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Abstract

Data quality is increasingly recognized as one of the most important confounding factors in brain 

imaging research. It is particularly important for studies of brain development, where age is 

systematically related to in-scanner motion and data quality. Prior work has demonstrated that in-

scanner head motion biases estimates of structural neuroimaging measures. However, objective 

measures of data quality are not available for most structural brain images. Here we sought to 

identify quantitative measures of data quality for T1-weighted volumes, describe how such 

measures of quality relate to cortical thickness, and delineate how this in turn may bias inference 

regarding associations with age in youth. Three highly-trained raters provided manual ratings of 

1,840 raw T1-weighted volumes. These images included a training set of 1,065 images from 

Philadelphia Neurodevelopmental Cohort (PNC), a test set of 533 images from the PNC, as well as 

an external test set of 242 adults acquired on a different scanner. Manual ratings were compared to 

automated quality measures provided by the Preprocessed Connectomes Project's Quality 

Assurance Protocol (QAP), as well as FreeSurfer's Euler number, which summarizes the 

topological complexity of the reconstructed cortical surface. Results revealed that the Euler 
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number was consistently correlated with manual ratings across samples. Furthermore, the Euler 

number could be used to identify images scored “unusable” by human raters with a high degree of 

accuracy (AUC: 0.98-0.99), and out-performed proxy measures from functional timeseries 

acquired in the same scanning session. The Euler number also was significantly related to cortical 

thickness in a regionally heterogeneous pattern that was consistent across datasets and replicated 

prior results. Finally, data quality both inflated and obscured associations with age during 

adolescence. Taken together, these results indicate that reliable measures of data quality can be 

automatically derived from T1-weighted volumes, and that failing to control for data quality can 

systematically bias the results of studies of brain maturation.
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Introduction

In-scanner motion and other artifacts are increasingly appreciated as a source of bias in 

neuroimaging research. In-scanner motion reduces image quality, and is also related to 

subject characteristics of interest, including participant age (Power et al., 2012; Satterthwaite 

et al., 2012). As such, it has the potential to systematically confound inference, especially in 

studies of lifespan development (Zuo et al., 2017). While motion has long been a well-

described methodological obstacle in medical imaging (Bellon et al., 1986; Smith and 

Nayak, 2010), and a known confound for task-related fMRI (Friston et al., 1996), it has 

recently attracted additional scrutiny. Following reports that even small amounts of in-

scanner motion can bias studies of functional connectivity (Power et al., 2012; Satterthwaite 

et al., 2012; Van Dijk et al., 2012) there has been a proliferation of recent studies that have 

documented the impact of data quality on other imaging modalities, including T1-weighted 

neuroimaging of brain structure (Alexander-Bloch et al., 2016; Pardoe et al., 2016; Reuter et 

al., 2015; Savalia et al., 2017).

Following initial work to assess motion's impact on structural images (Atkinson et al., 1997), 

much subsequent work has addressed structural image quality issues driven by scanner and 

platform-related variation (Chen et al., 2014; Magnotta and Friedman, 2006, p. 2; Styner et 

al., 2002; Woodard and Carley-Spencer, 2006).However, several published studies have used 

unique attributes of T1-weighted images to quantify image quality. Specifically, Mortamet et 

al. (2009) introduced a quality index (Qi) that accurately identified unusable volumes 

(AUC=0.93) collected as part of the Alzheimer's Disease Neuroimaging Initiative. 

Furthermore, Pizarro et al. (2016) developed statistics based on specific artifacts such as eye 

motion, ringing and tissue contrast. Combined in a multivariate approach, these statistics 

classified unusable volumes with a classification accuracy of 80%. However, these studies 

examined neither quality indices related to measures of brain structure, nor how quantitative 

indices of data quality might be used to account for biases in group level analyses. This is 

particularly relevant given that measures of brain structure such as cortical thickness are 

frequently used as putative biomarkers in research on development, aging, and a myriad of 

neuropsychiatric diseases.
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Research using functional timeseries has typically summarized motion via the “framewise 

displacement” calculated from timeseries realignment parameters (Power et al., 2012; 

Satterthwaite et al., 2012; Van Dijk et al., 2012). However, most structural imaging 

sequences do not provide a ready estimate of participant motion during acquisition. A 

variety of motion-tracking systems have recently become widely available for use in 

structural MRI, including in-bore optical systems as well as approaches using the MRI 

scanner itself to track motion, allowing for motion to be directly quantified in a manner akin 

to functional imaging time series (Zaitsev et al., 2015). Reuter et al. (2015) used the vNav-

MPRAGE sequence (Tisdall et al., 2012), which simultaneously acquires a T1-weighted 

volume and performs motion tracking with the MRI scanner, to demonstrate in 12 healthy 

adults that motion during the T1 sequence was associated with spurious alterations of 

cortical thickness and cortical volume. Tisdall et al. (2016) demonstrated that using this 

motion information prospectively could substantially reduce the deleterious effects of 

motion on both image quality and subsequent morphometry.

Despite the clear importance of such work, the vast majority of T1-weighted imaging 

sequences acquired to date lack any motion-tracking or motion-correction technology, and 

thus cannot derive a quantitative assessment of motion. While current commonly-used 

processing pipelines (including CCS, DPABI, and HCP pipelines, Marcus et al., 2013; Xu et 

al., 2015; Yan et al., 2016) provide a range of measures of data quality for functional 

timeseries, validated quantitative measures of data quality are not typically produced for the 

T1 volume. Accordingly, three important recent studies used motion during a functional 

imaging sequence acquired during the same scanning session as a proxy of in-scanner 

motion during the structural scan (Alexander-Bloch et al., 2016; Pardoe et al., 2016; Savalia 

et al., 2017). This approach is based on the observation that participant motion tends to be 

highly correlated across acquisitions: individuals with high motion in one sequence tend to 

have high motion in other sequences (Pardoe et al., 2016; Yan et al., 2013). These three 

studies demonstrated that higher motion during a functional sequence acquired in the same 

session is associated with cortical thickness, even in those scans which passed manual 

quality assurance procedures (Alexander-Bloch et al., 2016; Pardoe et al., 2016; Savalia et 

al., 2017). Furthermore, Salvia et al. (2017) demonstrated that unaccounted-for motion 

artifact inflated the apparent effects of aging. While motion during a functional sequence is 

an opportune proxy for motion during a structural scan, it nonetheless has several 

limitations. First, it requires that a functional scan was acquired, which may not be possible 

due to subject factors, time restrictions, or study design. Second, the ecological validity of 

the proxy is likely to vary with ordering effects, amount of time between scans, as well as 

other uncontrolled variables such as patient comfort.

In this study, we sought to identify quantitative measures of data quality that could be 

derived from the T1 volume alone. Measures of data quality were primarily provided by the 

Preprocessed Connectomes Project's Quality Assurance Protocol (QAP); the Euler number 

provided by FreeSurfer was also evaluated. We investigated the degree to which these 

quantitative measures could be used to identify unusable images, and compared them to 

proxy measures of data quality provided by functional sequences. Furthermore, we 

described how quantitative metrics of image quality related to cortical thickness, and 

potentially confound associations with age. Throughout, we leveraged the large sample 
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provided by the Philadelphia Neurodevelopmental Cohort (PNC), as well as an independent 

sample of adults imaged on a different scanner. As described below, we found that measures 

derived from the T1-weighted volume provide useful measures of image quality.

Methods

Approach overview

Our overall goal was to evaluate quantitative measures of image quality directly from 

structural MRI volumes. This process included several discrete tasks. First, all image 

analysts underwent rigorous training, and then independently rated all images. Second, we 

evaluated quantitative measures of image quality to determine which aligned best with 

manual ratings. Third, we used these quantitative measures to identify images that were 

unusable; we refer to this as the “inclusion” model. Fourth, we compared this approach to 

proxy measures estimated from motion during functional time series acquired during the 

same session. Fifth, we examined how quantitative measures of image quality related to 

cortical thickness as measured by the popular FreeSurfer platform (Fischl and Dale, 2000). 

Sixth and finally, we examined how data quality might bias inference regarding associations 

with age in samples of youth.

Participants

We included a total of 1,840 images across two studies that used different scanners (Table 

1). This included 1,598 images from the PNC (Satterthwaite et al., 2014) as well as an 

additional 242 images from a study acquired on a different scanner (Roalf et al., 2015). 

Specifically, 1,065 PNC images were used for training, and 533 were used during testing. In 

order to maintain a similar distribution of age, sex, and manual image quality rating across 

the training and testing samples of the PNC, we used the `caret` package in R (Kuhn et al., 

2016). The data from the second study were used only as an external test dataset. This 

second cohort was comprised of adults, and thus not matched on demographic details (see 

Table 1).

Image acquisition

All imaging data from the PNC were acquired on the same 3T Tim Trio scanner with a 32-

channel head coil (Siemens: Erlangen, Germany) as previously described (Satterthwaite et 

al., 2014). Structural images were acquired using a magnetization-prepared, rapid-

acquisition gradient-echo (MPRAGE) T1-weighted sequence (TR = 1810ms; TE = 3.51ms; 

T1 = 1100ms; FoV = 180 × 240mm; flip angle = 9°; GRAPPA factor = 2; BW/pixel = 130 

Hz; resolution: 0.94mm × 0.94mm × 1.0mm; Acquisition time = 3:28). Prior to scanning, in 

order to acclimate participants to the MRI environment and to help subjects learn to remain 

still during the actual scanning session, a mock scanning session was conducted using a 

decommissioned MRI scanner and head coil. Mock scanning was accompanied by acoustic 

recordings of the noise produced by gradient coils for each scanning pulse sequence. In the 

external test set, T1-weighted volumes were collected on a different 3T Tim Trio scanner, 

using an 8-channel head coil with the following acquisition parameters: TR = 1680ms; TE = 

4.67ms; T1 = 1100ms; FoV = 180 × 240mm; flip angle = 15°; bandwith/pixel = 150Hz; 

resolution: 0.94mm × 0.94mm × 1.0mm; acquisition time = 5:00 (Roalf et al., 2015).
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Image Processing

Cortical reconstruction of the T1 image was performed for all subjects using FreeSurfer 

version 5.3 (Fischl, 2012). FreeSurfer includes registration to a template, intensity 

normalization, gray and white matter segmentation, and tessellation of the gray/CSF and 

white/gray matter boundaries (Dale et al., 1999); cortical surfaces are inflated and 

normalized to a template via a spherical registration. Cortical thickness is measured as the 

shortest distance between the pial and the white matter tessellated surfaces (Dale et al., 

1999). The cortex was then parcellated into 40 regions (Desikan et al., 2006) and cortical 

thickness was averaged across parcels to obtain regional cortical thickness estimates without 

any manual correction.

Manual rating procedure and rater training

Similar to prior work (Reuter et al., 2015; Savalia et al., 2017), all images were rated on 

quality using a 0-2 ordinal scale. Initial pilot testing indicated that using systems with more 

quality classes (i.e., 4 or 5 rating classes) resulted in substantially diminished inter-rater 

reliability even among experts. In the 3-class framework used, a “0” denoted images that 

suffer from gross artifacts and were considered unusable. In contrast, a “2” was assigned to 

images free from visible artifact. The intermediate “1” category was used for images with 

some artifact, but which still would be considered usable.

A rigorous process of training was used to ensure high inter-rater reliability (see Figure 1). 

First, anchors and exemplars for the three quality classes were agreed upon through 

consensus of 5 experts, including a board-certified neuroradiologist (JES), an MR physicist 

(MAE), a cognitive neuroscientist (DRR), an experienced image analyst (AR), and a 

neuropsychiatrist (TDS). Next, two of these experts (DRR and TDS) created a larger training 

sample by rating 100 images independently. Initial concordance was 93%; discrepancies 

were resolved through consensus, thus yielding a set of 100 images that were used to train 

three image analysts (KS, PV, JB) who served as the raters for the complete dataset. These 

three analysts were trained to >85% agreement in this dataset. This required two rounds of 

blind rating: during the first round, agreement with the expert consensus was 82% (JB), 57% 

(PV), and 82% (KS). Following further training, each rater re-rated this set of 100 images 

(presented in a different order, without identifiers), and achieved an accuracy of 91% (JB), 

86% (PV), and 94% (KS). Having met reliability benchmarks, these three raters then 

independently rated all 1,840 images across datasets.

Rater concordance was evaluated using two measures: the weighted-κ statistic and 

polychoric correlations. These two measures provide complementary information: while the 

weighted-κ assesses absolute rating agreement, the polychoric correlation assesses the 

ordering of the ratings. Variation amongst raters were assessed using a repeated measures 

ANOVA model. The relationship between manual rating and age was evaluated using partial 

Spearman's correlations; sex differences were evaluated using a Wilcoxon signed-rank test.

Quantitative metrics of structural image quality

We evaluated the utility of an array of quantitative imaging measures included in QAP (see 

Table 2)(Shehzad et al., 2013). QAP version 1.0.3 utilized FMRIB's Automated 
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Segmentation Tool (FAST, Zhang et al., 2001)) for image segmentation, which enables 

definition and quantification of quality metrics using an image's gray matter, white matter, 

and background voxels. Steps were taken to avoid the inclusion of neck and face tissue 

within the image's background for the calculation of all background metrics as previously 

described (Mortamet et al., 2009). In addition to the measures included in QAP, we also 

calculated image kurtosis and skewness (Joanes and Gill, 1998) for each tissue class and 

background using tools included in the ‘ANTsR’ (Avants et al., 2016) and ‘psych’ (Revelle, 

2017) packages in R; these measures have been integrated into recently-released updates to 

QAP. Finally, we considered a quality measure produced by the FreeSurfer pipeline: the 

Euler number (Dale et al., 1999) which is a measure of the topological complexity of the 

reconstructed cortical surface as calculated by the sum of the vertices and faces subtracted 

by the number of faces. Two geometric shapes with identical Euler numbers are homotopic, 

FreeSurfer seeks to maximize the Euler characteristic to a value of 2, to obtain an identical 

Euler number with that of a flat surface. Euler number is calculated separately for each 

hemisphere; we averaged across both hemispheres here to produce one value per subject.

In order to visualize the relationship between quantitative measures and manual quality 

rating, we plotted the mean value for each image quality metric versus the mean manual 

quality rating. Furthermore, we also calculated partial Spearman's correlations between the 

average manual rating and quantitative metrics (while controlling for age, age squared, and 

sex). For these plots and subsequent analyses, we collapsed any image with an average 

rating less than 1 into the ‘0’ bin due to the small cell size of these bins.

Identifying unusable images: the “inclusion” model

A common step in sample construction is to remove images where raw image data quality is 

so low that the images are considered unusable. We sought to use the quantitative measures 

of data quality described above to automatically identify unusable images. To do so, we 

constructed a logistic regression model for each quality metric, where the outcome was a 

binarized image quality score (i.e., images with a quality score of “0” versus all others). The 

primary measure of model performance was area under the curve (AUC); accuracy, 

sensitivity, and specificity were also calculated.

As described below (see Results), a single variable performed quite well in this task. 

However, in order to ascertain if using additional measures of data quality would aid in 

classification, we also evaluated multivariate models. Model training began with a simple 

mass-univariate model and then added features to create a multivariate model in a forward-

stepwise manner. The first (base) variable in the multivariate model was defined as the 

variable with the best performing receiver operator curve (ROC) as measured by area under 

the curve (AUC) in the mass-univariate analyses conducted in the training sample. 

Additional measures were added separately to this base model, and the AUC was re-

calculated. The best performing feature was selected, and this process was repeated. At each 

step, in order to determine whether an additional model parameter provided significantly 

improved classification, we calculated the Delong statistic, which tests for a significant 

increase in AUC between models (DeLong et al., 1988). Model building was terminated 

when no significant increase in AUC was found.
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After construction of the model in the training set, the classification threshold criterion from 

the training set was applied to the first (internal) testing dataset as well as the second 

(external) test set. The same outcome measures (AUC, accuracy, sensitivity, specificity) 

were then calculated separately for each test sample. Performance using the threshold 

defined in the training set was compared with outcomes when the classification thresholds 

were calculated separately for each dataset.

Comparison to motion in functional scans acquired in the same session

Three recent reports demonstrated that motion in functional sequences acquired during the 

same scanning session acts as an effective proxy for structural image quality (Alexander-

Bloch et al., 2016; Pardoe et al., 2016; Savalia et al., 2017). Accordingly, we next compared 

our quantitative measure of structural image quality to head motion estimated from 

functional sequences. This was only conducted in the PNC sample. These additional 

sequences included a pseudo-continuous arterial spin labeled (PCASL) perfusion scan, two 

task fMRI scans (tfMRI 1 & tfMRI 2), and one resting functional connectivity scan (rsfMRI) 

(Satterthwaite et al., 2014, 2016). As sequences acquired at the end of the scanning session 

are more likely to be missing, we examined motion during each functional sequence, which 

was summarized as the Frame Displacement (FD), estimated using the average root mean 

square displacement as calculated by FSL's MCFLIRT (Jenkinson et al., 2002). Next, we 

evaluated attrition over the course of the scanning session, and plotted the proportion of 

missing scans for each sequence, separated by the manual quality rating of the T1 image. 

Finally, we evaluated the degree to which motion during the functional sequence could 

identify unusable images using a logistic regression model as described above. In order to 

ensure that the same sample was considered by each model, this analysis was conducted in a 

sample of 1,275 PNC subjects that spanned both training and testing samples with complete 

data across all sequences.

Relationship of quantitative measures of quality to cortical thickness

As described below, Results revealed that a single metric – the Euler number – was sufficient 

for identifying unusable images with a high degree of accuracy. Next, we examined 

associations between this quantitative measure of data quality and cortical thickness in the 

images that were considered usable (according to their manual rating). Specifically, we used 

linear regression to examine the association between the Euler number and regional 

estimates of cortical thickness derived from the FreeSurfer pipeline. While all images 

completed reconstruction successfully and were initially included in this analysis, in a 

sensitivity analysis we additionally considered the quality of reconstructed FreeSurfer 

cortical surfaces. To do this, we performed detailed manual inspection of all cortical 

reconstructions of images drawn from the PNC. A small percentage of images were 

identified as having lower-quality reconstruction quality; these participants were removed 

and analyses were re-run to ensure that they were not driving observed associations. For all 

analyses, cortical thickness was the outcome and Euler number was the predictor of interest; 

age, age squared, and sex were included in these regression models as covariates. Multiple 

comparisons across regions were accounted for using the False Discovery Rate (FDR; q < 

0.05).
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Impact of data quality on associations with age

The analysis described above revealed substantial relationships between data quality and 

cortical thickness. As a final step, we examined how data quality might bias tests examining 

associations with age. Accordingly, using the training and testing samples from the PNC, we 

conducted mediation analyses to determine whether quantitative estimates of data quality 

(e.g., the Euler number) might mediate the apparent relationship between age and brain 

structure. Our test statistic for this analysis was the Sobel's z-score (Sobel, 1982), which was 

calculated for each cortical region. Sobel's z-score estimation was implemented in the ‘bda’ 

package in R (Wang, 2015). Multiple comparisons were accounted for using FDR as above 

(q < 0.05).

Results

Highly trained manual raters achieve good concordance

Across datasets, image quality was relatively high, with a minority of images being 

considered unusable (Figure 2A-C). Although there were significant differences among 

raters (training: F[2, 3198] = 39.65, p<.0001; internal testing: F[2, 1599] = 17.74, p<.0001; 

external testing: F[2,837] = 3.50, p<.05), post-hoc review found that raters never disagreed 

by more than one quality class. Weighted kappa statistics indicated that all three raters 

achieved good concordance (Figure 2B) in both the training (mean weighted-κ = 0.64), 

internal testing (mean weighted-κ = 0.68), and external testing datasets (mean weighted-κ = 

0.81). Additionally, polychoric correlations (Figure 2G-I), indicated very high correlation 

between raters in all datasets (training: mean r = 0.93; internal testing: mean r = 0.94; 

external testing datasets mean r = .94).

Manual quality ratings vary by age

While controlling for age, no sex differences were present in manual rating in any of the 

three datasets. However, in both developmental samples from the PNC, younger age was 

associated with lower quality (training: ρ = .14, p < 0.0001, Figure 3A; internal testing: ρ = .

12, p < 0.01, Figure 3B). In contrast, among the older adults from the external testing 

dataset, greater age was associated with lower quality (ρ = -0.15, p < 0.05, Figure 3C).

Quantitative measures of image quality align heterogeneously with manual rating

Next, we evaluated how quantitative measures of data quality related to the average quality 

rating across three raters. Putative quality measures displayed heterogeneous associations 

with manual quality ratings, both across measures and sometimes across datasets (Figure 4). 

The Euler number had the strongest association with manual rating across all three datasets. 

Furthermore, while the relationship was consistent across datasets for some measures (e.g., 

Euler number, Qi1), other measures were less consistent. For example, measures such as 

SNR, CNR, and FBER had only weak associations in the two PNC datasets, but had stronger 

associations in the external testing dataset that was acquired on a different scanner.
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Euler number successfully identifies unusable images

Next, we used the quantitative metrics to build an “inclusion” model that discriminated 

unusable images (rated “0”) from usable images (rated “1” or “2”). We began by measuring 

the classification capacity of each quantitative metric to identify a usable image (Figure 5A-

C). Notably, the Euler number proved to be the most predictive feature across datasets 

(training: AUC = 0.99; internal testing: AUC = 0.98; external testing: AUC = 0.99; Figure 

5D-F). The Euler number value used for the classification threshold criteria were calculated 

using the training sample (accuracy = 0.94), and then applied to each test set. In the internal 

test set, accuracy remained quite high (accuracy = 0.92), but performance was somewhat 

lower in the external test set (accuracy = 0.76). Lower accuracy in the external test set was 

the result of very high sensitivity, but lower specificity (Table 3). As expected, the Euler 

number showed similar relationships to age as the manual quality ratings; sex additionally 

displayed significant differences (see Supplementary Figure 1).

Notably, when the classification threshold criteria were allowed to vary by dataset, accuracy 

was quite high across all samples (range: 0.93-0.98; see Table 4). However, even when the 

threshold was varied by dataset, the inclusion model using the Euler number tended to be 

more sensitive than specific, with more false positives than false negatives. In this case, false 

positives were images flagged as unusable which were rated as usable by the manual raters. 

Post-hoc examination of these images revealed that, although they were not flagged as 

unusable by raters, these images did have a lower manual quality rating than those images 

which were marked as usable by both raters and the logistic model (training: n = 64 false 

positives, W = 35286, p < .1; internal testing: n = 40 false positives, W = 12452, p < 0.01; 

external testing: n = 57 false positives, W = 6952, p < 0.0001).

Limits of proxy measures from functional sequences

Based on prior reports that motion in functional sequences acquired in the same scanning 

session can provide a useful proxy of structural image quality, we next compared such proxy 

measures to those derived directly from the structural image. Specifically, we compared the 

Euler number to frame displacement from the four functional scans acquired as part of the 

PNC. As expected, motion within each sequence increased as the scanning session 

progressed (Figure 6A). Many participants did not complete all functional sequences, with 

more missing data for sequences acquired later in the session. Perhaps more importantly, 

attrition over the scanning session scaled directly with the data quality on the structural scan, 

such that those with lower structural image quality were less likely to have completed the 

subsequent functional sequences (Figure 6B). Furthermore, measures of motion during the 

functional sequences were less able to successfully identify unusable image compared to the 

Euler number (Figure 6C).

Quantitative estimates of data quality are related to cortical thickness

Having demonstrated that the Euler number can effectively identify unusable images (rated 

“0”), we next examined if this measure was related to cortical thickness in images that had 

raw images which were considered usable (rated “1” or “2”). To do this, we conducted mass-

univariate linear regression analyses evaluating the relationship between data quality (as 

summarized by the mean Euler number) with regional cortical thickness estimated using 
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FreeSurfer. Across all three samples, highly consistent effects were observed. Overall, there 

was an FDR-corrected relationship with data quality in 53% of cortical regions (Figure 7A) 

in the training dataset, 44% of regions in the internal testing dataset (Figure 7B), and 39% of 

regions in the external testing dataset (Figure 7C). However, the directionality of this 

association was regionally heterogeneous. In regions including the dorsolateral prefrontal 

cortex, superior parietal cortex, and lateral temporal cortex, higher data quality was 

associated with thicker cortex. In contrast, in occipital and posterior cingulate cortex, higher 

data quality was associated with thinner cortex. Sensitivity analyses which removed the 

1.5% of samples identified in post-processing QA as having lower-quality cortical 

reconstructions (see Supplementary Table 1) provided highly convergent results 

(Supplementary Figure 2). Highly similar patterns were seen in unthresholded maps, when 

no statistical correction for multiple testing was applied (Supplementary Figure 3).

Data quality systematically biases associations with age in youth

The above results demonstrate that the Euler number aligns with manual ratings, is related to 

age, and is related to cortical thickness even among images considered usable. As a final 

step, we evaluated the degree to which data quality might bias inference regarding cross-

sectional associations with age. Accordingly, we conducted mediation analyses to examine 

the degree to which data quality might mediate the relationship between age and brain 

structure (see schematics in Figure 8A & B). As expected given regionally heterogeneous 

effects of data quality on cortical thickness, data quality had a bidirectional impact on 

associations with age (Figure 8C & D). For most regions (shown in red), the relationship 

with data quality resulted in a masking of age effects, with observed associations with age 

becoming more significant when controlling for data quality. This reflects the fact that lower 

data quality leads the thick cortex of younger participants to appear thinner, reducing 

estimates of thinning with age. In contrast, in several regions (shown in blue) including the 

posterior cingulate cortex and occipital cortex, data quality had the opposite effect, and 

inflated apparent age effects. Results were highly concordant in the training and internal 

testing datasets.

Discussion

In this paper, we demonstrate that a single quality measure derived from a T1-weighted 

volume – the Euler number – effectively recapitulates results from visual inspection with 

high accuracy. Furthermore, we demonstrate that image-based measures of data quality show 

differential relationships to several common measures of brain structure, and that data 

quality systematically biases associations between cortical thickness and age in youth.

Manual raters can achieve a high level of concordance in a large-scale sample

It is increasingly recognized that data quality may be the primary confound in brain imaging 

studies of individual difference, lifespan development, or clinical populations (Ciric et al., 

2017; Power et al., 2015). In-scanner motion is usually the single biggest determinant of 

data quality, especially in individuals who are young, elderly, or ill. While summary 

measures of motion can be easily derived from the realignment parameters of functional 

time series, motion cannot be easily estimated for most existing structural imaging data. A 
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variety of motion-tracking and -correction systems have been developed (Zaitsev et al., 

2015). However, such technologies have not been used for the vast majority of already-

collected imaging data, which represents a huge societal investment. Due to the absence of a 

known ground truth, one of the first challenges for any study attempting to estimate image-

derived measures of data quality for structural images is to create manual ratings, which are 

necessary to validate subsequent quantitative models. This problem is quite analogous to 

studies of psychiatric or neurologic illness, where several clinicians evaluate information 

from a patient and arrive at consensus diagnosis.

With limited training utilities available, we pursued an approach analogous to established 

procedures for training on clinical interviews and rating scales (Forbes et al., 2010; Kaufman 

et al., 1997). A panel of experts initially created a small set of anchors. Notably, while we 

originally piloted a rating system with 5 levels similar to that used in one recent study 

(Pardoe et al., 2016), we found that even highly trained experts could not reach a high level 

of concordance across 5 levels. Accordingly, we limited the quality rating to three levels, 

akin to previous efforts (Reuter et al., 2015; Savalia et al., 2017). Using these anchors, a 

larger training set of 100 images was then rated by two faculty experts. This set of 100 

images was then used to train three experienced staff members to >85% accuracy. After this 

degree of reliability was established, the full set of images was evaluated. Following such 

training, concordance remained relatively good in both the training and testing samples. The 

pairwise correlation between raters was even higher, reflecting that when raters were not 

concordant it was usually due to a small but significant between-individual rater bias.

The Euler number aligns with manual ratings and can identify unusable images

Having established a reliable set of manual ratings, we next derived quantitative measures of 

data quality using summary statistics from the structural image alone. Most of the measures 

we evaluated were produced using the Quality Assurance Pipeline (QAP) (Shehzad et al., 

2015) included in the Configurable Pipeline for Analysis of Connectomes (C-PAC)(Sikka et 

al., 2013). In addition to this suite of measures, we also evaluated the Euler number, a 

measure of topological complexity of the cortical surface as reconstructed by FreeSurfer 

(Fischl, 2012). Using these measures, we examined the correspondence with the average 

quality rating across our three raters. Notably, the Euler number showed the highest 

correlation with the manual ratings across all three samples, suggesting it is a robust, 

dimensional measure of data quality.

In addition to being correlated with manual ratings, we also found that the Euler number was 

effective in identifying images that were so corrupted by artifact as to be unusable. This is a 

common step in sample construction in any imaging study. Notably, the Euler number had 

excellent performance across all three samples, with an AUC of 0.98-0.99. While AUC 

provides a good description of the overall predictive performance across all thresholds, a 

more stringent test of generalizability is whether a specific classification threshold from a 

model trained on one dataset can be applied to a different one. We found that a classification 

threshold which had excellent performance in the training data also performed quite well on 

the independent test set from the same study and scanner.
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However, when this specific threshold was applied to an external test set, classification 

accuracy was substantially lower despite a near-perfect AUC (0.99). This reflects the fact 

that the specific classification threshold criteria from the training dataset of adolescents was 

not optimal for an adult sample acquired on a different scanner, and resulted in a very high 

sensitivity but lower-than-optimal specificity. However, when the threshold criteria were 

tailored to each dataset, performance was uniformly high. This suggests that the Euler 

number may be an effective measure of data quality across samples and scanners, but that 

the specific value used for flagging volumes for exclusion may need to be specified 

individually at each scanning site.

Proxy measures of structural data quality from functional scans have important limits

One recently proposed approach is to use motion estimated from a functional time series 

acquired within the same session as a proxy of structural image quality. Several prior reports 

have shown that this is a fruitful approach (Alexander-Bloch et al., 2016; Pardoe et al., 2016; 

Savalia et al., 2017), demonstrating associations between this proxy measure of data quality 

and cortical thickness. One clear limitation of this approach is that it requires a functional 

scan to be acquired in the same scanning session. Furthermore, even when a functional scan 

is scheduled to be part of the imaging session, such data may be missing due to attrition. We 

demonstrated that motion increases over the course of the scanning session, and that 

participants with low-quality T1 volumes are more likely to be missing subsequent 

functional scans. Furthermore, our results show that frame displacement from functional 

scans are less able to identify unusable scans than the Euler number, which is calculated 

from the T1 volume itself.

Regional estimates of cortical thickness are differentially impacted by data quality

Previous work has shown that cortical thickness is systematically biased by in-scanner 

motion, whether quantified by manual rating (Pardoe et al., 2016; Savalia et al., 2017), 

motion estimated from functional sequences acquired in the same scanning session 

(Alexander-Bloch et al., 2016; Pardoe et al., 2016; Savalia et al., 2017), or volumetric 

navigators embedded in the T1 sequence (Reuter et al., 2015). Here, we demonstrate that an 

index of image quality derived directly from the structural image itself shows a similar 

relationship. Importantly, the association between data quality and cortical thickness had 

notable regional heterogeneity. In somatomotor, temporal, parietal, and many frontal 

regions, higher data quality was associated with greater thickness. However, in other regions 

including the visual cortex and posterior cingulate, higher data quality was associated with 

thinner estimated cortical thickness. These results are strikingly convergent with prior 

reports using other indices of data quality, which have demonstrated that while in general 

higher data quality is associated with thicker cortex, specific regions show the opposite 

effect (Alexander-Bloch et al., 2016; Pardoe et al., 2016; Reuter et al., 2015).

Data quality biases estimates of structural brain development in youth

Accurate measurement of cortical thickness is critical to understanding typical and atypical 

trajectories of the developing brain. The extant literature indicates robust age-related cortical 

thinning in adolescence (Gennatas et al., 2017; Gogtay et al., 2004; Sowell et al., 2001, 

2003, 2004; Tamnes et al., 2010). Moreover, there are regional-specific patterns of cortical 
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maturation throughout development, with delayed maturation of higher-order association 

cortex (Giedd et al., 1999; Giedd, 2004; Gogtay et al., 2004; Shaw et al., 2008; Sowell et al., 

2004; Tamnes et al., 2010). While most of these studies use validated methods to reduce in-

scanner head motion during acquisition, few if any systematically evaluated or controlled for 

data quality. Importantly, several recent reports described significant relationships between 

age and in-scanner head motion in a variety of MRI protocols (Power et al., 2012; Roalf et 

al., 2016; Satterthwaite et al., 2016).

To determine if previously reported developmental trends are resilient to the impact of data 

quality, we performed region-wise mediation analyses. Notably, associations between 

cortical thickness and age were significantly mediated by data quality. This bias introduced 

by data quality was bidirectional and regionally heterogeneous. Several regions in frontal, 

temporal, parietal cortices showed more prominent developmental effects once T1 data 

quality was considered, suggesting that noise associated with data quality may partially 

mask associations with age. In contrast, regions such as the posterior cingulate, precuneus, 

and occipital cortex showed less prominent associations with age after controlling for data 

quality. These results emphasize that accurate delineation of cortical development is 

predicated upon data quality, which can both obscure important developmental effects in 

some regions and inflate effects in others. Notably, because data quality is likely to be 

collinear with other subject-level variables including cognitive performance (Siegel et al., 

2017), symptom burden, and group status (Yendiki et al., 2014), this effect has the potential 

to similarly confound a wide variety of studies of brain structure.

Limitations

Several important limitations of the current study should be noted. As discussed above, the 

Euler number provided an accurate image-based index of data quality across three datasets 

from two different scanners. However, the best exact classification threshold for accurate 

identification of unusable data did vary by scanner. Thus, one limitation of the current 

approach is that it is unlikely that a single Euler number exclusion threshold will apply to all 

studies. Second, in contrast to the measures provided by QAP, calculating the Euler number 

at present requires cortical surface reconstruction with FreeSurfer. This process is both time 

and computationally intensive, requiring 12-24 hours. This may limit the deployment of this 

index in certain settings. Moving forward, further investigation of other, simpler, 

registration-based methods may reveal that much of the same information can be gleaned 

from processes that are much less computationally demanding. However, given the 

widespread popularity of the FreeSurfer platform, it is also quite likely that many 

investigators have already calculated the Euler number for much of their data, allowing for 

immediate use in ongoing studies. Third, it is unknown at present how the test-retest 

reliability of automated measures of data quality (such as the Euler number) compare to 

manual ratings (Zuo and Xing, 2014). However, in contrast to manual ratings, automated 

measures are 100% reproducible for a single image, and thus may also be more stable over 

time. Fourth, our quantitative quality metrics were selected according to their agreement 

with manual ratings. However, it should be acknowledged that manual ratings are not 

“ground truth” regarding image quality, and thus may be limited in their ability to inform 

and select quantitative quality measures. Fifth, due to our focus on cortical thickness, we did 
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not evaluate the impact of data quality on sub-cortical or cerebellar regions. Sixth, it should 

also be noted that our use of the relatively coarse parcellation provided by the commonly-

used Desikan-Killiany atlas precludes mapping the impact of data quality onto functional 

sub-systems (Gordon et al., 2016; Yeo et al., 2011). Finally, it should be noted that other 

measures of reconstruction quality beyond the Euler number are available, and were not 

evaluated here (Chalavi et al., 2012; Lee et al., 2006).

Conclusions

In this paper, we demonstrate that data quality can be estimated directly from structural 

images that lack volumetric navigators. Such image-based indices of data quality such as the 

Euler number can be used to exclude unusable images in a reproducible fashion. 

Furthermore, these continuous measures of image quality have the potential to be used as 

covariates in group-level analyses of structural imaging data. The ability to derive a measure 

of data quality directly from the structural image may obviate the need for use of proxy 

measures from functional sequences.

More broadly, the present data emphasize the degree to which data quality should be 

appreciated as an important confound in structural imaging studies. Investigators are 

encouraged to report measures of data quality for all structural imaging studies, especially 

those that evaluate individual or group differences. This is particularly relevant for studies 

where data quality is likely to be systematically related to the primary subject-level variable 

of interest, such as age, cognitive performance, clinical group status, or disease severity. We 

provide one such example, demonstrating that data quality can systematically bias 

associations between cortical thickness and age in youth. While it is now common practice 

to report summary measures of motion and image quality for fMRI research, it is less 

common for studies using T1-weighted imaging. The present results underscore a need for 

transparent reporting of such data. We urge investigators to report associations between data 

quality and both subject level variables of interest (e.g., age, group) as well as the primary 

imaging measure evaluated. Moving forward, quantitative estimates of motion during the T1 

scan provided by motion-tracking and –correction technologies may obviate the need for 

post-hoc calculation of quality indices. However, we anticipate that the strategy outlined 

here may prove to be useful for the massive amount of structural imaging data that has 

already been collected at great effort and cost.
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Figure 1. Training protocol for manual raters
There were 4 phases of training. Phase 1: 5 neuroimaging experts reviewed 20 PNC images 

selected to have various levels of artifact. These images were used to establish rating 

anchors, which were then used for Phase 2. Phase 2: Two experts (TDS & DRR) rated 100 

images. 100% concordance was achieved through consensus. Phase 3: Three new raters 

were trained on the 100 images used in Phase 2, until the raters achieved 85% concordance 

after two rounds. Phase 4: All 3 trained raters manually rated 1,840 images across the PNC 

and the external test dataset (see Table 1).
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Figure 2. Results of manual ratings
A-C: Frequency of average manual rating for the training, internal testing, and external 

testing datasets. D-F: The pairwise weighted-κ between each rater in dataset was moderate 

and consistent across datasets. G-I: The pairwise polychoric correlation for each rater in all 

of the datasets was high.
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Figure 3. Manual quality rating varies by age
Image quality improves with age during adolescence in both training (A) and internal testing 

samples (B) using PNC data, whereas data quality declines with aging over the adult 

lifespan in the external test dataset (C). In A-C, dark line represents a linear fit; shaded 

envelope represents 95% confidence intervals; reported significance values are calculated 

using partial Spearman's correlations after regressing out gender trends.
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Figure 4. Quantitative metrics of image quality show heterogeneous alignment with manual 
ratings
A: The standardized mean (+/- S.E.M.) for each quantitative metric is displayed by average 

manual rating class. B: Partial Spearman correlation coefficients between average manual 

quality rating and the T1 derived quantitative metrics; covariates included sex, age, and age 

squared. Across all datasets, Euler number showed the strongest association with manual 

quality ratings.
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Figure 5. Inclusion model to identify unusable images
A-C: Logistic models in training (A), internal testing (B), and external testing (C) datasets 

were used to evaluate the ability of each quantitative measure of image quality to 

discriminate usable (rated 1-2) and unusable (rated 0) images. Area under the curve (AUC) 

was used to summarize model performance. In all datasets, the Euler number was the best-

performing metric; adding additional metrics to the Euler number did not improve model 

performance. D-F: Receiver Operator Characteristic (ROC) curves for the Euler number in 

each dataset.
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Figure 6. Limits of motion from functional scans as a proxy measure of T1 volume quality
A: Mean in-scanner motion during functional sequences acquired as part of the PNC 

increased over the course of the scanning session. Sequences are plotted in order of 

acquisition after the T1 scan; time from the T1 scan is reported in minutes: seconds within 

each bar. B: Individuals with lower-quality T1 images had differential attrition over the 

course of the of the scanning session. Thus, individuals with a lower-quality T1-images were 

less likely to complete the functional sequences which were subsequently acquired. Attrition 

scaled with quality of the T1 image. C: In participants for whom complete data was 

available (n=1275), motion estimated from the functional sequence did not perform as well 

as the Euler number in identifying unusable images (rated “0”).
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Figure 7. Quantitative measure of image quality is associated with cortical thickness
In usable images that were not excluded due to gross artifact, cortical thickness was 

significantly related to the Euler number in a regionally heterogeneous pattern. Higher data 

quality was associated with thicker cortex over much of the brain, but was conversely 

associated with thinner cortex in occipital and posterior cingulate cortex. This pattern was 

present across all datasets. Image displays z-scores from a mass-univariate linear regression, 

where regional cortical thickness was the outcome and Euler number was the predictor of 

interest; covariates included age, age squared, and sex. All results corrected for multiple 

comparisons using the False Discovery Rate (q < 0.05).
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Figure 8. Data quality significantly mediates observed associations with age in youth
Having found that data quality is associated with both age and cortical thickness, we 

evaluated whether data quality might systematically bias inference regarding brain 

development. To do this, a mediation analysis was performed for each cortical region (A), 

where we evaluated if the Euler number mediated the apparent relationship between age and 

cortical thickness. At each region, Sobel z-scores were calculated as the test statistic for the 

mediation analysis. A positive Sobel's value indicates that when controlling for data quality 

an increased effect of age was revealed; a negative Sobel's value indicates that when 

controlling for data quality a diminished association with age was present (B). This 

procedure was applied to both the training (C) and internal test set (D) from the PNC, which 

revealed consistent mediation effects in both samples. Data quality significantly mediated 

the relationship between age and cortical thickness in a bidirectional, regionally 

heterogeneous manner. After controlling for data quality, the apparent age effect was 

increased in many regions (regions in warm colors), where higher data quality was 

associated with thicker cortex (see Figure 7). However, in a subset of regions including the 

occipital and posterior cingulate cortex, controlling for data quality resulted in a diminished 

association with age (cool colors). Multiple comparisons were accounted for using FDR (q 
<0.05).
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Table 1

Demographic information of the training and validation datasets.

Study N % Female Age Mean Age SD

Training 1065 51 14.90 3.70

Testing 1 533 44 15.10 3.68

Testing 2 242 48 41.36 16.99
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Table 2

Quantitative image quality metrics.

Quantitative Metric Abbreviation Citation

Signal-to-noise ratio SNR Magnotta and Friedman, 2006

Contrast-to-noise ratio CNR Magnotta and Friedman, 2006

Foreground-to-background energy ratio FBER NA

Quality index 1 Qi1 Mortamet et al., 2009

Image smoothness FWHM Friedman et al., 2006

Entropy focus criterion EFC Atkinson et al., 1997

Euler number Euler Dale et al., 1999
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Table 3

Inclusion model performance, using classification threshold criterion derived from training sample.

Study Threshold Sensitivity Specificity Accuracy

Training -217 0.97 0.94 0.94

Internal Testing -217 1 0.93 0.92

External Testing -217 1 0.76 0.76
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Table 4
Inclusion model performance, using classification threshold criterion calculated 
separately for each dataset

Study Threshold Sensitivity Specificity Accuracy

Training -217 0.97 0.94 0.94

Internal Testing -224.5 1 0.93 0.93

External Testing -380 1 0.98 0.98
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