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Abstract

Most biological signals are non-Gaussian, reflecting their origins in highly nonlinear physiological
systems. A versatile set of techniques for studying non-Gaussian signals relies on the spectral
representations of higher moments, known as polyspectra, which describe forms of cross-frequency
dependence that do not arise in time-invariant Gaussian signals. The most commonly used of
these employ the bispectrum. Recently, other measures of cross-frequency dependence have drawn
interest in EEG literature, in particular those which address phase-amplitude coupling (PAC). Here
we demonstrate a close relationship between the bispectrum and popular measures of PAC, which
we relate to smoothings of the signal bispectrum, making them fundamentally bispectral estimators.
Viewed this way, however, conventional PAC measures exhibit some unfavorable qualities, including
poor bias properties, lack of correct symmetry and artificial constraints on the spectral range and
resolution of the estimate. Moreover, information obscured by smoothing in measures of PAC, but
preserved in standard bispectral estimators, may be critical for distinguishing nested oscillations
from transient signal features and other non-oscillatory causes of “spurious” PAC. We propose
guidelines for gauging the nature and origin of cross-frequency coupling with bispectral statistics.
Beyond clarifying the relationship between PAC and the bispectrum, the present work lays out a
general framework for the interpretation of the bispectrum, which extends to other higher-order
spectra. In particular, this framework holds promise for the detailed identification of signal features
related to both nested oscillations and transient phenomena. We conclude with a discussion of some
broader theoretical implications of this framework and highlight promising directions for future
development.
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1. Introduction

Many interesting properties of signals in nature relate to nonlinear, non-Gaussian and non-
stationary dynamics, which are poorly indexed by second-order measures such as power and cross
spectra. Because the spectrum of a stationary Gaussian process lacks any statistical dependence
across frequencies, measures of frequency-domain dependence can be extremely useful for gauging
the presence and nature of higher order dynamics [51]. For stationary signals, higher order spectra,
“polyspectra,” which capture such dependence, are the frequency-domain representations of higher
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moments [43], in which they mirror the relationship between the power spectrum of a signal and
its autocorrelation. The bispectrum is the third-order polyspectrum, making it an obvious place
to start in the approach towards higher-order dynamics, at least from a statistical standpoint.
Bispectral analysis has proved its practical worth in applications to EEG [18, 53], most notably
in gauging the depth of anesthesia [5, 21, 33, 42]. Nevertheless, a significant drawback for the
non-statistician remains its lack of an obvious connection to any simple physical interpretation [19].
This point has been the source of some confusion in applied literature; for example, as recently
reviewed by Hyafil [28], various authors have suggested incorrectly that bicoherence relates to phase
entrainment across pairs of frequencies. While it is true that bispectral measures cannot easily be
reduced to any single interpretation, a goal of the present work is to show that specific forms
of dependence leave easily recognized signatures in the bispectrum, making bispectral measures
invaluable for distinguishing between a variety of phenomena related to cross-frequency coupling.

A separate body of work has recently emerged from EEG literature, which examines the role
of another form of cross-frequency coupling, phase-amplitude coupling (PAC) [12, 29]. PAC refers
to dependence between analytic amplitude at one frequency and analytic phase at another. Rather
than any statistical first principle, interest in PAC has been motivated by the empirical discovery
of PAC in signals recorded from the brain, alongside emerging computational and physiological
models of how it arises within populations of interacting neurons [61, 32, 2, 29]. In this literature,
the measurement of PAC is usually approached with second-order statistics, such as coherence,
applied towards comparing analytic phase in one band with analytic amplitude extracted from
another, treating the two as separate signals [49, 12, 56]. The situation with PAC is therefore
reversed from bispectral measures: its physical meaning is more evident than its relationship to any
general body of statistical theory.

The present work aims to bridge this gap and resolve ambiguities of meaning in both directions.
The central result is that second-order measures of PAC may be fundamentally understood as
estimators of the bispectrum. In the same way that windowed stationary estimates of the power
spectrum can be equated to smoothings of the true signal spectrum, windowed bispectral estimators,
which include those underlying measures of PAC, amount to different ways of smoothing the true
signal bispectrum [22, 44, 55, 25]. In both cases, differences between estimators relate to properties
of the respective smoothing kernels [14]. This observation demonstrates conclusively the meaning
of PAC measures as they relate to the bispectrum and vice versa and establishes that second-order
measures of PAC provide no unique information beyond what can be obtained from the bispectrum.

While PAC measures are fundamentally measures of the bispectrum, the reverse is not true; it is
not correct to conclude that the bispectrum is principally a reflection of phase-amplitude coupling.
Forms of “spurious” PAC, related, for example, to spectrally broad signal features, may be traced to
the bispectral nature of PAC measures. One practical implication is that the superior resolution and
lower bias of standard bispectral measures, in comparison to PAC measures, allows them to retain
information critical for distinguishing between nested oscillations and other sources of apparent
phase-amplitude coupling [37]. Following a brief review of bispectral and PAC estimation, we
will observe how different regions of the bispectrum may be taken to reflect either phase-amplitude
coupling or consistency of phase across a range of frequencies. It is shown that the bispectrum can be
highly useful for ascertaining the presence and origin of phase-amplitude coupling. Properly applied
and interpreted, bispectral statistics may overcome a number of recently highlighted limitations and
ambiguities of existing PAC measures[4, 28, 37, 41, 50, 57]. For example, with conventional measures
of PAC, the observable range of phase-providing frequencies is restricted by the bandwidth of the
amplitude-providing band [4], yet no such limitation applies to bispectral estimates. In light of the
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relationship to the bispectrum, it becomes clear that this constraint is an artifact of the estimator
rather than anything inherent in the quantity measured.

Many of the questions that arise in considering the relationship between PAC and the bispectrum
prove to be of much more general relevance for understanding a range of signal properties that are
neglected by traditional spectral measures, a topic whose importance is becoming increasingly clear
[15]. In particular, we develop a model that uses the bispectrum to capture spectrally complex
signal features, of which PAC is only one example. The concluding sections are devoted to a
prospective review of the application of the bispectrum towards understanding the nature and
functional significance of non-oscillatory and transient sources of cross-frequency coupling, beyond
nested oscillations.

1.1. Organization

The overall aim of the current work is threefold; first, a general introductory background is
provided to motivate applications of higher-order spectra in signal analysis, accompanied in the
appendices by a more focused and technical review of the bispectrum and its estimation. The
second aim is to describe a formal equivalence between bispectral estimators and measures of
phase-amplitude coupling, details of which are presented in Appendix C. Finally, building on this
formal relationship, a framework is developed to guide the interpretation of the bispectrum. In
most places, more technical development has been left to the appendices, the results of which are
summarized in the main text alongside some background explanation.

Section 2, in particular, focuses on introducing readers who have had little exposure to the
ideas and applications of higher-order spectra to some general motivating principles, thus it deals
with the subject very broadly. Section 3 gives a short summary of the main relevant properties
of the bispectrum described in more detail in Appendix A and Appendix B. Section 4 similarly
introduces phase-amplitude coupling, which is given a more detailed treatment in Appendix C.
Section 5 develops a framework for understanding the relationship between PAC and the bispectrum,
building on the proof provided in Appendix C. Section 6.2 briefly considers an extension to phase-
frequency coupling. The concluding sections set the framework within a broader theoretical context;
section 8.1 describes a model of signal encoding and transmission that exploits properties of the
bispectrum, while section 8.2 anticipates further development of the framework, especially in the
direction of feature extraction and identification.

2. A primer on higher-order spectra in signal processing

Abstractly, signal processing is about making sense of sequential or otherwise meaningfully
ordered quantities; it considers the question, what kinds of measures best capture the essential
nature of any dependence among the quantities as it relates to their position in the ordering space
(henceforth assumed to be time)? An endless variety of different measures can be conceived, the
usefulness and interpretation of any of which naturally depends on very concrete particulars of the
application. But to a theoretically-minded statistician, armed with the hammer of distribution
theory, a signal is a nail drawn from a distributional pile, and signal processing is merely the
application of a general form of statistical inference to the special case of ordered data. Our slightly
naive theoretician might be forgiven for turning to measures related to moments, because, at least
in principle, moments completely characterize a distribution, meaning that they collectively harbor
all the information there is to harbor about the process generating the signal, irrespective of its
source or nature.
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Moments are most familiar in the form of the mean, variance, skewness and kurtosis of univariate
distributions, related to the expected values of the first four powers of the random variable. The
idea generalizes to the expected value of any power; the kth-order moment is the expectation of the
kth power. The extension to multivariate distributions adds cross-terms to the picture, which are
most commonly encountered in the off-diagonal values of a covariance matrix. At higher orders,
cross-terms within the kth moment may take the form of the product of k distinct variates or any
combination of powers of the variates that sum to k. For example, the kth moment of a distribution
over (x, y, z) includes all of the combinations of powers that appear in the expansion of (x+y+z)k.

In applications to signal processing, the sampling space is neither univariate nor in general
multivariate, rather it is the space of possible signals, which, for theoretical purposes, occupies
a continuously infinite number of dimensions. This fact causes moments to take on a decidedly
intimidating air in signal-processing contexts, but the truth is that they behave more-or-less exactly
like their tamely finite cousins. The ordering space of the signal (in our case, time) takes the place of
the integer-valued index of multivariate distributions. In analogy to the cross-terms of multivariate
distribution, moments of a continuous signal involve the expected values of the products of the
signal with itself at specified points in time. For example, if X(t) is a bounded signal, meaning here
the relevant moments are defined, its first moment at time t1 is the expectation of the signal itself,
E [X(t1)], the second moment at (t1, t2) is E [X(t1)X(t2)], while the expectation of the product

E [X(t1)X(t2)...X(tk)] (1)

is the kth moment at (t1, .., tk).
In spite of their considerable theoretical appeal, the application of moment-related statistics to

real-world problems in signal processing invariably runs into two obstacles. First, their estimation
puts severe demands on data because moments may assume a set of distinct values over a parameter
space that grows exponentially with order, starting from one that is already at least as large as the
observed signal. Second, the question of how to interpret higher moments also seems to become
exponentially less clear with increasing order. It is therefore impossible to estimate moment-related
statistics without some judicious assumptions that rein in the parameter space, but the exercise is
still bound to prove hollow if one lacks any insight into real-world meaning.

The first point is addressed easily enough by making assumptions about how the dependence
relates to ordering; for example, windowing is commonly used to enforce the assumption that any
dependence grows negligible outside some local neighborhood according to the window. Combined
with the assumption of time invariance (reviewed in the following section) windowing and similar
procedures make estimation of higher moments a tractable problem. Even so, the practical applica-
tion of moment-related statistics in signal-processing contexts rarely involves orders above 4, while
applications involving 3rd order dependence, of the type that will be given special attention here,
already border on exotic. Moment-related statistics of order 1 and 2 are perfectly familiar as mean
and covariance or autocorrelation; the leap from 2 to 3 introduces qualitatively new properties with
potentially far-reaching implications, a few of which we will encounter in the following discussion.

2.1. Time invariance

A common and sometimes necessary simplifying assumption is that the statistics governing the
signal remain constant over time. A very useful byproduct of time invariance, and motivation for
giving special consideration to invariant measures, is that estimation may resort to averaging over

time; for example, the estimate of the fixed first moment becomes the average µ̂1 = 1
T

∫ T
0
X(t) dt,
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which ought to converge with the true expectation, µ1, as T increases (provided again the signal is
suitably bounded). Similarly, time invariance allows the second moment to vary only with respect
to the delay between two points in time, µ2(τ) = E [X(t)X(t+ τ)]. The second moment may
therefore be estimated by averaging over time in the same way:

µ̂2(τ) =
1

T

∫ T

0

X(t)X(t+ τ) dt (2)

giving the familiar autocorrelation. Likewise, for higher moments, time-invariant statistics are those
obtained by considering the lags between the indexed times, collapsing over the absolute time.

2.2. Spectra and time-invariant moments

A central result in signal-processing theory concerns the relationship between time-invariant
statistics and the spectral representation of the signal, given by its Fourier transform: X̃(ω) =
F {X(t)}. From the inverse Fourier transform:

X(t) = F−1
{
X̃ (ω)

}
=

1

2π

∫
X̃(ω)eiωt dω (3)

one can readily appreciate that any shift of time, ∆t, separates out into an exponential term in the
spectrum of X:

F {X(t+ ∆t)} = X̃(ω)eiω∆t (4)

Consider the effect of a random shift, ∆t, with uniform distribution (and otherwise independent of
the unshifted signal) on the second moment:

µ2(τ) = E [X(t+ ∆t)X(t+ ∆t+ τ)]

=
1

2π

∫
E
[
X̃(ω1)X̃(ω2)

]
ei(ω1+ω2)t+iω2τE

[
ei(ω1+ω2)∆t

]
dω1dω2

=
1

2π

∫
E
[
X̃(ω1)X̃(ω2)

]
ei(ω1+ω2)t+iω2τδ(ω1 + ω2) dω1dω2

=
1

2π

∫
E

[∣∣∣X̃(ω2)
∣∣∣2] eiω2τ dω2

(5)

In other words, the time-invariant second moment, µ2(τ), is the time-domain representation of the
power spectrum, a result known as the Wiener-Khintchine theorem (technically speaking, what is
given here is a special case valid for integrable functions).

More generally, paralleling the situation in the time domain, moments are represented in the
spectral domain as the expectation of products of the signal spectrum across different frequencies.
One can conclude from a glance at Eq. (4) that any time-invariant products must arise from those
combinations of frequencies for which the exponential terms cancel. For the first moment, the
exponential term vanishes only at ω = 0, hence time invariance applies only at the origin, X̃(0),
related to the fixed constant mean. For the second moment, the exponent vanishes when ω1 = −ω2,

as then µ̃2 = X̃(ω)eiω∆tX̃(−ω)e−iω∆t =
∣∣∣X̃(ω)

∣∣∣2. The idea extends naturally to higher moments

as well; in general, given the product

µ̃K = E
[
X̃(ω1)X̃(ω2) . . . X̃(ωK)

]
(6)
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time invariant statistics relate to those terms for which

K∑
i=1

ωi = 0

Such products go by the names higher order spectra or polyspectra and it is not very difficult to
show that, as with the second-order case, they are related to the time-domain moment of the
corresponding order by a multi-dimensional Fourier transform. The 3rd order polyspectrum is
known as the bispectrum while the 4th order is the trispectrum.

2.3. Time-Varying Spectra and the Wigner-Ville Distribution

In the previous section we equated time-invariant spectra to the spectral representation of a
time-varying moment integrated over time, which we may likewise interpret as an estimate of the
time-invariant spectrum obtained by averaging over time. But there are plenty of applications in
which it must be assumed thatspectra vary over time. If the time-invariant estimate averages over
time, shouldn’t it be possible to observe the time-varying spectrum simply by not averaging? An
important class of time-frequency representations does just that, retaining the Fourier transform
but skipping the integration over time; under a suitable change of variables, the outcome represents
the original time-varying moment as a time-frequency distribution. The best-known example of
such an object is the Wigner-Ville distribution (WVD):

W (ω, t) =

∫
X
(
t+

τ

2

)
X
(
t− τ

2

)
e−iωτ dτ (7)

The WVD applies a Fourier transform along the lag dimension of the time-varying second moment,
combined with a trivial change of variables that centers the lag, τ , on absolute time, t. Though
sometimes used as a time-frequency representation in its own right, it suffers from the drawback
that “spurious” energy may arise as a result of interference between spectrally isolated components
in regions where neither component separately contains energy.

The WVD is, arguably, more useful as a conceptual starting point in developing a general theory
of power-spectral estimation: any of the common stationary and time-varying Fourier-derived power
spectra can be gotten by smoothing or integrating over the distribution, which has the effect of
smoothing away energy related to interference [27, 14]. Distinctive properties of any estimator
are a consequence of the particular window it applies to the distribution. This idea generalizes
naturally to higher moments, whose estimators may be likewise equated to smoothings of higher-
order Wigner-Ville distributions, with distinguishing properties set by the choice of smoothing
window.

2.4. Polyspectra and Gaussian Processes

One of the important qualitatively new properties of third-order and higher polyspectra arises
from the fact that Gaussian signals are fully characterized by second-order statistics, meaning that
any linear time-invariant (LTI) Gaussian process is completely determined by its mean and power
spectrum. All forms of cross-frequency dependence relate to polyspectra of order 3 or higher (those
with two or more frequency dimensions), therefore LTI Gaussian processes exhibit no dependence
across frequencies. One of the main selling-points of higher-order spectra is that they can reveal the
presence of non-Gaussian behavior as might result, for example, from non-linear signal dynamics.
At the conclusion of this work we will see that it is possible to isolate such non-Gaussian signals
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from a background of Gaussian noise on the basis of higher-order spectra. This is an especially
compelling application of higher-order spectra because the most interesting signal components are
also often the least Gaussian.

2.4.1. Moments and Cumulants

Cumulants are closely related to moments, but for Gaussian processes they are identically zero
at all orders above two. They may therefore be constructed by subtracting the moment of a
Gaussian process with a matching spectrum from the corresponding signal moment. For higher-
order spectra, this generally involves subtracting a term within those sub-domains wherein the
polyspectrum reduces to a product of power spectra and/or any non-zero mean. For example, the

cumulant trispectrum subtracts E

[∣∣∣X̃(ω1)
∣∣∣2]E

[∣∣∣X̃(ω2)
∣∣∣2] from the moment trispectrum within

the subspace where ω3 = −ω1, while outside this region the moment and cumulant trispectra are
equal. The cumulant bispectrum and moment bispectrum diverge only along ω1 = 0, ω2 = 0 and
ω1 = −ω2 for a non-zero mean process but are identical everywhere for a zero-mean process, a
property that extends to all odd-ordered cumulants.

2.5. Cross Polyspectra

In the polyspectral moment products described by Eq (6), each term is drawn from the same
signal, but there is nothing to stop us from mixing terms across multiple signals. Such cross
polyspectra, which are the higher-order generalizations of the cross spectrum, describe various forms
of dependence between multiple signals and are cross terms in the moments of the corresponding
multivariate signal distributions. The practical application of these measures to EEG has gained
some recent attention [52, 13].

Third-order cross polyspectra also arise implicitly when considering the dependence between
second-order statistics, and independent measures of interest. For example, it is often of interest
to relate ordinary power spectra or cross spectra to experimental variables that change over time.
Standard regression models which treat power as the dependent measure implicitly model a subset
of cross-bispectral interactions with the independent variable. The possible value of a more explicit
treatment of third-order interactions in such analyses is a question worth pondering.

2.6. A Philosophical Aside on Time Invariance

Much of signal-processing theory is preoccupied with time-invariant measures, but the matter is
usually presented as an assumption about the signal, and a rather restrictive, too-often unrealistic
one, at that. It can be motivated in a different way: in many settings the origin of the time scale
has no intrinsic bearing on the signal and might be chosen arbitrarily. If the observer lacks any
other information by which to meaningfully situate the signal in time, such as the time of some
relevant external event, then from the observer’s perspective, time is subject to some large random
shift, reflecting the arbitrariness of the origin. The question becomes, what properties of the signal
can such an observer measure? As illustrated in Eq. (5), a lack of timing information makes it
possible to observe only time-invariant moments. Even if essential properties of the signal are not
strictly constant over time, in the perspective of such an observer, the moment expectations become
those of a stationary signal, whose bounded statistical properties do remain constant. Time-shift
invariant properties are particularly relevant because uncertainty of timing is, more often than not,
inherent in the problem of signal identification.
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One may arrive at a similar idea by noticing that the time-dependent moment of order k consid-
ered at the outset in Eq. (1) can be trivially equated to a time-invariant moment of order k+1 which
includes a cross-term dependence on the impulse function, δ(t); this is so because the spectrum of
the latter is constant and unit valued, δ̃(ω) = 1, allowing it to partake implicitly in any product.
“Situating a signal in time” therefore amounts to observing the dependence between the signal
and some time-anchoring event, encoded as an impulse. But nothing gives such a function special
importance next to any other function of doubtful relevance to the signal. One may conclude that
time-invariant moments give a completely general description of the signal-generating process when
the full structure of dependence is taken into account, whether or not the full structure includes
signals encoding such “time-anchoring” event(s).

In this view, one sense of what is conventionally meant by “stationary” becomes a statement
about dependence between the signal and particular time-anchoring events. There is another com-
monly used sense, which refers to whether low-order statistics, especially 2nd, vary over time. Such
fluctuations may however be described with higher-order time-invariant statistics and so do not
technically require signal statistics to change over time. For example, the tendency for signal power
to fluctuate over time at a particular modulation frequency may be captured by 4th-order statis-
tics, which encompass the power spectrum of bands within the WVD. What about the case when
a glance at the spectrogram makes it plainly obvious that the signal is not stationary? In such
cases, one’s eye has situated the signal in time according to some clearly identifiable series of events
within the signal itself. But this is also, in a sense, what time-shift invariant statistics do: they
take the signal itself as its own “time-anchoring” input. For example, in the case of PAC, phase
at one frequency defines the time window over which power is observed to vary at another. In
this way, time-shift invariant 3rd-order statistics may account for a particular form of 2nd-order
non-stationarity.

One important qualification should be mentioned. It has been noted more than once now
that moment estimation assumes the distribution to be bounded at the corresponding order, but
it is possible to construct distributions whose moments are unbounded at or above some order
(a property of Student’s t-distributions, for example); thus “stationary” might be applied more
generally to signals arising from distributions with bounded moments, while signals with unbounded
moments are properly non-stationary at the given order.

Perhaps it is conceptually helpful that in the spectral domain, time invariance relates to a
particular subset of moment products for which time shifts cancel, making it more natural to
think of the measurement of time-invariant spectral moment products as something which does not
prejudge the nature of the signal. That is, one does not need to make assumptions about time-
dependent moments to measure time-invariant moments, any more than measuring a mean requires
an assumption about variance. This view of the matter may serve to unclutter the question of
stationarity, making it about the boundedness of the distribution on the one hand, and dependence
on particular events on the other.

3. The Bispectrum

The previous section laid out some general context and motivation for appealing to higher-order
spectra in signal processing. The remainder of the work is concerned with addressing the two
stumbling blocks identified earlier in relation to third-order statistics: computation and interpreta-
tion. The appendices contain a more technically oriented overview of the bispectrum in which the
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question of how to design estimators is given particular attention. To address the problem of inter-
pretation, we broaden the range of estimators beyond what is normally considered. This extension
will allow us to link one class of non-standard bispectral estimator to common measures of phase-
amplitude coupling. The following section summarizes the main results presented in Appendix A
and Appendix B.

3.1. Definition

Let X be a random realization of a harmonizable time-series process, obeying usual assumptions
of boundedness and integrability, with moments defined up to order 3. In most cases, it will be
assumed that X is real-valued, unless otherwise specified. Frequency-domain representations will be
indicated with a tilde; for example, h̃(ω) is the Fourier transform of h(t). Scaling and normalizing
constants, such as 1/2π in the inverse Fourier transform, will also be suppressed for notational
economy where doing is not expected to create confusion.

The bispectrum of the process generatingX is given by the following expectation in the frequency
domain:

B(ω1, ω2) = E
[
X̃(ω1)X̃(ω2)X̃∗(ω1 + ω2)

]
(8)

Some insight into the meaning of this quantity comes by introducing the inverse Fourier expansion
of X̃ into Eq. (8):

B = E

[∫∫∫
X(r)X(s)X(t)e−iω1(r−t)−iω2(s−t) dr ds dt

]
=

∫∫∫
E [X(τ1 + t)X(τ2 + t)X(t)] e−iω1τ1−iω2τ2 dτ1 dτ2 dt

(9)

which integrates a two-dimensional Fourier transform over time. Directly paralleling the ordinary
power spectrum [14], the integrand here may be understood as the 3rd-order Wigner-Ville distri-
bution, up to a time-centering change of variables [22, 25, 20]:

W3 (ω1, ω2, t) =∫∫
X

(
2

3
τ1 −

1

3
τ2 + t

)
X

(
2

3
τ2 −

1

3
τ1 + t

)
X

(
t− 1

3
(τ1 + τ2)

)
e−iω1τ1−iω2τ2dτ1 dτ2

(10)

For a third-order stationary process, the expectation of the third-order moment depends only on
the relative lags of the times:

E [X(τ1 + t)X(τ2 + t)X(t)] = µ3(τ1, τ2) (11)

in which case, substituting (11) into Eq. (9)

B =

∫∫
µ3(τ1, τ2)e−iω1τ1−iω2τ2 dτ1 dτ2 (12)

In other words, for a third-order stationary process, B is the two-dimensional Fourier transform of
the third moment, B = µ̃3(ω1, ω2). This relationship parallels the equivalence between the power
spectrum and the second moment (i.e. auto-correlation), and extends likewise to higher polyspectra
and moments [43, 25]. For a more review of the main properties of the bispectrum, the reader is
invited to spend time in Appendix A. Matters related to the estimation of the bispectrum and, in
particular, the design of bispectral estimators are tackled in Appendix B

9



3.2. The Quick Summary

Of the properties reviewed in 3.1 and Appendix A, a particularly useful set for our purposes
are those related to convolution. Just as the convolution of two signals in time becomes the
multiplication of their spectra in the frequency domain, the bispectrum of the convolution of two
signals is the product of the separate bispectra—provided the signals are statistically independent
or deterministic. Because this property allows the result to be analyzed in terms of the separate
bispectra of the convolved signals, it will be useful for developing a model of recurring transient
features whose timing is governed by a point process (described in 5.1 and Appendix D). The
bispectra of these processes are separately amenable to more detailed analysis, and properties of
the bispectrum of a transient feature, in particular, will be used to establish the link with PAC.

Appendix B takes a closer look at the problem of estimating bispectra. Just as techniques for
estimating power spectra which use windowed Fourier transforms can be understood as smoothing
or integrating over the ordinary Wigner-Ville distribution (see Eq. 7), bispectral estimators (as
well as higher-order spectral estimators generally) likewise involve integrating and smoothing over
higher-order Wigner distributions [22, 20, 25]. Differences between alternative estimators relate to
properties of the windows each applies in the smoothing or integration, but all estimators reflect
the same underlying quantities related to signal moments of a given order.

Estimators that rely on windowed Fourier transforms can be formally understood as employing
a bank of single-sideband filters [9, 3, 36]. Taking this filter-bank perspective opens a wider range
of possible estimators to consideration because filter properties might be permitted to vary across
bands, whereas they remain fixed in the more conventional windowed-Fourier view. Three different
classes of estimators are considered in section Appendix B.2, which differ according to the relative
bandwidths of the three bands that participate in the bispectral product. The results laid out in
that section are used in Appendix C to show the close relationship between PAC estimators and
one such class of bispectral estimator.

4. Phase-Amplitude Coupling

Phase-amplitude coupling refers to dependence between the analytic envelope of an oscillatory
signal component within one band and phase within another. For the envelope of the first component
to fluctuate at the scale of the second, the bandwidth of the first component must be at least as great
as the center frequency of the second and its center frequency correspondingly higher, for which
reason the first component is a “fast oscillation” (FO), while the second is the “slow oscillation”
(SO).

Measures of PAC relate the analytic signal in a band encompassing the SO to the analytic
envelope from the band of the FO, treating the two as separate signals, typically using a second-
order statistic such as coherence, phase-locking or weighted mean vector strength. While it is also
most common to use signal amplitude in quantifying PAC, one might use signal power (squared
amplitude) in place of amplitude in the same way, giving phase-power coherence (PhPC). Appendix
C demonstrates the direct relationship between PhPC and the bispectrum. Because conventional
measures that use amplitude are related to those that use squared amplitude by a simple scalar
transformation of the filtered input signals, they reflect the signal bispectrum to a first approxima-
tion and might otherwise be interpreted as bispectral estimates computed on suitably transformed
input signals.
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4.1. Multi-modal dependence

The second-order measures described above are most suitable when there is a single mode in
the distribution of the phase difference between the SO and FO envelope. A number of extensions
develop tests that improve sensitivity to multimodal distributions, using alternative distributional
measures over phase, such as Kullback-Leibler divergence or other entropy-related measures [56].
Such alternative methods of quantifying dependence can be translated to the bispectrum with
relatively little effort; the extension involves a similar treatment of the distribution of phase within
the unaveraged terms in the bispectral estimator (Eq. 28). The question is briefly considered again
in 6.1. The important take-away message for the present purpose is that the essential argument
developed in the following sections remains generally valid for measures of PAC derived from the
joint distribution of analytic amplitude and phase in different frequency bands.

5. Bispectral Signatures of PAC

Appendix C contains a proof that phase-power coherence is fundamentally a bispectral esti-
mator, which differs from conventional bispectral estimators only in the shape of the associated
smoothing kernel. While past authors have noted some similarities between bispectral and PAC
measures [37, 28], this formal relationship appears not to have been previously described. The
following sections extend this observation with a signal model that will offer some more practical
insight into how the bispectrum relates to PAC.

5.1. Transient and Oscillatory Models

A case traditionally used to illustrate PAC is that of a sinusoidally modulated FO added to a
sinusoidal SO of the same frequency as the FO modulating window (see Figure 1). Here, the SO
is a pure sinusoid, cos(θt), and the FO is the sinusoidally modulated sinusoid, (1− cos(θt)) cos(γt)
. It is easy to get a handle on the bispectrum of this signal because we need only worry about
4 quantities (ignoring the negative half of the spectrum, which is symmetric)): peaks at ω = θ,
ω = γ − θ, ω = γ and ω = γ + θ:

X̃(ω) = δ(ω − θ) + δ(ω − γ) + δ(ω − γ − θ)/2 + δ(ω − γ + θ)/2 (13)

The bispectrum contains two peaks in the principal domain where the product X̃(ω1)X̃(ω2)X̃∗(ω1+
ω2) does not vanish, at (ω1 = θ, ω2 = γ − θ) and (ω1 = θ, ω2 = γ). From this, it is clear that it
conveys something about phase-amplitude coupling.

It is natural to try to understand spectral measures in terms of the sinusoidal functions that
are elemental to spectral decompositions; but this example offers only modest insight into what
the bispectrum means in more realistic settings with signals that may be spectrally broad. Part of
the problem is that the bispectrum, by definition, relates to the interaction between the separate
components in this example. But this means that one can’t rely on any conceptually helpful
decomposition according to the FO and SO considered separately to build up insight into more
complicated cases.

A different tack might bring us closer to such a decomposition. We have already noted that the
spectrum of the convolution of two signals is the product of their separate spectra, a fact that gen-
eralizes to higher order spectra, provided the signals are deterministic or statistically independent
at the corresponding order. We might approach the problem by considering the signal as a series
of transient features, fi(t − τi), whose timing is governed by a point process, N . This view of the
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Figure 1: Transient versus oscillatory models of phase-amplitude coupling. The sum of a slow oscillation (SO, A)
and a sinusoidally modulated fast oscillation (FO, B) with modulation frequency the same as the SO, yields a signal
(C ) whose bispectrum contains two peaks (D), one at the FO frequency and another at the sum of FO and SO
frequencies. The same signal can be modeled as the convolution of a transient SO and transiently modulated FO
(E, blue line) with a periodic train of impulse functions (F ). Using the convolution property (described in Appendix
A.2), the bispectrum of the SO+FO signal can be understood as the product of the bispectrum of the transient (G)
and that of the point process which governs its occurrence in the signal (H ). The bispectrum of the latter contains
energy only at harmonically related peaks, which restricts the comparatively smooth and broad bispectrum of the
transient FO+SO to the subset of peaks at which energy in the two bispectra overlaps. In this example, the fact
that the phase of the FO is fixed relative to the SO implies that the former must be an integer multiple of the latter,
which is not a necessary restriction of either model. When the phase of the FO’s are random and independent of
each other and the SO, the bispectrum is no longer restricted to harmonic peaks in the range of the FO (I ).
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problem decomposes the signal into a series of local features convolved with impulses generated by
N , which encode global signal properties. Details of this model are worked out in Appendix D. For
our purpose, we will want to consider transient functions that can be decomposed into two parts,
a slowly varying low-frequency part, fSO(t) and a rapidly modulated high-frequency part fFO(t),
with f(t) = fFO + fSO where both SO and FO are transient. 1 As illustrated in Figure 1, the
transient model explains the two peaks in the bispectrum of the SO+FO signal as the restriction
of the bispectrum of f to peaks in the bispectrum of N through multiplication.

5.1.1. A Caveat

The attentive reader may have noticed a problem with Figure 1, which gives the occasion to
point out some limitations of the transient model: it illustrates the case when f is fixed, meaning
that the phase of the FO and SO are always in the same relation and by extension that the frequency
of the FO must be an integer multiple of the SO, a rather severe restriction which does not arise
in the oscillatory view of the same problem. Fortunately, the transient model is not bound to this
assumption, and a key result described in section 5.3.1 is that the bispectrum retains energy in the
SO × FO range of frequencies even if the phase of fFO is random. The limitation of the analysis
presented there relates instead to the fact that it takes as a simplifying assumption that N and
emitted transients, the fi’s, are mutually independent.

Among the results described in 5.3.1, when the phase of the fFO’s are random or vary uniformly,
the contribution of the point process to the bispectrum drops out along a given dimension in the FO
frequency range, leaving only the contribution of the transient. In such cases, the analysis concludes
that the bispectrum will still be confined to peaks in the spectrum of N in the range of the SO but
will not be likewise restricted in the range of the FO. To arrive at the fact that there are only two
peaks in the bispectrum when γ is anything but an integer multiple of θ (causing the relative phase
of the fFO’s to vary), it is necessary to account for the dependence between adjacent fFO’s, which
is something the analysis neglects. Nevertheless, as a conceptual tool it gets the general picture
right, and as an analytic tool, the assumption of sequential independence is, if not always benign,
at least one of the more commonly accepted transgressions in such settings.

5.2. The Transient Bispectrum

The main advantage of the transient model and its relevance for understanding PAC is explained
next. If the mean of f , f̃(0), is nonzero, it is easily seen that the bispectrum of f contains its own

power spectrum, f̃(0)
∣∣∣f̃(ω)

∣∣∣2, along the axes ω1 = 0 and ω2 = 0. This observation can be extended

more generally to slow oscillations beyond the DC axis: suppose f is the sum of two components,
f = fSO + fFO, the first of which, fSO, occupies a narrower bandwidth than the second at center
frequency, ξ, while the amplitude of the second rises and falls transiently at a time scale shorter
than the period of the first. This modulation implies that fFO is effectively windowed at a time
scale less than 2πξ−1. The consequence of such time-domain windowing on the frequency domain
mirrors exactly the effect of frequency-domain windowing on the time domain (i.e. filtering), which
is to say the result is a smoothed version of the unwindowed spectrum. In particular, windowing at
the scale 2πξ−1 implies that the spectrum of fFO is smooth at the scale of ξ, justifying the following
approximation

f̃FO(ω)f̃∗FO(ω + ξ) ≈
∣∣∣f̃FO(ω)

∣∣∣2 e−iξτ (14)
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Figure 2: Transient modulation and spectral smoothing. Panel A: A signal is composed of a broadband “fast
oscillation” (FO, blue) and a low frequency “slow oscillation” (SO, red). The FO is here depicted as white noise
(gray) modulated by a brief window (dashed line) whose duration is less than the characteristic time scale of the
SO, 2πξ−1. B : In the frequency domain, such transient windowing forces the spectrum of the FO to be smooth at
the frequency scale of ξ (inset) so that the product f̃FO(ω1)f̃∗FO(ω1 + ξ) may be locally approximated by the power

spectrum of the FO multiplied by a complex sinusoid which encodes the delay of the window function, e−iξτ (see
Eq. 15). Contrast the unsmoothed power spectrum in the absence of time modulation, (gray). C: As a result of this
relationship, the bispectrum of the composite signal contains information about the spectrum of the SO and power
spectrum of the FO . The relative delay between the FO and SO is encoded in bispectral phase (C, lower right),
which is approximately linear in the range of the SO; contrast the random phase of the unwindowed FO (C, upper
right)

where τ accounts for some arbitrary time delay. These points are illustrated in Figure 2. The
term e−iξτ describes the phase of the amplitude modulation relative to the emission time. We may
partition the bispectral plane according to the spectral ranges of fSO and fFO, as shown in Fig. 3.
Where energy falls within this partitioning gives the first set of criteria for distinguishing PAC.

5.3. Bispectral Definition of PAC

First, we need a more precise statement of what is meant by PAC. An often-cited example of
what is not meant are cases of “spurious” PAC that arise from recurring transient signal features,
such as spectrally broad “spikes” or sharp-edged waves, which may or may not be periodic (see
Figure 4) [37, 41]. Such false PAC will tend to exhibit a consistent phase relationship across a range
of frequencies, in particular, along the harmonics of any fundamental periodicity. “True” PAC is
taken here to mean nested oscillations with the following characteristics:
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1. For a fast oscillation (FO) to be “nested,” within a slow oscillation (SO), its amplitude must
vary at a time scale around the period of the slow oscillation.

2. The FO should be concurrent with the SO.

3. The phase of the FO must either lack any consistent phase relationship with that of the SO
or it must fall within a band that is isolated from the SO and any related harmonics.

The first point implies that each burst of the FO occupies a bandwidth wider than the center
frequency of the slow oscillation in which it is embedded, giving a characteristically smooth spectrum
at the scale of the SO. The second point excludes non-concurrent responses; for example, a fast
oscillation followed by a slower one. The third point excludes spectrally broad features associated
with sharp transients and ensures that any oscillation nested in the SO with a consistent phase
relationship is genuinely oscillatory. These points justify guidelines for identifying PAC in the
bispectrum, outlined in the following sections. More generally, they provide a way to characterize
recurring signal features through the bispectrum.

5.3.1. Defining PAC: The Outside Criterion

The first criterion for PAC is that the time scale over which the amplitude of the nested fast
oscillation, fFO, varies must be less than the period of the slow oscillation, fSO, in which it is
embedded. When this holds, the approximation in Eq. (14) implies that the power spectrum of
fFO appears in the bispectrum parallel to the ω2 axis within the support of f̃SO because within this
range

f̃(ω1)f̃(ω2)f̃∗(ω1 + ω2) ≈ f̃SO(ω1)
∣∣∣f̃FO(ω2)

∣∣∣2 eiω1τ (15)

and likewise for the ω1 axis under symmetry. The time delay, τ , recovers the relative lag between
fSO and the envelope of fFO. It can be seen that the power spectrum of fFO is reproduced parallel
to the ω1 axis at ξ, while in the orthogonal direction, the spectrum of fSO is reproduced parallel
to ω2 within the support of f̃FO(ω1). Examples of this effect can be found in Figure 4 (middle
panels) for both the nested-oscillation and transient test signal.

Applying a similar analysis to the stochastic case describe in Appendix D.2, suppose that the
spectrum of fFO overlaps negligibly with fSO, so that f̃SOi(ω)f̃FOj(ω) ≈ 0, then within the support
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a periodic broad-spectrum transient and the other, a nested oscillation with random phase in the FO. Top Row :
The first test signal was designed to contain nested oscillations by adding 30-80 Hz filtered white noise amplitude
modulated according to the phase in a second 6-10 Hz band of filtered noise, which was also added, along with a
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a periodic train of transients was simulated as exp [10 cos (φ(t))] where φ(t) is analytic phase from 6-10Hz filtered
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the presence of nested oscillations in the first test signal (top middle panel). For the second test signal, the origin
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of f̃SO(ω1)f̃FO(ω2) we are left with

E
[
X̃(ω1)X̃(ω2)X̃∗(ω1 + ω2)

]
=〈
f̃SO(ω1)f̃FO(ω2)f̃∗FO(ω1 + ω2)

〉
+
〈
f̃SO(ω1)

〉〈
f̃FO(ω2)f̃∗FO(ω1 + ω2)

〉
µ̃2(ω1)

+
〈
f̃FO(ω2)

〉〈
f̃SO(ω1)f̃∗FO(ω1 + ω2)

〉
µ̃2(ω2)

+
〈
f̃SO(ω1)f̃FO(ω2)

〉〈
f̃∗FO(ω1 + ω2)

〉
µ̃2(ω1 + ω2)

+
〈
f̃SO(ω1)

〉〈
f̃FO(ω2)

〉〈
f̃∗FO(ω1 + ω2)

〉
µ̃3(ω1, ω2)

(16)

Suppose the phase of fFO is random such that
〈
f̃FO

〉
=
〈
f̃FOf̃SO

〉
= 0, then only the first two

terms of Eq. (16) remain:

E
[
X̃(ω1)X̃(ω2)X̃∗(ω1 + ω2)

]
=
〈
f̃SO(ω1)f̃FO(ω2)f̃∗FO(ω1 + ω2)

〉
+
〈
f̃SO(ω1)

〉〈
f̃FO(ω2)f̃∗FO(ω1 + ω2)

〉
µ̃2(ω1)

≈
〈
f̃SO(ω1)

∣∣∣f̃FO(ω2)
∣∣∣2 e−iω1∆τ

〉
+
〈
f̃SO(ω1)

〉〈∣∣∣f̃FO(ω2)
∣∣∣2 e−iω1∆τ

〉
µ̃2(ω1)

(17)

The first term does not vanish when there is a consistent relationship of phase between fSO and
the amplitude modulation of fFO. The second term remains when there is also a consistent lag
between both terms and the emission of the point process, which is reflected accordingly in the
weighting by the spectrum of the point process, µ̃2(ω1). But because we are free to define the
emission times of the point process such that τSO = 0, the second term merely reflects the power
spectral contribution of the driving point process. The bispectral estimate within the support of
fSO(ω1)fFO(ω2) therefore depends on the timing of the amplitude of fFO relative to the phase of
fSO, but not the phase of fFO.

This form of cross-frequency dependence fulfills sensible criteria for phase-amplitude coupling:
it implies a correlation between the amplitude of the amplitude-providing signal component, fFO,
and an underlying oscillation with a longer period than the time scale of the amplitude modulation
of fFO, which is what is meant conventionally by phase-amplitude coupling. Reflecting the scale
of its modulation, the spectrum of fFO must be both relatively broad and smooth, but because
the power spectrum discards phase information in fFO, the phase of fFO does not require any
consistent relationship with fSO, which is also a frequent characteristic of nested oscillations in
phase-amplitude coupling. This condition does not, however, rule out a contribution from spectrally
broad transients (see example in Fig. 4, lower middle panel), a possibility that motivates the second
and third criteria, next.

5.3.2. Defining PAC: The Inside Criterion

The central part of the bispectrum covers the regions of support for f̃SO(ω1)f̃SO(ω2) and
f̃FO(ω1)f̃FO(ω2) (white boxes in Fig. 3). Non-vanishing terms in the bispectrum within these
regions relate to the separate bispectra of the components. Energy in the FO×FO “inside” box of
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Right column: NNB Bicoherence reflects the phase-amplitude coupling in both cases but also reveals the presence
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envelope. Both insets show symmetric bicoherence over the full range of frequencies; regions shown in the adjoining
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Fig. 3 reflects the consistency between the phase of the FO and its own modulating envelope. For
example, if the FO is obtained by shifting cos(β(t + τ)) by some random delay, τ and windowing
with an unshifted envelope, h:1

fFO = h(t) cos(β(t+ τ))

then its bispectrum is given by

E
[
f̃FO(ω1)f̃FO(ω2)f̃∗FO(ω1 + ω2)

]
= h̃(ω1 − β)h̃(ω2 − β)h̃∗(ω1 + ω2 − β)E

[
eiβτ

]
(18)

which vanishes if the variability in τ suffices to make eiβτ uniform in the spectral range of the FO.
Energy near the center of the inside box therefore implies a consistent relationship between the
modulating envelope of the FO and its own phase.

We observed similarly in 5.3.1 that energy in the outside box has to do with consistency between
the envelope of the FO and the phase of the SO. Such consistency may of course, in both cases,
be the result of some spectrally broad feature that we do not wish to call a nested oscillation,
which will tend to manifest as consistent phase across a broad range of frequencies spanning the
transition from inside to outside boxes. One might reason that energy in both boxes implies a
consistent phase relationship between the SO and the FO, but this need not always be the case.
Variability in the timing of the FO modulating window may happen on the scale of the SO without
abolishing energy in the outside box, and this scale might be large relative to the frequency range of
the FO. Variability of the FO delay will, however, attenuate the bispectrum around the transition
from outside to inside boxes, because any energy in the SO at frequencies above the scale of the
variability will be washed out. This will have the effect of accentuating the separation between the
inside and outside boxes as the contribution of higher-frequency components of the SO is suppressed
by variability in the timing of the FO window.

One may conclude from this that FO’s which are either spectrally isolated, and hence oscilla-
tory, or those that occur with some variability of delay may generate modes in the inside region
that clearly stand apart from energy in the outside region.2 In contrast, energy generated by a
sharp-edged transient will tend to exhibit a tight phase relationship among all components, lead-
ing to a continuous smearing of energy across both regions. In the presence of periodicity, such
energy will cluster at a lattice of harmonically-related peaks along axes given by mω1 = nω2 where
f̃(nω)f̃(mω)f̃∗ ((n+m)ω) is non-vanishing [51]. This effect is a well-known source of spurious
phase-amplitude coupling [41], as well as spurious n : m phase locking [50].

Figure 4 shows a comparison between such a periodic transient and nested oscillations involving
a purely random FO. Figure 5 shows a very similar comparison for real data recorded from two
neighboring regions of lateral occipital cortex in an epilepsy patient. Frequent inter-ictal spiking
in one channel (Fig. 5, channel B, lower panels) results in what looks superficially like PAC
between phase around 10 Hz and power in the 50-150 Hz range. In the bispectral measure, this
apparent phase-amplitude coupling is accompanied by clearly visible harmonic banding and a wide

1It is assumed here for the sake of argument that h varies slowly relative to 2πβ−1 to avoid any complications
related to overlapping spread from negative and positive frequencies (i.e. Bedrosian’s theorem applies) but quickly
enough to allow for a non-vanishing bispectral product.

2It can also be pointed out that energy in any of the regions might be the result of entirely unrelated signal
components; it is assumed for the present that the signal bispectrum is dominated by one component. The problem of
decomposing multi-components signals into their independent parts is an important open question briefly considered
in section 8.2.
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Figure 6: Recovering signal features from the bispectrum. Top Left : The test signal (black line) simulates a series of
high-frequency oscillations (FO) followed by a slower transient response, resembling a physiological evoked response
embedded in Gaussian 1/f noise at random times (gray line, signal with noise). Top Right : Bicoherence reflects
the association between the FO and the following slow response. Bottom Row : The one-dimensional inverse Fourier
transform, taken along ω1, gives a function that approximates the impulse response relating the SO to modulations
of power at the corresponding FO frequency (See Eq. 19) (Right). For a transiently modulated FO, the impulse
response approximates the SO over the support of the FO along ω2 (Left).

monotonically diminishing spread of energy, which is much less easy to see in the PAC measure,
due to the smoothing and limited field of view of the latter.

In a different nearby channel, both measures reveal an association between phase in the 1-4 Hz
range and power in the 80-200 Hz range, in the absence of a similar broad smear of energy—this
looks more like the picture expected of phase-amplitude coupling related to nested oscillations. In
the bispectral measure, some energy also appears near the center of the inside region (Fig. 5, inset
of the upper right panel), implying that the FO exhibits some degree of consistency in its form
(that is, phase is not completely random with respect to the modulating window), but the mode
clearly separates from the outside region, making the attribution of PAC reasonable. Because PAC
measures do not include the inside region within their field of view, this detail is unavailable from
them. As this example illustrates, both kinds of phenomena, PAC and sharp waves, occur as part
of ongoing activity [58]; discriminating between them is crucial to the interpretation of PAC.
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5.3.3. Defining PAC: The Time-Delay Criterion

Eq. (15) implies that the bispectrum contains potentially useful information about the relative
timing of SO phase and FO amplitude modulation. Information about timing can be recovered
with an inverse Fourier transform along one of the frequency dimensions, as shown in Fig. 6. For
the homogenous point process with constant λ, in the presence of pure PAC:

I(τ, ω2) =

∫
SO

B(ω1, ω2)eiω1τ dω1

≈ fSO(τ + ∆τ)
∣∣∣f̃FO(ω2)

∣∣∣2 + f̃SO(ω2)eω2∆τf
(2)
FO(τ)

(19)

where the integral covers the support of fSO, excluding the diagonal symmetry region in quadrants
II and IV. Because fSO and fFO occupy non-overlapping spectral ranges, the result is a two-
dimensional function with two bands, the first around the center frequency of fSO, containing the
autocorrelation of fFO scaled by f̃SO(ω2) and the second within the support of f̃FO, containing fSO

scaled by
∣∣∣f̃FO(ω2)

∣∣∣2, both shifted by the time delay between them. For a periodic N , the terms

are reduplicated at the corresponding periodicity.
This time-domain representation is useful for verifying that the FO and SO overlap in time, as

should be the case for nested oscillations. More generally it provides a way to relate PAC to specific
features of SO. It also illustrates the broader point that because the bispectrum preserves phase
information, it encodes details of waveform shape that are lost in standard spectral analyses [6].

6. Extensions

6.1. Multi-modal dependence

As mentioned in section 4.1, a variety of extensions to basic measures of PAC address more
complicated forms of dependence between phase and amplitude, as when peaks of amplitude occur
at two or more separate phases. It was also noted that similar extensions might be developed for
the distribution of phase of within bispectral estimators. A major advantage of standard bispectral
estimators is that their capacity to reveal phase-amplitude dependence is not inherently limited by
the analysis bandwidths, but the need to construct a distribution over phase in such extensions is
bound to increase sensitivity to the parameters of the analysis filter.

An alternative strategy for this problem might appeal to subregions within 4th and higher order
spectra. For example, if the modulation of the FO is doubled in frequency compared to the SO,
meaning there are two peaks of amplitude at opposite phase over every 2π cycle of phase in the
SO, this might be revealed within the ω1 = ω3 plane of the trispectrum:

E
[
X̃2(ω1)X̃(ω2)X̃∗(2ω1 + ω2)

]
(20)

Likewise, a distribution with k peaks in the amplitude of the FO should be revealed within the
ω1 = ω3 = ω4 = · · · = ωk plane of the (k + 1)th order spectrum:

E
[
X̃k(ω1)X̃(ω2)X̃∗(kω1 + ω2)

]
(21)

Because these pertain to a two-dimensional subspace in each case, the full polyspectrum does not
need to be estimated to obtain a test of k-mode dependence, and estimation should therefore not
greatly increase the computational burden over that of the bispectrum.
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Figure 7: Amplitude modulation (AM), frequency modulation (FM) and the smoothness of the bispectrum. As
described in section 6.2, for an FO occupying a given bandwidth, coupling between the frequency of the FO and
the phase of the SO (phase-frequency coupling, PhFC) is reflected in rapidly varying features of the bispectrum
in the bandwidth of the FO while phase-amplitude coupling (PAC) is associated with smoothly varying features,
illustrated here. Left panels: The modulation of a 10 Hz sinusoid (gray line) by a 1 Hz raised cosine black line gives
rise to two side-band signals, c1 and c2, which correspond to the upper and lower halves of the region highlighted in
the time-frequency decomposition (lower left panel). These can be regarded as separate sinusoidally AM sinusoids,
offset by ±0.5 Hz from 10 Hz, whose modulating windows are in phase with each other. In the presence of a 1 Hz
slow oscillation (SO), the common phase of the respective modulating windows generates two peaks with the same
phase (See Fig. 1D for an example), modeling a “smooth” bispectrum. Right panels: The contrary case, modeling
a “rough” bispectrum in which the peaks are at opposite phase, is illustrated by shifting the phase of the amplitude
modulation in the lower band by 90 degrees, substituting s1 for c1 (lower panel). The signal that results from this
change (gray line) exhibits frequency modulation with comparatively little amplitude modulation (black line). In
the presence of the SO, the bispectrum will have the same magnitude as in the previous case, but the phase of the
peaks (equivalent to sign in this example) will be opposed.
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6.2. The Bispectrum and Phase-Frequency Coupling

So far, our interest in phase-amplitude coupling has led us to focus on smooth bispectra, which
gain their smoothness from the windowing of the FO. As shown in Appendix C, conventional PAC
measures aggressively smooth the bispectrum over the FO frequency range, giving them some speci-
ficity for bispectral features expected of PAC. One might view this as an advantage or disadvantage
of PAC measures, depending on context, but it raises the question, what should one make of those
sharply-varying features they suppress?

To gain some insight on the question, we may turn back to the oscillatory model of section 5.1;
in the case of an FO composed of a sinusoidally modulated sinusoid, the bispectrum contained two
peaks of the same sign arising from the product of each of the two sidebands in the spectrum of the
FO with the central “baseband” peak (See Fig. 1, panel D). It will be useful to think of the FO in
this case as the sum of two sinusoids offset in frequency from each other by θ and both modulated
by cos(θ/2 t):

c1 = cos (θ/2 t) ∗ ei(γ−θ/2)t and c2 = cos(θ/2 t) ∗ ei(γ+θ/2)t (22)

fAM(t) = c1 + c2 = 2 cos2(θ/2 t)eiγt (23)

The resulting FO is illustrated on the left side of Fig. 7.
We may model the opposite of a smooth bispectrum by inverting one of the two side peaks in

the spectrum of the FO within Eq. (13), which has the effect of inverting one of the two peaks in
the bispectrum of the FO + SO composite signal:

f̃FM(ω) = δ(ω − γ)− δ(ω − γ − θ)/2 + δ(ω − γ + θ)/2 (24)

Because this change causes the two peaks in the bispectrum to have opposite sign, they will tend
to be suppressed by estimators that blur them together. The FO in this case is illustrated on the
right side of Fig. 7. As in the former case, this signal may also be written out as the sum of two
modulated sinusoids:

s1 = i sin (θ/2 t) ∗ ei(γ−θ/2)t and c2 = cos(θ/2 t) ∗ ei(γ+θ/2)t (25)

The crucial difference lies in the fact that the modulating envelopes of the two components are
out of phase with each other, which has two important consequences; first, the envelope of the
composite signal fluctuates over a smaller range than in the previous case:

|XFM(t)| = |s1 + c2| =
√

1 + sin2(θt) (26)

resulting in amplitude modulation which varies, in this case, over
[
1,
√

2
]

rather than [0, 2]. Second,
the instantaneous frequency of the signal gravitates back and forth between between γ + θ/2 and
γ − θ/2 according to which of the two components has the greater amplitude at any moment.
One can therefore attach two interpretations to this case; the first is to regard the components as
separate AM signals whose modulating windows happen to be out of phase with each other. The
second interpretation is that the FO is composed of a single frequency modulated (FM) signal and
the bispectrum reflects phase-frequency coupling (PhFC) between the frequency of the FO and the
phase of the SO. Estimators tailored to PhFC might replace the smoothing kernel of PAC and
conventional bispectral measures with a high-pass “sharpening” kernel. As with PAC, whether the
interpretation of PhFC is appropriate in any given case depends on other details.
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7. Methods

7.1. Algorithm

General principles of estimation are reviewed in Appendix B. The following section briefly de-
scribes the implementation with discretely sampled data used in the present examples. The “direct
technique” of bispectral estimation starts with a windowed Fourier time-frequency decomposition,
summing bispectral products over time. Although the technique is typically described in its appli-
cation to the short-time Fourier transform, any time-frequency decomposition, S[k, n], that can be
expressed as a bank of single sideband filters might be used.3 Here x is a discretely sampled signal
and h is the time window used by the estimator:

Sq[k,m] =

N∑
n=1

hqk[n]x[n−m] exp
[
−iω[k]

n

N

]
(27)

B[j, k] =

M−1∑
m=0

S1[j,m]S2[k,m]S∗3 [l,m] (28)

where j, k and l index frequency bands ω1[j], ω2[k] and ω3[l] such that

ω1[j] + ω2[k] = ω3[l]

or more generally
|ω1[j] + ω2[k]− ω3[l]| < ∆W3[l]

with ∆W3[l] denoting the bandwidth of the S3[l, .] band. The use of subindices on S and h here is
meant to show that the analysis windows used by the estimator are permitted to vary according to
frequency and place in the bispectral product, encompassing the non-standard estimators described
in Appendix B, as well as those with bandwidths that vary over frequency, such as continuous
wavelet decompositions [30].

7.1.1. Normalization

Bispectral statistics are shown in normalized form

β[j, k] =
B[j, k]

A[j, k]
(29)

using the normalization described in Appendix B.1.1, which takes the sum of bispectral product
magnitudes over time as the normalizing term [24, 35], given by

A[j, k] =

M∑
m=1

|S1 [j,m]S2 [k,m]S∗3 [l,m]| (30)

3Short-time Fourier transform, complex demodulation and single sideband filtering all belong to a family of
techniques that are formally equivalent, up to a linear phase term which is negligible for the present purpose because
it cancels from the time-invariant bispectral products [36].
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A[j, k] amounts to the maximum possible value of |B[j, k]|, leaving the magnitudes of S unchanged,
which is attained when phase remains constant across all terms Eq. (28). With this normalization,
β may be interpreted as a weighted-average phase locking value, which avoids some of the ambiguity
related to the contribution of amplitudes in more standard forms of bicoherence [54, 40]. For a review
of a closely-related problem in the context of ordinary coherence, which is directly applicable in
this case as well, see Kovach [35].

7.1.2. Bias Correction

This weighted-average interpretation also allows for a straightforward bias correction [35], which
compensates for amplitude-dependent biases that may vary by frequency [54]. The biascorrection
subtracts an expected bias from the magnitude bispectrum and renormalizes

|βBC| =
|β| − ε
1− ε

(31)

where expected bias is given by

ε[j, k] =

∑M
m=1 |S1 [j,m]S2 [k,m]S∗3 [l,m]|√∑M
m=1 |S1 [j,m]S2 [k,m]S∗3 [l,m]|2

(32)

Note that the use of the magnitude symbol on the left side of Eq. (31) is an abuse of notation as
random error might cause |βBC| to become negative. The correction can also be applied in a way
that preserves phase information:

βBC = |βBC|
β

|β|
(33)

which has the effect of shrinking the positive bias of β. For further explanation, see Kovach [35].

7.1.3. Software

In the present examples and simulations, frequency-domain complex demodulation [9] (DBT)
was employed as described by Kovach and Gander [36], using a software implementation for Matlab
(Mathworks, Nattick, MA) developed by the first author and available at https://github.com/

ckovach/DBT. Polyspectral estimation with fixed bandwidths across all terms for a single signal is
implemented in the function PSPECT, while estimation that accommodates different bandwidths,
as well as cross polyspectra, is implemented in PSPECT2. A DBT implementation of phase-power
coupling is given in DBTPAC.

For the demonstrations in figures 5 and 4, phase-power coupling plots were generated with a
bandwidth of 1 Hz for the SO and 40 Hz for the FO. Bispectra were computed with a bandwidth
of 2 Hz.

7.2. Procedure

Example data shown in Fig. 5 were acquired from an epilepsy patient during a period of clinical
monitoring with invasive intracranial recordings. Data were obtained over 20 minutes during which
the patient passively watched a sitcom episode. All procedures were approved by the Internal
Review Board of the University of Iowa and conducted with voluntary informed consent of the
patient. For a detailed review of techniques, see [45].
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8. Discussion

With respect to the relationship between PAC and the bispectrum, we have shown:

1. Common measures of PAC based on analytic phase and amplitude are in fact bispectral
estimators, and as such provide no unique information beyond what is recovered by standard
bispectral estimators.

2. PAC measures are severely biased with respect to the symmetry of the bispectrum and intro-
duce artificial constraints on the range and resolution of the estimator.

These limitations provide a clear rationale for favoring standard bispectral estimators in the eval-
uation of phase-amplitude coupling. We have further given a more detailed, albeit qualitative,
framework by which to evaluate the presence and nature of PAC from the bispectrum based on
the distribution of energy within the bispectrum. The signal model developed in pursuit of this
framework lends itself to a particularly straightforward interpretation: it describes some recurring
feature embedded at times determined by the driving point process.

8.1. Tuning In to the Bispectrum

Beyond methodological questions, it is worth considering the relevance of this work to theoretical
models of the gating and transmission of information in the brain and elsewhere. One of the epoch-
defining technologies of the last century, radio transmission, developed from the discovery that
information can be efficiently conveyed over narrow slices of the radio spectrum. In essence, a
sender and a receiver agree in advance on the power spectrum of the transmitting signal and tune
resonators within their respective devices accordingly. Information is therefore transmitted within
the space of signals of a given power spectrum, and the degrees of freedom within that space, which
encode any to-be-transmitted information, correspond to the Fourier-domain phase of the signal.
The crucial problem of overcoming noise is addressed with a “brute force” strategy: broadband noise
is overwhelmed within a small frequency interval, along with any competing signal, by concentrating
the transmission energy in the narrowest practical region of the spectrum, resulting in a tradeoff
between signal-to-noise ratio and maximum transmission rate.

Starting from the model described in 5.1 and Appendix D, one may carry a similar transmission
scheme over to the bispectrum and in return draw forth some promising new features. The signal
space in this scheme is constrained to have a given agreed-upon bispectrum within the SO× FO
division of the bispectral plane, both with respect to magnitude and phase. Transmitted information
is encoded by the phase of the FO, which Eq. (17) allows to vary freely without affecting either
the phase- or magnitude-bispectrum. In contrast, the phase of the SO and the relative delay of the
FO-modulating envelope determine the phase bispectrum within this region, meaning that they are
not likewise free to vary.

Three noteworthy features emerge from this scheme:

1. The encoding space is specified within a two-dimensional spectral plane, rather than the one
dimension afforded by the power spectrum, increasing the number of ways the space may be
divided. Among other things, this means that separate channels may transmit information
within spectrally overlapping bands without creating interference.

2. The phase bispectrum preserves information about timing, which allows for the addition of
time division to the encoding scheme. Eq. (15) demonstrates how this might work by spacing
the modulating window of the FO at different delays. Frequency division is determined
by the magnitude bispectrum while time division is determined by the phase bispectrum,
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thus channels which overlap in both dimensions of the magnitude bispectrum may still avoid
interference through a division of the phase bispectrum.

3. Strategies for overcoming Gaussian noise are not confined to brute-force commandeering of the
spectrum in a given region, but may take advantage of the fact that Gaussian processes have
vanishing bispectra [26]. This holds true in the sense of an expectation, meaning in practice,
signal-to-noise ratio might be improved through the averaging of repeated transmissions.

An intuition-friendly summary of this scheme is as follows: it describes the encoding of informa-
tion within a high-frequency waveform, the FO, which is embedded at a predetermined time relative
to a low-frequency carrier waveform the SO; Figure 2 gives an example of how the components of
such a signal might appear. The SO may serve as a timing signal which indicates when a new
transmission has arrived. The receiver might identify the transmission by filtering for the SO and
then isolate the FO with the combination of a second filter and time-window around the interval
encoded by the phase bispectrum. In this example, the bispectral equivalent of a “resonator” is
a multistep process involving: (1) identification of the SO through a suitable filter, which can be
derived from the bispectrum as shown by Eq. (19). (2) Peaks in the output of the SO filter triggers
the isolation of the FO through a second filter and time window. Finally, if the signal is corrupted
by Gaussian noise affecting the output of the SO filter or the phase of the FO, it may (3) be cleaned
up by averaging multiple transmissions, provided the same FO is also repeated with the SO.

Although this scheme raises the complexity of encoding and decoding considerably beyond the
simple resonators of ordinary power-spectral transmission, it greatly increases flexibility in the
choice of transmitting signal, accommodating transient as well as oscillatory, spectrally broad as
well as narrow signals. This scheme also meshes with recent theoretical accounts of the possible
functions of PAC. Such models emphasize the role of PAC in multiplexing and routing of information
through temporal gating and frequency division, both properties that emerge from our consideration
of the bispectrum [38, 31, 61, 1, 39, 2, 29]. By fixing such recent developments within a more formal
spectral framework, it may be possible to better elucidate questions of efficiency and optimality as
well as to generate predictions about the behavior that efficient and optimal systems should exhibit.

Common techniques of spectral analysis developed over the first half of the last century in
concert with narrowband radio and telegraphic transmission, and it is no accident that they are
suited in the first place to the study of spectrally narrow signals. Their availability, familiarity
and versatility accounts in part for the special attention given to the neural functions of those
periodic and oscillatory phenomena about which classical techniques have the most to say [59, 11],
an emphasis carried over into the study of phase-amplitude coupling. Yet spectrally broad, often
aperiodic phenomena, exemplified most obviously by the action potential and transient evoked
responses, also figure prominently in neural signaling at many scales. The importance of what
traditional spectral methods neglect from these signals is becoming increasingly apparent [15].
The tools afforded by higher-order spectra may go a long way towards illuminating the forms and
functions of neural responses beyond the confines of the narrow passband.

8.2. Future Directions

We have laid out a qualitative framework for understanding and interpreting bispectral statistics.
As one would hope of any useful framework, it brings several interesting questions to the fore, the
answering of which must be part of a larger project. Our aim has been less to give a comprehensive
set of answers than to provoke interest in how the general picture might be further developed. No
attempt has been made here to define quantitative scores that summarize the qualitative features
outlined above. The extension of bispectral statistics to the study of phase-frequency coupling was
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given a cursory and highly schematic treatment and much more might be done to flesh out this
application.

One problem that is particularly ripe for further development is that of distinguishing between
bispectra which result from a single recurring feature or the co-occurrence of multiple independent
features, and developing a suitable decomposition in the latter case. If the underlying processes are
independent, the signal bispectrum is a sum of their separate bispectra. An important question is
how one might go about decomposing the bispectrum or other higher-order spectra according to
distinct sets of independent features. This question is related to one addressed by various blind
deconvolution algorithms, a number of which proceed by identifying filters that maximize scalar
moments [60, 17] (that is, the value of the kth moment at 0 lag); of particular relevance in the case
of the bispectrum are those that rely on skewness [47, 46]. Future work will consider this problem
in greater detail.
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Appendix A. Properties of the Bispectrum

Here we review a handful of properties that will be called upon in developing the transient
model of section 5.1 and Appendix D. Unless otherwise specified, variables r, s, t refer to time and
τ to time lags.When δ is within the argument of a function it is also a lag variable, while outside
of an argument it will represent the Dirac delta function. Frequency variables will be represented
with ω, ν, η, ξ and λ.

Appendix A.1. Symmetry

The third moment is unchanged under a permutation of the time delays, τ1 and τ2, over the
three instances of X in Eq. (10), creating a six-fold symmetry, illustrated in Figure A.8, with the
following relations:

µ3(τ1, τ2) = µ3(τ2, τ1) = µ3(−τ1, τ2 − τ1) (A.1)

Because the spectrum of a real-valued signal is conjugate symmetric about the origin, the 6-fold
symmetry of the third moment becomes a 12-fold conjugate symmetry in the bispectrum under the
following relations:

µ̃3(ω1, ω2) = µ̃3(ω2, ω1) = µ̃3(−ω1 − ω2, ω2) = µ̃∗3(−ω1,−ω2) (A.2)

For a real signal, the full bispectrum may be recovered from estimates within any one of the
symmetry regions. These relations apply as well to the frequency dimensions of the third-order
Wigner-Ville distribution, W3.

Appendix A.2. Convolution

The bispectrum inherits a number of basic spectral properties, among which are those related to
convolution. Because the convolution of two signals in time equates to multiplication in the spectral
domain, it is directly apparent that the bispectrum of a signal formed from the convolution of two
other signals is likewise the product of their separate bispectra, provided the signals are third-order
independent or deterministic; that is,

B[X ◦ Y ] = B[X]B[Y ] (A.3)

for third-order independent X,Y .
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Appendix A.3. Multiplication

The reverse relationship, by which the product of two independent signals in time becomes a
convolution in the frequency domain holds generally for the bispectrum only if at least one of the
signals is also third-order stationary; that is

B[XY ] = B[X] ◦B[Y ] (A.4)

if X and Y are third-order independent and if X or Y is third-order stationary. Because of the
stationarity requirement, this relation applies only in trivial cases (i.e. X(t) = c) when both signals
are deterministic, such that E [X(t)] = X(t).

The relationship does, however, hold generally for the bispectral Wigner-Ville distribution; that
is

W3[XY ] = W3[X] ◦ω W3[Y ] (A.5)

for third-order independent X and Y , where ◦ω denotes convolution over the frequency dimension.
Then

B[XY ] = E

[∫
W3[X] ◦ω W3[Y ] dt

]
(A.6)

For third-order stationary X, time drops out of the expectation as E [W3[X]] = µ̃3[X], so that

B[XY ] = E

[∫
W3[X] ◦ω W3[Y ] dt

]
(A.7)

= µ̃3[X] ◦
∫

E [W3[Y ]] dt = µ̃3[X] ◦B[Y ] (A.8)

if X is stationary and third-order independent of Y .

Appendix A.4. Alternative Forms

The lags in Eq. (10) can be defined in different ways while preserving the essential properties
of W3 [55]; it will at times be useful to apply a change of variables giving:

W3(ν1, ν2, t) =

∫∫
X(t+ δ)X(t− δ)X(t− τ)e−iν1δ−iν2τ dτ dδ (A.9)

where ν1 ≡ ω1 − ω2 and ν2 ≡ ω1 + ω2, δ ≡ (τ1 − τ2)/2, and τ ≡ (τ1 + τ2)/2. Where necessary, the
distinction between these forms will be made through a similar abuse of notation in the arguments.

Similarly, in the spectral domain, it will later become useful to consider the change of variables
ω′1 = ω1 and ω′2 = ω2 + ω1/2. This change effectively modifies the definition of the bispectrum to
a form that is symmetrical around ω2 :

B′(ω′1, ω
′
2) = E

[
X̃(ω′1)X̃(ω′2 − ω′1/2)X̃∗(ω′2 + ω′1/2)

]
(A.10)

Under this change of variables, the bispectrum assumes a radial symmetry with each of the axes
shown in Fig. A.8 separated by 30 degrees. The corresponding change in the time-domain involves
a modification of the lags in the 3rd moment, τ ′1 = τ1 − τ2/2 and τ ′2 = τ2, adding t′ = t+ τ2/2 for
the sake of symmetry gives

µ′3(τ ′1, τ
′
2, t
′) = E

[
X(t′ + τ ′1)X(t′ +

τ ′2
2

)X(t′ − τ ′2
2

)

]
(A.11)
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Figure A.8: Symmetry of the third moment (left panel) and the bispectrum (right panel). For a real-valued signal,
the six-fold symmetry of the third moment becomes a twelve-fold symmetry in which 6 pairs of regions are conjugate
symmetric (complex conjugate indicated in gray).

Appendix B. Bispectral Estimators

A central concern here is how to obtain an estimator of B for a third-order stationary signal.
The extension to non-stationary estimation parallels that of ordinary spectral estimation and will
not be considered separately here. The most straightforward approaches follow the example set by
conventional methods for computing Fourier power spectra [44, 10]. The so-called “indirect” method
first estimates the third moment of the signal in the time domain and windows it, giving µ̂H3 =
µ̂3(τ1, τ2)H(τ1, τ2), from which the smoothed bispectrum is obtained with a two-dimensional Fourier
transform. The “direct” method first computes a series of windowed Fourier spectra, χj(ω), and
averages over the product χj(ω1)χj(ω2)χ∗j (ω1 +ω2). Both approaches generate a largely equivalent
family of estimators.

To minimize bias in the estimate and give an estimate with the proper symmetry, it is usually
required that H itself exhibit the same symmetry as the third moment, given in Eq. (A.1). Windows
should also be real-valued in time and frequency and non-negative in the frequency domain [48].
Two-dimensional windows fulfilling these requirements may be constructed in either the time or
frequency domains from a window defined in one dimension, h(t):

H(τ1, τ2) = h(τ1)h(τ2)h(τ1 − τ2) or H̃(ω1, ω2) = h̃(ω1)h̃(ω2)h̃(ω1 + ω2) (B.1)

Although specific windows are shown to be optimal for minimizing bias of bispectral estimators
[48], we will consider a more general case, which also includes windows for which symmetry relation
may not hold. We will relate PAC measures to bispectral estimators that lack the proper symmetry
constraint, which motivates dropping the constraint in the present discussion. It will still be assumed
that the windows are non-negative and real-valued in the frequency domain and symmetric under
a 180 degree rotation, although the complex conjugate will be indicated where appropriate for
notational consistency.

The “direct” estimator most commonly begins with a series of windowed Fourier transforms,
evenly spaced in time (here treated as continuous for simplicity), which may be regarded equivalently
as the outcome of a bank of filters whose outputs are analytic signals shifted in frequency (i.e.
complex demodulates) obtained by bandpass-filtering the original signal [23, 9, 36]:

χh(ω, t) =

∫
h(s− t)X(s)e−iωs ds (B.2)
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An estimate of the bispectrum is obtained from this time-frequency representation as

B̂(ω1, ω2) =

1

T

∫
T

χh(ω1, s)χh(ω2, s)χ
∗
h(ω1 + ω2, s) ds

=
1

T

∫∫∫
X(t+ τ1)X(t+ τ2)X(t)e−iω1τ1−iω2τ2

∫
h(s+ τ1)h(s+ τ2)h(s) ds dτ1 dτ2 dt

(B.3)

The last integrand in (B.3) defines the smoothing window:

H(τ1, τ2) =

∫
h(s+ τ1)h(s+ τ2)h(s) ds

=

∫
h̃(ξ1)h̃(ξ2)h̃∗(ξ1 + ξ2)eiξ1τ1+iξ2τ2 dξ1 dξ2

(B.4)

Comparing this to Eq. (B.1) makes it clear that the resulting estimator fulfills the symmetry
requirement of Eq. (A.1). Combining these results:

B(ω1, ω2) =

∫∫∫
W (ξ1, ξ2, t)H̃(ξ1 − ω1, ξ2 − ω2) dξ1 dξ2 dt (B.5)

which makes the smoothing property of the bispectral estimator explicit. With a time-centering
change of variables, this relation also gives a time-varying estimate of the bispectrum as a smoothing
of the third-order Wigner-Ville distribution, absent the integration over time [20, 25]. As in the
second-order case, suppressing cross terms in the time-varying spectrum requires some additional
smoothing over time.

Appendix B.1. Bicoherence
Each of the estimators considered above can be regarded as an inner product between two signals,

the first being the higher analytic band, χ3(ω1 +ω2, t) and the second obtained by multiplying the
two lower bands χ1(ω1, t)χ2(ω2, t). The degree of alignment between these two terms is often used
as a normalized measure of dependence, which is obtained in the same way as for an ordinary
correlation, by dividing the inner product with the magnitudes of the separate terms [34]:

β(ω1, ω2) =
B̂(ω1, ω2)√∫

|χ1(ω1, t)χ2(ω2, t)|2 dt
√∫
|χ3(ω1 + ω2, s)|2 ds

(B.6)

This is a commonly used definition of bicoherence.

Appendix B.1.1. Alternative Definition

It is worth noting that this common definition of bicoherence does not share the full set of
symmetry properties with the bispectrum because the normalizing term is not likewise symmetric.
Whereas β(ω1, ω2) = β(ω2, ω1), it is not generally true that β(ω1, ω2) = β(−ω1 − ω2, ω2). Some
alternative definitions of bicoherence do preserve the appropriate symmetry. The following defines
an alternative index [24]:

βφ(ω1, ω2) =
B̂(ω1, ω2)∫

|χ1(ω1, t)χ2(ω2, t)χ∗3(ω1 + ω2, t)| dt
(B.7)

This index may be interpreted as a weighted-average vector strength over the phase component of
the bispectrum, thus it gives a measure of phase locking [35].
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Appendix B.2. Estimators with Different Analysis Filters

Eq. (B.3) constrains the analysis window for each of the three bands used in the estimate to
be identical, which had the benefit of yielding an estimator with the proper symmetry. While the
symmetry conditions in (A.1) are usually regarded as a criterion of admissibility for windows used
in estimating the bispectrum, there is in fact no essential reason why one may not smooth the
bispectrum with windows that do not obey these relations. Although the resulting estimator will
be biased with respect to the symmetry of the bispectrum, it might conceivably have other useful
properties that outweigh this consideration. For instance, one might select estimators that are
better tuned to specific features of interest in the signal bispectrum, which we will find illustrated
with PAC measures. We therefore consider next the consequence of estimating the bispectrum
using different analysis filters for each band, which leads to the following estimation window:

H(τ, δ) =

∫
h̃1

(
ν1 + ν2

2

)
h̃2

(
ν2 − ν1

2

)
g̃∗(ν2)eiν1δ+iν2τ dν1 dν2 (B.8)

with separate analysis filters, h1, h2, and g.
In general, because the smoothing occurs over the two-dimensional bispectral plane, the choice

of third window is over-constrained. This is easily recognized in the limit as the bandwidth of one
filter diverges from that of the other two, in which case the smoothing window factors over the two
dimensions. For example, as g̃ → δ in (B.8), one obtains:

H̃(ν1, ν2)→ h̃1

(ν1

2

)
h̃∗2

(ν1

2

)
g̃∗(ν2)

Whereas in the limit h̃2 → δ,

H̃(ω1, ω2)→ h̃1(ω1)h̃2(ω2)g̃∗(ω1)

and likewise for h̃1 → δ. In each of these cases the resulting window in one dimension is the
product of the two broader filters. The estimator therefore produces the same result as when using
two filters: the first given by a narrow filter and the second by the root product of the remaining
two. Without loss of generality, the following sections therefore consider estimators for which two
of the three analysis filters use the same window. We consider permutations of the bandwidth of
the three analysis filters applied to the three bands sorted by frequency: ω1 ≤ ω2 < ν2. Shapes of
filter kernels resulting from each combination are depicted in Figure B.9.

Appendix B.2.1. Two Filters: Narrow, Narrow, Broad

When g̃ is wider than h̃ in (B.8), H̃ becomes symmetric so that W is smoothed equally along
the ν1 and ν2 axes. As g̃(ν2)→ 1 we obtain the approximation:

H̃(ν1, ν2)→ h̃

(
ν1 + ν2

2

)
h̃∗
(
ν1 − ν2

2

)
= h̃ (ω1) h̃∗ (ω2) (B.9)

An estimate of the bispectrum with radially symmetric smoothing is therefore recovered by:

B(ω1, ω2) =

∫
χh(ω1, t)χh(ω2, t)X(t)ei(ω1+ω2)t dt (B.10)

Note that the radial symmetry here does not obey the symmetry relations of (A.1), so the estimate
does not exactly recover the symmetry of the bispectrum. On the other hand, (B.10) suggests a
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Figure B.9: Relationship between analysis filter bandwidth and equivalent smoothing kernels for 4 bispectral
estimators. Dashed lines indicate the axes given by ν1 ≡ ω1 − ω2 and ν2 ≡ ω1 + ω2. In each case, one of two
Gaussian analysis filters is applied to each of the three bands used in estimating the bispectrum, ordered by center
frequency: ω1 ≤ ω2 < ν2. Frequency windows are Narrowband with standard width, σ = 0.25, or Broadband with
standard width, σ =

√
2, and the estimators are indicated according to which window was applied to each ordered

band: BBB, NNB, BBN and BNB. Top Left : BBB (also NNN under rescaling) Fixed analysis bandwidth. Each
band is filtered using the same analysis window, B. Top Right : NNB Highest band is broad and the other two
narrow, giving the asymptotically symmetric kernel, g̃(ω1)g̃(ω2). Bottom Right : BBN Highest band is narrow and
the remaining two are broad giving the asymptotic kernel, |h(ν1/2)|2 g̃(ν2). Bottom Left : NBB (also BNB under a
transpose of axes) Second band is narrow and the remaining two broad, giving the asymptotic kernel, h̃(ω1) |g(ω2)|2.
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less cumbersome approach to estimation which foregoes the summation over the product of three
separate bands. The estimator is obtained instead from the frequency-domain covariance of the
time-frequency decomposition after remodulation and weighting by the original signal. In practice,
however, the time-frequency decomposition is often downsampled, so it will still be necessary to
either apply an anti-aliasing filter to X appropriate for the sampling rate and frequency range under
consideration, or oversample χh. Both options tend to negate any computational advantage that
might otherwise be gained from such a simplification.

Appendix B.2.2. Two filters: Broad, Broad, Narrow

The estimator in Eq. (B.10) results in a smoothing window with radial symmetry, but the
symmetry came about from greater smoothing in the ν2 direction entailing a sacrifice of resolution.
One may consider the converse possibility, allowing the bandwidth of g (in B.8) to be narrower
than that of h. This produces a smoothing window with the limit g̃(ν2)→ δ(ν2). In the approach
to this limit one obtains the following approximation:

H̃(ν1, ν2)→
∣∣∣h̃(ν1

2

)∣∣∣2 g̃∗(ν2) (B.11)

Provided that g is narrower than h, this estimator allows the smoothing along ν1 and ν2 to be
separately controlled.

Appendix B.2.3. Two filters: Narrow, Broad, Broad

In the limit h̃1 → δ in (B.8), we have g(ν2)→ g(ω2). Letting h2 = g, without loss of generality,
we have

H̃(ω1, ω2)→ h̃ (ω1) |g̃(ω2)|2 (B.12)

The same result holds for the BNB estimator swapping the arguments. The smoothing kernel
here is related to the previous examples through a 45 degree rotation in the bispectral plane. One
important potential drawback of this family of estimators is that the outcome will not reflect the
symmetry of the bispectrum about the diagonal, ω1 = ω2. Measures of phase-amplitude coupling
relate to bispectral estimators of this type, as shown in Appendix C.

Appendix C. Phase-Power Coherence as a Smoothed Bispectral Estimator

The following appendix provides a mathematical demonstration of the equivalence between
phase-power coherence (PhPC) and the NBB class of bispectral estimators. PhPC is calculated
from the cross spectrum between the squared analytic envelope at one frequency and the original
signal at another. The goal is normally to isolate the fast oscillation within the first band and the
slow oscillation within the second. The squared envelope of the FO band, centered at γ filtered
with the analysis window, h, is given by

P (γ, t) =

∫∫
h(r − t)h∗(u− t)X(r)X∗(u)e−iγ(r−u) dr du (C.1)

PhPC is calculated from the cross spectrum between P and X, obtained with a second analysis
filter, g, which will be of a narrower band than h, targeted to the range of the SO around frequency
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θ:

φ(θ, γ) =

∫∫∫
g(t− τ)g∗(s− τ)X(s)P ∗(γ, t)e−iθ(s−t) ds dt dτ

=

∫∫
g(2)(s− t)X(s)P ∗(γ, t)e−iθ(s−t) ds dt

(C.2)

where g(2) denotes the autocorrelation of g. Expanding P in (C.2) according to (C.1), we have

φ(θ, γ) =∫∫∫∫
g(2)(s− t)h(r − t)h(u− t)X(s)X(r)X∗(u)e−iγ(r−u)−iθ(s−t) ds dt du dr

(C.3)

Following the foregoing series of substitutions, the integral over t in (C.3) no longer depends on the
signal (which is now indexed by r,s and u). Pulling out the term that integrates over t yields a
smoothing kernel:

A =

∫
g(2)(s− t)h(r − t)h(u− t)e−iθ(s−t) dt

=

∫
|g̃(ξ3)|2 h̃(ξ1)h̃∗(ξ2)eiξ1r−iξ2u+i(ξ3−θ)s−i(ξ1−ξ2+ξ3−θ)t dξ1 dξ2 dξ3 dt

=

∫
|g̃(ξ2 − ξ1 + θ)|2 h̃(ξ1)h̃∗(ξ2)eiξ1(r−s)−iξ2(u−s) dξ1 dξ2

=

∫
|g̃(θ + 2λ2)|2 h̃ (λ1 + λ2) h̃∗ (λ1 − λ2) eiλ1(r−u)−iλ2(r+u)+i2λ2s dλ1 dλ2

(C.4)

from which, setting r = s+ τ2 and u = s+ τ1:

A =

∫
|g̃(θ + 2λ2)|2 h̃ (λ1 + λ2) h̃∗ (λ1 − λ2) e−i(λ1+λ2)τ1−i(λ2−λ1)τ2 dλ1 dλ2 (C.5)

Substituting back into (C.3) and applying (10), one arrives at

φ(θ, γ) =∫∫∫
|g̃(θ + 2λ2)|2 h̃ (λ1 + λ2) h̃∗ (λ1 − λ2)W (λ2 + λ1 − γ, λ2 − λ1 + γ, z) dλ1 dλ2 dz

(C.6)

which with another change of variables, ω1 ≡ −2λ2 and ω2 ≡ λ2−λ1+γ and applying the symmetry
relation from Eq. (A.2), W (−ω2 − ω1, ω2, z) = W (ω1, ω2, z), this becomes

φ(θ, γ) =∫∫∫
|g̃ (ω1 − θ)|2 h̃∗ (ω2 + ω1 − γ) h̃ (ω2 − γ)W (ω1, ω2, z) dω1 dω2 dz

(C.7)

Finally, because in measuring phase-amplitude coupling, the SO filter, g, is selected with a narrower
bandwidth than the FO filter, h, approaching the limit g̃ → δ, we may use the following good
approximation

φ(θ, γ) ≈∫∫∫
|g̃ (ω1 − θ)|2 h̃∗ (ω2 + θ − γ) h̃ (ω2 − γ)W (ω1, ω2, z) dω1 dω2 dz

(C.8)
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Appendix C.1. Relationship between PhPC and the Bispectrum

The equivalent smoothing window for PhPC estimators, given by Eq. (C.8), very nearly de-
scribes an NBB smoothing kernel like the one in (B.12). The only nontrivial difference arises from
the fact that the smoothing kernel varies as a function of the SO frequency, θ. The effect is easy
to appreciate for the Gaussian window of bandwidth σω:

h̃∗ (ω2 − γ + θ) h̃ (ω2 − γ) = e
− 1
σ2ω

[2(ω2−γ+θ/2)2−θ2/2]
(C.9)

For the Gaussian case, the result is the same as smoothing with an NBB window, only shifted along
ω2 by θ/2 and attenuated as a function of the phase-providing frequency by e−θ

2/2 without any
other change in the size or shape of the smoothing window. More generally, if h is symmetric, then
h̃∗ (ω2 − γ + θ) h̃ (ω2 − γ) is symmetric and centered at γ − θ/2.

PAC measures require the FO filter to have a bandwidth at least as great as the range of SO
frequencies of interest, because the spectral range of fluctuations in the power amplitude is limited
to the bandwidth of the filter used to extract them, so that θ must remain small relative to the
bandwidth of h and |h(ω + θ)| ≈ |h(ω)|[4]. Precisely within this range, PAC estimates may be
treated directly as NBB estimators of the bispectrum, which use the window:

HPAC =
∣∣∣g̃ (ω1) h̃ (ω2)

∣∣∣2 (C.10)

This constraint that limits the spectral range of the SO according to the bandwidth of the FO seems
at first glance to be a fundamental consideration in measuring PAC, but the preceding analysis
shows it to be in fact a dispensable property of the estimator unrelated to anything inherent in the
underlying measured quantity.

One approach to circumventing the spectral limitation of PAC estimators modifies the FO filters
used according to the SO frequency. For example, the problem is sometimes addressed by scaling
the bandwidth of the FO filter, h, by the center frequency of the SO filter [8]: h̃θ(ω) = h̃

(
ω
θ

)
, giving

h̃∗θ (ω2 + θ − γ) h̃θ (ω2 − γ) =h̃∗
(
ω2 − γ
θ

+
1

2

)
h̃

(
ω2 − γ
θ

)
≈
∣∣∣∣h̃(ω2 − γ

θ

)∣∣∣∣2 (C.11)

This adjustment removes the attenuation with SO frequency by ensuring that the bandwidth of the
FO filter is appropriate for modulation frequencies in the range of θ. It still results in diminishing
resolution of the FO with increasing SO, which is not a necessary constraint on bispectral estimators.

An apparent disadvantage of standard bispectral estimators might be noted at this point, which
is the shift of the FO spectrum by θ/2. This shift from the FO frequency is however not essential
to the bispectral estimator and can be removed through the symmetrizing change of variables given
in Eq. (A.10).

It should be reemphasized that these differences between PhPC and bispectral estimators involve
rather arbitrary properties of the respective smoothing kernels and do not reflect any essential
difference in the quantity measured. It might be argued that the limit on the combined range and
resolution of the estimator imposed by PAC helps tune it to bispectral characteristics of PAC. Such
tuning may improve signal-to-noise sensitivity to PAC as well as computational efficiency, but it
nevertheless forces some a priori assumptions about the bandwidth and spectral range of PAC.
More importantly, smoothing may sacrifice information vital for distinguishing between alternative
forms of cross-frequency coupling.
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Appendix C.2. Interregional PAC and Cross Bicoherence

The foregoing discussion extends naturally to bivariate cross-frequency coupling involving two
signals, for example, obtained from two separate recording channels. The bivariate extension of
PAC measures describes the dependence between amplitude in one signal with phase in another.
Using the same argument as in the single-channel case, measures of interregional PAC may be
equated to the cross bispectrum of the form:

Bij(ω1, ω2) = E
[
X̃i(ω1)X̃j(ω2 −

ω1

2
)X̃∗j (ω2 +

ω1

2
)
]

(C.12)

where in the language of PAC, i indexes the “phase-providing” signal and j the “amplitude-
providing” signal.

Appendix D. Transient Signal Model

The following appendix presents a basic signal model that will serve as a starting point in
describing bispectral features associated with phase-amplitude coupling and other third-order signal
features. It describes the case when recurring transient features with characteristic but unknown
spectra lie embedded at unknown times in the observed record. The generating process can be
separated into two parts: a (1) point process, N , whose increments determine the times, τi, at
which (2) some random or deterministic transient feature, fi(t) is embedded in the signal. The
first process is concerned only with timing and the second only with the emitted waveform. The
spectral representation of such a signal is

X̃(ω) =
∑
i

f̃i(ω)e−iωτi (D.1)

The following sections consider the bispectrum that results from this process when fi is independent
of time and of N and, in the first case, deterministic, and, in the second, i.i.d. random.

Appendix D.1. Deterministic Features

If the fi in (D.1) are deterministic with fi = f , it follows from the convolution property (Eq.
A.3)

BX(ω1, ω2) = f̃(ω1)f̃(ω2)f̃∗(ω1 + ω2)BN (ω1, ω2) (D.2)

with

BN (ω1, ω2) =

∫∫∫
e−iω1r−iω2s+i(ω1+ω2)tE [dN(r) dN(s) dN(t)] (D.3)

For a “simple” point process, events coincide with vanishing probability, so that E[(dN(t))k] =
E[dN(t)]. For a process with the first three moments defined, µ1, µ2, µ3 [7, 16], the expectation in
Eq. (D.3) yields

E [dN(r) dN(s) dN(t)] =

[µ1(t)δ(r − t)δ(s− t)
+ µ2(r − t)δ(s− t) + µ2(s− t)δ(r − t) + µ2(s− t)δ(r − s)
+µ3(r − t, s− t)] dr ds dt

(D.4)
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The bispectrum for this process is then

BN (ω1, ω2) = λ [1 + µ̃2(ω1) + µ̃2(ω2) + µ̃2(ω1 + ω2) + µ̃3(ω1, ω2)] (D.5)

where λ is the average rate (N/T → λ).
For a stationary homogenous Poisson driving process (having constant µ(t) = λ), Eq. (D.5)

reduces to

BN (ω1, ω2) = λ+ λ2 [δ(ω1) + δ(ω2) + δ(ω1 + ω2)] + λ3δ(ω1)δ(ω2) (D.6)

so that, neglecting the probability mass at the origins and along ω1 + ω2 = 0,

BX = λf̃(ω1)f̃(ω2)f̃∗(ω1 + ω2) (D.7)

This quantity is nonzero when f contains harmonics or is otherwise spectrally broad, so that its
support covers some ω1, ω2, and ω1 + ω2. In fact, because f is transient by assumption, this
condition is already given: f must decay to zero within some finite time window, ∆T , and therefore
its spectrum contains at a minimum a main lobe and side lobes spaced at 2π/∆T . But if f has
zero mean, a high center frequency and is highly oscillatory with an otherwise narrow spectrum,
the product may still be negligible. The bispectrum will contain larger peaks when f has a broad
spectrum on the order of 2/3 its center frequency, non-zero mean, or contains one or more harmonic
complexes.

Appendix D.2. Random Features

Extending the preceding analysis to the case when each fi in (D.1) is itself the realization of a
random process independent of N ,

BX(ω1, ω2) =
∑
ijk

E
[
f̃i(ω1)f̃j(ω2)f̃∗k (ω1 + ω2)eiω1(τk−τi)+iω2(τk−τj)

]

=E

[∑
i

f̃i(ω1)f̃i(ω2)f̃∗i (ω1 + ω2)

+
∑
i6=j

f̃i(ω1)f̃j(ω2)f̃∗j (ω1 + ω2)e−iω1(τi−τj)

+
∑
i6=j

f̃i(ω2)f̃j(ω1)f̃∗j (ω1 + ω2)e−iω2(τi−τj)

+
∑
i6=j

f̃i(ω1)f̃i(ω2)f̃∗j (ω1 + ω2)e−i(ω1+ω2)(τi−τj)

+
∑
i 6=j 6=k

f̃i(ω1)f̃j(ω2)f̃∗k (ω1 + ω2)e−iω1(τi−τk)−ω2(τj−τk)



(D.8)
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If the process generating fi is independent of N and time, so that f̃i ∼ f̃j , for all i, j, and N simple,
with the first three moments defined, µ1, µ2, µ3 [7, 16]:

BX(ω1, ω2) =λ
[〈
f̃(ω1)f̃(ω2)f̃∗(ω1 + ω2)

〉
+
〈
f̃(ω1)

〉〈
f̃(ω2)f̃∗(ω1 + ω2)

〉
µ̃2(ω1)

+
〈
f̃(ω2)

〉〈
f̃(ω1)f̃∗(ω1 + ω2)

〉
µ̃2(ω2)

+
〈
f̃(ω1)f̃(ω2)

〉〈
f̃∗(ω1 + ω2)

〉
µ̃2(ω1 + ω2)

+
〈
f̃(ω1)

〉〈
f̃(ω2)

〉〈
f̃∗(ω1 + ω2)

〉
µ̃3(ω1, ω2)

]
(D.9)

with the brackets denoting expectation, and a normalization by the cumulative event count, N , is
left implicit. This reduces to BX = BfBN if the error of fi involves independent additive Gaussian
noise.

This division of labor allows one to separate the spectral contributions of local features described
by f from those of the large-scale driving process; these respective contributions can be distinguished
in the bispectrum4. In the case of phase-amplitude coupling, f will be treated as the sum of two
components: a single burst of fast oscillations, fFO, whose spectrum is characteristically broad
and smooth, and a slow oscillation, fSO, with a narrow spectrum. In constructing the full signal,
narrowband large-scale features can be viewed as the consequence of a filter applied to the train of
impulses generated by the point process, where fSO plays the role of filter function.

4The Poisson formulation adopted here for the driving point process is mildly restrictive in that it assumes
the event count within a given interval follows a Poisson distribution. Periodicity in the driving process therefore
does not entail a train of evenly spaced events, but instead a train of evenly spaced event clusters with Poisson-
distributed size. An alternative point-process model that conditions on history, such as a renewal process, might
handle periodicity more naturally in this setting, but elucidating the spectra of such processes is more technically
involved, making them less useful for the present purpose. One way to address the case of simple uniform periodicity
with the Poisson model, which leaves the foregoing spectral analysis unchanged, is to allow λ to take the form of
transient bursts of infinitesimal duration, each burst generating a cluster with Poisson-distributed size. The resulting
signal then contains f at the cluster times modulated by cluster size. The variance of amplitude in f introduced by
this weighting with cluster sizes can be made arbitrarily small by scaling λ so as to increase cluster size, with the
inverse scaling applied f to keep amplitude fixed.
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