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A B S T R A C T

Pitch is a perceptual attribute related to the fundamental frequency (or periodicity) of a sound. So far, the cortical
processing of pitch has been investigated mostly using synthetic sounds. However, the complex harmonic
structure of natural sounds may require different mechanisms for the extraction and analysis of pitch. This study
investigated the neural representation of pitch in human auditory cortex using model-based encoding and
decoding analyses of high field (7 T) functional magnetic resonance imaging (fMRI) data collected while par-
ticipants listened to a wide range of real-life sounds. Specifically, we modeled the fMRI responses as a function of
the sounds' perceived pitch height and salience (related to the fundamental frequency and the harmonic structure
respectively), which we estimated with a computational algorithm of pitch extraction (de Cheveign�e and
Kawahara, 2002). First, using single-voxel fMRI encoding, we identified a pitch-coding region in the antero-lateral
Heschl's gyrus (HG) and adjacent superior temporal gyrus (STG). In these regions, the pitch representation model
combining height and salience predicted the fMRI responses comparatively better than other models of acoustic
processing and, in the right hemisphere, better than pitch representations based on height/salience alone. Second,
we assessed with model-based decoding that multi-voxel response patterns of the identified regions are more
informative of perceived pitch than the remainder of the auditory cortex. Further multivariate analyses showed
that complementing a multi-resolution spectro-temporal sound representation with pitch produces a small but
significant improvement to the decoding of complex sounds from fMRI response patterns.

In sum, this work extends model-based fMRI encoding and decoding methods - previously employed to examine
the representation and processing of acoustic sound features in the human auditory system - to the representation
and processing of a relevant perceptual attribute such as pitch. Taken together, the results of our model-based
encoding and decoding analyses indicated that the pitch of complex real life sounds is extracted and processed
in lateral HG/STG regions, at locations consistent with those indicated in several previous fMRI studies using
synthetic sounds. Within these regions, pitch-related sound representations reflect the modulatory combination of
height and the salience of the pitch percept.
Introduction

Pitch plays an essential role in auditory perception, enabling us, for
example, to identify distinct speakers and to perceptually organize the
acoustic elements of a complex scene (Bregman, 1990; Moore, 1995). For
harmonic tones, pitch is the perceptual correlate of the fundamental
frequency F0, that is the sound's lowest frequency value of which all the
spectral components are an integer multiple. As the same pitch can be
oscience, Faculty of Psychology and N
E. Formisano).
perceived even after removal of the energy at F0 (i.e. in the case ofmissing
fundamental), pitch is more generally defined in relation to the repetition
rate (or periodicity) of the temporal envelope of the sound. Indeed, the
energy content at the fundamental frequency does not influence the
periodicity of the temporal envelope, which is solely determined by the
spacing of the harmonics (de Cheveign�e, 2010).

The neural mechanisms underlying pitch perception are still largely
debated. The “temporal” hypothesis assumes that the periodicity is
euroscience, Maastricht University, 6200 MD Maastricht, The Netherlands.
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extracted based on the timing between successive spikes in the auditory
nerve. In contrast, the “place” theory infers that pitch is determined by
the harmonic template that best matches the spectral cues encoded
tonotopically in the cochlea and throughout the ascending auditory
pathway (Plack et al., 2005). Recent accounts suggest that both place and
timing information are necessary in order to perceive the correct pitch
(Oxenham, 2013; Oxenham et al., 2004; Shamma, 2004).

Several studies investigated the neural (fMRI) correlates of pitch
processing in subcortical and cortical structures of the human auditory
system by comparing the BOLD responses for a wide range of pitch
evoking sounds and noise control stimuli. Using iterated ripple noise
(IRN), Griffiths et al. (2001) found a positive correlation between tem-
poral regularity and local brain activity in the cochlear nucleus (CN) and
in the inferior colliculus (IC) bilaterally. Moreover, the contrast between
time-varying and fixed pitch sequences revealed significant activation
differences only in the auditory cortex, specifically in lateral Heschl's
gyrus (HG) and in planum temporale (PT) bilaterally, as also revealed
with PET (Griffiths et al., 1998). This suggested a hierarchy of pitch
processing stages starting in the subcortical structures, which are sensi-
tive to temporal regularity, and terminating at the cortical level, where
perceived pitch (variations) are most likely encoded. Patterson et al.
(2002) reported a selective activation in lateral HG both in response to
pitch-producing IRN and melodic sounds. Barker et al. (2012) argued
that the activity elicited by the IRN in lateral HG was due to the fine
temporal structure of the stimuli instead of pitch per se, as the contrast
between the responses to conventional IRN and “no pitch” IRN control
sounds did not show a significant difference. A pitch-tuned region was
identified in the “anterior half of the auditory cortex” in Norman--
Haignere et al. (2013). The activation of this region was predominantly
driven by the resolved harmonics of the stimuli, and overlapped with a
low-frequency area in the tonotopy map. These results are consistent
with single-unit recordings in marmoset monkeys, reporting
pitch-selective neurons located in a low-frequency region near the
antero-lateral border of the primary auditory cortex (Bendor and Wang,
2005), potentially corresponding to lateral HG in humans (Bendor, 2012;
Bendor and Wang, 2006). In addition, selective activation in response to
pitch-evoking dichotic stimuli (Huggins pitch) has been observed in PT
(Garcia et al., 2010; Hall and Plack, 2007, 2009). Importantly, a
covariation of neural activity and pitch salience (dissociated from the
physical stimulus regularity) was revealed in a cortical area located in the
antero-lateral end of HG bilaterally (Penagos et al., 2004), whereas no
such relation has been found for the PT region. In summary, fMRI find-
ings support the hypothesis that the auditory cortex is involved in pitch
perception. However, the exact location of a presumed pitch processing
center in the human auditory cortex remains controversial (Griffiths and
Hall, 2012).

The above-mentioned studies examined pitch processing by
measuring fMRI responses to synthetic stimuli. However, for sounds
occurring in everyday life pitch perception is more complex than for
these artificial stimuli. For instance, the pitch of complex sounds may be
influenced by the sound's overall spectral content and especially by the
spectral locus of maximum energy concentration, which also relates to
the brightness of timbre (de Cheveign�e, 2005). Moreover, the strength of
the pitch percept (or salience) is influenced by the degree to which the
spectral components of sounds are harmonic, such that inharmonic
sounds tend to evoke a pitch less salient than the one evoked by harmonic
tones (Houtsma, 1997). As most of the sounds originating from natural
and man-made sources are not perfectly harmonic, the brain processing
underlying pitch perception for real-life sounds necessarily entails
computational and representational mechanisms for extracting and
combining multiple dimensions of pitch, notably pitch height (i.e. the
dimension of pitch specifically related to F0) and pitch salience (i.e. the
dimension of pitch related to sound harmonic structure).

The aim of the present study was to investigate these mechanisms in
human auditory cortex through the model-based analysis of 7 T fMRI
responses to real life sounds. First, we used single-voxel encoding (Kay
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et al., 2008b) and modeled the fMRI responses to a large set of complex
naturalistic sounds as a function of sound representation models incor-
porating information on pitch height alone, pitch salience alone or on a
weighted combination of height and salience. Both pitch height and
salience were estimated using the YIN algorithm (de Cheveign�e and
Kawahara, 2002). Then, we evaluated the capability of these various
models to predict the responses to a left-out sample of stimuli. The pre-
diction accuracy obtained for these models were compared to each other
and to the accuracy obtained with models describing the sounds by their
spectral energy content on the same set of features as the pitch models
(i.e. frequency bins). Results showed that fMRI responses in cortical re-
gions located bilaterally in lateral HG and adjacent STG were predicted
better by the pitch-based than by the energy-based sound representa-
tions. Moreover, in the right hemisphere regions, the prediction accuracy
for the model combining pitch height and salience was significantly
better than for the other pitch models.

Our previous work has shown that fMRI single-voxel responses
(Santoro et al., 2014) and response patterns (Santoro et al., 2017) to
natural sounds can be predicted accurately by a sound representation
model based on the combination of spectro-temporal modulations (Chi
et al., 2005). Sound representations explicitly encoding for pitch are
expected to provide complementary and relatively independent infor-
mation on the sound. In fact, current models of auditory scene analysis
hypothesize that the auditory system uses pitch in parallel to the
multi-resolution representation for parsing the auditory objects of com-
plex scenes (Elhilali and Shamma, 2008; Shamma et al., 2011). Thus, a
final aim of the study was to test whether a sound representation model
based on pitch - used as a complement to the multi-resolution model - can
provide additional information for decoding complex sounds from fMRI
response patterns. We addressed this question using model-based mul-
ti-voxel decoding (Miyawaki et al., 2008; Santoro et al., 2017). Results
showed that pitch information contributed to sound decoding signifi-
cantly only for circumstantiated regions in lateral HG and STG and not in
the remainder of the auditory cortex, which supports the hypotheses on
the relevance of these regions for coding pitch information.

Materials and methods

Subjects and ethical statement

Five healthy subjects that were different for the two experiments
participated in Experiment 1 (n1 ¼ 5, median age ¼ 32, three males) and
Experiment 2 (n2 ¼ 5, median age ¼ 27 years, two males). The data of
Experiment 1 and Experiment 2 have been previously described (Exp. 1:
De Martino et al., 2013; Moerel et al., 2013; Santoro et al., 2014; Exp. 2:
Santoro et al., 2017, publicly available at https://doi.org/10.5061/
dryad.np4hs) and are analyzed here using a new approach. In this sec-
tion the relevant elements of experimental procedures and fMRI response
estimation will be described. All subjects (Experiment 1 and Experiment
2) reported no history of hearing disorder or neurological disease, and
gave informed consent before commencement of the measurements. The
Institutional Review Board for human subject research at the University
of Minnesota (Experiment 1) and the Ethical Committee of the Faculty of
Psychology and Neuroscience at Maastricht University (Experiment 2)
granted approval for the study. Procedures followed the principles
expressed in the Declaration of Helsinki. Informed consent was obtained
from each participant before conducting the experiments.

Experimental procedures and fMRI responses estimation

Stimuli consisted of recordings of natural sounds including speech,
voices, animal cries, scenes from nature, musical instruments and tool
sounds (168 and 288 sounds for Experiment 1 and 2 respectively,
16 000 Hz sampling frequency, 1000 ms duration). In Experiment 1, for
each subject 8 functional runs were collected; 144 sounds were presented
in 6 training runs with 3 repetitions overall while the remaining 24

https://doi.org/10.5061/dryad.np4hs
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Fig. 1. Overview of the main stimulus representation models. (A) Weighted Pitch model:
the perceived pitch is modeled as a “weighted” combination of pitch height and salience,
obtained as a point by point multiplication between the time-resolved F0 contour and the
coefficient reflecting the harmonic structure of the stimulus. This operation embeds the
hypothesis that the information about the harmonic structure of the stimuli (perceptual
salience) contributes in explaining the pitch-related cortical activity. After averaging
across time, each stimulus is represented as a function of frequency, whose peak location
corresponds to the estimated pitch height. Salience only influences the amplitude of the
peak (related to pitch strength). (B) Pitch model: salience is not taken in account and pitch
is modeled only by the F0 contour. (C) Tonotopy model: each sound is described by the
spectral energy of each frequency component computed with the STFT. (D) Timbral
Brightness model: stimuli are represented by the height of the spectral centroid, percep-
tually related to the brightness of timbre.
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sounds were presented in 2 testing runs with 3 repetitions per run. In
Experiment 2, the stimuli were divided in 4 non-overlapping sets (72
sounds each) that equally represented the semantic categories (i.e., 12
sounds per semantic category). The subjects underwent two scanning
sessions, each consisting of 6 runs. Per session, 2 sound sets were
repeated in 3 runs and each stimulus was presented 3 times across runs.
In both experiments fMRI time series were acquired according to a fast
event-related design (Experiment 1: TR ¼ 2600 ms; TA ¼ 1200 ms;
TE ¼ 30 ms; GRAPPA acceleration X3; partial Fourier 6/8; voxel
size ¼ 1.5 � 1.5 � 1.5 mm3; silent gap ¼ 1400 ms; Experiment 2:
TR ¼ 2600 ms; TA ¼ 1200 ms; TE ¼ 19 ms; GRAPPA acceleration X2;
partial Fourier 6/8; voxel size ¼ 1.5 � 1.5 � 1.5 mm3; silent
gap ¼ 1400 ms). Sounds were presented in the silent gap between ac-
quisitions with a randomly assigned inter-stimulus interval of 2, 3 or
4 TRs. The data was preprocessed with BrainVoyager QX (Brain Inno-
vation, Maastricht, the Netherlands; temporal high pass filter, and 3D
motion correction) and sampled in Talairach space. Next, for each voxel,
the hemodynamic response function (HRF) common to all stimuli was
estimated via a deconvolution analysis in which all stimuli were treated
as a single condition. The fMRI responses to the stimuli (which will be
referred to as “beta weights”) were then computed by using the estimated
HRF with one predictor per sound (Kay et al., 2008a). In Experiment 2 a
4-fold cross validation across the 4 stimulus sets was implemented. In
both experiments, the HRF was estimated using the training data and
beta weights were computed separately for training and testing sounds.
Further analyses were performed on voxels with a significant positive
response to the training sounds (p < 0.05, uncorrected) within an
anatomically defined mask, which included Heschl's gyrus (HG), planum
polare (PP), planum temporale (PT), and superior temporal gyrus (STG).

Pitch and sound representation models

We considered four different sound representation models: 1) a
Weighted Pitch model, representing the perceived pitch of natural sounds
as a “weighted” combination of F0 contour (pitch height) and salience
(Fig. 1A); 2) a Pitch model, representing the perceived pitch as the pitch
height alone (Fig. 1B); 3) a Tonotopy model, which described each
stimulus by its spectral energy (Fig. 1C) and 4) a Timbral Brightness
model, representing the sounds by the height of the spectral centroid
(Fig. 1D), which is perceptually related to the brightness of timbre. All
the models were implemented with customMatlab (The MathWorks Inc.)
code using the same time-frequency resolution.

Pitch and Weighted Pitch models
The perceived pitch of each sound was modeled based on the

fundamental frequency estimated with the YIN algorithm (de Cheveign�e
and Kawahara, 2002). The algorithm detects the periodicity (and thus the
fundamental frequency) of a given signal by measuring its self-similarity
across time through the following cumulative mean normalized differ-
ence function:

d '
tðτÞ ¼

8><
>:

1; if τ ¼ 0

dtðτÞ
ð1=τÞ

Xτ

j¼1
dtðjÞ

; otherwise; (1)

where dtðτ Þ ¼ rtð0Þ þ rtþτð0Þ � 2rtðτÞ and rtðτ Þ is the autocorrelation
function (ACF). For a periodic sound, the difference function in Eq. (1) is
zero at each time lag τ integer multiple of the fundamental period. For
sounds that are not perfectly periodic, the fundamental frequency is
determined by the first time lag corresponding to a local minimum.
Values of the difference function reflect the aperiodic (or inhar-
monic) component.

We applied the YIN algorithm on our stimuli, and derived two pitch
representation models from the algorithm's output in the following way.
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The time-resolved fundamental frequency f0(t) estimated by the YIN al-
gorithm was discretized by defining a set of K ¼ 128 logarithmically
spaced frequencies F (from 50 to 8000 Hz) and selecting the k-th fre-
quency as follows:

F0ðtÞ ¼ argmin
F

ðjFk � f0ðtÞjÞ: (2)

The resulting 2D representation was then averaged over time,
obtaining a Pitch model which characterized the sounds by the averaged
F0 contour (pitch height) (Fig. 1B).

Additionally, we derived a second model of pitch representation
(referred to as a Weighted Pitch model) that characterized the sounds by
both the estimated pitch height and the perceptual strength (or salience).
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Specifically, we considered the difference function in Eq. (1) as a confi-
dence indicator of the estimated F0 (de Cheveign�e and Kawahara, 2002)
and assumed that it reflects the perceived salience of the pitch. This
assumption is in line with previous studies that considered the amplitude
of the autocorrelation function as a quantitative descriptor of the strength
of the perceived pitch (Leaver and Rauschecker, 2010; Meddis and
Hewitt, 1991; Patterson et al., 1996; Yost et al., 1996). We obtained a
coefficient reflecting the salience of the corresponding pitch as the in-
verse of d'tðτ Þ normalized to the highest value in the whole set of sounds
in each experiment. Low values corresponded to a low reliability of the
estimated F0 value, representing a less salient pitch. The 2D represen-
tation of the F0 contour was then “weighted” by the reliability coefficient
through a point-by-point multiplication and averaged across time
(Weighted Pitch model, Fig. 1A). Additionally, a logarithmic trans-
formation was applied to the resulting feature vector wp to balance the
differences in order of magnitude of the confidence indicator:

wpl ¼
1

1� log10ðwpÞ : (3)

Note that the Weighted Pitch and Pitch models only differed by the
weighting operation, which embedded the hypothesis that the informa-
tion about the harmonic structure of the stimuli (perceptual salience)
might contribute to the fMRI activity related to pitch.

To exclude the possibility that the observed differences between the
Weighted Pitch and the Pitch model (see Results) depended on the overall
difference of fMRI response levels to sounds with high vs low periodicity
strength values, we included two additional models referred to as Sa-
liency and Saliency-Pitch models respectively. The Saliency model repre-
sented sounds by the strength of the corresponding pitch (perceptual
salience) as estimated by averaging the feature vector of the Weighted
Pitch model (K ¼ 1 feature). Note that pitch salience is closely related to
the harmonic-to-noise ratio (HNR) (Giordano et al., 2013; Leaver and
Rauschecker, 2010; Lewis et al., 2009). The Saliency-Pitchmodel, instead,
was based on a combination of pitch strength and height which differed
from that of the Weighted Pitch model. More specifically, the sound
feature estimated with the Saliency model was appended to the feature
vector of the Pitch model (K ¼ 129 features).

Tonotopy and Timbral Brightness models
We compared the described pitch models to a Tonotopy model that

represents the stimuli by their spectral content and a Timbral Brightness
model, which reflects a perceptual property of complex sounds (de
Cheveign�e, 2005) and provides a sparse sound representation similarly to
the pitch models.

The Tonotopy model was obtained by calculating the time-frequency
representation of the acoustic energy with the Short Time Fourier
Transform (STFT). The resulting spectrogram was downsampled to
K¼ 128 logarithmically spaced frequencies between 50 and 8000 Hz and
averaged across time (Fig. 1C). The Timbral Brightness model was ob-
tained by computing the spectral centroid SC(t) as the power distribution
over frequency at time t and selecting the k-th frequency as follows:

scðtÞ ¼
P

kFkXkðtÞP
kXkðtÞ ; (4)

SCðtÞ ¼ argmin
F

ðjFk � scðtÞjÞ; (5)

where Xk denotes the amplitude of each harmonic and Fk is the corre-
sponding frequency value. The 2D representation of the time-resolved
spectral centroid was then averaged across time (Fig. 1D). Note that
here we defined Timbral Brightness as the center of gravity of the power
spectrum, estimated as the weighted sum of frequencies. However, other
measures are possible for the spectral centroid (Kendall et al., 1999;
Marozeau et al., 2003; McAdams et al., 1995).
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Single-voxel encoding

Estimation of the predicted fMRI responses
For each of the sound representation models described above, we

derived the representations of all the stimuli, obtaining an (S� K) feature
matrix F, where S is the number of sounds and K is the number of fea-
tures. The fMRI responses yi ¼ ½y1i; …; ySi�T of the i-th voxel were then
expressed as a linear transformation of the model features F:

yStrain ;i ¼ FStrainwi þ ni; (6)

where Strain is the set of training sounds and n is a noise term. The overall
voxel feature profile wi ¼ ½w1i; …;wKi�T (wki is the contribution of the k-
th feature) was computed solving Eq. (6) with kernel ridge regression
(Bishop, 2006; Hoerl and Kennard, 1970). The regularization parameter
was determined independently for each voxel by generalized cross vali-
dation (Golub et al., 1979). Responses to the testing sounds were then
predicted using the estimated regression weights:

byStest ;i ¼ FStestwi: (7)

FMRI responses and features in the training data were normalized by
removing themean and dividing by the standard deviation across stimuli.
The mean and standard deviation of the training data were used to
normalize the test data (fMRI responses and features). In Experiment 2
we implemented a 4-fold cross validation scheme across the 4 non-
overlapping stimulus sets (see above) and the procedure was repeated
independently for each cross validation.

Voxel-based model comparison
Voxels' prediction accuracy was defined as the voxel-wise Pearson's

correlation coefficient between measured and predicted fMRI responses
to the testing stimuli. For each subject in Experiment 2 accuracy was
averaged across the cross validations (Fisher transform/inverse trans-
form was applied before/after the average). Single-subject maps of ac-
curacy values were projected and smoothed (filter width ¼ 4 vertices) on
subject-specific cortical surfaces. Individual cortical surfaces and corre-
sponding maps were aligned across subjects using Cortex Based Align-
ment (CBA) (Goebel et al., 2006). Group maps of model fit were obtained
by color-coding the median value of vertices that had been included in
the analysis of at least 8 out of the 10 subjects. Significance of the contrast
between two models was assessed by performing a group random-effects
non parametric test on the Fisher transform of the correlation values. The
test statistic was defined for each vertex i as the group average of the
individual difference di ¼ ri;Model1 � ri;Model2 . We computed the null dis-
tribution by changing the sign for a randomly selected subset of subjects
and re-computing the test statistic. This procedure was repeated for all
possible permutations of sign change (2N) and the p value was computed
as the proportion of values in the null distribution equal or higher than
the observed average difference. Data of the two hemispheres were
pooled together and a cluster size threshold procedure was performed
(Forman et al., 1995). The cluster-level false-positive rate was estimated
for each permutation using an initial vertex-level threshold set to
p ¼ 0.05. The minimum cluster size threshold which yielded a
cluster-level false-positive rate (alpha) of 5% was then applied to the
statistical maps.
Automated definition of the Pitch ROI and multi-voxel decoding

The described voxel-based model comparison relies on the spatial
realignment of anatomical/functional data across subjects. To verify the
consistency of the results across subjects, we performed an additional
analysis aimed at identifying in each individual participant, a Pitch ROI.
Furthermore, for these Pitch ROIs, a model-based multivariate decoding
analysis was conducted as a complementary analysis to single voxel



V. De Angelis et al. NeuroImage 180 (2018) 291–300
encoding and to assess the hypothesis that the information about
perceived pitch is represented preferentially within the selected region.

Using the training data only (Eq. (6)), a Pitch ROI (PR) was defined as
the set of voxels for which the Weighted Pitch model fit was most signif-
icant (p � 0.005, uncorrected). The significance level was computed
based on the comparison of the actual fit with the model fits obtained
after permuting (200 permutations) the stimulus labels. Both the maps of
actual and permuted model fit were spatially smoothed in the 3D volume
space (Gaussian kernel, 3 mm FWHM), independently for each permu-
tation (and cross validation in Experiment 2). This procedure was
repeated for each single subject (Fig. S1).

For these individually determined ROIs we conducted a model-based
decoding analysis aimed at reconstructing the model features from fMRI
response patterns. The feature matrix F consisting of the representations
of all the stimuli obtained for the Weighted Pitch model (see above) was
expressed as a linear transformation of the multivoxel pattern response Y
plus a bias term b and a noise term n:

fStrain ;k ¼ YStrainw
T
k þ bk1þ nk; (8)

where Strain is the set of training sounds and 1 is an all-ones vector.
Voxels' contribution to the k-th feature fk (wk ¼ ½wk1; …;wkI�, I¼ number
of voxels) was computed solving Eq. (8) with kernel ridge regression
(Bishop, 2006; Hoerl and Kennard, 1970) and the regularization
parameter was determined independently for each feature by generalized
cross validation (Golub et al., 1979). Features in the testing sounds were
then reconstructed using the estimated regression weights as follows:

bf Stest ;k ¼ YStestw
T
k : (9)

The overall performance of the model was quantified performing a
sound identification analysis on the basis of all reconstructed features.
For each testing sound s, we computed Pearson's correlation coefficient
(rs) between the set of original and of reconstructed features. The
normalized rank m of the correlation was used as a measure of the ability
to correctly identify each sound:

ms ¼ 1� rankðrsÞ � 1
Stest � 1

: (10)

A final identification accuracy per subject was then obtained as the
average of ms across sounds (and cross validations in Experiment 2).

The same analyses were performed separately on a control region
consisting of all the remaining voxels not included in the PR, which was
referred to as Complementary Pitch ROI (PR). The identification accuracies
from Pitch ROI and Complementary Pitch ROIwere compared performing a
paired t-test on the Fisher transform of the accuracy values.

Combining pitch and spectro-temporal modulations for multi-voxel decoding

Previously, we have shown that fMRI responses to natural sounds can
be predicted accurately by a sound representation model based on the
combination of spectro-temporal modulations (Santoro et al., 2014,
2017). Thus, here we examined whether the Weighted Pitch model (i.e.
the best performing of the pitch models tested, see Results) contributed
relevantly to the fMRI-based decoding of sounds in addition to a multi-
resolution modulation-based sound representation model.

First, we estimated a modulation-based representation of each stim-
ulus (Modulationmodel) by applying the cortical stage of the “NSL Tools”
package (available at http://www.isr.umd.edu/Labs/NSL/Software.
htm) to the spectrogram obtained with the STFT. This cortical stage
consists of a bank of 2D modulation selective filters tuned to spectral
modulation frequencies of Ω ¼ [0.5, 1, 2, 4] cyc/oct and temporal
modulation frequencies of ω¼ [1, 3, 9, 27] Hz. The filter bank output was
computed at each frequency along the tonotopic axis and then averaged
over time. In order to decode the same number of features as for the
Weighted Pitch model, we reduced the number of frequency bins to 8
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(with constant bandwidths) and averaged the modulation energy within
each of these bins. This resulted in K ¼ 128 features in total (8
frequencies � 4 spectral modulations � 4 temporal modulations, see
Santoro et al. (2014) for details). Second, we employed this
modulation-based representation to perform multivoxel decoding (as
described by Eqs. (8–10)) in the identified PRs (and corresponding PRs).
As for the Weighted Pitch model, these analyses resulted in a Pearson's
correlation between reconstructed and original features (rs), a normal-
ized rank (ms) per each sound in the test set and an average identification
accuracy score per subject. Third, to examine whether the pitch model
contributes relevant decoding information in addition to the Modulation
model, we calculated a combinedModulation-Pitch identification score by
averaging the correlation coefficients obtained separately for the
Weighted Pitch and Modulation models and re-computing the normalized
rank from the averaged correlation for each sound (Eq. (10)). Fisher
transform/inverse transforms were applied before/after the averaging.

Finally, we compared the identification accuracy obtained with the
combinedModulation-Pitch decoder with that obtained with theWeighted
Pitch and theModulation decoders by performing group-level (one-tailed)
paired t-tests on the Fisher transformed values.

Results

Voxel-based prediction accuracy and model comparison

Fig. 2 shows the group maps of prediction accuracy obtained for all
considered sound representation models. The Weighted Pitch model,
which represented the pitch of natural sounds as a “weighted” combi-
nation of pitch height and salience, showed the highest prediction ac-
curacy for cortical regions located bilaterally along HS, medial to HG, in
lateral HG and adjacent regions in middle STG and in posterior STG
(Fig. 2B). A similar distribution of accuracy values was observed for the
Pitch model (Fig. 2C), where pitch was instead only modeled by the F0
contour. The Tonotopy model, which considered each sound's spectral
energy, showed the most predictive power in voxels surrounding HG
medially (in the first transverse sulcus [FTS]) and posteriorly (along HS)
in both the hemispheres (Fig. 2D). Prediction accuracy of the Timbral
Brightness model, which represented sounds by the height of the spectral
centroid, followed the same arrangement as for the Tonotopy model but
with lower overall values (Fig. 2E). The group maps of the prediction
accuracy obtained for the Saliency model (Fig. 2F) showed lower overall
values with respect to the Pitch and to the Weighted Pitch models. The
prediction accuracy of the Saliency-Pitchmodel (Fig. 2G), instead, showed
an arrangement similar to that of the Pitch model.

Fig. 3 shows the group-level statistical non-parametric maps
comparing theWeighted Pitch to the competing models. The accuracies of
the two pitch models did not differ significantly in the left hemisphere. In
contrast, in the right hemisphere the Weighted Pitch model performed
significantly better than the Pitch model in middle STG (at the lateral
adjacency of HG/HS) and posterior STG (Fig. 3A). When compared to
both the Tonotopy and the Timbral Brightness models, in both the left and
right hemisphere, the Weighted Pitch model yielded significantly higher
prediction accuracy on lateral HG and on adjacent STG regions, which
also extended more posteriorly (Fig. 3B-C respectively). Furthermore, the
Weighted Pitch model outperformed the Saliency model in middle and
posterior STG bilaterally and in the surrounding area of HG of the left
hemisphere (Fig. 3D) and the Saliency-Pitchmodel in right middle STG (at
the lateral adjacency of HG/HS) and right posterior STG (Fig. 3E). These
latter results were similar to those obtained in the comparison to the
Pitch model.
Characterization of the Pitch ROI

Following these voxel-based comparisons, we performed additional
analyses to test the hypothesis that the perceived pitch is encoded
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Fig. 2. Group maps of voxels' prediction accuracy projected on the inflated reconstruction of the group auditory cortex. (A) Surface reconstruction of the group auditory cortex. The black
square in the insets illustrates which part of the complete cortical meshes is displayed (B–G). The prediction accuracy is quantified as the median value across subjects of the voxel-wise
Pearson's correlation coefficient between measured and predicted fMRI responses to the testing sounds. Red [white] colors indicate low [high] accuracy correlation values. Black lines
denote the HG.
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preferentially within a specific region of the auditory cortex. For each
single subject we defined a Pitch ROI (PR) using an automated procedure
based on training data alone (see Materials and Methods). The location of
the PR revealed a high consistency across subjects on lateral HG and
middle STG bilaterally (Fig. 4A, see Fig. S1 for results at single subject
level). These regions were consistent with the locations having the
highest prediction accuracy of the fMRI activity to the testing sounds in
the group analysis (Fig. 4B).

Fig. 4C shows the overlap of the PR with group tonotopy maps in the
cortex-based realigned space. These maps were obtained as by color-
coding the median value across subjects of voxels' characteristic fre-
quency (CF), as estimated with the Tonotopymodel (Moerel et al., 2012).
CF maps showed a typical pattern with multiple low-high frequency
gradients covering HG and surrounding STG (see Moerel et al. (2014) for
a detailed description). The PR mostly matched the region with prefer-
ence for low frequencies occupying the lateral Heschl's gyrus and adja-
cent STG.

When considering a multiresolution sound representation, the energy
distribution over high spectral scales carries information about the pitch
of a sound (see Wang and Shamma (1995) and Discussion). It is therefore
interesting to evaluate the relation of the PR not only to tonotopic maps
but also to maps of characteristic spectral modulations (CSM), as
described in Santoro et al. (2014). Fig. 4D shows the overlap of the PR
with the group CSM maps in the cortex-based realigned space. These
maps were obtained by color-coding the median value across subjects of
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voxels’ characteristic scale, as estimated with the Modulation model
(Santoro et al., 2014). In accordance with previous results, CSM maps
presented a preference for fast spectral scales in regions along HG and in
anterior regions (Santoro et al., 2014; Sch€onwiesner and Zatorre, 2009).
Interestingly, in both hemispheres, only a small portion of the PR
included voxels preferring the fast scales (above 2.5 cyc/oct, purple
colors). The remaining part of the PR corresponded to the area tuned to
lower spectral modulation values, suggesting that the PR encodes a
distinct representation of pitch (see Discussion).

Multivoxel decoding and combination with the modulation model

For both the identified PR and PR, we quantified the capability of the
Weighted Pitch model to correctly decode the perceived pitch of sounds
from the multi-voxel patterns of brain activity by statistical assessment of
the sound identification accuracy (see Materials and Methods). Accuracy
was significantly above chance in both the ROIs (0.5, p ¼ 0.002, two-
sided signed rank test), but pitch identification was significantly more
accurate within the PR (PR: mean [SEM] ¼ 0.65 [0.021]; PR: mean
[SEM] ¼ 0.59 [0.014]; p ¼ 0.006, paired t-test; Fig. 5, see Table S1 for
single subject results).

For these regions, we performed the same identification analysis for
the Modulation and Modulation-Pitch decoders (see Materials and
Methods). As expected (Santoro et al., 2014, 2017), in both the ROIs the
identification accuracy for the Modulation decoder was significantly



Fig. 3. Voxel-based model comparison. The contrast maps show the regions where the Weighted Pitch model significantly outperformed the competing models (p < 0.05; corrected for
multiple comparisons using a cluster size correction). The color-code represents the value of the test statistic d defined for each voxel as the average of the difference between the prediction
accuracy of the two corresponding models.
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higher than chance (PR: mean [SEM] ¼ 0.72 [0.020]; PR: mean
[SEM]¼ 0.69 [0.015], p¼ 0.002, two-sided signed rank test). In both the
ROIs, the identification accuracy for the Modulation decoder was also
significantly higher than the accuracy obtained with the Weighted Pitch
decoder (PR: p ¼ 0.001; PR: p ¼ 4⋅10�4; Fig. 5, see Table S2 for single
subject results).

The combined Modulation-Pitch decoder provided highly significant
identification accuracies within both the ROIs (PR: mean [SEM] ¼ 0.74
[0.021]; PR: mean [SEM] ¼ 0.69 [0.015]; p ¼ 0.002; Fig. 5, see Table S3
for single subject results). Importantly, in the PR the accuracy for the
Modulation-Pitch decoder was significantly higher than the accuracy of
both the Weighted Pitch decoder (p ¼ 1.2⋅10�4) and the Modulation
decoder (p ¼ 0.01) (Fig. 5, left). Conversely, in the PR, the accuracy for
the Modulation-Pitch decoder was significantly higher than the accuracy
of the Weighted Pitch decoder (p ¼ 1.2⋅10�4) but not of the Modulation
decoder (p ¼ 0.09) (Fig. 5, right).

Discussion

In the present study we combined fMRI encoding/decoding with a
computational algorithm of pitch extraction to investigate the repre-
sentation of pitch of natural sounds in the human auditory cortex.

Our results showed that a model representing perceived pitch as a
“weighted” combination of height and salience predicts the fMRI activity
in distinct portions of the auditory cortex comparatively better than other
perceptual and acoustic models. In particular, we found this effect to be
most consistent across subjects in regions located in lateral HG and
adjacent middle-posterior STG (Pitch ROI). This finding is in agreement
with several previous fMRI studies that reported selective responses to
pitch-evoking sounds in similar cortical locations (e.g. Griffiths and Hall,
2012; Patterson et al., 2002; Penagos et al., 2004). The agreement be-
tween previous and our fMRI findings is remarkable as the approaches
differ in many respects. First, most of the studies so far entailed sets of
synthetic stimuli with homogenous acoustic properties (e.g. IRN, har-
monic complexes). Our stimuli, instead, consisted of a wide variety of
real-life sounds that largely differed among each other both in terms of
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their acoustic (spectral and temporal) and perceptual properties. In this
respect, the convergence of results obtained with simple artificial and
complex real-life sounds suggest an overlap between the involved neural
mechanisms. Second, in most previous studies, the localization of audi-
tory cortical regions selective for pitch processing has been based on the
statistical subtraction of the activation levels measured for the pitch
evoking stimuli with those measured for stimuli designed to control e.g.
for the influence of the spectral (or temporal) composition of the sound
(Griffiths and Hall, 2012; Oxenham, 2013). While useful in cases where it
is reasonable to assume that experimental and control sounds differ along
a single dimension, this type of discriminative analysis becomes prob-
lematic with more complex stimuli. In fact, it is difficult to design control
stimuli that are matched to real-life sounds in terms of acoustic and
perceptual properties. With model-based fMRI such control stimuli are
not required as the inference on (the localization of) pitch processing is
based on the statistical assessment and comparison of alternative models
in explaining/predicting fMRI responses. Note that the choice of the
models to compare in fMRI encoding is as relevant as the choice of
control stimuli in typical subtraction designs. In the present study, the
pitch model based on the weighted combination of saliency and height
(Weighted Pitch model) outperformed a model reflecting the spectral
content of the sound (Tonotopy model). This suggests that the activity of
neuronal populations in lateral HG and middle-posterior STG reflects
pitch extraction and pitch representation in addition to the acoustic en-
ergy of the sound. The low performance of the Timbral Brightness model,
instead, might depend on the fact that cortical responses may encode
measures of temporal variability (e.g. interquartile range dissimilarity)
rather than long-term statistics of the spectral centroid (Giordano
et al., 2013).

Importantly, the Weighted Pitch model outperformed two separate
models based on pitch height and salience alone, thus supporting the
hypothesis that the auditory cortical responses in the identified regions
reflect also the strength of pitch perception (Penagos et al., 2004). Pre-
vious studies indicated the involvement of regions of the right hemi-
spheric auditory cortex in processing sound harmonicity (Giordano et al.,
2013; Leaver and Rauschecker, 2010; Lewis et al., 2009). Accordingly,



Fig. 5. Identification accuracy (mean ± SEM) obtained with theWeighted Pitch, Modulation
and Modulation-Pitch decoders within the Pitch ROI (PR) and for the Complementary Pitch
ROI (PR). Horizontal lines indicate the significance of the pairwise comparisons.

Fig. 4. (A) Consistency across subjects of the Pitch ROI. Orange [red] indicates an overlap
of 40% [80%] across the subjects, respectively. (B) Overlap of the Pitch ROI with pre-
diction accuracy group maps estimated for the Weighted Pitch model (i.e., the map dis-
played in Fig. 2B). (C,D) Pitch ROI superimposed to the characteristic frequency (CF) and
spectral modulation (CSM) maps respectively. Panels (B–D) show only voxels active in at
least 8 out of the 10 subjects. Black solid lines delineate the Pitch ROI corresponding to
more than 60% overlap across subjects. Black dotted lines denote HG.
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our Saliency model performed best on the STG of the right hemisphere.
However, our findings support the relevance of pitch height in addition
to salience in the encoding of natural sounds by the auditory cortex. In
particular, in the highlighted auditory cortical regions, a modulatory
(multiplicative) combination of salience and height in the Weighted Pitch
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model outperformed the simpler (additive) conjunction of height and
salience information (Saliency-Pitch model) and the salience information
alone (Salience model). We suggest that theWeighted Pitch model reflects
a representation that more closely reflect the perception of the pitch of
natural sounds.

Previous studies in the marmoset monkey reported that the largest
number of “pitch-sensitive” neurons were located in a low-frequency
region between A1 and lateral belt (Bendor and Wang, 2005). To
examine the relation between the identified Pitch ROI and the auditory
cortical tonotopic maps, we used the tonotopy model to derive topo-
graphic maps of voxels’ characteristic frequency (CF) (Fig. 4C; see also
Moerel et al. (2012)). The resulting maps followed the tonotopic organi-
zation of the human auditory cortex described in preceding imaging
studies using fMRI (Da Costa et al., 2011; Formisano et al., 2003; Moerel
et al., 2012; Saenz and Langers, 2014). Consistent with the findings in the
marmoset monkey, the Pitch ROI overlapped substantially with the low
frequency regions located in antero-lateral HG, but also extended into
higher frequency clusters in middle/posterior STG.

Of the many existing algorithms of pitch extraction (e.g. de
Cheveign�e, 2005; Rabiner et al., 1976) we selected the YIN algorithm
because it provided robust estimates of fundamental period (frequency)
and harmonicity (aperiodicity) not only for speech sounds but also for
higher pitched sounds of other categories. Whereas YIN is based on a
temporal model of pitch (autocorrelation), our data and analyses do not
allow making conclusions on whether pitch is extracted along the audi-
tory system through temporal or spectral (spatial) mechanisms. In fact,
only the output of the algorithm is used in the fMRI encoding/decoding
analyses. Thus, using a different algorithm based on spectral analysis
(Cohen et al., 1995; Shamma and Klein, 2000) would have affected our
results only if the output representation would have been different.
Similarly, we have formulated the fMRI encoding/decoding problem
using a “spectral” representation of pitch, which was done in order to
compare directly the pitch model to acoustic (tonotopic) models ac-
counting for the sound spectral energy. Note that the fMRI responses
could have been modeled equivalently (Eqs. (6) and (8)) in terms of a
“temporal” representation of pitch. However, the nature of the fMRI
signal does not allow resolving the temporal dynamics of the underlying
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neuronal populations. Investigating the contribution of temporal mech-
anisms to the coding of pitch in complex sounds thus requires electro-
physiological measurements (e.g. Bendor et al., 2012).

In our previous work we had examined the cortical processing of
natural sounds by using either single-voxel encoding or multivariate
decoding models. In particular, we adopted a single-voxel encoding
approach to derive the profiles of voxels’ sensitivity to physical acoustic
features, such as frequency tuning curves (Moerel et al., 2012) and
spectro-temporal modulation transfer functions (Santoro et al., 2014).
Additionally, we employed a model-based multivariate decoding tech-
nique to further investigate how acoustic features (frequencies and
modulations) are represented by patterns of activation within distinct
auditory cortical regions (Santoro et al., 2017). Here we combined fMRI
encoding and decoding as complementary techniques (Naselaris et al.,
2011). Specifically, we first used the encoding approach to compare
competing models of stimulus representation at single-voxel level. This
comparison was done using group-level statistics based on
non-parametric permutation testing and a cluster-based correction for
multiple comparisons.

The assessment of single-voxel encoding results, however, relies on
the spatial realignment of anatomical/functional data across subjects.
Furthermore, the encoding model makes the assumption that the stim-
ulus features that maximally contribute to a voxel response are also those
encoded with greatest fidelity. But, higher responses might not neces-
sarily mean better encoding and spatial response patterns may be infor-
mative of the pitch of complex sounds (Staeren et al., 2009). For these
reasons, we complemented the single-voxel encoding with multivariate
decoding, where data from individual voxels were jointly modeled.
Whereas multivariate decoding is often limited to anatomically
pre-defined ROIs, we implemented an automated procedure to define the
Pitch ROIs at single-subject level. This enabled us to assess that spatial
patterns of activation in the lateral HG and adjacent STG regions are
indeed more informative of pitch height and salience compared to the
complementary remainder of auditory cortex.

Additionally, our multivariate analyses showed that a decoder
combining pitch and spectro-temporal modulation information is slightly
but significantly more accurate than a decoder based on spectro-temporal
modulation alone. This is consistent with current models of auditory
scene analysis hypothesizing that the auditory system uses pitch in par-
allel to the multi-resolution representation for parsing the auditory ob-
jects of complex scenes (Elhilali and Shamma, 2008; Shamma et al.,
2011). Note that within the modulation-based representation, the energy
distribution over the spectral scales carries information about the pitch of
a sound (Wang and Shamma, 1995). Harmonic sound components
generate logarithmically spaced energy peaks in the spectral modulation
scale-frequency plane, especially in the high-scale region (Zotkin et al.,
2005). However, in such representation pitch is encoded only implicitly
and obtaining an explicit pitch representation requires additional cal-
culations. For example, an estimate of pitch can be obtained from the
slope of the straight line that connects the scale peaks (Wang and
Shamma, 1995) or using an algorithm based on spectral analysis
(Shamma and Klein, 2000). Our results showing that the Pitch ROI only
marginally overlaps with the regions preferring high spectral scales
(Fig. 4D) is consistent with the hypothesis that the Pitch ROI encodes an
explicit pitch representation, which may be the result of such calcula-
tions. In conclusion, our model based analysis of fMRI responses dem-
onstrates that auditory cortical regions that have been implicated in the
analysis of the pitch of simple synthetic sounds also represent the pitch of
complex real life sounds. Furthermore, our results suggest that these
representations do not only encode perceived pitch height but also
perceived pitch saliency.
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