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Abstract 

Although the relationship between resting-state functional connectivity and task-related activ-

ity has been addressed, the relationship between task and resting-state directed or effective connectivi-

ty – and its behavioral concomitants – remains elusive. We evaluated effective connectivity under an 

N-back working memory task in 24 participants using stochastic dynamic causal modelling of 7 Tesla 

fMRI data. We repeated the analysis using resting state data, from the same subjects, to model con-

nectivity among the same brain regions engaged by the N-back task. This allowed us to: (i) examine 

the relationship between intrinsic (task-independent) effective connectivity during resting and task 

states, (ii) identify phenotypes of task-dependent effective connectivity across participants, and (iii) 

associate behavioral performance with the similarity between task-dependent effective connectivity 

and resting-state intrinsic connectivity within each phenotype. We found a strong correlation between 

intrinsic effective connectivity in the resting and task states over subjects but a marked difference be-

tween task related changes in effective connectivity and resting-state intrinsic connectivity. We fur-

ther identified a strong clustering of individuals according to task-related changes in effective connec-

tivity during the N-back task, which was not apparent in resting-state connectivity. In subjects with 

significant parieto-frontal connectivity, the similarity between effective connectivity during N-back 

task performance and resting-state connectivity was positively correlated with 3-back reaction times. 

This result implies that a greater change in context-sensitive coupling – from resting state connectivity 

– is associated with faster reaction times. In summary, task-dependent connectivity endows resting-

state connectivity with a context sensitivity, which predicts task performance. 
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Introduction 

 

The human brain at rest exhibits highly structured spontaneous or endogenous fluctuations in 

functional MRI signals (Biswal et al., 1995; Greicius et al., 2003; Lowe et al., 1998; McGuire et al., 

1996; Raichle and Snyder, 2007). The temporal correlations between these fluctuations serves as a 

basis for estimating (resting-state) functional connectivity among distributed brain regions (Fox and 

Raichle, 2007) – an approach that has attracted an unprecedented interest from the imaging neurosci-

ence community. One important question about resting-state connectivity is its relationship with con-

nectivity induced by task performance. Previous studies have suggested a tight link between the rest-

ing-state connectivity (or distributed patterns of endogenous activity) with task-related brain activa-

tion or connectivity (Biswal et al., 1995; Cole et al., 2014; Cole et al., 2016; Krienen et al., 2014; Park 

et al., 2014; Smith et al., 2009; Tavor et al., 2016; Yeo et al., 2015). For example, Cole et al. (2016) 

showed that functional connectivity from resting-state fMRI (rsfMRI) could explain the interaction 

among brain areas during task performance. Tavor et al. (2016) also showed that task-evoked activa-

tion could be predicted by (task-free) features of rsfMRI and DTI data. According to these studies, 

resting-state connectivity may serve as a potential ‘scaffold’ that underwrites diverse configurations 

subserving the pertinent functions of a given task (Fox and Raichle, 2007). In doing so, task-induced 

neural activity may not engage resting-state networks directly but may contextualize them and selec-

tively engage the components of resting-state or intrinsic networks. Accordingly, several studies have 

focused on the divergence of task-dependent functional connectivity from that of the resting-state 

(Corbetta et al., 2008; Elton and Gao, 2014; Hermundstad et al., 2013b).   

However, it is not still clear whether resting-state connectivity is simply recapitulated or re-

configured to perform a task. Moreover, previous studies of the relationship between resting-state 

functional connectivity and task-related activity have been largely based on temporal synchrony be-

tween regional activities (quantified using Pearson correlation coefficients), which does not provide 

information about the directed causal coupling among brain regions (for review, see Park and Friston, 

2013). Inferences about directed coupling call for effective connectivity analyses that identify net-

work architectures in terms of causal relationships. Therefore, the relationship between effective con-

nectivity during the task-state and effective connectivity in the resting-state is unresolved.  

In the current study, we characterized the relationship between task and resting-state coupling 

in terms of effective connectivity. To estimate effective connectivity for both states, we used dynamic 

causal modelling (DCM), which assumes a bilinear model of neural dynamics and a hemodynamic 

response model of fMRI data (Friston et al., 2003). In particular, stochastic DCM (Friston et al., 2011; 

Li et al., 2011) can estimate effective connectivity from both task and resting-state time series (with 

and without experimental inputs) using the same model inversion scheme. Using stochastic DCM, we 

examined the relationship between task and resting-state connectivity, within the context of an N-back 
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task, for which many neuroimaging studies have identified the key brain regions involved (Barch et 

al., 2013; Honey et al., 2002; Manelis and Reder, 2014; Owen et al., 2005) – and for which a few 

DCM studies are available (Brodersen et al., 2014; Deserno et al., 2012; Dima et al., 2014; Schmidt et 

al., 2014). In this paper, we will use the phrase intrinsic connectivity to refer to the effective connec-

tivity underlying intrinsic brain networks in rsfMRI – and the effective connectivity that is intrinsic to 

a task set during task fMRI, having modeled any changes in effective connectivity due to task-related 

processes (i.e., extrinsic or modulatory connectivity), such as working memory. 

We further note that task performance may not be supported by a single configuration of con-

nectivity. In other words, there may be a many-to-one (i.e. degenerate) mapping between connectivity 

and function (Edelman and Gally, 2001; Friston and Price, 2003; Price and Friston, 2002; Tononi et 

al., 1999). This means, to perform a given task, people may engage different connectivity architec-

tures. Although direct evidence for this network degeneracy hypothesis has not been established, it 

may explain the inconsistent effective connectivity observed in group DCM studies of N-back task 

(Bernal-Casas et al., 2013; Deserno et al., 2012; Dima et al., 2014; Fonville et al., 2015). Furthermore, 

the plurality of plausible dynamic causal models in group studies of 2-back tasks (Dima et al., 2014) 

may reflect the possibility that multiple patterns of effective connectivity support the same task. 

Brodersen et al. (2014) identified three subgroups using DCM, which showed significant differences 

in positive and negative symptom severity in schizophrenia (as assessed by PANSS). This clustering 

was taken as evidence of subtypes; not only in terms of behavioral performance but also at the level of 

effective connectivity engaged by the task. 

The purpose of this study was to investigate the relationship between task-related effective 

connectivity and resting-state effective connectivity, to examine phenotypes of task-related effective 

connectivity across participants and to associate behavioral performance with the divergence of task 

related changes in effective connectivity from resting-state intrinsic connectivity, within each pheno-

type. Crucially, we were concerned with establishing the construct validity of effective connectivity, 

in relation to behavior – and the predictive validity of resting-state intrinsic connectivity, in relation to 

task-related effective connectivity. We therefore conducted independent DCM analyses of the task- 

and resting-state fMRI data to: (i) test for similarities between the respective intrinsic connectivity 

estimates (using correlations over connections) and (ii) to quantify the divergence of task-related ef-

fective connectivity changes from the resting state intrinsic connectivity. This should be contrasted 

with a complementary approach, in which both task and resting state fMRI data were modeled within 

a single DCM. Although this would have allowed us to model the differences between task, baseline 

and resting connectivity, it would not have enabled us to demonstrate their similarity or predictive 

validity (i.e., the ability to predict intrinsic connectivity under a task set from independent resting-

state effective connectivity estimates).  
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Methods 

 

Participants 

 24 healthy right-handed participants (13 males; age = 22.9 ± 2.7 years) underwent N-back 

task and resting-state fMRI during contiguous sessions. All participants had no history of neurological 

illness and were right-handed according to the Annett’s handedness questionnaire (Annett, 1970). 

This study was carried out under the guidelines established by the Institutional Review Board of Ko-

rea Basic Science Institute, and all participants provided written informed consent before participat-

ing. 

 

N-back Task Design 

 Prior to their visit, participants practiced N-back tasks with a training video (lasting 8 

minutes) that was created specifically for this experiment – and administered via email. The video 

consisted of examples for 0-back, 1-back, 2-back, and 3-back trials that were similar to the trials they 

had to perform during the experiment. After training, they completed an online questionnaire to report 

the subjective level of easiness and understanding of the task on a 5-point scale. Only participants that 

scored 4 or 5 on the questionnaire were recruited. Upon their visit for the fMRI experiment, partici-

pants were subject to an additional training session on a computer – to ensure that they thoroughly 

understood the N-back task.  

 The N-back task was presented in a block design, alternating between experimental and base-

line conditions. The design conformed to a previous study (Dima et al., 2014). A series of digits, in 

black font, were displayed on a white background for 1.7 s each, which then disappeared for 0.3 s. 

The 0-back condition was used to control for task engagement and vigilance. In the 0-back condition, 

participants were instructed to respond by pressing a button whenever the target digit “3” was dis-

played. In the working memory conditions (1-, 2-, and 3-back), the target was defined as any digit that 

was identical to the digit presented 1, 2, or 3 trials back. There were 12 epochs in all, each lasting 30 

s, and comprising 10 digits. The entire N-back experiment lasted for 360 s, with a total of 34 targets 

and 134 non-target stimuli. The reaction time (RT) was measured for correct hits. To avoid any sys-

tematic order effects, all conditions were pseudo-randomized.  

 

 Image Acquisition and Processing of N-back and Resting-state fMRI 

 Functional and structural MRI data were acquired using a 7-Telsa scanner (Intera Achieva; 

Philips Medical Systems, Best, The Netherlands). fMRI blood oxygenation level dependent (BOLD) 

signals were obtained using a T2*-weighted gradient echo-planar imaging (EPI) sequence (repetition 

time (TR) = 2000 ms; echo time (TE) = 17 ms; flip angle = 70 ˚; matrix = 128 × 128; voxel size = 1.5 

× 1.5 × 3.6 mm3; field-of-view (FOV) = 192 mm; 30 interleaved slices without slice gap). High-

resolution structural images were acquired using a three-dimensional T1-weighted sequence (TR = 
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4.3 ms; TE = 1.93 ms; flip angle = 8 ˚; matrix = 320 × 320; voxel size = 0.75 × 0.75 × 0.75 mm3; 

FOV = 240 mm; 320 slices). 

 Preprocessing of N-back task and resting-state fMRI was performed using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/, Wellcome Trust Centre for Neuroimaging, Lon-

don, UK). The first 5 scans of fMRI were discarded to ensure magnetic equilibration. The 183 EPIs 

for N-back and the 300 EPIs for resting-state (eye-closed) were preprocessed by correcting for acqui-

sition delays over different slices. Correction for head motion involved realignment of all consecutive 

volumes to the first image of the session. The realigned images were then co-registered to T1-

weighted images, which were used to spatially normalize the functional data into a template space 

using standard nonlinear transformations. Finally, all normalized images were smoothed using a 6 

mm full-width half-maximum Gaussian kernel. Low-frequency drifts were removed using a high-pass 

filter with a cut-off frequency of 128 s. In the first (within-subject) level analysis, the six motion re-

gressors from the realignment procedure were included to eliminate artefacts caused by head move-

ment. Group-level activation was assessed using the usual random effect analysis at the second (be-

tween-subject) level. Activation at the group level – among four conditions (0-back, 1-back, 2-back 

and 3-back) – was tested using a factorial general linear model to generate statistical parametric maps 

(SPM).   

To summarize time-series in task-related areas, we first determined group level effects from 

the local maximum in second-level SPMs of the conjunction of 2-back and 3-back versus 0-back ef-

fects (uncorrected p < 0.01). These maxima were located in the bilateral superior parietal lobule 

(SPL), bilateral superior frontal gyrus (SFG), bilateral middle frontal gyrus (MFG), left para-cingulate 

gyrus (PrCG), and the right insula (INS). Individual (subject-specific) 5 mm volumes of interest 

(VOI) were centered on the nearest local maximum – around the group level maxima – on the first-

level conjunction SPM of 2-back and 3-back versus 0-back effects (uncorrected p < 0.001); each with 

an extent threshold of 100 continuous voxels. The principle eigenvariate of all voxels within each 

VOI was then used to summarize regional activity in both the task and resting-state time series for 

subsequent DCM.  

 

Dynamic Causal Modeling 

 In order to estimate effective connectivity, we used DCM for fMRI (Friston et al., 2003), 

which formulates neuronal dynamics in terms of bilinear approximations and hemodynamic responses 

using an extended balloon model (Buxton et al., 1998; Friston et al., 2003). The neuronal model for a 

deterministic DCM can be expressed as the following ordinary differential equation: 

 

𝑥̇ = (𝐴 + ∑ 𝐵𝑗𝑢(𝑗)

𝐽

𝑗=1

) 𝑥 + 𝐶𝑢 (1) 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Here, 𝑥 represents the hidden neural state for each region with dimension 𝑛 × 1 and u represents a 𝑗 ×

1 vector of experimental inputs. The weighted undirected adjacency matrix 𝐴 is 𝑛 × 𝑛 matrix for an 

intrinsic connectivity and 𝐵𝑗 is the 𝑗-th 𝑛 × 𝑛 condition-specific connectivity matrix that is added to 

the intrinsic connectivity in an input or task-dependent fashion. 𝐶 denotes an 𝑛 × 𝑗 matrix encoding 

the influence of experimental input on the hidden neural states. The neural state then passes through a 

hemodynamic response function ℎ(𝑥, 𝑢, 𝜃ℎ) with hemodynamic parameters 𝜃ℎ (Stephan et al., 2007). 

Finally, the BOLD signal, 𝑦, can be modeled as a mixture of the predicted response and observation 

error: 

 

𝑦 = ℎ(𝑥, 𝑢, 𝜃ℎ) + 𝑒 

 

Here, 𝑒 is a normally distributed error term. Stochastic DCM differs from deterministic DCM (Eq. 1) 

in that it includes endogenous or random fluctuation 𝜔  (Chang and Lin, 2011; Daunizeau et al., 

2012). Under a stochastic DCM, Eq. (1) can be rewritten as 

 

𝑥̇ = (𝐴 + ∑ 𝐵𝑗𝑢(𝑗)

𝐽

𝑗=1

) 𝑥 + 𝐶𝑢 + 𝜔 

 

The driving input matrix C was specified to assign each item presented – in all conditions – as 

an input to the bilateral SPLs. A condition specific B matrix was assigned to all connections and mod-

eled the effects of N-back items presented during either 2- and 3-back conditions. In this setting, the 

A matrix of the N-back task is not resting-state effective connectivity but effective connectivity intrin-

sic to the whole task, in the absence of modulatory 2-back or 3-back working memory effects. We 

used a fully connected model for an intrinsic connectivity matrix A and modulatory connectivity ma-

trix B. We first inverted a deterministic DCM, to evaluate the initial parameters of the stochastic 

DCM (using the same connectivity model). 

For a resting-state, the neuronal dynamics in Eq. (3) can be simplified, to a stochastic differ-

ential equation with an intrinsic connectivity matrix 𝐴, and a hidden state 𝑥, driven by endogenous 

stochastic fluctuations 𝜔. 

 

𝑥̇ = 𝐴𝑥 + 𝜔 

 

In this setting, the adjacency matrix A mediates intrinsic brain networks. To initialize the pa-

rameters for stochastic DCM of the rsfMRI data, we used a spectral DCM as the deterministic homo-

logue (Friston et al., 2014). Spectral DCM estimates effective connectivity among brain regions by 

(2) 

(3) 

(4) 
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estimating effective connectivity and the spectral density of endogenous fluctuations using the ob-

served complex cross spectral density over regions. We now turn to inferences about differences in 

effective connectivity within and between subjects. 

Parametric Empirical Bayesian (PEB) 

We conducted group (between-subject) level inference for DCM using the parametric empiri-

cal Bayesian scheme in SPM12. This allows one to specify between-subject linear models at the sec-

ond level. A detailed explanation can be found in (Friston et al., 2015; Friston et al., 2016). Briefly, 

the first (within-subject) estimates are summarized in terms of posterior expectations and covariances 

and are passed to a second (between-subject) level to estimate posterior expectations and covariances 

of group means and other between-subject effects. At the second level, we used a general linear model 

with between-subject effects 𝛽 on within-subject effects 𝜃 = {𝐴, 𝐵, 𝐶, 𝜃ℎ} encoded by a design matrix 

𝑋. 

 

𝑦𝑖 = Γ(𝜃𝑖) + 𝜀𝑖
(1)

 

 𝜃 = (𝐼⨂𝑋)𝛽 + 𝜀(2) 

 

Here, Γ is a function that returns the predicted observations as a function of the model parameters 

(corresponding to Eq. (2) and (3) for task fMRI and Eq. (2) and (5) for rsfMRI). This hierarchical or 

parametric empirical Bayes model means that the parameters 𝜃𝑖 of the 𝑖th subject are modeled as a 

group average, plus a random effect  𝜀(2). In the current study, we used a simple between-subject de-

sign matrix 𝑋 = [1 … 1]𝑇, rendering 𝛽 group means. Note that this PEB model furnishes estimates of 

group means and subject-specific (connectivity) parameters 𝜃𝑖 that are optimally shrunk to the group 

mean. 

 

Post hoc analyses of connectivity  

To define similarity between the effective connectivity induced under the N-back task and 

resting-state in each individual, we used the Pearson’s correlation coefficient for three pairs of con-

nectivity matrices; 1) the correlation between intrinsic connectivity A under N-back task and resting-

state 2) the correlation between changes in connectivity B under the N-back task and intrinsic resting-

state connectivity A and 3) correlation between the task related connectivity A + B under the N-back 

task and intrinsic resting-state connectivity A. The correlations were calculated for each subject– both 

including and excluding self or recurrent connections (effective connections on the leading diagonal 

of connectivity matrices).  

Because the A matrix encodes the intrinsic connectivity and the B matrix encodes the changes 

in connectivity (induced by condition or working memory effects), the sum of the A and B matrix can 

(5) 
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be associated with the effective connectivity expressed during the (working memory) conditions. Fur-

thermore, note that the intrinsic (within-region) connections, along the leading diagonal of the A ma-

trix, are log scale parameters in DCM for fMRI. This contrasts with the extrinsic (between-region) 

connections on the off-diagonal elements, which parameterize effective connectivity directly in terms 

of Hz. In other words, the within and between node connections have slightly different parameteriza-

tions (i.e., the log of a negative self-connection versus the connectivity between different regions). 

However, both have a prior expectation of zero and, in the absence of any structured connectivity, 

should show no correlation when estimated from independent data. 

To characterize systematic between-subject variability in responses to the working memory 

tasks, we clustered individuals according to cross-subject similarity (correlation coefficient) matrix of 

the N-back connectivity matrix B, using a modularity optimization function in the brain connectivity 

toolbox (Leicht and Newman, 2008; Rubinov and Sporns, 2010), from which the maximum modulari-

ty (indexed as Q) was obtained (Newman and Girvan, 2004). For each subgroup or cluster, we per-

formed post hoc PEB of the N back DCM. For completeness, this post hoc subgroup analysis was also 

applied to the resting-state connectivity.  

Finally, to test for associations between effective connectivity and behavioral performance 

across subjects, similarities between the B matrix of N-back and the A matrix of resting-state were 

correlated with the RTs of subjects with nontrivial 3-back task performance (over 0.70 in recall rate). 

Figure 1 summarizes the procedure for the current analysis.   

 

 

Figure 1. Procedure for DCM of resting-state and N-back task fMRI.  
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Results 

 

Different Performance by N-back Task Difficulty 

 Mean and standard deviation of the RTs during 0-, 1-, 2-, and 3-back trials were 556.48 

(74.27), 557.79 (113.98), 662.21 (146.39), and 792.24 (149.95) ms, respectively. The differences be-

tween group mean RTs were significant (p of 0-back vs. 2-back = 0.0012, p of 0-back vs. 3-back < 

0.0001, p of 1-back vs. 2-back = 0.0007, p of 1-back vs. 3-back < 0.0001, p of 2-back vs. 3-back = 

0.0059) except for the mean RT of 0-back vs. mean RT of 1-back. The accuracy, recall, and precision 

four all conditions were over 90%, except recall of 3-back condition (Table 1).  

  

Table 1. Reaction time, accuracy, recall, and precision for each condition. Significance was assessed 

by paired t-tests (significance level = 0.05). 

conditions reaction time (ms) accuracy recall precision 

0-back 556.48 (74.27) 0.996 (0.007) 0.995 (0.018) 0.979 (0.036) 

1-back 557.79 (113.98) 0.992 (0.023) 0.980 (0.059) 0.990 (0.034) 

2-back 662.21 (146.39)† 0.987 (0.027) 0.954 (0.105) 0.986 (0.049) 

3-back 792.24 (149.95)†‡ 0.921 (0.059) 0.752 (0.171) 0.906 (0.131) 

†: Significantly longer than 0-back and 1-back, ‡: Significantly longer than 2-back 

  

Regions-of-Interest for N-back Task 

 In order to find common coordinates for both 2-back and 3-back, we conducted a conjunction 

analysis (Friston et al., 2005; Price and Friston, 1997). Figure 2a, 2b, and 2c show brain regions acti-

vated during the N-back task (conjunction analysis of 2-back and 3-back versus 0-back), which were 

subsequently used as nodes in the DCM analysis. The regions engaged by the task were the left supe-

rior parietal lobule (SPL; -42, -50, 56), right SPL (38, -52, 50), left superior frontal gyrus (SFG; -28, 

2, 60), right SFG (28, 2, 58), left middle frontal gyrus (MFG; -44, 28, 30), right MFG (42, 38, 32), 

para-cingulate gyrus (PrCG; 0, 16, 50), and the right insula (INS; 34, 20, 0). Based on these coordi-

nates, we summarized regional activity in both task-state and resting-state fMRI time series using 

(subject-specific) principal eigenvariates. 
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Figure 2. DCM model construction. (a) Group-level (positive) SPM of 2-back and 3-back effects 

against 0-back. (N = 24, uncorrected p<0.001, cluster size over 100 voxels). (b and c) Group-level 

SPM evaluated by a conjunction analysis of 2-back and 3-back versus 0-back effects (N = 24, uncor-

rected p<0.01, clusters over 100 voxels). Individual activations, corresponding to the group-level acti-

vations, were visually identified in the conjunction SPM of 2-back and 3-back versus 0-back effects. 

From individual VOIs, both task-based and resting-state fMRI time series were extracted. (d) The 

graph shows the fully connected DCM with 8 VOI or nodes. (e) Driving inputs from stimuli in all 

conditions were assigned to the bilateral SPL and task-dependent (working memory) effects of 2-back 

and 3-back conditions were assigned to every connection. SPL: superior parietal lobule, SFG: superi-

or frontal gyrus, MFG: middle frontal gyrus, PrCG: para-cingulate gyrus, and INS: insula. 

 

Stochastic DCM 

 Figure 3 shows the estimated stochastic DCMs for the N-back and resting-state of all partici-

pants. In the present study, three effective connectivity matrices were estimated, A (intrinsic) of N-

back, B (working memory) of N-back, and A (intrinsic) of resting-state.  
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Figure 3. Subject specific effective connectivity matrices following stochastic DCM of the N-back 

and resting-state fMRI. ‘A’ and ‘B’ matrices correspond to intrinsic and condition related changes in 

effective connectivity. Each matrix element represents effective connectivity among 8 nodes in the 

following order: left SPL, left SFG, left MFG, right SPL, right SFG, right MFG, PrCG, and right INS. 

Directions are represented from columns to rows, meaning that the direction of an element (𝑛, 𝑚) of 

the connection matrix is effective connectivity from the m-th region to the n-th region.  

 

 

Figure 4. Similarity between N-back and resting-state. (a) correlations between all elements of the 

connection matrices are displayed. ‘At vs. Ar’ represents the correlation between effective connections 

from the N-back and resting-state. ‘Bt vs. Ar’ shows similarity between connectivity changes during 

N-back and the intrinsic connectivity during the resting-state. ‘At+Bt vs. Ar’ represents correlations 

between the effective connectivity during working memory conditions and the connectivity of the 

resting-state. (b) this panel uses the same format that tests for correlations among off diagonal ele-

ments of the connectivity matrices. Significant differences in correlations over subjects were tested 

using paired t-tests. Except for off-diagonal correlations between Bt and Ar, all correlations were sig-

nificantly positive (using a one sample t-test against a null hypothesis of zero correlation). * indicates 

a significantly positive correlation (p < 0.05). 

  

Similarity of effective connectivity between task and resting states. 

The correlations between the resting-state connectivity A matrix and task-state A, B, and 

A+B were (nearly) all positive in every subject (and significantly positive when averaged across sub-
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jects using one sample t-test: Figure 4a). These positive correlations were preserved when omitting 

self-connections: positive correlations between resting-state and N-back off-diagonal connections 

were significant across all subjects except for the case of B of N-back versus A of resting-state (Fig-

ure 4b). Correlations between the A connections of N-back and resting-state were significantly 

stronger than the correlations between changes in B connections during N-back and A connections 

during the resting-state. The correlations between connectivity during working memory A+B in the 

N-back and A connections of the resting-state were also significantly higher. These differences were 

also evident in the analysis with only off-diagonal elements (Figure 4b). 

 

Differences among N-back Task and Resting-state connections 

PEB estimates of effective connectivity in the N-back task showed that the group connectivity 

differed from zero for every connection (at 95% posterior confidence). A subsequent cluster analysis 

of subject-specific connectivity reveals three different clusters or subgroups. Figure 5a shows an op-

timized community structure based on the B connectivity matrix during the N-back task. The modu-

larity Q of the optimized community structure was 0.3922. PEB estimates of connectivity within each 

subgroup revealed different intrinsic connectivity patterns (Figure 5b). The connectivity in subgroup 1 

did not reach the confidence level (95%). In subgroup 2, however, 4 edges from the right SPL to bi-

lateral SFG, PrCG, and left MFG were significant. Subgroup 3 had also 6 significant connections, 

which were from the left SPL to bilateral SFG, bilateral MFG, PrCG, and right SPL (see graphical 

illustrations of Figure 5c). For subgroups 1, 2, and 3, the mean and standard deviations of recall per-

formance were 0.6961 (0.1769), 0.7991 (0.1717) and 0.6944 (0.1457), respectively. There was no 

significant group difference in recall. RTs of the three subgroups were 869.35 (200.81), 752.76 

(116.02) and 785.60 (157.11) ms. The RT of subgroup 2 tended to be shorter than that of subgroup 1 

(p = 0.057). When we consider subjects with good recall performance (recall > 0.7), RT was signifi-

cantly shorter in subgroup 2 than in subgroup 1 (p = 0.034). 

 The community structure for resting-state DCMs, based on the between-subject similarity of 

the off-diagonal elements of the resting-state A matrix is shown in Figure 6. We found two clusters or 

subgroups but with very low modularity (Q = 0.1871). Their corresponding PEB results are shown in 

Figure 6b. There was no significant difference in mean RT between the two subgroups based on rest-

ing-state effective connectivity estimators. 

Group differences between pattern similarities of A connectivity in the N-back task relative to 

of resting-state connectivity (At vs. Ar), and changes in connectivity during N-back relative to intrin-

sic resting-state connectivity (Bt vs. Ar) are shown for all subgroups in Figure 7a-7c. In the case of N-

back, although the similarity of all elements showed a significant difference between ‘At vs. Ar’ and 

‘Bt vs. Ar’, the similarity of the off-diagonal elements did not show any significant difference (p < 

0.05). 
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Figure 5. Three different subgroup were identified by modularity optimization of the adjacency matrix 

based on the between-subject similarity of the B matrices of N-back (Q = 0.3922) (a). Off-diagonal 

elements of the B matrix of each individual were used for computing pattern similarity. (b) subgroup 

level effect sizes of N-back DCMs for all the subjects and for the PEB estimates of the three sub-

groups. (c) Significant connectivity B and C (to the bilateral SPL) during the N-back task for sub-

group 2 and subgroup 3 are displayed (confidence interval p < 0.05). There was no significant effec-

tive connectivity in subgroup 1. Blue arrows indicate negative effective connectivity. (d) The reaction 

times of 3-back task in subgroup 2 tended to be shorter than those in subgroup 1. 

 

 

Figure 6. Modularity optimization of the adjacency matrix based on the between-subject similarity of 

the resting-state A matrix (off-diagonal part). The very low modularity index indicates weakly sepa-

rable clusters (Q = 0.1871). Effective connectivity in the resting-state DCMs for each group was esti-

mated by PEB. 

  



 15 

 

Figure 7. Similarity of the effective connectivity matrices for three subgroups clustered according to 

the associated B matrix (a-c) and their relationships with the reaction time (d and e).  At vs. Ar shows 

the correlation between A connections from N-back task and resting-state. Bt vs. Ar shows the correla-

tions between an N-back matrix Bt and a resting state matrix Ar. P indicates p-values after paired t-test. 

(d) 3-back reaction times were highly correlated with the similarity between At and Bt of the N-back 

task (r = 0.61, p = 0.0017). Triangles, circles and rectangles indicate three groups, while colors indi-

cate recall rate. (e) The similarity between Bt of the N-back task and Ar of the resting state showed a 

significant correlation with 3-back reaction times in the subjects belonging to subgroups 2 and 3, who 

showed good task performance (chosen with a criterion of recall rate in 3-back > 0.7, N = 12, r = 0.81, 

p = 0.0014). 

 

Association between Pattern Similarity and Behavior 

As shown in Figure 7d, the similarity between resting state A and N-back B connectivity ma-

trices were highly correlated with reaction times (r = 0.61, p = 0.0017). Figure 7e shows that this cor-

relation remained significant for subjects in subgroups 2 and 3 and who showed good performance 

(recall rate over 0.7 in 3-back, r = 0.81, p = 0.0014). 

 

Discussion 

 

The main purpose of this study was to explore the relationship between effective connectivity 

during resting-state and task performance. In contrast to most previous studies that have associated 

functional connectivity during the resting-state with task-related activity patterns (Biswal et al., 1995; 

Cole et al., 2014; Cole et al., 2016; Krienen et al., 2014; Smith et al., 2009; Tavor et al., 2016; Yeo et 
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al., 2015), we explored both resting and task ‘connectivity’ among the same brain regions. Further-

more, instead of examining correlation-based functional connectivity, we used effective connectivity 

for both resting and task states. By utilizing stochastic DCM of resting-state and N-back task fMRI 

data, from the same brain regions, we showed a strong correlation between intrinsic effective connec-

tivity in the resting and task states over subjects but a marked divergence of task-related changes in 

effective connectivity from resting-state intrinsic connectivity. Crucially, when task-related increases 

in connectivity correlated with the intrinsic connectivity in the N-back task – or the intrinsic connec-

tivity during resting-state – reaction times increased. In other words, participants whose working 

memory related changes in connectivity diverged from baseline or resting-state connectivity patterns 

performed better on working memory tasks. Finally, we found a strong clustering of individuals ac-

cording to effective connectivity during the N-back task, which was not found in the resting-state 

connectivity. This clustering – into phenotypic subgroups – had predictive validity in relation to per-

formance.  

 

Brain activity and connectivity during the N-back tasks 

In the current study, we constructed DCM networks of brain regions engaged by the N-back 

tasks to relate resting-state and task-state effective connectivity. In general, the N-back task is known 

to recruit the parieto-frontal circuitries (Deserno et al., 2012; Dima et al., 2014; Owen et al., 2005; 

Park et al., 2011; Schmidt et al., 2014) including the bilateral SFG, bilateral MFG as well as other 

brain regions; such as right INS, and left PrCG (Barch et al., 2013; Manelis and Reder, 2014). Activa-

tions detected during the N-back tasks in the current study were consistent with the findings of these 

previous studies (Figure 2).  

The current results are also consistent with Dima et al. (2014), who reported effective connec-

tivity from the parietal regions to the frontal regions that differed across conditions (1-, 2-, and 3-back 

tasks). This previous study pre-specified several hypothesized models with a single effective connec-

tivity of the parieto-frontal lobe and conducted a model comparison of the hypothesized models. The 

present study differs from Dima et al. (2014) in that we found effective connectivity from the parietal 

lobe to the frontal lobe, based on a full connection model.  

 

Divergence of task-related effective connectivity from the resting-state intrinsic connectivity 

As shown in Figure 4, the connectivity B during the task-state (2-back and 3-back) diverges 

greatly from the resting-state connectivity, whereas the intrinsic A connectivity manifests a similar 

pattern to that of intrinsic resting-state connectivity. Since the 0-back task used in this study is not an 

absolute resting-state but a baseline (incidental) task, the intrinsic connectivity matrix of the N-back 

task is not the same as the intrinsic connectivity of the rsfMRI. However, according to previous stud-

ies, most regions involved in the 0-back task do not overlap with the regions for 2- or 3-back condi-

tions. Although an increased activation for the 0-back task compared to resting-state were found in the 
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right MFG (Papma et al., 2012), no activations were found in the left MFG during the 0-back condi-

tion (Harvey et al., 2005). The similarity between A of N-back condition and A of resting-state might 

be interpreted in this respect. Therefore, we can consider the A matrix of N-back as an intrinsic con-

nectivity during the task, that is very similar to resting-state intrinsic connectivity. The similarity be-

tween A of N-back and A of resting-state serves as a reference for interpreting changes in connectivi-

ty during the N-back task in relation to intrinsic, resting-state connectivity.  

We found a smaller similarity (i.e. correlation) between task-related connectivity changes and 

intrinsic resting-state connectivity, which reflects task-dependent and context-sensitive modulations 

of effective connectivity. Although a strong relationship between the intrinsic connectivity (or distrib-

uted spontaneous activity patterns) and task-related connectivity (or task-evoked activity patterns) has 

been reported (Biswal et al., 1995; Cole et al., 2014; Cole et al., 2016; Krienen et al., 2014; Park et al., 

2014; Smith et al., 2009; Tavor et al., 2016; Yeo et al., 2015), intrinsic connectivity during the rest-

ing-state does not appear to be recapitulated but modulated or ‘repurposed’ to perform a specific task. 

 This interpretation of the current results is consistent with previous studies suggesting diver-

gence of task-related connectivity from that of the resting-state. Corbetta et al. (2008) reviewed that 

the brain can reorient an attentive state via a deactivation of brain regions for default network from 

resting-state. Elton and Gao (2014) showed divergence between a network of selective attention task 

and that of resting-state. Moreover, functional connectivity changes during attention and memory 

tasks appear to facilitate diverse cognitive functions and disclose their context-sensitivity 

(Hermundstad et al., 2013a). The current study further shows that task-related connectivity during the 

N-back task diverges from the resting-state intrinsic connectivity and that the divergence was posi-

tively correlated with behavioral performance.  

 

Group heterogeneity in N-back task effective connectivity 

 Behavioral performance in working memory tasks is known to vary substantially across indi-

viduals (Parasuraman and Jiang, 2012). Each individual can adopt a different strategy to solve a task-

problem, which is revealed in distinct brain activity patterns (Tavor et al., 2016). Individuals utilize 

different brain circuits, not only during working memory tasks but also during general cognitive tasks, 

and the degree to which this heterogeneity emerges is particularly pronounced for tasks involving 

higher-level cognitive functions (Barch et al., 2013; Jang et al., 2017). The results of PEB for all par-

ticipants (Figure 5b) show that posterior estimates of B during N-back tasks have larger confidence 

intervals than estimates of A. This result implies that participants may share a common scaffold or 

backbone of intrinsic effective connectivity but exhibit very different task related changes in connec-

tivity from subject to subject.  

This inter-subject heterogeneity was more prominent in the task-driven effective connectivity 

than the resting-state intrinsic connectivity. In contrast to low modularity Q of A matrices during the 

resting-state (0.1871), the modularity Q of similarity matrix of B matrices of N-back tasks was 0.3922; 
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in the range from 0.3 to 0.7, which is typically known to form a strong community structure (Newman 

and Girvan, 2004). Participants exhibit three network phenotypes when performing the N-back task, 

speaking to the network degeneracy hypothesis introduced above. For example, the changes in con-

nectivity in subgroup 2 are primarily from the right SPL, while subgroup 3 shows a selective enabling 

of effective connectivity primarily from the left SPL (see PEB estimates of B parameters from sub-

groups 2 and 3 in Figure 5c). An individual may adopt different strategies and engage different neural 

networks when performing tasks. In a previous study by Dima et al. (2014), there were several DCM 

architectures that could explain fMRI data for the 2-back tasks. This study implies involvement of 

distinct functional networks across individuals – for the working memory tasks studied here. A sub-

typing of working memory circuits was also found in the study of Brodersen et al. (2014), who 

showed three subgroups of schizophrenia following DCM of the N-back task, having significantly 

different symptom scores on standard (schizophrenia research) instruments.  

 In contrast, the modularity of similarity matrix of intrinsic connectivity during the resting-

state did not show a strong community structure. This finding may be attributable to the conservation 

of intrinsic effective connectivity across individuals as a characteristic of intrinsic human brain net-

works.  

 

Relation between connectivity changes and behavior 

 The relationship between the task-state and the resting-state networks has been studied by 

many to explain or predict behavioral performance. Sala-Llonch et al. (2012) showed that participants 

who exhibit a stronger negative correlation between the resting-state default mode network and work-

ing memory networks perform better in behavioral tasks. Elton and Gao (2014) also showed that dis-

sociation between a network in resting-state and the connectivity from a selective attention task was 

positively correlated with task accuracy. In the current study, we found that similarities between the 

intrinsic connectivity of the N-back task and the task-related changes in effective connectivity were 

positively correlated with 3-back RTs. This result implies that faster responses (thus higher perfor-

mance) are associated with a greater divergence of task-related connectivity from intrinsic connectivi-

ty during the N-back task. More specifically, the positive correlation between 3-back RTs and similar-

ity between the task-related connectivity and the intrinsic resting-state connectivity was found for 

those participants with task-related effective connectivity from the parietal to the frontal regions (sub-

groups 2 and 3). As the effective connectivity during the N-back tasks deviates further from the in-

trinsic connectivity during the resting-state, participants, who had significant parieto-frontal connec-

tivity, responded to stimuli faster. This relationship is found only in the difficult condition (3-back 

task) since the 2-back RTs did not show any significant relationship with this similarity measure. 

Therefore, it appears that performing difficult tasks requires a greater departure from the intrinsic 

network architecture for more efficient performance, particularly in individuals engaging parieto-

frontal connectivity for N-back tasks.  
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DCM in 7 Tesla MRI 

 The data sets of resting-state and task-state fMRI were acquired at a relatively high magnetic 

field strength, 7 Tesla MRI. The activated regions during the N-back tasks were similar to the regions 

identified in previous studies that used the same experimental paradigm with the magnetic field of 1.5 

Tesla (Dima et al., 2014) or 3 Tesla (Deserno et al., 2012). The modulatory or task-specific effect of 

N-back tasks on the connectivity from the parietal lobe to the frontal lobe observed in the current 

study was equivalently observed by the previous studies of N-back tasks performed at 1.5 Tesla 

(Dima et al., 2014). This suggests that DCM can consistently identify neural architectures underlying 

cognitive tasks regardless of different magnetic field strengths. We expect the differential effects of 3 

Tesla and 7 Tesla on DCM will be explored further in future studies.  

 In this study, the driving input parameter C had a negative value. This means that the driving 

input reduces overall activity in the target regions; presumably through interactions between excitato-

ry (e.g., spiny stellate) and inhibitory interneurons, in receipt of afferent driving input. Interestingly, 

the negative effective connectivity from the parietal regions to the frontal regions means that the 

frontal regions are effectively disinhibited by driving input. In other words, the input inhibits the in-

hibitory influences mediated by extrinsic (between-region) connections between the parietal and pre-

frontal regions. Finally, we modeled task-related effective connectivity changes in both 2-back and 3-

back condition; to ensure more reliable parameter estimation. Thus, the effective connectivity de-

scribed in this paper reflects a common circuit involved in both 2-back and 3-back processing.  

 

In summary, we have (i) explored context-sensitive divergence of task-related effective con-

nectivity from the intrinsic resting-state effective connectivity, (ii) examined phenotypes of effective 

connectivity across participants during tasks and (iii) have found strong association between behav-

ioral performance and the degree with which intrinsic effective connectivity is reconfigured, in high-

performing phenotypes. This suggests that the degree to which a task-dependent coupling in the brain 

diverges from task-free intrinsic coupling is associated with task performance. 
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