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A B S T R A C T

The developmental patterns of subcortical brain volumes in males and females observed in previous studies have
been inconsistent. To help resolve these discrepancies, we examined developmental trajectories using three in-
dependent longitudinal samples of participants in the age-span of 8–22 years (total 216 participants and 467
scans). These datasets, including Pittsburgh (PIT; University of Pittsburgh, USA), NeuroCognitive Development (NCD;
University of Oslo, Norway), and Orygen Adolescent Development Study (OADS; The University of Melbourne,
Australia), span three countries and were analyzed together and in parallel using mixed-effects modeling with
both generalized additive models and general linear models. For all regions and across all samples, males were
found to have significantly larger volumes as compared to females, and significant sex differences were seen in
age trajectories over time. However, direct comparison of sample trajectories and sex differences identified within
samples were not consistent. The trajectories for the amygdala, putamen, and nucleus accumbens were most
consistent between the three samples. Our results suggest that even after using similar preprocessing and analytic
techniques, additional factors, such as image acquisition or sample composition may contribute to some of the
discrepancies in sex specific patterns in subcortical brain changes across adolescence, and highlight region-
specific variations in congruency of developmental trajectories.
Introduction

Developmental patterns of brain morphology, and sex differences in
this structural variation, exist due to both global and local maturational
changes (Sowell et al., 2004; Tamnes et al., 2013; Erus et al., 2015; Giedd
et al., 2015; Narvacan et al., 2017). Determining when and how sex
differences emerge in the developing brain is essential to understanding
differential risk for disease, especially psychopathology (Kessler et al.,
1993; Kessler et al., 2005), as well as life-long sex differences in various
cognitive and behavioral traits (Choudhury et al., 2006; Rose and
Rudolph, 2006; Roalf et al., 2014; Gur and Gur, 2016). For example, late
childhood and adolescence is a time period when many forms of
icine, University of Southern Californ

ary 2018; Accepted 10 January 2018
psychopathology begin to emerge and do so in a sex-specific fashion,
with disproportionate increases in rates of anxiety and depression seen in
girls and a higher prevalence of externalizing behaviors and substance
use disorders in boys (Kessler et al., 2005; Kuhn, 2015). Given that
structural and functional abnormalities in subcortical regions have been
associated with these various mental health problems, it is thought that
plausible sex differences in the development of subcortical structures
may be pertinent to explaining sex differences in onset, prevalence, and
progression of mental health disorders (Paus et al., 2008; Gogtay and
Thompson, 2010; Shaw et al., 2010). As such, a number of sex differences
have been reported in structural magnetic resonance imaging (MRI)
growth trajectories of subcortical structures. However, developmental
ia, 2001 N Soto, Los Angeles, CA 90032, USA.
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patterns observed in these structures have been inconsistent across
studies, and there has yet to be a consensus as to how these patterns differ
between sexes (Sowell et al., 2002; Lenroot et al., 2007; Ostby et al.,
2009; Dennison et al., 2013; Wierenga et al., 2014; Narvacan et al.,
2017).

To date, studies have reported discrepant findings including growth
versus reduction of the thalamus and basal ganglia beginning in late
childhood, as well as stability versus continuing growth of the amygdala
and hippocampus across adolescence (Giedd et al., 1996; Sowell et al.,
2002; Ostby et al., 2009; Koolschijn and Crone, 2013; Wierenga et al.,
2014). Similarly, reported sex differences in these trajectories remain
variable. From a study design perspective, it is believed that longitudinal
studies that are able to better account for both within- and
between-individual differences over time may help to improve our un-
derstanding of cross-sectional findings that focus on mean group differ-
ences between the sexes (Crone and Elzinga, 2015). As such, longitudinal
MRI studies using raw volumes (uncorrected for whole brain size or other
allometric scaling) consistently show larger volumes in males as
compared to females (i.e. main effects) (Dennison et al., 2013; Raznahan
et al., 2014; Wierenga et al., 2014; Narvacan et al., 2017). However,
findings are less clear in terms of sex differences in the trajectories (i.e.
slopes) of development seen across childhood and adolescence. Based on
using raw volume estimates (i.e. trajectories reported without including
allometric scaling), some studies report sex differences in neuro-
developmental trajectories of subcortical regions (Dennison et al., 2013;
Goddings et al., 2014; Raznahan et al., 2014), whereas other studies find
no difference between the sexes (Wierenga et al., 2014; Narvacan et al.,
2017).

These discrepant observations in studies of subcortical volume
development and sex differences in these patterns may be due to a
number of factors, including cohort effects inherent to the sample, vari-
ation in study design, image acquisition and preprocessing, and/or sta-
tistical modeling approaches. In terms of image processing,
dissimilarities have been reported in the absolute volume estimates as
well as in the reliability of subcortical brain structures across different
freely available automated segmentation software (Morey et al., 2010;
Makowski et al., 2017). In addition, software packages vary in their
methodology for processing longitudinal scans. For example, FreeSurfer's
longitudinal pipeline includes creating an unbiased within-subject tem-
plate space to help reduce random variation and improve the sensitivity
of detecting changes over time (Reuter et al., 2012). Recently, a longi-
tudinal cortical thickness pipeline has also been developed as part of the
ANTs software (Tustison et al., Unpublished). To our knowledge, other
commonly used software packages for structural analysis (e.g. CIVET
(Zijdenbos et al., 2002), MAGeT (Chakravarty et al., 2013), and FSL
(Zhang et al., 2001)) do not account for within-subject variance in a
similar fashion during the preprocessing stream. Beyond software, dif-
ferences in quality control (QC) procedures utilized across studies may
also impact the results (Ducharme et al., 2016).

From a statistical perspective, the inclusion of covariates and/or
statistical model vary widely by study and may impact results (Vijaya-
kumar et al., 2017). For example, during statistical testing the inclusion
of a ‘global’ or ‘allometric’ covariate to account for between subject dif-
ferences in body size or weight (Sanfilipo et al., 2004) may directly in-
fluence sex differences that are identified (Lenroot et al., 2007; Dennison
et al., 2013). Moreover, despite sex differences in allometric variables
(i.e. whole brain or intracranial volume), recent findings suggest that the
variability of anatomical volumes are not equal between the sexes (males
show larger variance expressed at both upper and lower extremities of
the distributions) (Wierenga et al., 2017), allometric covariates follow
non-linear developmental patterns from childhood to adulthood (Mills et
al., 2016; Reardon et al., 2016), and regions including the thalamus,
striatum, and pallidum show hypoallometric scaling with whole brain
size (i.e. volumes become proportionately smaller with increasing head
size) (Reardon et al., 2016). Moreover, the inclusion of an allometric
term may be redundant when examining longitudinal change using
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hierarchical modeling, as each subject receives its own intercept and
slope (Crone and Elzinga, 2015). Thus, the between-subject variance due
to individual differences in head size is captured at the individual level;
allowing for better characterization of changes in regional volume esti-
mates over time.

Study results may vary based on the type of statistical analytic tech-
niques employed. Although longitudinal studies have typically used
linear mixed effect modeling (LME) to describe age-related changes, the
model terms are diverse (Vijayakumar et al., 2017). For example, studies
have differed in their modeling approach, including use of polynomial
terms (e.g. quadratic or cubic), model selection strategy (e.g. top-down or
likelihood indices), testing males and females separately and/or
including sex as an interaction term, as well as the inclusion of other
confounding factors (Ruigrok et al., 2014). Moreover, while LME
including polynomial terms remains a popular approach, polynomials are
rather restrictive, whereas other modeling techniques, such as general
additive modeling (GAMM), may allow for a more flexible fit of a curve to
the data. Specifically, GAMM replaces the linear slope parameters with
‘smooth’ functions to find the optimal functional form between the
predictor and response (Jones and Almond, 1992). Given the existing
discrepancies in the existing literature and the vast array of methodology
(including software, QC procedures, and model terms) utilized between
studies, there remains an important gap in our knowledge regarding the
reproducibility of possible sex differences in subcortical neuro-
developmental trajectories across childhood and adolescence.

The goal of the current study was to utilize identical image processing
and analysis methods in three independent longitudinal neuroimaging
samples to describe the development of subcortical volumes (uncorrec-
ted/no allometric scaling) for males and females from late childhood into
young adulthood. This study is part of an international collaboration
project intended to improve the reliability and efficiency of neuro-
developmental research by simultaneously analyzing multiple existing
neuroimaging datasets (Mills et al., 2016; Tamnes et al., 2017). By
keeping longitudinal preprocessing methods, QC procedures, and statis-
tical methods constant across samples, we can assess and interpret the
potential impact of sample and acquisition differences on brain devel-
opment patterns in males and females. Moreover, given inherent study
design differences between the longitudinal samples (e.g. age ranges and
scan follow-up), we explored age and age by sex relationships in each
sample using both the more flexible general additive modeling (GAMM)
approach as well as the more common general mixed-effects modeling
(LME). Because LME is the most commonly used approach in longitudinal
MRI studies (Vijayakumar et al., 2017), LME estimates in the current
study were included in order to help directly compare our results with
those reported in previous studies. Thus, we aimed to examine the con-
sistency and reproducibility of neurodevelopmental change for subcor-
tical gray matter regions, including the thalamus, caudate, putamen,
pallidum, hippocampus, amygdala, and nucleus accumbens in males and
females.

Materials and methods

Participants

This study analyzed data from typically developing youth from three
separate cohorts collected utilizing longitudinal designs at three separate
sites in independent research projects: Pittsburgh (PIT; University of
Pittsburgh, USA), NeuroCognitive Development (NCD; University of Oslo,
Norway), and Orygen Adolescent Development Study (OADS; The Univer-
sity of Melbourne, Australia). Each project was approved by their
respective local review board and informed consent/assent was obtained
from parents and children prior to data collection. In order to best ac-
count for within-subject variance, only participants with �2 scans from
each cohort were included in analyses. Details regarding participant
recruitment in each project have been previously described (Yap et al.,
2011; Tamnes et al., 2013; Herting et al., 2014). By study design, all
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projects enrolled typically developing children and adolescents at base-
line, although OADS over-sampled children at both high and low
temperamental risk of developing psychopathology. Only data passing
QC procedures from typically developing youth were included in the
current study. Demographic information and sample distributions for
each sample are presented in Table 1 and Fig. 1. For the PIT dataset, 126
participants were recruited and scanned at baseline, with 20 not
completing their follow-up visit, and 33 excluded due to poor image
quality of the MRI (see additional details of QC procedures in section
2.2). For NCD, 111 participants were recruited and scanned at baseline;
26 were unable to complete their follow-up visit, and 9 were excluded
due to poor image quality. For OADS, 177 participants completed a
baseline visit, of which 45 did not complete any additional follow-up
visits, 61 were excluded due to psychiatric history or medical illness
and 4 were excluded due to poor image quality. The final samples thus
included 73 participants from PIT, 76 from NCD, and 67 from OADS. In
total, the present study included 216 participants (110 females) and 467
scans covering the age range of 8–22 years.

Image acquisition and analysis

T1-weighted anatomical scans were obtained at the three sites using
different MRI scanners and sequences (see Supplementary Material). At
each site, a radiologist reviewed all scans for incidental findings of gross
abnormalities. Image processing, including whole brain segmentation
with automated labeling of different neuroanatomical structures, was
performed using the longitudinal pipeline of FreeSurfer 5.3 (http://
surfer.nmr.mgh.harvard.edu; Fischl et al., 2002; Reuter et al., 2012).
The longitudinal pipeline includes creating an unbiased within-subject
template space and image using inverse consistent registration. Skull
stripping, Talariach transform and atlas registration, and parcellations
are initialized in the common within-subject template, which increases
reliability and statistical power. Similar standard QC procedures were
carried out between sites. QC details were as follows: 1) all raw images
were visually inspected for motion prior to processing, 2) post-processed
images were visually inspected by trained operators for accuracy of
subcortical segmentation by the longitudinal pipeline for each scan per
participant, 3) images with inaccurate segmentation were excluded
(number of participants excluded during QC is outlined above in section
2.1). No manual edits were made to subcortical regions of interests.
Regions of interest for the present study included the thalamus, caudate,
putamen, pallidum, amygdala, hippocampus, and nucleus accumbens for
each hemisphere.

Statistical analyses

Given previous findings highlighting hemispheric differences (Den-
nison et al., 2013; Herting et al., 2014), we first examined if patterns of
change differed by hemisphere by plotting LOESS (locally weighted
scatterplot smoothing) curves to each dataset. Overall, trajectories were
similar between hemispheres (see Supplementary Material SFigures
1–7), and therefore left and right hemisphere volume estimates were
Table 1
Sample demographics of typically developing youth from three separate cohorts collected uti
Pittsburgh, USA; NCD: NeuroCognitive Development, Norway; OADS: Orygen Adolescent Development

PIT NCD

All Female Male All

N 73 41 32 76
Age (years) 12.3 (.9) 11.9 (.7) 12.9 (.7)a 15.2 (3
Age Range (years) 10.1–16.2 10.1–15.9 11.4–16.2 8.2–21
Total Scans (N) 146 82 64 152
Participants with 2 Scans (N) 73 41 32 76
Participants with 3 Scans (N) – – – –

Scan Interval 2.2 (.4) 2.2 (.4) 2.1 (.4) 2.6 (.2

a Age difference between sexes by design (see Supplementary Material for details).
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averaged for all subsequent analyses. Preliminary exploratory LOESS
plots also confirmed the shape of developmental trajectories varied be-
tween males and females (see Supplementary Material SFigures 1–7).

To more fully understand sex differences in subcortical volume
changes from late childhood and throughout adolescence, analyses were
performed to examine age, sex, and age by sex relationships both
together across sites, as well as in each sample separately, using mixed-
effects modeling with both generalized additive models (GAMM)
(mgcv package version 1.8–17) and general linear mixed effects
modeling (LME) (R version 3.4.0; nlme package version 3.1–131).
Follow-up analyses were also conducted to examine age trajectories in
each sex separately, both based on the 3 samples as well as in each sample
separately.

GAMM
Unlike parametric general linear modeling, GAMM does not require a

priori knowledge of the functional form for the data; rather GAMM re-
places one or more of the linear predictor terms with a ‘smooth’ function
term. The non-linear smooth function describes the best relationship
between the covariate(s) and the outcome variable of interest. For
GAMM analyses on subcortical structure volume, the main predictor was
age. GAMM can be represented by the following formula:

GðyÞ ¼ X*αþ
Xp

j¼1

fj
�
xj
�þ Zbþ ε

where G(y) is a monotonic differentiable link function, α is the vector of
regression coefficients for the fixed parameters; X* is the fixed-effects
matrix; fj is the smooth function of the covariate xj; Z is the random-
effects model matrix; b is the vector of random-effects coefficients; and
ε is the residual error vector.

Using this approach, GAMM models were implemented to examine
age, sex, as well as an age*sex interaction to test a sex difference in the
intercept (main effect of sex) as well as a sex difference in the trajectory
or slope of age (age*sex interaction), respectively; while also controlling
for sample at the level of intercept (main effect of sample) and slope
(age*sample term). Importantly, sex was coded as a factor (male ¼ 0,
female ¼ 1), allowing for each term to reflect the following: sex term
reflected the difference in intercept in females as compared to males; age
term reflected the slope of age for males; age*sex term reflected the
difference in slope of females as compared to males. To better understand
significant differences in age trajectories between the sexes, GAMM es-
timates for age (controlling for sample) were also implemented in each
sample separately. Lastly, sample was converted to an ordered factor and
GAMM models were implemented to directly test significant differences
in the slopes of age between each sample for each region of interest.
Thus, GAMM age, sex, and age*sex models were updated to use the
previous covariates of sample and sample*age as contrasting factors.
Sample was coded as a factor and two models were implemented to test
sample differences: one model included sample as a factor with OADS ¼
1, NCD ¼ 2, and PIT ¼ 3 (in order to compare OADS vs. NCD and OADS
vs. PIT), and the second model included sample as a factor with NCD ¼
lizing longitudinal designs at three separate sites in independent research projects. PIT:
Study; Australia. Values represent means and (standard deviations) unless otherwise noted.

OADS

Female Male All Female Male

37 39 67 32 49
.6) 15.1 (3.5) 15.4 (3.7) 16.2 (2.6) 16.3 (2.5) 16.1 (2.6)
.9 8.4–21.8 8.2–21.9 11.5–20.3 12.1–19.7 11.5–20.3

74 78 169 81 88
37 39 32 15 17
– – 35 17 18

) 2.7 (.2) 2.6 (.2) 3.09 (.9) 3.09 (.9) 3.19 (.8)

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


Fig. 1. Age and sex distributions for each sample.
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1, OADS ¼ 2, and PIT ¼ 3 (in order to compare NCD vs. PIT).

LME
LME estimates the fixed effect of measured variables on subcortical

volume while including within-person variation as nested random effects
in the regression model. This is done to account for individual subject
effects and correlation of the data inherent to longitudinal analysis. LME
can be represented by the following formula for linear changes with age
both between and within participants:

Volumeij ¼ Intercept0i þ α1iðageÞij þ ε

where Volumeij represents the volume in an ROI at the jth timepoint for
the ith participant, the intercept0i represents the grand mean at the
centered age (age 15), α1i is the grand mean slope of age (linear); and ε is
the residual error and reflects within-person variance. All models also
included a random intercept for each participant. The linear model was
then built upon to also include quadratic and cubic fixed terms to assess
linear versus more complex patterns of change. The linear, quadratic, and
cubic models were as follows:

1: Linear model : Volume ¼ Intercept þ αðageÞ þ ε
2: Quadratic model : Volume ¼ Intercept þ αðageÞ þ β

�
age2

�þ ε
3: Cubic model : Volume ¼ Intercept þ αðageÞ þ β

�
age2

�þ γ
�
age3

�þ ε

where α, β, and γ represent the effects of each fixed term. Likelihood ratio
tests and Akaike Information Criterion (AIC) were used to compare the
models and to determine which had the best fit. All models were tested
against a null model that included only the intercept term, but not the
fixed effect of age. The model with the lowest AIC that was also signifi-
cantly different from the less complex model as determined by the like-
lihood ratio test was chosen as the best fit model (e.g. linear had to have a
lower AIC and be significantly different from null; quadratic had to have
a lower AIC and be significantly different from both the null and linear
model).

Using LME, models of age were implemented on each sample sepa-
rately to examine sex differences by including a term for the main effect
of sex as well as an age*sex interaction to test a sex difference in the
intercept (main effect of sex) as well as a sex difference in the trajectory
or slope of age (age*sex interaction), respectively. In the cases where
polynomial LME best fits were different between males and females, sex
difference were only tested by using the highest polynomial fit. That is, if
a linear best fit was detected for females but a quadratic best fit for males,
a quadratic fit was tested between sexes.

Results

Description of developmental age trajectories using GAMM

GAMM estimates of developmental trajectories for volume for each
region of interest in females and males based on the three independent
samples are presented in Fig. 2. GAMMmodels included age, sex, as well
as an age*sex interaction to test a sex difference in the intercept (main
effect of sex) as well as a sex difference in the trajectory or slope of age
(age*sex interaction), while covarying for sample (sample and age*-
sample). A significant sex difference was detected for the smoothed slope
of age for all seven regions of interest (Table 2). To better understand
these differences, we examined age trajectories in each sex separately,
while again covarying for sample. These results are presented in Table 3,
and below we describe these developmental trajectories for each
subcortical structure in females and males.

Thalamus
Overall, females showed smaller thalamus volumes as compared to

males across the entire age range of 8–22 years. Moreover, both males
and females showed a nonlinear change with age, with decreases seen



Fig. 2. Sex differences in the developmental age trajectories for subcortical volumes based on three independent samples.
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during mid-adolescence and into adulthood; however, when tested
separately, the slope for age was only significant in males, and not in
females.

Pallidum
Age trajectories for each sex displayed greater divergence in pallidum

volumes from ages 8–22 years, with males showing larger volumes as
compared to females beginning in early adolescence thru young adult-
hood. However, when each sex was examined separately, age trajectories
for the pallidum did not reach statistical significance in either females or
males alone.

Caudate
Males and females displayed similar volumes during late childhood

and early adolescence, whereas females had smaller volumes compared
to males by young adulthood. When each sex was examined separately,
the sex difference detected in young adulthood was a result of females
showing a decrease in caudate volumes across adolescence, with no
198
significant change seen in volumes with age in males.

Putamen
Similar to the caudate, sex differences in the putamen volumes also

emerged with age, with greater sex differences seen in later adolescence
and young adulthood. When examined separately, putamen volume
showed a nonlinear decrease with age in females, whereas changes in
volumes did not reach significance in males.

Nucleus accumbens
Nucleus accumbens volumes were similar in males and females from

late childhood to mid-adolescence, with sex differences emerging during
late adolescence and young adulthood. Examining the sexes separately
revealed a significant decrease in nucleus accumbens volumes for fe-
males, with no changes in volume in males from ages 8–22 years.

Hippocampus
Females showed smaller hippocampal volumes by 10 years of age



Table 2
GAMM estimates for age, sex, and age*sex for each brain region across all three samples
(sample and sample*age included as covariates). Smooth function (edf) as well as degrees
of freedom (Ref.df) and F-statistic and associated p-value for age (Bold highlights p < .05).
Note, sex was coded as a factor (male¼ 0, female ¼ 1), allowing for each term to reflect the
following: sex term reflected the difference in intercept in females as compared to males;
age term reflected the slope of age for males; age*sex term reflected the difference in slope
of females as compared to males.

THALAMUS

Intercept Estimate SE t-value p-value
Sex (Females) �755.52 91.63 �8.25 <.00001
Slope edf Ref.df F p-value
s(age) 2.39 3 4.59 .00032
s(age):Females 1.34 3 3.93 .00037

PALLIDUM

Intercept Estimate SE t-value p-value
Sex (Females) �158.71 27.54 �5.76 .00000
Slope edf Ref.df F p-value
s(age) 1.75 3 1.44 .05730
s(age):Females 1.33 3 2.44 .00541

CAUDATE

Intercept Estimate SE t-value p-value
Sex (Females) �201.10 67.56 �2.98 .00307
Slope edf Ref.df F p-value
s(age) 0.00 3 0.00 .49710
s(age):Females 1.60 3 7.04 .00000

PUTAMEN

Intercept Estimate SE t-value p-value
Sex (Females) �540.36 81.98 �6.59 .00000
Slope edf Ref.df F p-value
s(age) 1.77 3 5.49 .00002
s(age):Females 1.61 3 5.63 .00002

NUCLEUS ACCUMBENS

Intercept Estimate SE t-value p-value
Sex (Females) �48.13 11.93 �4.03 .00006
Slope edf Ref.df F p-value
s(age) 0.00 3 0.00 .79800
s(age):Females 2.32 3 12.30 .00000

HIPPOCAMPUS

Intercept Estimate SE t-value p-value
Sex (Females) �360.75 51.63 �6.99 .00000
Slope edf Ref.df F p-value
s(age) 2.31 3 5.52 .00004
s(age):Females 1.63 3 4.65 .00018

AMYGDALA

Intercept Estimate SE t-value p-value
Sex (Females) �168.52 22.60 �7.46 .00000
Slope edf Ref.df F p-value
s(age) 2.49 3 18.28 .00000
s(age):Females 0.99 3. 1.34 .02790
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compared to males. Moreover, females and males both showed signifi-
cant nonlinear patterns of hippocampal growth with age, with an
emergent divergence between the sexes across adolescence and into
young adulthood. These nonlinear changes with age reached significance
in males and females when examined separately.

Amygdala
Females showed smaller amygdala volumes at age 8 years compared

to males, with greater separation in volumes seen between the sexes with
age. Again, these nonlinear changes with age were significant in males
and females when examined separately.

Testing between sample differences

Spaghetti plots of GAMM estimates of developmental trajectories for
volume for each region of interest in females and males for each of the
three independent samples are presented in Figs. 3–5. To directly test
199
sample differences, previous GAMM models were updated to change the
covariates of sample and sample*age as contrasting factors (sample:
OADS ¼ 1, NCD ¼ 2, PIT ¼ 3). This allows for directly comparing the
main effect of sample as well as test if the samples have significantly
different trajectories over age. GAMM estimates for each of these smooth
terms are presented in Table 4 and described below.

Thalamus
The main effect of sample was not significant. However, the OADS

and NCD samples showed significant sample differences in growth tra-
jectories for the thalamus, whereas trajectories were not significantly
different between PIT and OADS or NCD for this region.

Pallidum
A main effect of sample was seen with OADS having significantly

smaller volumes compared to NCD and PIT at baseline. Sample differ-
ences were also seen in age trajectories, with significant differences noted
between each of the three samples (OADS vs. PIT, OADS vs. NCD, and PIT
vs. NCD).

Caudate
Amain effect of sample was seen with PIT having significantly smaller

volumes compared to NCD and OADS. Significant sample differences
were seen in age trajectories between OADS and NCD as well as OADS
and PIT samples, whereas trajectories were not significantly different
between PIT and NCD.

Putamen
A main effect of sample was seen with OADS having significantly

larger volumes compared to NCD and PIT. However, the samples did not
have significantly different age trajectories.

Nucleus accumbens
A main effect of sample was detected reflecting the largest volumes

seen in NCD, followed by PIT, and OADS (all p's< .05). However, the
samples did not have significantly different age trajectories.

Hippocampus
A main effect of sample included OADS having larger hippocampal

volumes as compared to NCD and PIT. In addition, OADS and PIT samples
showed significant sample differences in growth trajectories for the
hippocampus, whereas trajectories were not significantly different be-
tween OADS and NCD or PIT and NCD.

Amygdala
A main effect of sample was seen with PIT having significantly larger

volumes compared to NCD, but no significant difference detected be-
tween PIT vs. OADS or NCD vs. OADS. The samples did not significantly
differ for age trajectories for the amygdala.

Testing of developmental models using LME

Linear, quadratic, and cubic LME were used to determine best fit
models for females and males of each sample. The highest-order poly-
nomial model for each brain region is summarized in Table 5 (for AIC
comparisons, see Supplementary Tables 1–7). LME best fits were also
different between samples in both sexes for most ROIs, except for the
caudate and nucleus accumbens. For the caudate, both males and females
in each sample showed similar trajectories with age (PIT: linear, NCD:
quadratic, and OADS: linear). For the nucleus accumbens, no significant
change was found in all samples, except for OADS females, which showed
a linear decrease with age. Overall, LME best fit models per sample were
largely in agreement with the GAMM trajectories; the exception to this
are highlighted in Supplementary Table 8 and include the pallidum for
NCD females (LME ¼ cubic, GAMM ¼ n.s.), the hippocampus for PIT
females (LME ¼ cubic, GAMM ¼ n.s.), the amygdala for PIT females



Table 3
GAMM estimates for age for each brain region across all three samples (sample and sample*age included as covariates) in females and males separately. Smooth function (edf) as well as
degrees of freedom (Ref.df) and F-statistic and associated p-value (bold highlights p< .05) for each term.

FEMALES MALES

edf Ref.df F p-value edf Ref.df F p-value

THALAMUS
s(age) 0.39 3 0.20 .20280 s(age) 2.55 3 5.73 .00006

PALLIDUM
s(age) 0.00 3 0.00 .31159 s(age) 1.49 3 0.95 .12040

CAUDATE

s(age) 1.87 3 9.46 <.00001 s(age) 0.00 3 0.00 1.00000

PUTAMEN
s(age) 2.65 3 70.73 <.00001 s(age) 0.30 3 0.13 .16500

NUCLEUS ACCUMBENS
s(age) 1.21 3 1.42 .02650 s(age) 0.00 3 0.00 .82200

HIPPOCAMPUS
s(age) 2.57 3 7.64 .00001 s(age) 1.92 3 2.54 .00995

AMYGDALA
s(age) 2.54 3 10.30 <.00001 s(age) 2.03 3 7.08 <.00001

Fig. 3. Developmental age trajectories for the thalamus and pallidum. a) Females and b) Males are plotted separately. Individual datapoints are shown, connected
for each participant, in the appropriate sample color. The bolded colored lines represent the GAMM fitting for each sample with 95% confidence intervals. c)
Representation of GAMM fits (with 95% confidence intervals) for each sex per sample plotted together, p-values represent sex differences per sample.
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(LME ¼ quadratic, GAMM ¼ n.s.) and the hippocampus for NCD males
(LME ¼ n.s., GAMM ¼ nonlinear). Full model details for LME results
when testing sex, age, and age*sex using linear and polynomial LME best
fit models are presented in Supplementary Tables 10–16. Using LME, a
few models that were identified as significant using GAMM did not reach
significance using best fit models including the pallidum and putamen in
the OADS sample and the putamen in the NCD sample (as shown in
Supplementary Table 17).

Discussion

This is the first study to examine longitudinal subcortical neuro-
developmental trajectories in males and females using a multisample
approach spanning ages 8–22 years. The current study is an extension
from an on-going international collaboration project aiming to improve
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the understanding, reliability, and efficiency of neurodevelopmental
research by simultaneously analyzing multiple existing longitudinal
neuroimaging datasets (Mills et al., 2016; Tamnes et al., 2017). By uti-
lizing the identical longitudinal preprocessing pipeline, QC procedures,
and statistical methods across samples, we aimed to shed light on the
potential impact of sample and acquisition differences on our ability to
detect sex differences in subcortical developmental patterns. While sex
differences in patterns of subcortical development across adolescence
were identified using all three datasets, divergent results were also seen
for both within-sex and between-sex differences when comparing esti-
mates from each of the independent datasets. Below we describe the
findings using all samples as well as the differences detected between
samples, as well as highlight the additional factors that may continue to
contribute to mixed findings in our understanding of sex differences in
subcortical neurodevelopment.



Fig. 4. Developmental age trajectories for the caudate, putamen, and nucleus accumbens. a) Females and b) Males are plotted separately. Individual datapoints
are shown, connected for each participant, in the appropriate sample color. The bolded colored lines represent the GAMM fitting for each sample with 95%
confidence intervals. c) Representation of GAMM fits (with 95% confidence intervals) for each sex per sample plotted together; p-values represent sex differences
per sample.

Fig. 5. Developmental age trajectories for the hippocampus and amygdala. a) Females and b) Males are plotted separately. Individual datapoints are shown,
connected for each participant, in the appropriate sample color. The bolded colored lines represent the GAMM fitting for each sample with 95% confidence
intervals. c) Representation of GAMM fits (with 95% confidence intervals) for each sex per sample plotted together; p-values represent sex differences per sample.

M.M. Herting et al. NeuroImage 172 (2018) 194–205
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Table 4
GAMM smooth function estimates to test sample differences in age trajectories. Smooth function (edf) as well as degrees of freedom (Ref.df) and F-statistic and associated p-value (bold
highlights p< .05) for each term.

Intercept Estimate SE t-value p-value Slope edf Ref.df F p-value

THALAMUS

NCD vs. OADS �153.12 112.56 �1.36 .17400 s(age):NCD vs. OADS 2.02 3 3.02 .00386
PIT vs. OADS �22.48 114.23 �0.20 .84400 s(age):PIT vs. OADS 0.00 3 0.00 .33695
PIT vs. NCD 98.24 111.27 0.88 .37800 s(age):PIT vs. NCD 0.00 3 0.00 1.00000

PALLIDUM

NCD vs. OADS 145.08 34.00 4.28 .00002 s(age):NCD vs. OADS 2.04 3 14.67 <.00001
PIT vs. OADS 171.93 37.21 4.62 <.00001 s(age):PIT vs. OADS 1.22 3 4.06 .00549
PIT vs. NCD 35.77 35.90 1.00 .32000 s(age):PIT vs. NCD 1.20 3 2.52 .00344

CAUDATE

NCD vs. OADS �27.89 83.05 �0.34 .73719 s(age):NCD vs. OADS 1.90 3 3.13 .00231
PIT vs. OADS �192.55 86.43 �2.23 .02637 s(age):PIT vs. OADS 1.36 3 5.63 .00001
PIT vs. NCD �187.54 81.67 �2.30 .02212 s(age):PIT vs. NCD 0.00 3 0.00 .39590

PUTAMEN

NCD vs. OADS �276.40 100.83 �2.74 .00636 s(age):NCD vs. OADS 0.00 3 0.00 .52600
PIT vs. OADS �213.92 102.47 �2.09 .03738 s(age):PIT vs. OADS 0.23 3 0.10 .24500
PIT vs. NCD 72.37 99.37 0.73 .46684 s(age):PIT vs. NCD 0.00 3 0.00 .88537

NUCLEUS ACCUMBENS

NCD vs. OADS 93.96 14.65 6.41 <.00001 s(age):NCD vs. OADS 0.00 3 0.00 .47700
PIT vs. OADS 30.98 14.95 2.07 .03870 s(age):PIT vs. OADS 0.00 3 0.00 .88200
PIT vs. NCD �62.98 14.46 �4.36 .00002 s(age):PIT vs. NCD 0.00 3 0.00 .88200

HIPPOCAMPUS

NCD vs. OADS �159.38 63.65 �2.50 .01263 s(age):NCD vs. OADS 0.00 3 0.00 .40813
PIT vs. OADS �196.22 66.05 �2.97 .00313 s(age):PIT vs. OADS 1.10 3 2.35 .00613
PIT vs. NCD �27.32 63.21 �0.43 .66580 s(age):PIT vs. NCD 0.53 3 0.33 .14677

AMYGDALA

NCD vs. OADS �51.45 27.83 �1.85 .06520 s(age):NCD vs. OADS 0.00 3 0.00 .63460
PIT vs. OADS 16.02 28.89 0.56 .57940 s(age):PIT vs. OADS 0.51 3 0.36 .13960
PIT vs. NCD 67.47 28.21 2.39 .01720 s(age):PIT vs. NCD 0.51 3 0.36 .13960
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Patterns of age related changes in males and females

GAMM estimates highlight an overall sex difference in patterns of
development of subcortical volumes based on data from three indepen-
dent samples (Fig. 2). Significant non-linear changes were seen with age
in the thalamus, curvilinear growth of the pallidum and amygdala, and
decreases in the caudate, putamen, and nucleus accumbens. The average
trajectories from our longitudinal datasets are largely in agreement with
previous research that sensory, motor, and cognitive related subcortical
regions, such as the caudate and the thalamus, undergo reduction into
young adulthood (Lenroot et al., 2007; Raznahan et al., 2014), as well as
increases in amygdala volumes across childhood and adolescence (God-
dings et al., 2014).

Estimated sex differences across all participants confirmed previous
findings of overall smaller volumes in females compared to males in all
subcortical regions examined in the present study. In addition, signif-
icant sex differences were detected for changes with age for all regions
of interest (Table 2). Of these results, replication across all three in-
dependent samples was relatively poor, as assessed by statistical results
comparing age trajectory GAMM estimates. In fact, when directly
testing between sample differences in age trajectories, only the puta-
men, nucleus accumbens, and amygdala showed no significant differ-
ences in trajectories of age development between the samples (Table
4). These findings may suggest greater generalizability of the sex dif-
ferences in curvilinear amygdala growth across childhood and adoles-
cence, with males showing significantly steeper increases compared to
females. In addition, across samples, females displayed decreases in
nucleus accumbens and putamen volumes, whereas males showed no
change (nucleus accumbens) or less change (putamen) with age from 8
to 22 years.
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LME versus GAMM modeling

LME is perhaps the most commonly used statistical approach to
determine both between and within-person changes in longitudinal
neuroimaging studies (Vijayakumar et al., 2017). At the outset of the
study, it was assumed that using LME might therefore allow for a more
direct comparison of our results with previous studies. However, previ-
ous studies have also shown that the shape of growth trajectories can
vary when examining each sex separately (Goddings et al., 2014). When
using LME, this creates a challenge because in the case where the shape of
the trajectory may differ between the sexes, putting both males and fe-
males in the same model may incorrectly assume similar shapes of
growth in both sexes. For these reasons, GAMM may allow for a more
flexible fit, given that is does not assume the curve to the data at the time
of fitting the model. For these reasons, we chose to examine each sex
separately as well as together using both LME and GAMM. Overall, strong
similarities were seen in the ability for GAMM and LME modeling stra-
tegies to detect significant age-related changes in each sex separately
across the three independent samples. However, when testing significant
differences in changes in volumes with age between the sexes, GAMM
identified changes in the pallidum for NCD and OADS and the putamen
for NCD as significantly different between males and females, whereas
LME models did not (p's> .05). Thus, GAMMmodels may be able to help
reframe and bring additional clarity in understanding group differences
in patterns of neurodevelopment, especially when there are presumed sex
differences in the shape of trajectories in males versus females.

Sample consistencies and differences

Despite our best efforts to minimize between sample effects by uti-
lizing similar preprocessing and analytic techniques, both within-sex and



Table 5
LME best fit models for each brain region by sex and sample. Highest-order best fit poly-
nomial model summary reported. Test refers to the highest-order model compared to
previous sequential model tested (1¼ null model, 2¼ linear, 3¼ quadratic, 4¼ cubic) and
its associated Likelihood Ratio (L.Ratio) and p-value (bold highlights p< .05).

THALAMUS

FEMALES Model Result Test L.Ratio p-value
PIT Null Model 1 vs 2 0.75 .386
NCD Quadratic Age Model 2 vs 3 15.35 .000
OADS Null Model 1 vs 2 0.83 .362
MALES Model Result Test L.Ratio p-value
PIT Quadratic Age Model 2 vs 3 7.29 .007
NCD Cubic Age Model 2 vs 4 12.47 .002
OADS Linear Age Model 1 vs 2 6.91 .009

PALLIDUM

FEMALES Model Result Test L.Ratio p-value
PIT Quadratic Age Model 2 vs 3 8.61 .003
NCD Cubic Age Model 2 vs 4 6.50 .039
OADS Quadratic Age Model 2 vs 3 5.13 .024
MALES Model Result Test L.Ratio p-value
PIT Linear Age Model 1 vs 2 4.93 .026
NCD Null Model 1 vs 2 0.49 .482
OADS Quadratic Age Model 2 vs 3 8.14 .004

CAUDATE

FEMALES Model Result Test L.Ratio p-value
PIT Linear Age Model 1 vs 2 13.70 .000
NCD Quadratic Age Model 2 vs 3 5.02 .025
OADS Linear Age Model 1 vs 2 65.50 <.0001
MALES Model Result Test L.Ratio p-value
PIT Null Model 1 vs 2 3.45 .063
NCD Quadratic Age Model 2 vs 3 4.61 .032
OADS Linear Age Model 1 vs 2 38.91 <.0001

PUTAMEN

FEMALES Model Result Test L.Ratio p-value
PIT Linear Age Model 1 vs 2 19.52 <.0001
NCD Linear Age Model 1 vs 2 33.31 <.0001
OADS Cubic Age Model 2 vs 4 8.90 .012
MALES Model Result Test L.Ratio p-value
PIT Null Model 1 vs 2 0.38 .537
NCD Quadratic Age Model 2 vs 3 3.96 .047
OADS Linear Age Model 1 vs 2 25.40 <.0001

NUCLEUS ACCUMBENS

FEMALES Model Result Test L.Ratio p-value
PIT Null Model 1 vs 2 0.43 .510
NCD Null Model 1 vs 2 2.70 .100
OADS Linear Age Model 1 vs 2 21.82 <.0001
MALES Model Result Test L.Ratio p-value
PIT Null Model 1 vs 2 0.09 .764
NCD Null Model 1 vs 2 0.09 .766
OADS Null Model 1 vs 2 0.12 .725

HIPPOCAMPUS

FEMALES Model Result Test L.Ratio p-value
PIT Cubic Age Model 2 vs 3 6.66 .036
NCD Quadratic Age Model 2 vs 3 14.20 .000
OADS Quadratic Age Model 2 vs 3 14.46 .000
MALES Model Result Test L.Ratio p-value
PIT Null Model 1 vs 2 0.57 .452
NCD Null Model 1 vs 2 0.49 .482
OADS Cubic Age Model 2 vs 3 8.66 .013

AMYGDALA

FEMALES Model Result Test L.Ratio p-value
PIT Quadratic Age Model 2 vs 3 4.60 .032
NCD Quadratic Age Model 2 vs 3 10.92 .001
OADS Linear Age Model 1 vs 2 6.19 .013
MALES Model Result Test L.Ratio p-value
PIT Linear Age Model 1 vs 2 4.91 .027
NCD Cubic Age Model 2 vs 3 8.53 .014
OADS Linear Age Model 1 vs 2 21.36 <.0001
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between-sex trajectories of neurodevelopment were nevertheless signif-
icantly different between samples. This may suggest that factors such as
population differences, sampling strategy, scanning protocols, as well as
age-range and statistical power may influence best model fits in longi-
tudinal studies of subcortical development. Because studies often differ
in their age-ranges, scan intervals, and sample size, the conclusion that a
particular region shows a linear, quadratic, or even cubic developmental
pattern will not necessarily generalize to another study. For example, the
current LME results show both linear and quadratic best fits for caudate
volumes in males and females, and in contrast the putamen showed linear
and cubic fits in females, but linear and quadratic for males. Similarly,
previous single-sample longitudinal studies have also reported linear
decreases in caudate and putamen volumes in both sexes (7–24 years;
n¼ 223 scans from 147 individuals; (Wierenga et al., 2014)); but also no
change for caudate and quadratic for putamen volumes from 5 to 27
years (n¼ 175 scans from 84 individuals; (Narvacan et al., 2017)) or
quadratic for females and cubic for males from 3 to 26 years (n¼ 829
scans from 387 individuals; (Lenroot et al., 2007)). This poses a challenge
for the field, especially given that we are rarely interested in exact ages,
but rather periods of development across the lifespan. Furthermore,
while GAMM models may provide greater precision in the description of
volumetric change by moving away from more traditional polynomial
assumptions in neurodevelopmental growth trajectories, significant dif-
ferences were also found in the current study when using these models to
examine developmental changes in subcortical volumes with age across
the included samples. Given how sensitive these analyses can be to
sample differences, it may be more useful as a field to focus on patterns of
change (i.e. periods of relative stability/change and direction of change,
as opposed to using model terms) when trying to understand overall
developmental patterns, as well as providing access to statistical code in
order to allow for directly testing prediction accuracy of previously
published models on new datasets.

Besides inherent study population and sample differences, power is
likely an issue when examining each sample separately (N's ranging from
67 to 76 per study versus N¼ 216 together). Interestingly, despite being
able to better account for within-subject variability, these longitudinal
findings are in agreement with recent reports that sample composition
can alter age associations in large cross-sectional study designs (LeWinn
et al., 2017). Furthermore, when examining sex differences in each
sample separately (Supplementary Table 9), OADS was also found to
show significant sex differences for each region of interest, whereas the
other two samples were more variable. The ability for OADS to detect
similar sex differences as seen with the larger combined sample may in
fact be due to better within-subject estimates due to three waves of data
collection as compared to the two wave design used for NCD and PIT.

Although using a commonly employed longitudinal preprocessing
pipeline stream, the degree to which automated segmentation programs
may contribute to the seen sample differences remains a concern. Given
that manual tracing requires availability of multiple highly trained raters
without intra- and inter-rater drift over time, manual tracing becomes
exceeding time intensive for evenmedium scaled longitudinal studies that
span multiple years, such as those included here (PIT¼ 146, NCD¼ 152,
and OADS¼ 169 scans). For these same reasons, poor segmentations are
often excluded from the analyses rather than performing manual edits to
the FreeSurfer subcortical volume segmentation (e.g. aseg) (as done in the
current study). Thus, large scaled studies often implement automated
software and in the current study we implemented the FreeSurfer longi-
tudinal pipeline given that it was specifically created to better capture
within-subject changes over time in the subcortical regions examined (as
shown by intraclass correlation coefficients ranging from 0.90 for the left
amygdala to 0.99 for the right caudate and putamen; note that nucleus
accumbensvolumeswerenot included in this report) (Reuter et al., 2012).
While to our knowledge, no study has been published comparing the
longitudinal pipeline estimates with manual tracing, cross-sectional
studies have found that automated software tend to overestimate
subcortical volumes as compare to manual tracings (Schoemaker et al.,
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2016; Makowski et al., 2017). However, if an over estimation in volumes
consistently occurs at both the between- andwithin-subject levels, relative
differences are likely to still be meaningful in longitudinal studies
(Chepkoech et al., 2016). However, variation in volume estimates be-
tween scanners types and acquisition parameters is likely more prob-
lematic, especially if this interacts with age. In this regard, cross-sectional
studies have reported the pallidum to have poor reliability using Free-
Surfer, with volume estimates for this region impacted by MP-RAGE
acquisition parameters, such as isotropic versus anisotropic voxel size
(Wonderlick et al., 2009). Furthermore, low reliability of pallidum vol-
umes, specifically, have been attributed to the T1-weighted contrast
profile of the pallidum which is less distinct from its surrounding white
matter as compared to other subcortical regions such as the thalamus or
caudate (Fischl et al., 2002; Wonderlick et al., 2009). With dedication to
automated software continuing to improve (e.g. FreeSurfer 6.0 was
released mid-way through the current project), future studies will benefit
from reductions in such potential software confounds.

Limitations

Recent studies document the impact of motion on structural measures
(Reuter et al., 2015; Alexander-Bloch et al., 2016; Ducharme et al., 2016),
and this likely represents an especially important confound for develop-
mental studies. We therefore conducted detailed QC of all raw and pro-
cessed images and excluded participants with excessive motion.
Nonetheless, future studies could benefit from employing standardized
and well-documented QC procedures (Backhausen et al., 2016), and/or
methods for tracking in-scanner motion, automated QC assessment, and
motion correction procedures (further discussed in Vijayakumar et al.,
2017). Previous studies suggest that within-subject changes in puberty
(both physical and hormonal) are important factors for amygdala growth
in male and female adolescents (Goddings et al., 2014; Herting et al.,
2014); with very similar curvilinear amygdala growth patterns seen as
reported herewhen raw volumeswere estimated based on Tanner stage in
males and females separately (Goddings et al., 2014). Puberty has also
been found to relate to nucleus accumbens volumes (Goddings et al.,
2014), although the trajectories do not mirror the patterns of volumetric
change identified in the current study. Unfortunately, pubertal metrics
were not consistent across the three cohorts;making it impossible for us to
investigate how puberty may contribute to differences in amygdala and
nucleus accumbens trajectories in males and females in the current study.
Thus, future research is warranted to examine the contributions of hor-
mones to sex differences in the neurodevelopmental trajectories of the
amygdala and nucleus accumbens. In addition, FreeSurfer 6.0 was
released mid-way through the current project, after the preprocessing for
the current studywas complete. Replication studies are alwayswarranted,
and should consider also examining the potential impact of the longitu-
dinal processing stream of FreeSurfer 5.3 versus FreeSurfer 6.0, especially
given the efforts of this new version on estimating the putamen.

Conclusions

Across all participants from the three independent samples, sex dif-
ferences in age trajectories of volumetric development for the thalamus,
pallidum, caudate, putamen, nucleus accumbens, hippocampus, and
amygdala were apparent. Using a multisite approach with consistent
longitudinal preprocessing (software and quality checking) and statisti-
cal analyses, generalizable patterns were found for age changes across
adolescence in the amygdala, putamen, and nucleus accumbens. How-
ever, conspicuous sample differences were seen for the thalamus, pal-
lidum, caudate, and hippocampus; perhaps a cautionary limitation when
attempting to generalize subcortical findings from these regions of in-
terests in longitudinal samples with different age ranges. Efforts aimed at
improving our ability to replicate trajectories in typical development,
such as the current study, are ultimately necessary in order to be able to
further focus our inquiry on the factors influencing sex differences and
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individual differences in subcortical growth; including genetic, and/or
environmental effects that may contribute to the observed differences at
the group and individual-level. Furthermore, improving our ability to
assess the ‘age residual’ of within-subject changes in deep gray matter
structures is crucial in our ability to understand risk and resilience for
psychopathology during development.
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