

windows. The 500 ms delay in decoding would not necessarily hamper use for BCI if a 

sliding window would capture attempted speech, in which case the synthetic speech 

generator would simply have a lag of about half a second. However, our study does not 

provide information about the ability to decode attempted speech, and it may well be that the 

sluggish HFB response prohibits real-time decoding of rapid sequences of phonemes.

Decoding speech is the goal of multiple research endeavors. Roughly two approaches may 

be distinguished, namely discrete classification of speech elements, as in the present study, 

and reconstruction of speech. For speech reconstruction, brain signals are linked to 

articulators in software, which allow for synthetic generation of sounds similar to sounds 
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produced with the natural human speech production system (Brumberg et al., 2010; 

Guenther et al., 2009). Alternatively, spatiotemporal ECoG patterns may be mapped onto 

acoustic features directly (Bouchard and Chang, 2014; Martin et al., 2014). Sounds 

generated by linear modulation of articulators may by principle of feedback be amenable to 

improvement, conceptually resulting in intelligible speech (Brumberg et al., 2010; Guenther 

et al., 2009). Discrete classification aims to provide people with a vocabulary of phonemes 

or words. Several studies with intracranial electrodes have shown that production of words is 

accompanied by activity in various regions associated with language processing (Leuthardt 

et al., 2012; Pei et al., 2011b). Feasibility of discriminating among words was shown in 

several studies where all implanted electrodes were included in the feature selection (Kellis 

et al., 2010), with a predominance for auditory cortex even when subjects produce words 

covertly (Martin et al., 2016). Others investigated decodability of phonemes embedded in 

monosyllabic words, either phonemes versus rest (Leuthardt et al., 2011), or between 

phonemes (Herff et al., 2015; Mugler et al., 2014; Pei et al., 2011a). One study examined 

decodability of single, imagined phoneme production, and reported classification scores per 

single electrode on the order of 43%, at a chance level of 33% (Ikeda et al., 2014). 

Informative electrodes were found across various regions including superior temporal gyrus 

and premotor cortex. The present study differs from previous studies in that we combined 

several factors. First, we specifically targeted the sensorimotor face region, (which has a 

closer relation to overt or attempted speech production), excluding any electrodes on other 

regions, such as auditory cortex, which conceivably have a higher degree of overlap with 

features of perceived speech which a communications BCI does not seek to decode. Second, 

all our participants were implanted with high-density grids on this region to maximize 

information content. Even higher densities have also been shown to capture decodable 

information, but can currently only cover a fraction of the motor face area (Kellis et al., 

2016; Leuthardt et al., 2009). Third, we included a more fine-grained temporal evolution of 

the HFB signal in our classification than previous studies, by a simple concatenation of 

electrode HFB traces, capitalizing on the fact that phoneme production involves rapid 

activity pattern changes over time (Bouchard et al., 2013). Fourth, we employed a 

classification technique that does not require any parameter optimization or prior selection 

of parameters (other than discarding electrodes that did not respond to the task), namely a 

spatiotemporal matched filter. Although it is difficult to compare across studies given the 

wide range of tasks used, the classification results appear to exceed those of all studies we 

are aware of that specifically addressed decoding of generated phonemes from the 

sensorimotor region, being approximately 41% for 4 vowels or consonants [4 classes, 

chance level 25%] (Pei et al., 2011a), 73% for three vowels [3 classes, chance level 33%] 

(Jiang et al., 2016), 37% for all English phonemes [39 classes, chance level 11%] (Mugler et 

al., 2015), and 45% for 4 phonemes [4 classes, chance level 25%] (Mugler et al., 2014). 

Additionally, several case studies reported classification scores on the order of 70-75% [2 

classes, chance level 50%] with similar grids as the ones we used (Blakely et al., 2008), and 

20% [38 classes, chance level 2.6%] with neurotrophic electrodes in a quadriplegic subject 

(albeit including 14 un-decodable phonemes which might bias the results) (Brumberg et al., 

2011). Importantly, the fact that phonemes were spoken in clear isolation likely makes 

decoding easier than when words or syllables are used, making a direct comparison of 

classification performance with any of the studies mentioned above uninformative. 
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Employing a paradigm where subjects speak monosyllabic words rather than discrete 

phonemes, may well lead to an underestimation of decodability since the HFB responses of 

each phoneme are convolved with those of neighboring phonemes.

The results show that different phonemes correspond to distinguishable STMFs, suggesting 

that we captured the underlying cortical representation of the various articulator-related 

muscle groups. The findings align with other similar studies, but with a seemingly higher 

classification score. Factors contributing to this include high-density grids, coverage of the 

inferior aspect of the sensorimotor cortex, and the use of discrete phonemes. Whether the 

results with a small set of phonemes can predict performance with the full set of phonemes 

is not clear. Mugler (Mugler et al., 2014) noted that similarity in the articulator sets used for 

similar phonemes reduced discriminability between them. Nevertheless, for BCI purposes 

one can imagine that a limited, optimally discriminable, set of phonemes may enable 

communication albeit perhaps with a consequently limited vocabulary. An interesting 

approach for identifying the most discriminable phonemes is one where ECoG is analyzed 

according to higher-level structure of phoneme articulation with categories such as 

obstruent/sonorant, and labial/coronal/dorsal, as reported by Lotte (Lotte et al., 2015). Their 

analyses included electrodes across the perisylvian regions and revealed a significant 

contribution of both sensorimotor cortex and auditory cortex to discrimination of categories. 

It would be interesting to apply their method to sensorimotor cortex with high-density grids 

coverage. An additional unknown is whether phonemes can be discriminated when spoken 

in (rapid) sequence, given that the neuronal spatiotemporal patterns are likely to overlap with 

those of preceding or ensuing phonemes. Herff (Herff et al., 2015) reported promising 

results in several cases with data obtained during reading text out loud, showing that 

decoding of continuous speech may be feasible. In that study, the auditory cortex contributed 

considerably to decoding. Decoding perceived speech has been shown by several groups to 

be feasible from auditory cortex, which in itself contributes to understanding how the 

auditory cortex is organized (Formisano et al., 2008; Mesgarani et al., 2014; Pasley et al., 

2012). However, perceived speech can be seen as a possible source of undesired decoded 

speech events in the context of a BCI focused on decoding only speech that was intended for 

overt communication. As such, decoding of perceived speech is not a feasible approach for 

BCI purposes for communication. Imagined speaking in people without speech impediments 

appears to be significantly less decodable from auditory cortex than overt or heard speech 

(Martin et al., 2016). As described below, speech attempted by speech-disabled subjects 

may, however, be better decodable.

Interestingly, we found that the time window of 500 ms before VOT could be classified at a 

highly significant level (64% for the 5-class set), which was almost as high as the 500 ms 

after VOT. This suggests that decoding does not depend entirely on sensory feedback, an 

important issue for BCI applications for paralyzed people who can only produce phonemes 

covertly. Several studies have shown significant classification for imagined phonemes or 

words (Ikeda et al., 2014; Martin et al., 2016; Pei et al., 2011a), albeit at sometimes 

considerably lower levels than what was shown for overt speech (Martin et al., 2016; Mugler 

et al., 2014; Pei et al., 2011a). An important question is whether imagined speech is 

predictive of neuronal activity generated by attempted speech in paralyzed people. For hand 

movements, this is not convincingly the case, as we have reported that the primary motor 
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cortex fails to exhibit clear activation for imagined movement in a carefully controlled fMRI 

and EEG experiment (Hermes et al., 2011). Attempted hand movements, on the other hand, 

have been shown to generate activation patterns in arm amputees that are similar to the 

patterns observed during actual movement in healthy volunteers without amputations, as 

opposed to patterns generated by imagined movements in the latter group (Lotze et al., 2001; 

Raffin et al., 2012; Roux et al., 2003). Thus, although it seems logical to use imagined 

movement as a predictor of decodability in paralyzed people, actual movements may prove 

to be more predictive, albeit with a certain degree of confound due to somatosensory 

feedback activity. Finally, an issue we could not address is the nature of the topographical 

organization of sensorimotor cortex in relation to phoneme production. We believe that this 

may need to await the ability to fully cover the sensorimotor face region (Bouchard et al., 

2013)(and Figure 6) in combination with denser electrode configurations (Slutzky et al., 

2010) in single subjects to enable exhaustive mapping and assessment of topographical 

similarities between subjects. Signals recorded by electrodes are dominated by tissue in their 

immediate vicinity, and leave tissue between electrodes (in our case still some 85%) 

unrecorded, constituting significant undersampling of contiguous cortical surface.

Some aspects of the study impose some limitations for data interpretation. For one, the 

number of trials was too small to separate data into a training and a test set, leading us to 

classify with a leave-one-out schedule. Larger numbers of trials are clearly better, but is 

often not feasible due to the limited time available with ECoG patients. Yet, the results are 

fairly robust considering that good performance was achieved by a simple averaging of trials 

to obtain the phoneme-specific classifiers. Second, it is not possible to predict from this 

study whether similar decoding performance can be achieved for BCI, where there is no 

somatosensory feedback. This will ultimately require research with subjects who cannot 

communicate by speech.

Conclusion

A set of four phonemes could be classified with an accuracy that encourages further research 

on decoding speech from neuronal spatiotemporal activity patterns. The findings support and 

build upon reports that high-density grids on sensorimotor cortex improve decoding, and that 

inclusion of the finegrained temporal evolution of brain signals captures the rapid sequence 

of articulatory muscle groups employed in phoneme production. Whether these findings 

translate to decoding of attempted speech in communication-challenged people ultimately 

requires research in this target population, although the fact that significant decoding was 

achieved in the 500 ms before VOT is encouraging. This study, and several other studies, 

contribute to building a case for conducting such research in the future.
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Highlights

1) Discrete, spoken phonemes can be classified with high performance from 

sensorimotor cortex, even before voice onset.

2) Phoneme production is accompanied by brief sequences of robust, sub-

centimeter patterns of electrical activity on the sensorimotor face area, which 

reflect the sequence of engaged, articulator-related, muscle groups.

3) Decoding spoken phonemes benefits from inclusion of the temporal evolution 

of high frequency band power, to capture the rapid sequence of activity 

patterns.

4) Decoding spoken phonemes benefits from sampling from the whole inferior 

sensorimotor region, with electrodes spaced 4 mm apart or less.
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Figure 1. 
Localization of HD-ECoG electrodes used for decoding. Each electrode location is indicated 

by a sphere on the cortical surface. Black spheres indicate electrodes that were excluded 

from analysis due to either orientation (facing the skull), position outside of the target 

region, or poor signal quality. Some electrodes seem out of line within grids, but this is due 

to correction for brain shift (Branco et al., 2016; Hermes et al., 2010).
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Figure 2. 
The phoneme production task with timing of the stimuli. The lower part displays the aligned 

audio signal which was used to determine the onset of the phoneme production.
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Figure 3. 
All electrode grids projected onto the left hemisphere in MNI space (projected onto an 

average of 12 normal brains). Each color denotes the electrodes with a significant response 

to the task (as described in the methods for STMFs) of a different patient with red, magenta, 

green, blue, and cyan corresponding to subject R1, R2, L1, L2, and L3 respectively. The 

central sulcus is indicted with a black broken line. Axes indicate MNI coordinates
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Figure 4. 
All STMFs for all subjects and classes. The mean HFB responses (over trials and leave-one-

out training sets) for each class, converted to z-scores, are shown, with time relative to the 

voice onset time (VOT) on the x-axis and electrodes on the y-axis. Grey lines represent 

electrodes that were excluded from classification (explained in Methods). Dotted vertical 

lines indicate the VOT marker.
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Figure 5. 
STMF group-mean classification confusion matrix for 5-class classification. The y-axis 

indicates the presented cue, the x-axis indicates the assigned class. The scores are given as 

percentages of all cued trials.
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Figure 6. 
A: Localizations of informative electrodes. For each patient a different color is used, with 

red, magenta, green, blue, and cyan corresponding to subject R1, R2, L1, L2, and L3 

respectively. For display purposes the 10 most informative electrodes are shown as larger 

spheres and the remaining significant electrodes are show as smaller colored spheres. Axes 

denote MNI coordinates. B: Activity averaged across 12 healthy volunteers measured with 

the phoneme task with 7 Tesla fMRI (see Methods). Electrodes and fMRI activity are 

displayed in MNI space, projected onto an average anatomy of 12 healthy volunteers.
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Table 1

Patient and electrode characteristics

patient Number of electrodes [number analyzed] Electrode distance (center-to-center) Age Gender

R1 32 [32] 3 19 F

R2 64 [60] 3 28 M

L1 64 [60] 3 18 M

L2 64 [54] 4 20 M

L3 128 [72] 4 36 F
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Table 2

Classification results. All individual classification results for each subject and method (spatiotemporal 

matched filters STMF, spatial matched filters SMF, support vector machine SVM). Classification was 

performed for 2, 4 and 5 classes (phonemes versus rest, 4 phonemes only and 4 phonemes plus rest, 

respectively). In straight brackets the computed chance levels are given (upper 95% confidence bound of the 

distribution of permutations as explained in the Methods). For 4- and 5-class classification the classification 

scores for three 0.5 s windows are given for STMF and SMF (-0.5 − 0, - 0.25 - +0.25, 0 − 0.5). In addition, 

classification for the 0.5s window centered around VOT is also given for SMF.

R1
%correct
[chance]

R2
%correct
[chance]

L1
%correct
[chance]

L2
%correct
[chance]

L3
%correct
[chance]

Mean (std)
[chance]

2-class: All phonemes versus rest

STMF 100
[36.5]

81.3
[18.8]

100
[30.2]

90.0
[23.3]

66.7
[26.7]

87.6 (14.1)
[27.1]

SMF 95.2
[42.9]

81.3
[37.5]

88.4
[41.9]

66.7
[46.7]

43.3
[44.3]

75.0 (20.6)
[42.7]

SVM 98.4
[33.3]

93.8
[31.3]

95.3
[33.3]

90.0
[32.6]

86.7
[32.2]

92.8 (4.6)
[32.7]

4-class: Phonemes only

STMF 77.0
[24.7]

81.4
[32.9]

62.1
[28.1]

63.0
[30.3]

76.1
[31.0]

71.9 (8.8)
[29.4]

SMF 78.7
[23.6]

65.7
[31.4]

58.2
[26.8]

39.5
[26.9]

59.3
[28.3]

60.3 (14.2)
[27.4]

SVM 77.0
[24.1]

74.3
[28.6]

75.2
[26.9]

52.1
[24.2]

85.8
[26.2]

72.9 (12.5)
[26.0]

STMF
-0.5 to 0s

68.4
[25.3]

61.4
[31.4]

54.2
[26.8]

46.2
[30.3]

61.1
[30.1]

58.3 (8.4)
[28.8]

STMF -0.25 to 0.25s 77.6
[24.1]

71.4
[32.9]

71.9
[26.8]

58.8
[29.4]

82.3
[30.1]

72.4 (8.8)
[28.7]

STMF
0 to 0.5s

80.5
[25.9]

71.4
[32.9]

55.6
[28.1]

54.6
[29.4]

64.6
[30.1]

65.3 (10.9)
[29.3]

SMF
-0.25 to 0.25s

76.4
[24.1]

35.7
[31.4]

47.7
[26.8]

49.6
[26.9]

69.0
[29.2]

55.7 (16.6)
[27.7]

5-class: Phonemes + rest

STMF 83.1
[25.7]

81.4
[27.9]

70.4
[25.5]

68.5
[26.2]

74.1
[26.6]

75.5 (6.5)
[26.4]

SMF 83.1
[25.7]

68.6
[29.1]

64.8
[25.0]

45.0
[25.5]

55.9
[26.6]

63.5 (14.2)
[26.4]

SVM 82.7
[25.3]

77.9
[27.9]

79.6
[26.2]

59.7
[24.5]

86.0
[25.1]

77.2 (10.2)
[25.3]

STMF
-0.5 to 0s

75.5
[26.2]

66.3
[26.7]

63.8
[25.0]

51.7
[26.2]

62.9
[26.6]

64.0 (8.5)
[26.1]

STMF
-0.25 to 025s

83.5
[25.7]

70.9
[27.9]

78.1
[25.5]

62.4
[26.2]

77.6
[26.6]

74.5 (8.1)
26.4]

STMF
0 to 0.5s

85.7
[26.2]

68.6
[26.7]

63.8
[25.0]

60.4
[25.5]

64.3
[26.6]

68.6 (10.0)
26.0]

SMF
-0.25 to 0.25s

81.0
[24.5]

38.4
[27.9]

58.2
[25.0]

55.7
[26.8]

65.0
[27.3]

59.7 (15.4)
[26.3]
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