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Abstract: Alzheimer’s disease (AD) patients show altered patterns of functional 

connectivity (FC) on resting state functional magnetic resonance imaging (RSfMRI) scans. 

It is yet unclear which RSfMRI measures are most informative for the individual 

classification of AD patients. We investigated this using RSfMRI scans from 77 AD patients 

(MMSE = 20.4 ± 4.5) and 173 controls (MMSE = 27.5 ± 1.8). We calculated i) FC matrices 

between resting state components as obtained with independent component analysis (ICA), 

ii) the dynamics of these FC matrices using a sliding window approach, iii) the graph 

properties (e.g., connection degree, and clustering coefficient) of the FC matrices, and iv) 

we distinguished five FC states and administered how long each subject resided in each of 

these five states. Furthermore, for each voxel we calculated v) FC with 10 resting state 

networks using dual regression, vi) FC with the hippocampus, vii) eigenvector centrality, 

and viii) the amplitude of low frequency fluctuations (ALFF). These eight measures were 

used separately as predictors in an elastic net logistic regression, and combined in a group 

lasso logistic regression model. We calculated the area under the receiver operating 

characteristic curve plots (AUC) to determine classification performance. The AUC values 

ranged between 0.51 and 0.84 and the highest were found for the FC matrices (0.82), FC 

dynamics (0.84) and ALFF (0.82). The combination of all measures resulted in an AUC of 

0.85. We show that it is possible to obtain moderate to good AD classification using 

RSfMRI scans. FC matrices, FC dynamics and ALFF are most discriminative and the 

combination of all the resting state measures improves classification accuracy slightly.  

 

Keywords: resting state fMRI, Alzheimer’s disease, classification, independent component 

analysis, dual regression, dynamic functional connectivity  
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1. Introduction 
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by widespread grey 

matter atrophy (Jack et al., 2004), specifically hippocampal atrophy is considered to be the 

hallmark of AD (Morra et al., 2009). In order to develop a cure, or to slow down the disease 

progression, it is essential to diagnose AD in an early stage (Prince et al., 2011). 

 

AD patients differ in their pattern of functional connectivity (FC) as shown by resting state 

functional magnetic resonance imaging (RSfMRI) scans. They have decreased FC between 

the hippocampus and several regions throughout the neocortex (Allen et al., 2007; Wang et 

al., 2006), reduced FC within the default mode network (Binnewijzend et al., 2012; Greicus 

et al., 2004), and increased FC within the frontal networks (Agosta et al., 2012). AD patients 

also have different large-scale FC matrices (Brier et al., 2012) and graph properties derived 

from these matrices (Sanz-Arigita et al., 2010; Supekar et al., 2008). In addition, AD 

patients differ in the dynamics of their FC and their dwell time in specific FC states (Jones 

et al., 2012). Furthermore, AD patients have less signal in the low frequency domain (0 - 0.1 

Hz) of their resting state signal (Han et al., 2011). 

 

These FC differences might exist in an early stage of AD, even before the presence of brain 

atrophy and cognitive decline (Buckner et al., 2005; Sheline and Raichle, 2013). For 

instance, cognitively normal elderly with increased amyloid binding, an important AD 

indicator, have decreased FC between the precuneus and several regions within the default 

mode network, and these effects are similar to those observed in AD patients (Sheline et al., 

2010a). Carriers of the APOE ε4 gene, who are at genetic risk for AD, have reduced FC 

between the precuneus and the hippocampus (Sheline, et al., 2010b), and increased FC 

within the default mode network (Filippini et al., 2009).  

 

Resting state fMRI might be used for the diagnosis or even early detection of AD and it is 

important to investigate this potential (Buckner et al., 2005; Sperling, 2011). AD biomarkers 

can be evaluated using individual classification studies. Resting state fMRI based AD 

classification studies have progressed through the use of machine learning techniques. 

Machine learning techniques enable the incorporation of many predictors into one predictive 

model and they automatically select the relevant ones. So far, AD has been classified 

moderately to good using FC matrices (Challis et al., 2015; Chen et al., 2011; Schouten et 

al., 2016) and their graph properties (Khazaee et al., 2015), FC dynamics (Wee et al., 2016), 
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FC within the default mode network (Koch et al., 2012) and the amplitude of low frequency 

fluctuations (ALFF; Dai et al., 2012).  

 

It is not known which of these resting state measures is best for AD classification. 

Moreover, the combination of different resting state measures might improve AD 

classification (Dai et al., 2012; de Vos et al., 2016; Mesrob et al., 2012; Schouten et al., 

2016; Sui et al., 2013). In this study, we will use a wide range of resting state measures in 

combination with machine learning techniques to classify AD patients and controls. These 

measures include FC with several resting state networks (RSNs), FC with the hippocampus, 

FC matrices and their graph properties, FC dynamics, FC states, and the ALFF within the 

resting state signal. We will determine the most accurately predicting measures and combine 

them to investigate whether this increases the classification accuracy. 
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2. Materials and methods 
 
2.1. Participants 

Our dataset consisted of 77 clinically diagnosed probable AD patients and 173 

cognitively normal elderly controls (see Table 1). The AD patients were scanned at the 

Medical University of Graz as a part of the prospective registry on dementia 

(PRODEM; see also Seiler et al., 2012). The inclusion criteria for PRODEM are: 

dementia diagnosis according to DSM-IV criteria (American Psychiatric 

Association, 2000), non-institutionalisation or need for 24-hour care, and the 

availability of a caregiver who agrees to provide information on the patients’ and his 

or her own condition. Patients were excluded if they were unable to sign an 

informed consent or if co-morbidities were likely to preclude termination of the 

study. We used the baseline scans from the PRODEM study, and only included 

patients that were diagnosed with AD in line with the NINCDS-ADRDA Criteria 

(McKhann et al., 1984), and for which anatomical MRI and RSfMRI scans were 

available. The controls were scanned at the same scanning site, over the same time 

period, with the same scanning protocol as a part of the Austrian stroke prevention 

study. The Austrian Stroke Prevention Study is a community-based cohort study on the 

effects of vascular risk factors on brain structure and function in elderly participants 

without a history or signs of stroke and dementia on the inhabitants of Graz, Austria 

(see also Schouten et al., 2016). 
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Table 1. Sample demographics 

 Controls  AD1 patients  X2 

Gender (♂/♀) 74/99 (57% ♀)  31/46 (60% ♀)  n.s.2 

      

 min - max mean ± SD min - max mean ± SD t-test 

Age 47 - 83 66.1 ± 8.7 47 - 83 68.6 ± 8.6 p<0.05 

Education (years) 9 - 18 11.5 ± 2.8 4 - 20 10.8 ± 3.2 n.s. 

Disease duration (months) - - 2 - 156 26.7 ± 24.5 - 

MMSE3 22 - 30 27.5 ± 1.8 10 - 28 20.4 ± 4.5 p<0.001 

CDR4 - - 0.5 - 2 0.8 ± 0.3 - 

GDS5 0 - 11 2.1 ± 2.1 0 - 10 2.6 ± 2.6 n.s. 

 
1AD = Alzheimer’s disease, 2MMSE = mini mental state exam, 3CDR = clinical 
dementia rating, 4GDS = geriatric depression scale. 
 
2.2. MR acquisition 
All participants were scanned on a Siemens Magnetom TrioTim 3T MRI scanner. 

The anatomical T1-weighted images were acquired with the following parameters: TR 

= 1900 ms, TE = 2.19 ms, flip angle = 9°, and an isotropic voxel size of 1 mm. The 

RSfMRI session was conducted, acquiring 150 volumes with TR = 3000 ms, TE = 

30 ms, flip angle = 90°, 40 axial slices, with an isotropic voxel size of 3 mm. The 

participants were instructed to lie still with their eyes closed, and to stay awake. 

 

2.3. MRI preprocessing 
The MRI data were preprocessed using the FMRIB Software Library (FSL, version 

5.0) (Jenkinson et al., 2012; Smith et al., 2004). For the anatomical MRI this in-

cluded brain extraction, bias field correction, and non-linear registration to standard 

MNI152 template (Grabner et al., 2006). For the RSfMRI data this included brain 

extraction, motion correction, a temporal high pass filter with a cut-off point of 100 

seconds, and spatial smoothing. The mean framewise displacement as calculated by 

MCFLIRT  from FSL (Jenkinson et al., 2002) ranges from 0.02 to 0.42 mm (mean = 

0.10, SD=0.06) for the control subjects, and from 0.03 to 0.55 mm (mean = 0.13, 

SD=0.11) for the AD patients (p < 0.05). To control for head motion, we applied motion 

correction using MCFLIRT (Jenkinson & Smith, 2002), and regressed the motion pa-

rameters out of the fMRI data. Additionally, we used the FMRIB’s ICA-based 

Xnoiseifier (FIX, version 1.06) to automatically identify and remove noise compo-



 7 

nents from the fMRI data (Salimi-Khorshidi et al., 2014), thereby increasing the signal 

to noise ratio (Griffanti et al., 2016). For the spatial smoothing, we used a smoothing 

kernel with a full width half maximum of 3 mm. We performed minimal smoothing, 

because this is recommended prior to running an ICA in order to reduce the probability 

of finding spurious components (Jenkinson, 2015). 

 

2.4. Resting state measures 

We calculated eight types of measures from the RSfMRI data. For most of those eight 

types of measures we calculated more than one variety, resulting in a total of 31 

measures. These RSfMRI measures are listed in Table 2, along with the number of 

values they comprise. These values are used as predictors in the classification analyses. 

Figure 1 summarises the procedures used to calculate the RSfMRI measures. A more 

elaborated description is written below.  
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Table 2. List of resting state measures used for Alzheimer’s disease classification 

Resting state measure 
 

 

# of predictors 

1: FC1 matrices  
1a. 20 X 20 full correlation 190 
1b. 70 X 70 full correlation 2415 
1c. 20 X 20 sparse partial correlation 190 
1d. 70 X 70 sparse partial correlation 2415 
FC dynamics  
2a. SD2 of 20 X 20 full correlation FC matrix 190 
2b. SD of 70 X 70 full correlation FC matrix 2415 
2c. SD of 20 X 20 sparse partial correlation FC matrix 190 
2d. SD of 70 X 70 sparse partial correlation FC matrix 2415 
3: FC states  
3a. FC states of 20 X 20 full correlation FC matrix 5 
3b. FC states of 70 X 70 full correlation FC matrix 5 
3c. FC states of 20 X 20 partial correlation FC matrix 5 
3d. FC states of 70 X 70 partial correlation FC matrix 5 
4: Graph metrics  
4a. Graph metrics of 20 X 20 full correlation FC matrix 124 
4b. Graph metrics of 70 X 70 full correlation FC matrix 424 
4c. Graph metrics of 20 X 20 partial correlation FC matrix 124 
4d. Graph metrics of 70 X 70 partial correlation FC matrix 424 
5: FC with resting state networks  
5a. FC with visual network 1 190981 
5b. FC with visual network 2 190981 
5c. FC with visual network 3 190981 
5d. FC with default mode network 190981 
5e. FC with the cerebellum 190981 
5f. FC with sensorimotor network 190981 
5g. FC with auditory network 190981 
5h. FC with executive control network 190981 
5i. FC with frontoparietal network 1 190981 
5j. FC with frontoparietal network 2 190981 
6: FC with Hippocampus  
6a. FC with left hippocampus 190981 
6b. FC with right hippocampus 190981 
7: Eigenvector centrality  
Fast eigenvector centrality mapping 190981 
8: ALFF3  
8a. ALFF 190981 
8b. fALFF4 190981 
All resting state measures combined 2,876,251 
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1FC = functional connectivity, 2SD = standard deviation, 3ALFF = amplitude of low 
frequency fluctuations, 4fALFF = fractional amplitude of low frequency fluctuations. 
 
  



 10 

Figure 1 here. Two column 
 
 

 

2.4.1. Functional connectivity matrices 

For each participant, we calculated FC between RSNs. We used temporal concatenation 

ICA in FSL MELODIC (Beckmann & Smith, 2004) to obtain RSNs. First, we regis-

tered the functional data of all participants to standard space and concatenated them 

along the time dimension. We then performed a low and a high dimensional ICA on the 

concatenated data set, forcing a solution with 20 and 70 components respectively. The 

components of these two ICA solutions are shown in Figure S2 in the supplementary 

materials. We registered the resulting ICA component weight maps back to subject 

space, weighted them by the subject specific grey matter density maps, and multiplied 

them with the functional data. We then calculated the mean time courses for the compo-

nents and used these for the FC analysis. We calculated both full and partial correlation 

matrices. For the partial correlation matrices, we used the graphical lasso algorithm 

(Friedman et al., 2008) implemented in MATLAB (MATLAB 2013a, The MathWorks 

Inc., Natick, MA, 2000).  We set the ƛ parameter at 100, because this setting works best 

in most cases for fMRI functional connectivity (Smith et al., 2011). For each partici-

pant, we thus calculated four FC matrices.  The two 20 by 20 matrices each contain (20 

* 19)/2 = 190 unique elements, and the 70 by 70 matrices each contain (70 * 69)/2 = 

2415 unique elements. We used these elements as predictors for classification. 

 

2.4.2. Dynamics of functional connectivity matrices 

We also calculated the dynamics of the above described FC matrices using a sliding 

window approach (Chang and Glover 2011; Hutchinson et al., 2013; Jones et al., 2012). 

We used a window size of 33 seconds, similar to Jones et al. (2012) and Rashid et al. 

(2014), because it was shown that time windows as short as 30 seconds can provide rea-

sonable good connectivity estimates (Shirer et al. 2012). We shifted the windows one 

volume at a time, resulting in 140 windows (Jones et al., 2012; Rashid et al., 2014). 

Within each window we calculated the four FC matrices as described in the previous 

paragraph. Then we calculated the standard deviation of the FC matrices over all the 

windows. This resulted in four matrices of standard deviations for each subject, with 

equal size as the FC matrices. We used the elements of these matrices as predictors for 

classification. 
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2.4.3. Functional connectivity states 

For each of the four types of FC matrices we distinguished five ‘FC states’ and 

administered how long each subject resided in each of these five states. Functional 

connectivity states are patterns of FC that reoccur in time across participants (Allen et 

al., 2012; Jones et al., 2012; Rashid et al., 2014). In order to determine the FC states, 

we clustered the sliding window FC matrices using k-means clustering. So, for each of 

the four types of FC matrices we clustered the 250 (number of subjects) * 140 (number 

of windows) = 35000 sliding window matrices. We created k=5 clusters like Jones et 

al. (2012) and Rashid et al. (2015) and we used the Manhattan distance criterion like 

Allen et al. (2012). Then, for each participant we counted the number of sliding 

window matrices that were assigned to each of the five FC states. The five frequency 

values for each of the four types of FC matrices were used as predictors for 

classification. 

 

2.4.4. Graph metrics 

For each of the four types of FC matrices we calculated commonly used graph metrics. 

We used both the original and the binarized version of the FC matrices. Binary links 

denote the presence or absence of connections, while the original values contain 

information about the connection strengths (Rubinov & Sporns, 2010). Current network 

methods cannot quantify the role of negative connections in network organisation 

(Rubinov & Sporns, 2010) and therefore we absolutized the negative links. We 

binarized the full correlation matrices by maintaining the 20% largest absolute 

correlations within each matrix (Khazaee et al., 2015). Since the sparse partial 

correlation matrices are sparse from itself, we did not apply a binarization threshold, 

but binarized the matrices by transforming all values greater than zero to 1. We used 

the Brain Connectivity Toolbox (Rubinov & Sporns, 2010) available for MATLAB 

(MATLAB 2013a, The MathWorks Inc., Natick, MA, 2000) to calculate the graph 

metrics. For the original connectivity matrix, we calculated the connection strength, 

weighted betweenness centrality, and weighted clustering coefficient for every node in 

the network and the weighted characteristic path length and weighted transitivity for 

the entire network (Rubinov & Sporns, 2010). For the binarized connectivity matrix we 

calculated the connection degree, betweenness centrality, and clustering coefficient for 

every node in the network and the characteristic path length and transitivity for the 

entire network (Rubinov & Sporns, 2010). So, in total we calculated 10 different graph 
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measures, six measures for every node and four measures for the entire network. This 

resulted in 6*20 + 4*1 = 124 predictors for the 20*20 FC matrices and 6*70 + 4*1 = 

424 predictors for the 70*70 FC matrices. 

 

2.4.5. Whole brain functional connectivity with resting state networks 

We calculated whole brain FC with 10 RSNs using the dual regression approach in FSL 

(Filippini et al., 2009). We used templates that were obtained using an independent data 

set to increase the reproducibility of our findings (Griffanti, 2016). We used the RSN 

templates that were obtained using an ICA by Smith et al. (2012). These RSNs are 

freely available online 

(http://www.fmrib.ox.ac.uk/analysis/brainmap+rsns/PNAS_Smith09_rsn10.nii.gz) as 

spatial maps in standard space. These 10 RSNs include three visual networks, the 

default mode network, the cerebellum, a sensorimotor network, an auditory network, an 

executive control network and two frontoparietal networks. Additionally, we included 

the white matter (WM) and cerebral spinal fluid (CSF) maps provided by FSL 

(Jenkinson et al., 2012; Smith et al., 2004) as confound maps. Those 12 spatial maps 

(10 RSNs plus two confound maps) were then used in a dual regression analysis. First, 

for each subject, the 12 spatial maps were regressed (as spatial regressors in a multiple 

regression) into the subjects' 4D space-time dataset. This results in a set of subject-

specific time series, one for each spatial map. Next, those time series were regressed (as 

temporal regressors, again in a multiple regression) into the same 4D dataset, resulting 

in 12 subject-specific spatial maps, one for each RSN and one for each of the two 

confound maps. These subject-specific spatial maps represent whole brain FC with the 

RSNs. We used the voxel-wise whole brain FC results for the ten RSNs as predictors 

for classification. 

 

2.4.6. Whole brain functional connectivity with hippocampus 

For each participant, we calculated whole brain FC with the left and with the right 

hippocampus (Allen et al., 2007; Wang et al., 2006). We first calculated the time course 

of the hippocampus for each participant. To this end we segmented the hippocampus in 

the anatomical scan using FSL First. We eroded the segmented hippocampus with three 

voxel layers to ascertain that only hippocampus voxels were included. The eroded 

hippocampus was then affine registered to the functional data and we calculated the 

mean time course of the functional data within the hippocampus mask. Then, for each 

participant we regressed the time course of the hippocampus, along with the mean WM 
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and CSF time courses as confound regressors, into the functional data using multiple 

regression. This resulted in a whole brain FC map with the hippocampus. We 

performed this analysis for both the left and the right hippocampus and used the two 

resulting whole brain FC maps as predictors for classification. 

 

2.4.7. Eigenvector centrality 

For each participant, we calculated an eigenvector centrality map. Eigenvector 

centrality attributes a value to each voxel in the brain such that a voxel receives a large 

value if it is strongly correlated with many other voxels that are themselves central 

within the network (Lohmann et al., 2010). We used the fastECM algorithm (Wink et 

al., 2012; Binnewijzend et al., 2014) to calculate a whole brain eigenvector centrality 

map in standard space for each participant. 

 

2.4.8. Amplitude of low frequency fluctuations 

We calculated ALFF (Biswal et al., 2010; Zang et al., 2007) and fractional ALFF 

(fALFF) (Zou et al., 2008) for each participant. We used the REST software package 

(Song et al., 2011) to calculated whole brain ALFF and fALFF maps. ALFF was 

defined as the power within the 0 - 0.1 Hz frequency band and fALFF was defined as 

the power within the 0 - 0.1 Hz frequency band divided by the power of the whole 

frequency spectrum. For standardisation purposes, we divided the voxels’ 

ALFF/fALFF values by the mean ALFF/fALFF within a subjects’ whole brain (Zang et 

al., 2007). 

 

2.5. Statistical analyses 

For each of the 31 groups of predictors of the eight RSfMRI modalities we used an elastic 

net logistic regression model to classify the subjects as either AD or control. Elastic net 

regression is commonly used for neuroimaging classification studies (Teipel et al., 2017; 

Nir et al., 2016; Trzepacz et al., 2016). We used the glmnet package (Friedman et al., 

2010; Zou & Hastie, 2005) available for R (R version 3.1.2, R Core Team, 2014). Elastic 

net regression uses penalties to hinder the predictors from entering the regression model 

(Friedman et al., 2010; Zou & Hastie, 2005). Thus, only the most relevant predictors will 

enter the regression model, which is helpful if the number of predictors outnumbers the 

number of subjects. Elastic net regression uses a combination of an L1 (LASSO) (Tibshi-

rani, 1996) and L2 (Ridge) (Hoerl and Kennard, 1970) penalty. Therefore, two hyper pa-

rameters should be set: the α parameter determines the relative weight of the two different 
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penalties and λ determines the size of those penalties. Elastic net logistic regression has 

already been used for AD classification (de Vos et al., 2016; Schouten et al., 2016; 

Schouten et al., 2017; Teipel et al., 2015; Trzepacz et al., 2014). For the combined classi-

fication model, we concatenated the 31 groups of predictors, resulting in a combined set 

containing 2,876,251 predictors. These predictors were jointly included in the group lasso 

model (Simon et al., 2013) and we informed the group lasso with an index vector that in-

dicates the group membership of the predictors. The group lasso is similar to the elastic 

net, but sparse with respect to groups of predictors. This improves interpretation of the 

combined model, because a modality is either entirely included or excluded from the pre-

diction model. We used the SGL package (Simon et al., 2013) available for R (R version 

3.1.2 , R Core Team, 2014). 

 

We used cross validation to ensure that we are not overfitting the prediction models. In our 

case there are two potential sources of overfitting. We could either include too many 

predictors in our logistic regression model or we could overestimate the classification 

accuracy by looping over all the values of the hyper parameters and only pick the best result. 

To ascertain that we are not subject to any of these two sources of overfitting we used a 

nested cross validation approach (Krstajic et al., 2014). We used the inner loop of the nested 

cross validation to tune the hyper parameters and the outer loop to fit and test the logistic 

regression model. For both the inner and outer loop we used 10-fold cross validation, thus 

using 90 percent of the subjects in the training set and 10 percent in the test set, and 

repeating this 10 times such that all subjects were part of the test set once. 

 

We made receiver operating characteristic (ROC) curves and calculated the area under the 

curve (AUC) as a measure of classification performance. The AUC is invariant to the class 

distribution (Bradley, 1997; Fawcett, 2004), which is an advantage since the number of con-

trol subjects is larger than the number AD patients. We also calculated sensitivity, specific-

ity and balanced accuracy values for those classification cut-offs that resulted in the highest 

balanced accuracy. We repeated the cross validation procedure 10 times to get a more reli-

able cross validation error (Krstajic et al., 2014) and extracted the mean AUC value. 

 

In order to statistically compare the AUC values we used bootstrap tests for paired AUCs 

(Hanley and McNeil, 1983) implemented in the pROC package (Robin et al., 2011) 

available for R (R version 3.1.2, R Core Team, 2014). For the comparison of the different 

resting state measures we used two-sided tests, because we have not formulated any 
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directed hypotheses for these comparisons. To compare the combined model with the 

single measures we applied one-sided hypothesis tests, because we hypothesized that the 

combined model would outperform the single measures. We present uncorrected p-values 

and Bonferroni corrected p-values. The Bonferroni correction was applied separately to 

the inter measure comparisons and the comparisons of the single measures with the 

combined model.  
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3. Results 

 

3.1. Classification results 

Figure 2 shows the AUC values for the 31 different types of resting state measures and 

the combined model. Table 3 also presents values for sensitivity, specificity and 

balanced accuracy. The AUC values range between 0.51 and 0.84. The functional 

connectivity matrices (AUC values between 0.72 and 0.82) and the FC dynamics (AUC 

values between 0.72 and 0.84) distinguish AD patients and controls quite well. 

Particularly the sparse partial correlations between the 70 ICA components (AUC = 

0.82) and the standard deviations of these sparse partial correlations over time (AUC = 

0.84) have high AUC values. Also, the ALFF measures are discriminative for AD. 

ALFF has an AUC value of 0.82, and fALFF has an AUC value of 0.69. The FC states 

(AUC values between 0.55 and 0.74) and the graph metrics (AUC values between 0.70 

and 0.79) have reasonable classification accuracies. Functional connectivity with the 10 

RSNs (AUC values between 0.52 and 0.71) mostly performs poorly, except for FC with 

the default mode network (AUC = 0.70) and the executive control network (AUC = 

0.71). FC with the left (AUC = 0.59) and right (AUC = 0.51) hippocampus result in 

poor classification performances and Eigenvector centrality mapping results in 

moderate classification performance (AUC = 0.69). As shown in Figure 2 on the right, 

the combination of all the resting state measures using the group lasso model results in 

an AUC value of 0.85, which is higher than any of the measures used alone. Combining 

resting state measures thus seems beneficial, although the effect is small. 

 

Figure 3 shows the results of the statistical comparisons between the AUC values. The 

top right half of the matrix contains the uncorrected p-values and the bottom left half 

contains the Bonferroni corrected results. The red coloured elements represent p values 

smaller than 0.05. The bottom row and the most right column show the comparisons of 

the combined model with the single measures. After correction, there are still a consider-

able amount of significant differences between the AUC values. The connectivity matri-

ces, the connectivity dynamics and ALFF have significantly higher AUC values than 

many of the poor performing resting state measures. However, these best performing 

measures do not differ significantly from each other. The combined model significantly 

outperforms most single measures, but it is not significantly better than the best perform-

ing measures. 
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3.2. Combined classification model 

Figure 4 shows the contribution to the combined model for each of the 31 resting state 

measures. The y-axis represents the sum of the absolute standardised beta values for all 

the predictors within a resting state measure. A high value represents an important role 

for that group of predictors within the combined model. In order to quantify the spread 

of the contributions we fitted the group lasso model repeatedly on 100 bootstrap 

samples. The 100 results are represented by the boxplots. In line with the results of the 

single modalities, the FC matrices and the FC dynamics largely contribute the 

combined prediction model. There is also some contribution of the FC states and the 

graph metrics. Remarkably, ALFF hardly contributes, despite its discriminative power 

when used alone. There is considerable spread in the contribution of the resting state 

measures as shown by the 100 bootstrap results. None of the resting state measures 

contributes to the group lasso model in each bootstrap sample. However, it remains 

clear that the FC matrices and FC dynamics are important for the combined prediction 

model, whereas the other resting state measures contribute minimally or not at all. 

 

3.3. Supplementary analyses 

 

3.3.1. Relation between different resting state measures 

To explore relations between the resting state modalities, we calculated correlations 

between the 31 different resting state measures. These are presented in supplementary 

Figure S1. Straightforward calculation of correlation coefficients between the 31 

resting state fMRI measures was not possible, because each resting state fMRI measure 

contains multiple predictors and the number of predictors is different for every 

measure. To overcome this problem, we ran a principal component analysis (PCA) for 

each of the 31 measures and cross correlated the component scores of all the 31 first 

components. Not surprisingly, resting state measures within the same modality are 

generally highly related. In addition, FC matrices, FC dynamics, FC states and ALFF 

appear to be related to each other. 

 

3.3.2. Functional connections important for classification 

To explore which of the ICA components were most important for AD classification, 

we plotted the mean beta values over all cross validation folds and cross validation 

repetitions for the FC matrices in supplementary Figure S3. Functional connectivity 

between higher components have larger beta weights than FC between lower 



 18 

components. Figure S2 shows that higher components are in fact real functional 

networks, whereas some lower components are noise components. This suggests that 

information on real functional networks was contributing to the classifier. 

 

3.3.3. Percentage of non-zero parameters 

For each resting state measure, we looked at the percentage of predictors that 

contributed to the classification model. Figure S4 shows the mean percentage of non-

zero parameters over all cross validation folds and cross validation repetitions for each 

resting state measure. The percentages are mostly over 20%, indicating that for most 

measures many predictors are included in the classification model. 

 

3.3.4. Voxel-wise vs. averaging over regions 

The AUC values for resting state modalities one to four are mostly higher than the 

AUC values for resting state modalities five to eight. One notable difference between 

these two groups is the number of predictors. The number of predictors within resting 

state modalities one to four ranges from five to 2415 per category, whereas resting state 

modalities five to eight are voxel-wise maps and they contain 190981 predictors per 

category. To explore the possibility that the number of predictors influences the 

classification performance, we averaged the voxel-wise maps over the 70 components 

as obtained by the high dimensional ICA and reran the classification analyses with the 

reduced number of predictors. Figure S5 shows both the original AUC values and the 

AUC values after averaging over the 70 components. The differences are small and the 

ranges of the different cross validation repetitions are most of the time overlapping. 

The low classification performance for some of these categories seems not to be caused 

by the large number of predictors. 

 

3.3.5. Optimal value analysis for the number of ICA components 

We investigated the optimal number of ICA components for our connectivity analyses. 

We ran ICA analyses for 5 to 100 components with steps of five. For each number of 

components, we calculated connectivity matrices with both full or sparse partial correla-

tions, and the dynamics of these connectivity matrices. The results are plotted in Figure 

S6. Calculating only five components seems to be too few, but upwards of 10 compo-

nents the results are too diverse to draw conclusions on the optimal number of compo-

nents.  
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Resting state measure Area under the 
ROC curve 

Sensitivity Specificity Balanced 
accuracy 

1: FC1 matrices     

1a. 20 X 20 full correlation 0.74 0.73 0.68 0.71 

1b. 70 X 70 full correlation 0.72 0.62 0.77 0.69 

1c. 20 X 20 sparse partial correlation 0.77 0.68 0.76 0.72 

1d. 70 X 70 sparse partial correlation 0.82 0.79 0.71 0.75 

FC dynamics     

2a. SD2 of 20 X 20 full correlation FC matrix 0.74 0.67 0.74 0.7 

2b. SD of 70 X 70 full correlation FC matrix 0.72 0.70 0.69 0.69 

2c. SD of 20 X 20 sparse partial correlation FC matrix 0.80 0.76 0.76 0.76 

2d. SD of 70 X 70 sparse partial correlation FC matrix 0.84 0.83 0.73 0.78 

3: FC states     

3a. FC states of 20 X 20 full correlation FC matrix 0.55 0.39 0.75 0.57 

3b. FC states of 70 X 70 full correlation FC matrix 0.55 0.54 0.60 0.57 

3c. FC states of 20 X 20 partial correlation FC matrix 0.68 0.60 0.71 0.66 

3d. FC states of 70 X 70 partial correlation FC matrix 0.74 0.72 0.69 0.70 

4: Graph metrics     

4a. Graph metrics of 20 X 20 full correlation FC matrix 0.79 0.79 0.68 0.74 

4b. Graph metrics of 70 X 70 full correlation FC matrix 0.70 0.74 0.61 0.68 

4c. Graph metrics of 20 X 20 partial correlation FC matrix 0.73 0.75 0.65 0.70 

4d. Graph metrics of 70 X 70 partial correlation FC matrix 0.74 0.72 0.69 0.71 

5: FC with resting state networks     

5a. FC with visual network 1 0.52 0.46 0.64 0.55 

5b. FC with visual network 2 0.53 0.35 0.77 0.56 

5c. FC with visual network 3 0.57 0.48 0.68 0.58 

5d. FC with default mode network 0.70 0.67 0.66 0.67 

5e. FC with the cerebellum 0.66 0.60 0.68 0.64 

5f. FC with sensorimotor network 0.54 0.45 0.67 0.56 

5g. FC with auditory network 0.60 0.68 0.52 0.60 

5h. FC with executive control network 0.71 0.76 0.62 0.69 

5i. FC with frontoparietal network 1 0.61 0.50 0.74 0.62 

5j. FC with frontoparietal network 2 0.63 0.60 0.65 0.62 

6: FC with Hippocampus     

6a. FC with left hippocampus 0.59 0.51 0.66 0.59 

6b. FC with right hippocampus 0.51 0.35 0.74 0.55 

7: Eigenvector centrality     

Fast eigenvector centrality mapping 0.69 0.66 0.66 0.66 

8: ALFF3     

8a. ALFF 0.82 0.71 0.82 0.76 

8b. fALFF4 0.69 0.71 0.61 0.66 

All resting state measures combined 0.85 0.86 0.71 0.79 

Table 3. Alzheimer’s disease classification performance for the resting state 
measures1FC = functional connectivity, 2SD = standard deviation, 3ALFF = amplitude 
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of low frequency fluctuations, 4fALFF = fractional amplitude of low frequency 
fluctuations.  
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Figure 2 here. Two column 
 
Figure 3 here. Two column 
 
Figure 4 here. Two column 
 
4. Discussion 

In this study, we determined the accuracy of different RSfMRI measures for the 

individual classification of AD patients. We used machine learning techniques for 

efficient use of RSfMRI measures in prediction models. FC matrices, FC dynamics, and 

ALFF show best discrimination between AD patients and control subjects. The 

combination of all the RSfMRI measures improved the classification accuracy slightly, 

but not significantly. The FC matrices and the FC dynamics largely contribute to this 

combined model, whereas the other resting state measures are mostly redundant. This 

suggests that only FC matrices and FC dynamics need to be calculated to achieve 

optimal individual AD classification through an RSfMRI scan. 

 

FC matrices have been used successfully for AD classification before (Challis et al., 

2015; Chen et al., 2011). Our results add to this conclusion and furthermore show that 

FC as calculated with sparse partial correlation results in higher classification accuracy 

than FC as calculated with full correlation. Likely, this is due to the fact that sparse 

partial correlations provide better FC estimates than full correlations (Smith et al., 2011). 

In addition, FC between 70 components resulted in somewhat higher classification 

accuracy than FC between 20 components. This is in line with the observation that high 

dimensional ICA solutions provide a more specific representation of functional regions, 

and consequently FC between these regions results in better AD classification 

(Dipasquale et al., 2015). The dynamics of the FC matrices resulted in higher 

classification accuracy than the FC matrices itself. FC dynamics as opposed to static FC 

is a relatively unexplored domain in AD, but it has been shown that AD patients differ in 

their FC dynamics compared to controls (Chen et al., 2016; Jones et al., 2012; Wee et al., 

2016). ALFF resulted in good classification accuracy, similar to Dai et al (2012). 

However, it did not provide additive value over the FC matrices and the FC dynamics for 

the combined model. For this reason, ALFF does not seem to be necessary for an AD 

classification model. FC states and graph metrics had reasonable classification 
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accuracies, but they did not provide additive value for the combined model either. 

Furthermore, these two measures are derived from the FC matrices and FC dynamics, 

which themselves have higher classification accuracies. Functional connectivity states 

and graph metrics thus require more work to calculate and they do not seem to be 

beneficial over the simpler measures. 

 

FC with the ten RSNs resulted mostly in poor classification accuracies. Exceptions are 

FC with the default mode network and FC with the executive control network. This 

corresponds to studies reporting abnormal FC in these networks in AD patients (Agosta 

et al., 2012; Binnewijzend et al., 2012; Greicus et al., 2004). FC with the hippocampus 

also resulted in poor classification accuracy, despite abnormal hippocampal connectivity 

patterns observed in AD patients (Allen et al., 2007; Supekar et al., 2008; Wang et al., 

2006). These effects are probably not sufficiently consistent for AD classification. 

Possibly this is due to the fact that the hippocampus is not persistently connected with 

the cortex, but follows a context dependent connectivity pattern (Huijbers et al., 2012). 

 

Some settings we have not explored. We used an ICA to determine regions as input to the 

FC analysis (Allen et al., 2012; Hutchison et al., 2013; Jones et al., 2012; Rashid et al, 

2014), where others have used the automated anatomical labeling (AAL) atlas (Chen et 

al., 2011; Wee et al., 2016). We chose an ICA, because it is a data-driven approach that 

results in spatially independent components well suited for FC analyses. We used a group 

ICA and imposed the group components onto each subject (Dørum et al, 2017; Miller et 

al, 2016), because it is important to strive for the same parcellation in each subject in or-

der to compare connectomes across subjects (Smith et al., 2013). We used the ICA com-

ponents directly as nodes for the FC analysis. Others have used a follow up procedure to 

split ICA components into multiple nodes and use these nodes as input to the FC analysis 

(Shirer et al, 2012; Jones et al., 2012; Shaw et al., 2015). We have not explored this op-

tion, but we obtained a similar result using the high dimensional ICA solution. When ex-

tracting a higher number of components, large networks split into multiple smaller net-

works. This can be observed in Figure S2. For example, component 1 of the 20 compo-

nents solution splits into components 1, 6 and 13 of the 70 components solution. For the 

calculation of FC dynamics, we used blocked sliding windows covering 11 volumes (33 

seconds) and we shifted the windows one volume at a time (Jones et al., 2012). Other 

methods have been reported, using tapered windows (Allen et al., 2012; Wee et al., 
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2016), different window sizes (Chen et al., 2016; Wee et al., 2016) and larger window 

shifts (Wee et al., 2016). Further, we quantified FC dynamics by calculating the standard 

deviations of the sliding window FC estimates. Alternatives are the dwell time in default 

mode network sub-configurations (Jones et al., 2012), graph measures obtained from the 

sliding window matrices (Wee et al., 2016), or higher order FC statistics that capture the 

covariance of the sliding window FC time series (Chen et al., 2016). We have not ex-

plored these methodological settings to study their effect on classification accuracy. For 

the analyses, we sticked to the default settings for that specific analysis as much as possi-

ble, and if there was no clear default setting we based our choices on previous literature. 

We chose not to optimise the parameter settings within our study, because this would be 

computationally infeasible. Proper parameter optimisation must be performed using cross 

validation, and in our case this would expand the cross validation analyses considerably, 

because of the large number of predictors (~2 million) and the high number of parameters 

that can be optimised. In addition, the RSfMRI scans used in this study covered 7.5 min-

utes, which is short for estimation of FC dynamics (Hindriks et al., 2016). It is not known 

whether classification accuracy improves with longer scan times. 

 

For this study, we used only one sample to both train and test our prediction models. We 

have carefully used cross validation techniques to prevent overfitting and obtain realistic 

accuracy estimates. Nevertheless, when applying these prediction models to other 

samples scanned at different scanner sites we might find reduced classification 

accuracies, because these models are fine-tuned on the current sample. To evaluate the 

robustness of our classification models they have to be applied to a different sample. In 

addition, the current sample was not the result of random sampling from a prespecified 

population. The conclusions from the statistical tests that we have performed therefore 

only apply to the current sample. 

 

5. Conclusion 

In conclusion, we demonstrated the use of RSfMRI scans for individual AD 

classification. The optimal combination of RSfMRI measures comprises FC matrices 

and FC dynamics. These results may direct future studies that use RSfMRI scans for the 

classification of patients with preclinical AD or mild cognitive impairment. 
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Figure 1. The procedures for calculating the eight RSfMRI modalities. 
 
Figure 2. Area under the receiver operating characteristic curve (AUC) values for all 
the resting state measures. The wide bar on the right is the AUC value for the 
combination of all resting state measures. The error bars represent one standard error 
above and below the AUC values. 
 
Figure 3. Statistical comparisons between the AUC values. The barplot contains the AUC values 
for the different resting state measures and the combined model, together with their standard errors. 
The matrix contains the results for the statistical comparisons between the AUC’s. The top right 
half of the matrix contains the uncorrected results. The bottom left half of the matrix contains the 
Bonferroni corrected results. The red coloured elements represent p values < 0.05. 
 
Figure 4. Importance of each resting state measure for the combined model. The combined 
model is fitted on 100 bootstrap samples to display the spread of the importance's. The 
importance is quantified by the sum of the absolute beta weights of all the predictors within 
a resting state measure category. 
 
Figure S1. Correlations between the 31 resting state measures. For each measure, we ran a principal 
component analysis (PCA) and we cross correlated the component scores of all the 31 first 
components. 
 
Figure S2. The 20 and 70 components extracted from the low and high dimensional independent 
component analysis (ICA). 
 
Figure S3. Mean beta values for the functional connectivity matrices. Beta values are averaged over 
the multiple cross validation folds and multiple cross validation repetitions. 
 
Figure S4. Mean percentage of non-zero parameters over all cross validation folds and cross 
validation repetitions for the 31 resting state measures. 
 
Figure S5. The effect of averaging over regions. The original classification results (green) and the 
results when the voxel-wise data is averaged over the 70 ICA components (red). The boxplots 
represent the different cross validation repetitions. 
 
Figure S6. AUC values for the functional connectivity between ICA components (left), and func-
tional connectivity dynamics (right) for a range of numbers of ICA components. The error bars rep-
resent one standard error above and below the AUC values. 
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