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Abstract

The relationship between structure and function in the human brain is well established, but not yet 

well characterised. Large-scale biophysical models allow us to investigate this relationship, by 

leveraging structural information (e.g. derived from diffusion tractography) in order to couple 

dynamical models of local neuronal activity into networks of interacting regions distributed across 

the cortex. In practice however, these models are difficult to parametrise, and their simulation is 

often delicate and computationally expensive. This undermines the experimental aspect of 

scientific modelling, and stands in the way of comparing different parametrisations, network 

architectures, or models in general, with confidence. Here, we advocate the use of Bayesian 

optimisation for assessing the capabilities of biophysical network models, given a set of desired 

properties (e.g. band-specific functional connectivity); and in turn the use of this assessment as a 

principled basis for incremental modelling and model comparison. We adapt an optimisation 

method designed to cope with costly, high-dimensional, non-convex problems, and demonstrate its 

use and effectiveness. Using five parameters controlling key aspects of our model, we find that this 

method is able to converge to regions of high functional similarity with real MEG data, with very 

few samples given the number of parameters, without getting stuck in local extrema, and while 

building and exploiting a map of uncertainty defined smoothly across the parameter space. We 

compare the results obtained using different methods of structural connectivity estimation from 

diffusion tractography, and find that one method leads to better simulations.
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1 Introduction

Large-scale biophysical models (LSBMs) [60, 52, 4] offer a plausible mechanistic 

relationship between brain structure (anatomical properties) and function (dynamical 
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properties). This relationship has previously been established by correlating anatomical 

connectivity (AC) with resting-state functional connectivity (FC) [32, 37, 44], leading to the 

hypothesis that resting-state activity is an emergent property of the brain, resulting from 

structured interactions between spatially distributed populations of neurons [19]. As such, it 

would be one of the few measurable forms of structure-function interaction at the macro-

scale, and the ideal activity to compare against large-scale biophysical simulations.

Although the nature of these interactions remains to be characterised, this hypothesis is 

consistent with more functionally-oriented views, in which the brain is seen as a network of 

spatially segregated units, cooperating transiently over time in order to carry out the neural 

computations required for cognition [17, 26]. This view is generally accepted, but still poses 

many challenges (e.g. cortical parcellation, connectome estimation, multimodal integration), 

some of which affect the large-scale models that we study here. This should be kept in mind 

when discussing the results obtained with particular models, but the modelling approach 

itself remains relevant and attractive for many reasons.

Briefly, these reasons pertain either to a methodological, theoretical or clinical perspective. 

Methodologically, LSBMs offer a unified framework in which previously independent 

methods – such as diffusion tractography, neuronal population modelling and functional 

connectivity estimation – are allowed to interact. The ability to connect multiple aspects of 

brain structure and function via their dedicated fields of study is crucial if we are to build a 

coherent theory of brain activity. From a theoretical standpoint, these models are designed to 

provide a mechanistic summary of brain activity in terms of biologically interpretable 

parameters. A particular model then effectively encodes our understanding of some 

underlying process, at least to the extent that the empirical data can support. Finally, clinical 

considerations derive from the theoretical ones; reliable estimates of biologically 

interpretable parameters can be used to characterise different conditions, or discriminate 

between them [62].

Here, we focus on the theoretical perspective; specifically with regards to the inference of 

model parameters from imaging data. Biophysical models typically describe the observed 

data (e.g. fMRI BOLD contrast or MEG) in terms of interpretable parameters (e.g. local 

balance of excitation and inhibition or the hemodynamic response). Because of this 

formulation, they are generative in nature: for a given set of parameters, one can easily 

generate synthetic data according to the model, which can then be compared to imaging 

data. However the reverse – estimating the parameters that best fit a given observation, also 

called model inversion – can be very difficult, depending on the number of parameters, the 

complexity of the model, and the amount of information in the observed data. Unfortunately 

in practice, empirical estimates of the model parameters are rarely available, and therefore 

model inversion is required in order to gain insight into the observed data. In this paper, we 

frame the inversion of LSBMs as an optimisation problem, propose a powerful method for 

solving this problem which can handle the computational burden usually associated with 

simulations, and demonstrate its effectiveness on a simple yet challenging example given the 

current state-of-the-art.
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We model MEG resting-state data using delay networks of oscillatory neuronal masses, with 

five parameters controlling key structural and functional properties (e.g. average delay 

between brain regions or local frequency responses). This model is formulated 

mathematically as a large system of non-linear coupled delay-differential equations with 

over a hundred state-variables, which is numerically sensitive and computationally 

expensive to solve. To further add to the challenges, reliable estimations of functional 

connectivity patterns (which are compared against empirical measurements from MEG) 

require on the order of a minute worth of data, and numerical integration methods require 

timesteps below the millisecond. Therefore, exploring the different ways in which our model 

behaves as a function of the controlled parameters poses immediate difficulties in terms of 

computational tractability.

These circumstances call quite naturally for Bayesian optimisation methods; these methods 

operate under the assumption that the true objective function is computationally expensive to 

estimate, and instead proceed to learning it through iterative cycles of careful exploratory 

sampling and information consolidation. Specifically, the method presented in this paper is 

designed for high-dimensional (in practice up to a dozen parameters with typical LSBMs), 

non-convex and computationally costly problems [41]. It is able to explore the parameter 

space simultaneously at multiple scales, allowing local optima to compete for the best 

solution, and using uncertainty estimates to prioritize unexplored regions.

The remainder is organized as follows. We present the optimisation method in §2.1 and 

illustrate the algorithm on a toy-example in Fig. 2. We then introduce the LSBM used in our 

experiments in §2.2, and define the optimisation problem for model inversion (parameters 

and objective function) in §2.3. The data used in our experiments is described in §3.1, and 

implementation details are given in §3.2. Finally the results of our experiments are presented 

in §3.3 and discussed in §3.4.

2 Methods

2.1 Gaussian-Process Surrogate Optimisation

The method proposed is adapted from [41], and belongs to the family of Bayesian 

optimisation methods [6]. These methods are designed to tackle computationally expensive 

black-box global optimisation problems – that is, optimisation problems for which a global 

solution is sought, but where the objective function is expensive to evaluate, and analytics 

(e.g. the objective’s gradient) are not available. It is worth noting that this method is 

independent from the particular problem at hand, and may be applied to any other context 

with similar constraints.

In general, efficient optimisation methods exploit the structural properties of the problem 

(e.g. convexity) in order to devise a strategy which guarantees rapid convergence to a 

solution. But in the case of black-box functions, these properties cannot be theoretically 

determined, and therefore an efficient strategy needs to discover them empirically and adapt 

as the optimisation progresses. Moreover in the case of expensive objective functions, the 

strategy needs to restrict the exploration of the search space to a minimum, in order to 

remain computationally tractable. This excludes in practice all strategies which rely on the 
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gradient or Hessian (because numerical estimates require many function evaluations), but 

also stochastic sampling methods (e.g. MCMC, particle filters or genetic algorithms) which 

typically rely on large numbers of samples (either for diversity or statistical validity).

2.1.1 Optimism in the face of uncertainty—The problem of finding a suitable 

strategy given the previous constraints is best formulated within the framework of game 

theory, where computing-time is seen as a limited resource. The goal is to find the right 

balance between exploring the search space, in order to discover new places of interest with 

respect to the objective, and exploiting the knowledge accumulated by previous iterations, in 

order to prioritize a more detailed search in places of known interest. This is known as the 

exploration-exploitation dilemma, the simplest instance of which is the so-called multi-

armed bandit problem (MAB) [2].

In short, the MAB problem consists in picking iteratively from a finite set of possible 

choices, with repetitions allowed, where the outcome of each choice is random with 

unknown distribution. For any fixed number of picks, the goal is to maximise the cumulative 

outcome, by taking the best-known choice as often as possible (exploitation), while regularly 

trying out unknown or uncertain choices (exploration). A posteriori, the difference between 

the outcome achieved and the best possible outcome is called the regret; minimising the 

regret or maximising the reward is equivalent.

In this context, a successful balance between exploration and exploitation can be achieved 

by adopting an optimistic strategy, whereby at each turn, the best possible outcome for each 

choice is considered, given an estimate of uncertainty from previous trials. We then 

iteratively pick the choice with the best expected outcome, and update our uncertainty 

according to the result obtained. This strategy is known as the upper confidence-bound 

method (UCB), and in the next paragraphs we explain how it can be implemented in the 

context of non-linear optimisation. More detailed explanations about UCB can be found in 

[8].

2.1.2 Gaussian-Process surrogate—The previous paragraphs give an overview of 

the strategy adopted, but do not provide a practical solution to our problem. The first issue is 

that the MAB applies to finite sets of choices, whereas we consider search spaces in which 

each point is a candidate set of parameters for our models. In fact, adapting the UCB 

strategy to the latter goes even deeper than considering an uncountable set of choices, it also 

introduces the notion of a neighbourhood for each choice, which should be exploited to 

enforce smoothness assumptions and propagate knowledge about the objective.

The second issue concerns the representation of this knowledge. Bayesian optimisation 

methods are only able to tackle such difficult problems because they effectively learn the 

objective as the optimisation progresses, and adapt their search for a solution according to 

the current state of belief at each iteration. This learned representation is typically defined 

smoothly across the search space, and much cheaper to evaluate than the true objective 

function. It can therefore be used as a surrogate for the true objective function during 

optimisation, allowing for computationally tractable analysis and exploration planning. To 

achieve this, a powerful mathematical tool is required; one not only capable of regressing 

Hadida et al. Page 4

Neuroimage. Author manuscript; available in PMC 2019 January 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



any sample of points from the objective function (multivariate in general), but also providing 

smooth estimates of confidence (or uncertainty) across the search space.

Fortunately, this is exactly what Gaussian process regression (GPR) does, and it has been 

used successfully in the past to solve this second issue [15]. Moreover, resorting to Gaussian 

processes (GP) also provides intuition into the first issue; GPs can be thought of as an 

extension of multivariate Gaussian distributions to the infinite case, where any finite subset 

of points in the search space is itself Gaussian distributed, and the dependence between any 

pair of points is specified by the covariance function, which usually encodes the idea of 

neighbourhood (typically chosen as a decreasing function of the distance between two 

points). More details about GPs can be found in [49].

Using GPs enables the regression of any finite sample of points to represent arbitrary 

objective functions; provides us with a smooth estimate of uncertainty; and encodes the idea 

of neighbourhood explicitly via the covariance function. The only missing ingredient is a 

method to overcome the fact that points in the search space cannot be indexed like discrete 

choices (they are uncountable); without it, the present context of continuous optimisation 

cannot relate to the MAB problem, and the UCB strategy cannot be applied.

This is achieved in [41] by the introduction of a partition function, which splits the search 

space into distinct subregions that can be explored independently, and can in turn be 

partitioned themselves to reach a finer resolution – that is, the partition function is recursive. 

Recursivity confers exponential convergence towards regions of interest, and induces a 

hierarchical structure amongst subregions according to their size (larger regions are non-

overlapping unions of the smaller regions contained within them), which can be represented 

by a partition tree. Each node in this tree corresponds to a rectangular region of the search 

space, covering a unique combination of subintervals in each dimension (each corresponding 

to a range of values for each parameter), and the size of which decreases strictly with the 

depth, allowing for arbitrarily high resolutions. In other words, the partition function allows 

us to identify regions in the search space with arbitrary resolution, and since there are only a 

discrete number of nodes at each level, the UCB strategy can be applied in a multi-scale 

fashion.

An illustration of this algorithm is presented in Fig. 2, using Matlab’s peaks function in a 

two-dimensional context. The partition of the search-space over three iterations is overlaid 

on top of the objective function (coloured background), to demonstrate the refinement of the 

resolution in places of interest. The associated partition tree is shown in Fig. 3, where each 

node corresponds to a different region of the search space (the deeper the node, the smaller 

the region), and colours indicate either the evaluated scores or the UCBs.

2.1.3 Concrete implementation—The main challenge of global optimisation methods, 

as opposed to local methods, is to deal with local extrema in the objective function. This 

challenge can be efficiently tackled by carrying out multiple local searches in a sequential 

(e.g. simulated annealing, Metropolis-Hastings) or parallel (e.g. particle filters, genetic 

algorithms) manner. The method proposed here implements a special case of the parallel 
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approach, which organises candidate solutions hierarchically using the partition tree 

introduced in the last paragraph.

The algorithm proceeds iteratively (after initialisation) by: selecting at each level a leaf node 

with maximal UCB; subdividing selected leaves further using the partition function; 

exploring children nodes to assess their UCB; and retraining the GP surrogate with new 

evaluations of the objective function. We summarise this in the diagram Fig. 1. Note that, 

because selected nodes are leaves, we consider at each step a set of regions located in 

different parts of the search space; and because we select at most one leaf per level in the 

partition tree, we explore the search space simultaneously at multiple scales.

From there, there are three points to clarify in order to get a concrete implementation:

1. For any point x in the search space, the upper-confidence bound is defined as:

UCB x = μ x + ςσ x (1)

where μ(x) corresponds to the expected value of the objective function f at point 

x given by GPR, σ(x) is the associated standard deviation, and ς is a positive 

factor controlling our optimism2.

2. Each leaf node in the partition tree is labelled as being either: evaluated, meaning 

that the objective function was evaluated at its centre; or GP-based, meaning that 

its associated score was estimated by UCB. Specifically, the score associated 

with a GP-based leaf corresponds to the best UCB amongst N points randomly 

sampled within the corresponding area in the search space. At each iteration, 

selected GP-based leaves are evaluated prior to being partitioned, and the score 

associated with any evaluated node is the value of the objective function at its 

centre.

3. The partition function is a ternary split along the largest dimension of the 

subregion considered (in normalised coordinates). This is not a trivial choice; it 

satisfies several desirable properties with regards to the optimisation, although 

none of them is required. First, it produces non-overlapping subdivisions, which 

ensures that there is only one path converging to any specific point in the search 

space, avoiding redundant competition between nodes. Second, the centre of the 

parent node is also the centre of the middle child, which saves us an evaluation of 

the objective function at each split. And third, because of this conserved point, 

we can guarantee that the children of a node do not recede, meaning that the 

progression within a branch is monotonic.

Finally, an improvement can be made on the selection process; it is pointless to explore 

regions at a smaller scale, if some region at a larger scale has a better expected score. 

Therefore, the selection proceeds sequentially from the root to the deeper branches, and we 

2For a GP with Gaussian likelihood kernel, the upper bound of a p% confidence interval on the expected value corresponds to ς = erfc
−1(p/100), where erfc is the complementary Gauss error function.

Hadida et al. Page 6

Neuroimage. Author manuscript; available in PMC 2019 January 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



discard levels at which the maximum UCB does not improve upon the best expected score 

so far. In effect, this introduces competition between the different scales, and prevents 

dwelling around local extrema.

The benefits of this improvement are illustrated in Fig. 2, where the exploration of the first 

local extremum stops after a region at a larger scale obtains a better score. This exploration 

will only resume once all regions at the same resolution are either explored (unlikely) or 

obtain a lower expected score than this local extremum. Further evidence of the ability of 

GPSO to converge towards the global optimum will be presented in the context of LSBM 

optimisation (see Fig. 7), and in higher-dimensional spaces (see appendix).

2.2 Large-Scale Biophysical Model

In this paper, we use the Bayesian optimisation approach introduced in the previous section 

in order to optimise the parameters of whole-brain dynamical models. Specifically, we 

consider networks of interacting Wilson-Cowan oscillators with delays. This model posits 

that the electrophysiological oscillations typically observed in MEG data result from cycles 

of excitation and inhibition [61], and has been employed previously, notably in [16] to 

highlight the importance of propagation delays and long-range couplings between distant 

brain regions, with regards to synchronisation properties in the dynamics produced.

2.2.1 Assumptions and definitions—The brain is modelled as a network of neuronal 

masses, in which vertices correspond to spatially-contiguous brain regions, and edges 
represent direct interactions between these regions. Each neuronal mass may contain several 

subpopulations of neurons, or several state equations, and so to distinguish between these 

local entities and the different brain regions in the network, we call nodes the vertices 

corresponding to a subpopulation or state equation, and units the groups of vertices located 

in the same brain region.

We are interested in emergent oscillatory activity in these networks, which is assumed to be 

driven by cycles of excitation and inhibition in each region. Therefore, two subpopulations 

of neurons are considered: an excitatory subpopulation (E) driving towards increased 

oscillatory activity, and an inhibitory subpopulation (I) driving towards quiescence. The 

effects of self- and long-range inhibition are neglected, meaning that there are no I-to-I 

edges, and only E-to-E edges between units. Finally, we do not consider noisy inputs or 

synaptic plasticity in this paper: their effects has been explored in separate work [1].

2.2.2 Local oscillations—The Wilson-Cowan model [61] (henceforth W-C) describes 

the temporal variations of the amount of neurons firing within an excitatory and an 

inhibitory population of neurons, given static local couplings between the two (related to the 

distribution of synaptic connections), and an external input controlling the excitability of the 

system.

It introduces so-called “subpopulation response functions”, defined as the cumulative 

distribution of local firing-thresholds within each subpopulation. These distributions are 

generally assumed unimodal and symmetric, leading to sigmoidal cumulative functions. In 

practical terms, the subpopulation response function represents the expected response of an 
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initially quiescent population of neurons to an external input, and is modelled as a logistic 

sigmoid:

∀x ∈ ℝ , 𝒮 x; μ, σ = 1
1 + e−x x = x − μ

σ (2)

where μ represents the response threshold, and σ controls the width of the dynamic input 

range.

Let E(t) denote the ratio of excitatory neurons firing at time t within a brain region (resp. I(t) 
for inhibitory neurons). Neglecting refractory effects, the W-C model states that:

τe∂tE = − E + 𝒮e ceeE + cieI + Pe (3)

τi∂tI = − I + 𝒮i ceiE + ciiI + Pi (4)

where ∂t● denotes the derivative with respect to time; cxy ≡ cx→y is the directional coupling 

of x affecting y; 𝒮e, i are the subpopulation response functions; and Pe,i are external inputs. 

The remaining parameters are given in Tab. 1. Notice that although the equations are 

identical for both subpopulations, the inhibitory coupling coefficients cie and cii must be 

non-positive (by definition), while the excitatory coefficients cee and cei must be positive, 

which breaks the apparent symmetry between excitation and inhibition.

In summary, the oscillatory mechanism of this model is simple: i) excitatory inputs lead to 

an increase in excitatory activity; ii) excitatory activity causes an inhibitory response; iii) 

decreased excitation leads to decreased inhibition; iv) which, in turn, leads to a relative 

increase of excitatory inputs. The architecture of this model, as well as typical dynamics 

produced, and the effects of key local parameters on these dynamics, are shown in Fig. 4.

2.2.3 Network extension—Extending the previous local equations to a network of 

interacting brain regions consists in adding coupling terms from those remote regions inside 

the subpopulation response functions. The general node equation (whether excitatory or 

inhibitory) in a network of N brain units is therefore:

τk ∂tXk = − Xk + 𝒮k ∑
j = 1

2N
c j, kX j t − λ j, k + Pk (5)

where 1 ≤ k ≤ 2N with the convention that odd indices correspond to excitatory nodes (resp. 

even for inhibitory nodes); Xk is the normalised firing-rate of node k (corresponding to 

previous variables E and I at the unit-level); and we introduced delay parameters λj,k ≡ 
λj→k ∈ ℝ+ to account for propagation times between distant brain regions. These delays are 
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of the same order of magnitude as the decay-times of local subpopulations, and therefore 

interfere with their dynamics3.

2.3 Model Optimisation

The model presented in the previous section describes the activity of a network of N brain 

regions, using 2N state equations (see Eq. 5). In general, this network will not be sparse, 

meaning that there are 𝒪 N  non-zero coupling terms in most state equations, hence the high 

computational costs associated with simulations in practice (there are 𝒪 N2  interaction 

terms to be computed at each time-step). As it stands, there are also 𝒪 N2  parameters, 

because of the coupling and delay matrices, respectively [ci,j] and [λi,j]. It is therefore 

impractical to move on directly to the simulation of such systems, without a more 

parsimonious parametrisation of the model.

In this section, we propose a simple parametrisation controlling key structural and functional 

aspects of the system with few parameters. These parameters can be inferred from empirical 

MEG data, using the method presented previously in §2.1, by framing model inversion as an 

optimisation problem, for which we propose an objective function below.

2.3.1 Assumptions—For simplicity, we assume that all units in the network are 

identical, and that excitatory and inhibitory subpopulation response functions and time-

constants are identical (see Tab. 1 for baseline parameters). Each unit is normally defined by 

9 parameters (τ, μ, σ for each node, and cee, cei, cie), so these assumptions reduce the 

number of unit parameters from 9N to 6.

Since there are two nodes per unit (excitatory and inhibitory), the connectivity and delay 

matrices have a 2-block structure. For instance, with the coupling matrix, all on-diagonal 

blocks are identical (and contain the local couplings), and off-diagonal blocks only have one 

non-zero entry (only E-E longrange connections):

cee cei
cie 0

On‐diagonal

ci, j 0

0 0
Off‐diagonal

With the delay matrix, we reason in pairs of units instead of nodes (i.e. the delay between 

two regions is the same regardless of which subpopulations we consider in each). Therefore 

the 2-block between units i and j is simply:

λi, j
1 1
1 1

3Such delays are caused mainly by axonal conduction and synaptic transmission, both highly dependent on temperature, and range 
from hundreds of micro-seconds to tens of milli-seconds at long-range [51].
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and we neglect delays within units (λi,i = 0). Delays are estimated from pairwise Euclidean 

distances, and we assume a constant propagation velocity throughout the brain to avoid 

introducing additional parameters.

We only consider cortico-cortical connections in this work, and assume that the two 

hemispheres correspond to subnetworks of equal size (N/2 units). The latter induces an 

additional N-block structure in the previous matrices, which is useful for two reasons:

• to our knowledge, there is no evidence for one hemisphere driving brain activity 

more than the other, or for a lateral bias in the AC between hemispheres, 

therefore requiring both to have the same size ensures that the overall AC within 

and between hemispheres is structurally unbiased;

• from a purely practical perspective, the assumption of hemispheric symmetry 

makes it easier to manipulate connections within and between them, as in Eq. 8 

for instance.

Finally, note that despite these numerous assumptions the network is still heterogeneous due 

to the different coupling weights and delays assigned to the edges of the network; this is 

consistent with the overall objective of studying the effects of structural properties on 

dynamical activity.

2.3.2 Parametrisation—Let D be the matrix of pairwise Euclidean distances between 

brain regions, and A the associated matrix of anatomical connectivity estimated from 

diffusion tractography (both N × N). By convention, the diagonal of A is set to zero, and we 

recall that excitatory and inhibitory nodes are indexed between 1 and 2N, respectively with 

odd and even numbers.

The coupling matrix C = [ci,j] and delay matrix Λ = [λi,j] are parametrised respectively as 

follows:

C = γA ⊗ 1 0
0 0

non‐local

+ IN ⊗
cee cei

cie 0
local

(6)

Λ = λ
D

D ⊗ 1 1
1 1 (7)

where ⊗ is the Kronecker product; I the identity matrix; D the average pairwise distance; 

and we introduced the following parameters:

• γ the global coupling strength, controlling the overall amount of non-local 

coupling;

• and λ the average propagation delay, controlling the speed of interactions.
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Note that although matrix A might be symmetric, C is not; the element in row i column j 
corresponds to the edge from node i to node j (not unit), and therefore each column can be 

seen as a coupling vector for the corresponding node.

Probabilistic tractography methods have an inherent bias towards shorter connections; longer 

streamlines are less probable, and therefore connectivity between distant regions is generally 

lower [55] (see Fig. 5). This may reflect a biological reality [22], but beyond the issue of 

assessing the accuracy of the estimated decrease, there is the question of whether the same 

decrease rates apply equally within or between hemispheres. In order to correct for such 

potential bias, we introduce an additional parameter h to manually scale inter-hemispheric 

connections, which correspond to the off-diagonal N-blocks in matrix C. This scaling is 

affected to A directly, before substitution in Eq. 6:

A A ⊙ 1N /2 ⊗ 1 h
h 1 (8)

where ⊙ is the Hadamard product (element-wise) and 1 is a full matrix of ones.

Finally, we consider two functional parameters affecting the oscillatory dynamics of all 

units:

• the time-constant τ, assumed equal for all nodes, which controls the frequency 

response of W-C units (see Fig. 4);

• and the excitatory input Pe, assigned equally to all excitatory nodes in the 

network, which controls the excitability of individual units when they are below 

oscillatory threshold.

Equations 6, 7 and 8 determine entirely the network structure, and we consider five 
parameters to be optimised, in Tab. 2, which control key structural and functional aspects of 

our model.

2.3.3 Relative variants—The previous parameters control key structural and functional 

aspects of our LSBM, but their range of values can vary depending on the AC matrix 

considered (and more generally, the oscillatory unit considered). This means that a suitable 

domain for optimisation needs to be determined ad hoc every time, which makes it difficult 

to compare solutions found across models.

We know (see Fig. 4) that W-C units oscillate for excitatory inputs beyond a certain 

threshold value Pe* . Similarly at the network level, we know that oscillations occur for 

coupling values beyond a certain threshold value γ* (which is null if the units intrinsically 

oscillate on their own).

Normalising these parameters with respect to their threshold value would help, not only to 

compare them across different models, but also to easily control the state of the network 

(oscillating or silent) and focus on the oscillating regimes during optimisation. Hence, we 

define the following relative variants instead:
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Pe = Pe/Pe* γ = γ /γ * (9)

and use them throughout our experiments.

With these definitions, we know for example that Pe < 1 corresponds to brain units below 

oscillatory threshold, and that networks are in oscillatory regime only when γ > 1 . And we 

can enforce these conditions during optimisation by choosing the parameter ranges 

accordingly (see Tab. 2).

However, determining the threshold value γ* is not trivial, because it depends on Pe* (the 

unit oscillatory threshold), as well as on other controlled parameters such as the average 

delay and interhemispheric scaling. While Pe* can be determined numerically (e.g. with 

bifurcation analysis), to our knowledge there is no simple method for estimating the 

oscillatory coupling threshold γ* for any given delay-network.

In our experiments, for any candidate set of parameters (including normalised input and 

coupling), both threshold values were estimated prior to simulation in order to determine the 

corresponding values Pe and γ, which are required in order to build the network (see 

previous section). This was done by dichotomic search with a precision of 3 significant 

digits. The overhead introduced, in terms of runtime, was on the order of a minute per 

candidate set of parameters (largely dominated by the search for γ*; the search for Pe*

always took less than a second).

2.3.4 Objective function—The optimal parameters should maximise the similarity 

between biophysical simulations and real MEG data, and this similarity should be assessed 

using characteristic features of resting-state dynamics. In this paper, we take a simple 

objective function comparing FC matrices across six overlapping frequency bands:

[4, 8] [6, 10] [8, 13] [10, 20] [13, 30] [20, 40] Hz

As excitatory pyramidal cells contribute most strongly to EEG/MEG signals, we associate 

activity in the excitatory populations of the model with signals in experimental data [9]. 

Envelope correlations were computed in each band, as is commonly done with resting-state 

MEG (more details in §3.1.2).

Importantly, the simulated timeseries were orthogonalised prior to computing Hilbert 

envelopes (using the Procrustes method from [12]), in order to replicate the effects of 

leakage correction on source-reconstructed MEG data.

Denoting M1..6 the corresponding FC matrices, where subscripts identify the frequency-

band, we define the relative connectivity magnitude as:
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u =
μk

maxb μb k = 1..6
(10)

where μb is the average off-diagonal correlation coefficient in matrix Mb. By definition, the 

largest element in this vector has magnitude 1 (e.g. in alpha band), and the other values give 

the relative amount of connectivity in one band compared to the principal one (e.g. in theta 

compared to alpha).

This vector is computed for the simulated and reference data independently, in order to 

compare the relative amounts of connectivity across frequency bands. Note that because we 

divide by the largest correlation coefficient across bands, this comparison is insensitive to 

any scaling of either set of matrices (reference or simulated), which can vary as a function of 

the signal-to-noise ratio for instance, or the amplitude of the oscillations.

Finally, the objective function used in our experiments combines the similarity between 

relative connectivity magnitudes, and the average within-band correlation between simulated 

and reference FC matrices:

1 − RMS uref − usim
2 ⋅ 1

6 ∑
b = 1

6
Corr(Mb

sim, Mb
ref)

where superscripts refer to the simulated or reference data, and the first factor is a 

normalised measure of similarity (in [0, 1]) based on a root-mean-square metric, which is 1 

when uref = usim, and decreases towards 0 as the distance between them increases.

3 Results & Discussion

3.1 Imaging data

3.1.1 Anatomical structure—The Desikan-Killiany cortical parcellation [20] was used 

in all experiments to define brain regions (or “units” in our network models). The AC 

between regions was estimated using probabilistic diffusion tractography [3, 39], and 

averaged across 10 diffusion MRI datasets from the Human Connectome Project (HCP) [59, 

54]. Distortion corrected data [30] was used to estimate fibre orientations [40, 36], and used 

subsequently for probabilistic tractography in FSL. Delays between regions were estimated 

using Euclidean distances between the region’s barycentres.

Two different seeding methods were used to compute dense tractography connectomes: with 

the conn1 method, streamlines were seeded from the WM/GM interface; whereas the 

conn3 method considered every brain voxel as a seed. The number of streamlines reaching 

locations on the WM/GM boundary (~60k vertices in standard MNI space, as given by the 

CIFTI format [30]) were recorded.

Both connectomes were then parcellated and normalised in order to estimate anatomical 

connectivity between each region. Two different normalisation methods were used [22]:
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• the mean method counts the number of streamlines between pairs of vertices 

belonging to two regions, and divides by the number of vertices in both;

• whereas fractional scaling (fs) divides instead by the sum of all streamlines 

involving either of two regions.

Conceptually, the first normalisation accounts for differences in size between different 

regions, while the second method accounts for differences in connectivity between pairs of 

regions instead (which indirectly accounts for differences in size as well).

Finally, each connectivity matrix was made symmetric by arithmetic average with its 

transpose, and rescaled such that the average degree (sum of rows or columns) be unitary. 

The corresponding AC matrices are shown in Fig. 5.

3.1.2 MEG resting-state—The resting-state datasets of 28 healthy subjects from 

previous studies [7, 50] was used in our experiments. Details about the acquisition and 

preprocessing can be found in these references. In particular, the anatomy of the subjects 

was aligned with the MEG sensor-array by a combination of head-tracking (using fiducial 

coils), and surface-matching between a digitised head-shape and one derived from structural 

MRI, as is common for MEG acquisitions. The data were beamformed into MNI 8mm 

standard space between 4 and 40Hz, parcellated using PCA, rescaled to set the largest 

standard-deviation to 1, and orthogonalised to correct for spatial leakage using the 

Procrustes method from [12].

Each dataset was then filtered in the following six overlapping frequency bands:

[4, 8] [6, 10] [8, 13] [10, 20] [13, 30] [2, 40] Hz

and correlations between Hilbert envelopes were computed in each band. The resulting 

band-specific FC matrices were then averaged across 28 subjects, and taken as reference 
data for our simulations to be compared against. These reference FC matrices in theta, alpha 

and beta bands are shown along with the best simulated results in Fig. 9.

In addition, we performed a time-windowed analysis on real MEG data in order to assess the 

best similarity scores to be expected as a function of the simulation time-span in our 

experiments (see objective function in §2.3.4). Specifically, for a window of a given time-

length, we extracted segments of source-reconstructed time-series from all 28 MEG datasets, 

estimated the functional connectivity matrices for each of these segments, and computed the 

associated similarity scores as if those were simulated data.

The distribution of scores obtained (see Fig. 6) was taken as a gold-standard for our 

simulations; we should expect our best simulations to hit the upper-end of this distribution, 

but significantly higher scores would indicate overfitting, and lower scores would indicate 

poor model performance.

We also used this analysis in order to strike a reasonable balance between higher expected 

scores and longer simulation times. The computational costs associated with longer 

simulations were considerable, and this analysis allowed us to assess the expected penalty 

for choosing shorter simulation times. We opted for simulations with an equivalent of 60 
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seconds worth of data in our experiments (downsampled to 300 Hz before analysis); for this 

time-length, the corresponding upper-bound for the expected similarity scores with 95% 

confidence is 0.41, and the best score obtained in our experiments was 0.42 (see Fig. 11).

3.2 Software implementation

3.2.1 GP Surrogate Optimisation (GPSO)—We improved upon the implementation 

of IMGPO [41], by addressing a number of issues and extending the algorithm in several 

ways. Our implementation is a complete refactoring of the original algorithm, and is made 

freely available4.

Our main contributions are listed below:

• to update upper-confidence bounds following the optimisation of GP 

hyperparameters at each iteration, in order to allow belief propagation across the 

partition tree;

• to enable the exploration of candidate leaves using uniformly random samples of 

points in the corresponding subregion of the search-space (the original 

implementation only explored a subset of the dimensions in a deterministic 

manner);

• to implement serialisation, allowing for the optimisation to be resumed at any 

stage.

The various settings used during our experiments are listed in Tab. 3.

3.2.2 Biophysical Simulations—The LSBM presented in §2.2 was implemented in C+

+, and simulations were analysed with Matlab. The system of non-linear coupled delay-

differential equations (see Eq. 5) was solved using an adaptive-step Runge-Kutta method of 

order 8 adapted from the reference Fortran implementation Dopr853 in [33]. The main 

computational bottleneck in the simulations is due to the number of feedback terms to be 

computed at each time-step; since network matrices (delay and coupling) are not sparse, the 

complexity is quadratic in the number of nodes in the network. At each timestep of size h, 

the sum of delayed terms in each equation were computed across multiple threads at time t 
and t + h, and interpolated for each substep using an exact formula (that is, the interpolation 

does not make any approximation). These optimisations allowed for simulation times 

roughly two times slower than realtime using four threads on modern CPUs.

The initialisation of delay-systems is a sensitive operation. In contrast with initial-value 

problems, which typically require a single initial state, delay-systems require a smooth 

function for initialisation. This function must be defined over a time-interval [t0 − λ, t0], 

where t0 is the initial time and λ is at least as large as the largest delay. Additionally, it 

should itself be a solution of the system, which makes the problem circular.

4See: https://github.com/jhadida/gpso. The license (AGPLv3) permits any use of the code, without warranty, provided that license and 
contributors are preserved, and that any modification is made freely available under the same terms.
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To our knowledge, there is no solution to this problem. In our experiments, for each 

simulation, we calculated the fixed point (E, I) to which individual units converged given the 

current excitatory input5, and set the initial function to be constant and equal to these values 

in each unit. It is equivalent to assume that units are initially disconnected from the network 

for a certain period of time.

3.3 Experiments

We present the results of two experiments which demonstrate the benefits of GPSO in the 

context of LSBMs. The first experiment is a proof of concept in a restricted two-dimensional 

case, which allows results to be visualised and compared with exhaustive search. The second 

experiment considers the full model with five parameters, for which we provide a detailed 

analysis of the results and highlight the current limitations.

3.3.1 Two-dimensional example—In this experiment, the similarity between 

simulated and reference MEG data was maximised according to the objective function 

defined in §2.3.4, by optimising just two parameters for now; the average delay λ, and the 

relative network coupling γ . The remaining parameters (see Tab. 2) were set to: Pe = 0.85, h 

= 1, τ = 10ms, and we used the conn1_mean AC matrix to connect the network units. The 

timespan of each simulation was 63 seconds, and we discarded the first 3 seconds to get rid 

of transient effects before analysis. The results are shown in Fig. 7.

The performance of GPSO was assessed by comparison with an exhaustive grid search, 

which is computationally tractable with two dimensions and can be easily visualised. The 

grid search required 525 simulations, considering respectively 25 and 21 equally spaced 

points across the value ranges of the delay and coupling parameters. In comparison, GPSO 

was run with 100 simulations, with which it successfully converged to the optimum, while 

learning a surrogate objective function defined smoothly across the search space, along with 

a map of uncertainty. These results demonstrate the efficiency of the method in a restricted 

two-dimensional context of LSBM optimisation. The performance of GPSO in higher 

dimensions is further assessed in the appendix, where we also provide a comparison with 

particle-filter optimisation [42].

3.3.2 Five-dimensional analysis—In this second experiment, we consider all five 

parameters listed in Tab. 2, and all four connectivity matrices shown in Fig. 5. For each 

connectivity, an optimisation was run with 800 samples (i.e. evaluations of the objective 

functions), which took approximately 1.5 day to run on a computing cluster with four 

threads. In comparison, an exhaustive search run sequentially with just 20 values per 

dimension would take over 18 years to complete.

The five-dimensional results cannot be displayed as in the previous two-dimensional case; 

instead we summarise below key aspects of the analysis, illustrating the type of information 

made available by this new method.

5We know it is a fixed-point because we only choose inputs below oscillatory threshold (see Tab. 2).
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A case for multi-criteria objective functions •. Defining the “goodness-of-fit” with resting-

state electrophysiological data is a difficult task, especially given the time-constraints 

typically associated with LSBM optimisation. Here, we discuss the benefits of including a 

penalty factor in the objective function, to ensure that the relative amounts of FC across 

frequency bands are similar in real and simulated data. It is best to have the main points of 

§2.3.4 in mind when reading this paragraph.

We illustrate our point in Fig. 8, where the best results obtained after optimisation with each 

of the four AC matrices are summarised and compared. Without the penalty term included in 

the objective function to control for the relative strength of connectivity across bands, the 

results obtained with conn3_fs connectivity would be better than those obtained with 

conn1_mean connectivity, despite the fact that the corresponding FC matrices (see bottom-

row in Fig. 9) are almost identical across frequency bands, and only vary slightly in terms of 

connectivity scale. The FC matrices obtained with conn1_mean connectivity also had a 

better structural correspondence with the reference matrices (see top rows in Fig. 9), but this 

was only by chance; the penalty term did not favour this correspondence in any way. In fact, 

this is one of the weaknesses of the correlation coefficient itself, which does not take into 

account structural dependencies between the elements of the FC matrices (i.e. the 

connectivity patterns) when comparing them.

In brief, these results show that the inclusion of a penalty term controlling for relative 

strengths of FC across frequency bands was beneficial in our experiments, and suggest that 

multi-criteria objective function might in general be desirable in the context of LSBMs. 

Furthermore, the use of similarity metrics which explicitly account for structural 

correspondences between simulated and reference data may also enhance the quality of the 

optimisation.

Marginal parameter distributions reveal optimal value-ranges •. Looking at the distribution 

of parameter values for the best samples tells us about “preferred” values for each 

parameter; that is, parameter values for which the corresponding networks produce 

dynamical activity most similar to MEG resting-state data. Fig. 10 shows a comparison 

between the marginal parameter distributions computed independently for each of the four 

AC matrices. These distributions correspond to the 90th percentile of all evaluated samples 

(ranked according to their similarity score). The narrower the distributions, the stronger the 

preference for a specific parameter value. And the more overlap between distributions, the 

better the consensus across experiments with different connectivities.

We find a good consensus with regards to the first three parameters (input, coupling, delay), 

and in particular for the average network delay around 10ms, but the comparisons for the 

inter-hemispheric scaling h and characteristic time-constant τ are more mitigated. This is not 

surprising; the connectivity matrices control the interactions between the different brain 

regions, and structurally different networks should not be expected to agree on parameter 

values in general.

That being said, three out of the four AC matrices (all except conn3_mean) indicate clearly 

that the strength of inter-hemispheric connections should be increased at least two-fold. This 
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is consistent with the known bias for shorter connections in probabilistic tractography, but it 

is also remarkable to be able to estimate the amount of “missing” connectivity purely from 

simulations.

Finally, the results for the temporal parameters (average delay and time-constant) are 

somewhat surprising. We would not expect network delays to be lower on average than the 

characteristic time of variation within each brain region, because these delays are caused by 

axonal conduction over long distances, and local oscillations (caused by cycles of local 

excitation and inhibition) are not subject to propagation issues. This particular result might 

change with a more accurate estimation of the delays in our model (e.g. using tract-lengths 

from tractography instead of Euclidean distances), and may also be explained with further 

information about myelination information. Both of these enhancements will be explored in 

future work.

Conditional distributions reveal the local topography of the search space •. Here we take a 

deeper look at the best results obtained using conn1_mean connectivity. The optimal 

parameters correspond to a single point in the search space; to get an idea of the topography 

of the objective function around the optimum, we computed the conditional distributions of 

the GP surrogate on orthogonal slices going through that point. These slices are shown in 

Fig. 12.

A local maximum can be seen in the conditional surrogate coupling vs. input (row 2 column 

1), which indicates that the objective function is not unimodal. Note that this is by no means 

a complete picture; for example, it is impossible to know about local optima located 

elsewhere in the search space based on this information only. Instead, the partition tree from 

GPSO (not shown for brevity) can be used in combination with these conditional 

distribution, to identify local extrema and explore the topography of the search space around 

them.

Additionally, the marginally-weighted means and standard-deviations of the similarity 

scores obtained during optimisation are shown on the diagonal of Fig. 12, computed within 

each dimension across all samples in eleven bins covering the corresponding parameter 

range. These statistics are consistent with the parameter distributions previously shown in 

Fig. 10, although we previously only considered the 90th percentile of all samples.

Region-wise correlations reveal poor correspondence in the frontal lobe •. The 

correspondence between simulated and reference FC matrices shown in Fig. 9 can be 

explored further, by correlating each row of these matrices independently, in order to get a 

region-wise similarity score in each frequency-band. This comparison is illustrated in Fig. 

11, by associating these correlations with a colour in each brain region and in each band. We 

find a very good correspondence across frequency bands in the temporal and occipital lobes, 

and systematically lower correlations in the frontal lobe, especially in the OFC.

The signal-to-noise ratio in the OFC is known to be rather poor in MEG [31], but the fact 

that the bad correspondence extends throughout the entire frontal lobe may relate to the 

work of [11], which introduced gradients of excitatory inputs in the frontal areas, in order to 

account for higher dendritic spine counts compared with primary sensory areas. This 
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modification affects the frequency response of the frontal lobe, and therefore its properties 

of synchronisation within the whole-brain network, which could be the cause of the anti-

correlation observed in the alpha band. Such lobe-specific treatment can be easily introduced 

in our model (similarly to the inter-hemispheric scaling) and will be explored in future work.

Whether gradients of excitatory inputs improve the correspondence with real data or not, 

however, it is remarkable to be able to point to such specific modelling aspects, with 

reasonable confidence that no other configuration of the current system could yield a better 

result by tweaking the five parameters considered. These results tell us that a change to the 

model is required, and specifically one that will affect dynamics in the frontal areas. This 

type of information is invaluable, and demonstrates how GPSO can be used to inform 

modelling choices incrementally.

3.4 Discussion

Comparison with existing approaches •. To our knowledge, no other work in the literature 

attempted the systematic optimisation of LSBMs with dozens of brain regions, in order to 

model fast-paced electrophysiological dynamics, and controlling five (or more) parameters. 

The computational and theoretical complexity of these models (due to their non-linearity, 

but also their size and the presence of delays), combined with the richness of 

electrophysiological data, calling for detailed objective functions leveraging the high 

temporal resolution, and the task of exploring parameter spaces as the number of dimensions 

increases (a.k.a. the curse of dimensionality), make the optimisation of LSBMs a truly 

difficult problem.

Our approach is different from the DCM method for network discovery [28], where the 

emphasis is put on inferring the presence or absence of structural connections, typically 

from fMRI data. For a given number of brain regions, this method considers all possible 

networks connecting these regions (that is, all possible combinations of edges), and proceeds 

to finding the network that is best supported by the observed data, as measured by the 

Bayesian model evidence, using generalised filtering [27]. Crucially, because it becomes 

rapidly impractical to list all possible networks as we consider more brain regions, let alone 

evaluate them, this method is made computationally efficient by exploiting the idea that it is 

sufficient to invert the fully-connected model in order to estimate the model evidence of any 

subnetwork. Furthermore, the method assumes that the posterior distribution over the 

connection strengths is multivariate Gaussian (the Laplace assumption); as such, it cannot 

represent accurately complex cost functions (e.g. with multiple modes, see Fig. 12), and in 

particular, only considers a single extremum during optimisation, which makes it prone to 

converging towards local extrema depending on initialisation.

In our case, the network is taken as the AC matrix estimated from diffusion tractography, 

and the emphasis is put on the Bayesian optimisation method proposed, which can be used 

to infer model parameters (up to a dozen in practice) with arbitrary objective functions 

encoding the dynamical features of interest. This method is capable of handling the 

computational burden associated with LSBM simulations in practice, and the presence of 

local extrema in the objective function. It does so by building a smooth surrogate of the 

objective function using a Gaussian Process, which is refined as the optimisation progresses, 
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and exploited in order to prioritise the exploration of areas in the parameter space that are 

either unknown, or promising given the available evidence.

Another approach [10, 23] proposed to eliminate the need to compute explicit solutions to 

the differential equations for several parameter values, in order to accelerate the task of 

inference. This method works backwards from the measured time-courses, linking to the 

model parameters by sampling the hyperparameters of a Gaussian Process encoding the 

relationship between state-variables and their derivatives. The authors demonstrated the 

performance of this approach in the case of systems with few state-variables and few time-

points, assumed to be measured from experimental data; and extended it to the case of delay-

differential equations, essentially by increasing the number of states considered at each 

timepoint. However, it is unlikely that this approach scales well to the case of systems with 

hundreds of coupled differential equations, with several dozens of unique delays, and for 

which the features relating to empirical measurements (e.g. functional connectivity) require 

tens of thousands of timepoints; sampling spaces that large, even if the cost of a single 

sample is low6, is simply impractical.

Influence of local parameters •. There is no doubt that the parameters governing the local 

dynamics (e.g. given in Tab. 1) will, in general, affect the characteristics of the network 

activity; in fact, this is the premise of our study. The problem of systematically predicting 

network activity from local properties – the notorious structure-function problem – is 

currently unsolved, although this is an active area of research (see [57] for instance). The 

purpose of this paper is to propose a practical method allowing to search for a desired 

network behaviour in a reasonable time, by manipulating a relatively small number of 

parameters.

We demonstrated the efficiency of this method, and provided a typical analysis of the results 

obtained for the purpose of incremental modelling. Within this context, we selected only a 

handful of parameters, controlling key aspects of the dynamics; in particular, simultaneously 

shifting the decay times τe and τi of a unit, within a reasonable range of values, affects the 

range of oscillatory frequencies in response to network inputs (see Fig. 4, bottom-left).

It is also possible to control this range of frequencies by shifting τi alone (keeping τe fixed), 

but with the side-effect of altering the amplitude of oscillations as well (see middle plot in 

the same figure). Based on the physiological observation that inhibitory decay-times are 

typically longer than excitatory ones [58], it may be relevant to control these time-constants 

independently, and indeed preliminary experiments suggest that this can improve the 

spectral contents of large-scale network simulations, and leads to predictions of the average 

delay between regions around 20ms, instead of the 10ms predicted in our current results. 

Further investigation into the effects of unit parameters on the network dynamics will be the 

object of future work.

Influence of structural information •. It is clear that measuring functional properties at the 

whole-brain level ultimately depends on how the different brain regions are defined [53, 25]. 

6The fact that our systems of equations are coupled with non-sparse interactions also means that the complexity of a single evaluation 
is still quadratic in the number of nodes.
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In fact, defining cortical parcellations reliably most likely requires the integration of 

information across multiple modalities [29]. Furthermore, in the case of MEG, the “leakage” 

of spatial information, due to the ill-posed nature of source-reconstruction, adds to the 

difficulty in delineating different brain regions [24].

Then, there is also the question of whether this parcellation can be applied indiscriminately 

to different subjects [35], although it is yet to be proven whether individual structural 

connectomes are better predictors of their own functional connectomes, than averaged ones. 

We have no definite answer to these questions, and indeed the effects of the anatomical 

parcellation, as well as potential predictions of subject-specific characteristics, will be the 

object of future work.

However, we would like to point out that several connectivity matrices (produced using 

different seeding and normalisation methods) were compared in the results presented, based 

on their ability to produce network dynamics of interest. In particular, the two best results 

obtained, using conn1_mean and conn3_fs AC matrices, indicate that interhemispheric 

connections should be between two and three times as strong (see Fig. 10). In other words, 

GPSO allowed us to assess structure (the AC matrix) from function (band-specific FC); this 

is an exciting perspective, and one with a different emphasis to previous work relating 

structure and function through biophysical models [56, 18].

Evaluating the performance of GPSO •. The ability of GPSO to converge to the global 

optimum, even in the presence of local extrema, was demonstrated in figures 2 and 7, both 

times in a two-dimensional context. We further demonstrate this ability in the case of a 5-

dimensional space in appendix (for completeness, a comparison with a sequential Monte-

Carlo method is also provided).

Despite its efficiency, however, there are a number of limitations currently associated with 

this method. First, it is not currently possible to systematically evaluate the convergence of 

the algorithm. This is mainly because at every iteration, multiple areas of the search space 

are being explored at multiple scales, which means that a lack of improvement in the best 

score obtained (typically a criterion for convergence) over several iterations is no guarantee 

that there will not be a substantial improvement at the next iteration. However, one can 

define several relevant termination criteria, such as: the number of evaluations of the 

objective function (our case), the number of iterations, the depth of the partition tree, etc. 

Second, it is worth noting that because we only ever select those nodes with maximal UCB 

in the partition tree (see Fig. 1), areas of the search space with lower expected scores are the 

last to be evaluated at each level of the tree, and therefore the resolution of the surrogate is 

lower there. This is an intended consequence of prioritising exploration in places of high 

expected reward, but it also means that the surrogate will in general not be reliable when the 

objective function is low; such is the price to pay for efficiency, this is not primarily an 

exploration method. Third, it is currently not possible to define priors over the parameter 

ranges in order to initially bias the search towards regions of known interest. Note that this 

cannot be done via the mean function of the GP, because hyperparameters are revised at each 

iteration, and that making the prior insensitive to hyperparameters would also make it 

insensitive to evidence accumulated by simulations, effectively corrupting the objective 
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function as a result. It could however be done by introducing a third type of point (currently 

either evaluated, or GP-based, see §2.1.3), which would not be updated following 

hyperparameter updates, but would need to be evaluated before proceeding to exploration in 

an arbitrary small neighbourhood. This would essentially be equivalent to introducing “ghost 

nodes” arbitrarily deep into the partition tree, waiting to be discovered by subdivision. 

Finally, although this is purely a technical limitation, it is worth mentioning that exact 

inference on the GP hyperparameters from the evaluated points becomes prohibitively slow 

beyond a few thousand samples7, which means that we cannot reasonably explore parameter 

spaces beyond 10 dimensions with exactness. Beyond this, resorting to approximate 

inference is possible, by selecting only a limited number of evaluated samples for training 

the GP; for instance, up to a certain depth in the partition tree, and randomly beyond that 

depth, up to a certain amount.

Objective function and parametrisation •. The objective function proposed in §2.3.4 

combines a measure of the average correlation between empirical and simulated FC 

matrices, with a comparison between the relative amounts of connectivity strength across 

frequency bands. We illustrated in Fig. 8 the potential benefits of considering such multi-

criteria objective functions, in the context of LSBM optimisation. In the long run however, it 

would be desirable to transition towards probabilistic models of functional connectivity, 

capturing not only the desired structural properties of the functional networks, but also the 

variability across subjects. The method proposed in this paper can readily be used with such 

models.

In addition to the choice of a suitable objective function, the parameters considered at the 

network level can significantly alter the characteristics of the simulated dynamics. For 

example, the heterogeneity of excitatory inputs across the network can give rise to rich 

spectral contents [11], and modifications to the delay structure (e.g. considering tract-lengths 

instead of Euclidean distances, and myelination) may lead to qualitatively different 

dynamics [43]. These aspects will be explored in future work.

4 Conclusion

The complexity of large-scale biophysical models (LSBMs) makes it difficult to affirm with 

confidence that a given system cannot produce dynamical acivity with certain desired 

properties, and therefore to compare such systems. In this paper, we argued that for a given 

set of parameters, two models could be compared in terms of their performance with respect 

to an objective function (which encodes the desired dynamical behaviour) after optimisation. 

We presented a method allowing such optimisation to be carried out accurately, efficiently, 

and reliably, even in the presence of local extrema, and despite the computational burden 

associated with the simulations of LSBMs in practice.

Using this method to optimise simultaneously five parameters affecting both structural and 

functional aspects in delay-networks of 68 Wilson-Cowan oscillators, we were able to 

achieve the highest levels of expected correspondence with real resting-state MEG data 

7Our implementation uses the GPML package [49]
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across frequency bands, given the simulation time-lengths (see figures 9 and 6). Our results 

also suggest that inter-hemispheric anatomical connectivity, as estimated from diffusion 

tractography, may be underestimated by a factor 2 to 3, depending on the seeding and 

normalisation methods used. Furthermore, looking at region-wise correspondence in our 

best simulated results, we find systematically lower correlations in the frontal lobe, which 

indicates that further modelling work is required particularly in this area, perhaps in 

agreement with the work presented in [11].

Overall, these results suggest that Gaussian-Process Surrogate Optimisation (GPSO) is an 

effective method for exploring and comparing the capabilities of LSBMs. It enables the 

exploration of high-dimensional parameter spaces (compared with the current state-of-the-

art), which offers unprecedented insights into the relationship between structure and function 

in biophysical models of brain activity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Algorithmic summary of Gaussian-Process Surrogate Optimisation (GPSO). The search 

space is initially rescaled to normalise the bounds in each dimension to (0, 1). The iterations 

of the algorithm can be summarised in three main steps; i) exploration, where selected leaves 

are partitioned, and children are assessed using GP-UCB; ii) evaluation, where we evaluate 

leaves with maximal UCB at each scale, using the objective function; iii) update, where we 

re-train the GP including newly evaluated points.
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Figure 2. 
Gaussian-Process Surrogate Optimisation (GPSO) on Matlab’s peaks function. This figure 

shows the partition of the search-space overlaid on top of the true objective function (top-

row), and surrogate objective function (bottom-row) for 3 different iterations (columns). 

Surfaces show the expected value of the GP surrogate, and colours indicate differences with 

the true objective: red tones mean the true objective is higher than the surrogate (conversely 

for blue). Iteration 1. Initial sample and 2 points evaluated in the first iteration; the top and 

bottom initial points are near a peak and a trough, hence the slope of the surrogate. Iteration 
13. The algorithm initially finds a local maximum, and converges rapidly to its peak by 

refining the partition around it. Meanwhile, exploration at larger scales hits the slope of the 

highest peak; the surrogate function shows that the corresponding peak is misaligned (red 

patch between the two peaks), but it is already higher than the previous one. Iteration 17. 
The discovery of a higher peak at a larger scale froze the subdivision near the first local 

maximum. The algorithm converged to the global optimum after 4 iterations. The surrogate 

peaks are now both aligned with the truth (green colour).
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Figure 3. 
Ternary partition tree associated with the example shown in Fig. 2. Each node corresponds 

to a different subinterval of the search space; colours correspond to the associated scores 

(upper-confidence bounds); and edges represent set-inclusion (parent intervals are the union 

of their children). In particular, deeper nodes correspond to smaller intervals in the search-

space (resolution increases with the depth). Bigger nodes with a black rim indicate that the 

objective function was evaluated at their centre, smaller nodes were assessed using the GP 

surrogate only. Deeper orange branches at the centre correspond to the local maximum 

found initially, and red branches on the left correspond to the highest peak.
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Figure 4. 
Illustrations of the Wilson-Cowan unit. Top-left: local two-population structure (excitatory 

and inhibitory), without self-inhibition (cii = 0) and with long-range excitation only (blue 

dashed lines). Top-right: example oscillatory timecourse showing inhibition (red dashed 

line) lagging behind excitation (blue plain line); the lag is controlled by the decay-times τe,i, 

and here Pe = 0.84. Bottom-row: evolution of standard-deviation (surface height) and 

frequency mode (colormap) as a function of excitatory input, and varying parameters. Black 

lines correspond to increasing Pe, using baseline parameters given in Tab. 1. The unit is 

always silent without excitatory input, and saturates for large inputs – the interval between 

oscillatory and saturation thresholds is the dynamic range of the unit. Notice that the 

frequency of oscillations depends on the input; this property allows remote brain regions to 

affect the local phase via their connection, which is a potential mechanism for long-range 

synchronisation. Left: the oscillatory frequency can be controlled by shifting both time-

constants τe,i simultaneously. Middle: controlling τi with τe fixed affects both the frequency 

and amplitude of the oscillations. Right: an upscale of local couplings dilates proportionally 

the dynamic range of the unit.
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Figure 5. 
Structural information used in the biophysical models. Row 1: AC matrices estimated from 

diffusion tractography, using two different seeding methods (conn1, conn3), and two 

normalisation methods (mean, fractional scaling), see §3.1.1 for details. Row 2: thresholded 

network (90th percentile) showing the strongest edges in corresponding AC matrices. conn3 

seeding favours homotopic connections, whereas conn1 favours anterior-posterior 

connections, and mean normalisation shows stronger connectivity in the frontal lobe. 

Bottom-left: matrix of pairwise distances showing hemispheric block structure. Lower 

distances around the diagonal are due to the ordering of the different regions (chosen 

manually). Bottom-right: basic statistics on connectivity weights. Connectivity decreases 

exponentially with the distance (left, GP regression showing predicted means and 95% 

confidence intervals). Average degrees are higher in the frontal and occipital lobes (right, 

bars shown for each method, and grouped by lobe); fractional scaling reduces frontal 

connectivity, while increasing temporal and and parietal ones; and conn1 seeding yields 

higher connectivity in the temporal lobe, and lower in the occipital lobe.
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Figure 6. 
Distribution of similarity score (see §2.3.4) estimated on real MEG data across all 28 

subjects, for time-windows of varying length (15 to 150 sec, 50% overlap). The black 

centreline is the median similarity score as a function of the window-length, and the orange 

patch shows the associated 95% confidence interval. This distribution is used as a gold-

standard to assess the performance of our simulations; for a time-length of 60 sec, the upper 

similarity bound with 95% confidence is 0.41, and the best score obtained with our 

simulations was 0.42 (see Fig. 11).
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Figure 7. 
Exhaustive grid-search with 525 simulations, compared against GPSO with 100 simulations, 

controlling 2 parameters (average delay and relative coupling). The remaining parameters 

(see Tab. 2) were set to: Pe = 0.85, h = 1, τ = 10ms, and we used the conn1_mean AC matrix 

to connect the network units. Top-left: exhaustive search (background image) and partition 

tree from the GPSO (black lines). Black asterisks indicate the samples evaluated during 

optimisation (see §2.1.3 for details about GP-based samples). Each pixel corresponds to a 63 

sec simulation, analysed and compared with reference MEG data. The partition is refined in 

places where the objective function is higher, and the optimisation converged rapidly to the 

global optimum. Bottom-row: surrogate function (predicted mean) learned by GPSO, to be 

compared against the smoothed exhaustive search (ground-truth) on the left. Top-right: 
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surrogate uncertainty (predicted st-dev.), driving the compromise between exploration and 

exploitation during optimisation.
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Figure 8. 
Best results obtained with the four AC matrices given in Fig. 5. The bar plot shows the 

correlation between simulated and reference FC matrices in theta, alpha and beta bands. The 

table reports the average correlation across bands, as well as the similarity score calculated 

with the objective function defined in §2.3.4. Without controlling for varying connectivity 

strength across frequency-bands, the results obtained with conn3_fs are better than those 

with conn1_mean, even though the corresponding FC matrices (see bottom-row in Fig. 9) 
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are almost identical across bands. This illustrates the importance of choosing a suitable 

objective function.
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Figure 9. 
Comparison between simulated and reference FC matrices in theta, alpha and beta bands. 

Reference matrices are shown in the first row, followed by the best results obtained with 

connectivity conn1_mean (row 2), and the second best results obtained with conn3_fs 

(row 3). The correlation between each simulated FC matrix and the corresponding reference 

is indicated on top of the matrix. The FC patterns obtained with conn1_mean connectivity 

are strikingly similar to the reference, except in the frontal lobe (lower-right block in each 

quadrant). Note that although results obtained with conn3_fs achieved better correlations 
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on average, they had a lower similarity score than the results obtained with conn1_mean, 

because their variation across bands was poor (see Fig. 8).
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Figure 10. 
Marginal parameter distributions corresponding to the 90th percentile of all evaluated 

samples (i.e. using the objective function defined in §2.3.4), for each of the four AC 

matrices. Higher distribution values (y-axes) indicate ranges of parameters (x-axes) which 

were consistently associated with the best scores for a given AC matrix. Input: all but 

conn1_mean indicate that the excitatory input should be just below units’ oscillatory 

threshold. Coupling: all but conn1_fs indicate that coupling scale should be just above 

network oscillatory threshold. Delay: general consensus that average delay should be around 

10ms. Scaling: no clear consensus, but all except conn3_mean indicate an upscale by a 

factor of 2 or more. Tau: conn1_mean centred around 8ms, and others above 10ms.
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Figure 11. 
Region-wise correlation in each band, calculated between matching rows of simulated and 

reference FC matrices, for the best results obtained with conn1_mean connectivity. The 

average correlations within each lobe, for each band, are reported in the table below the 

surface illustrations. The correspondence between simulated and reference data is: very good 

in the occipital lobe; good in the temporal lobe, although driven mostly by the alpha band 

(>1.5 times better than other bands); consistently worse in the frontal lobe; and the average 
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correspondence in the frontal+parietal lobes is twice as low as in the temporal+occipital 

lobes.
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Figure 12. 
Conditional surrogate distributions (off-diagonal) and marginally weighted means and st-

dev. (on-diagonal) around the best sample (black cross). These results correspond to the best 

experiment, using AC matrix conn1_mean (see Fig. 8). Note that y-axes at the top-left and 

bottom-right indicate similarity scores, whereas all other axes indicate parameter values. 

Lower-triangle: surrogate similarity (predicted mean) computed on orthogonal slices of the 

search space, going through the best sample for each pair of dimensions. Upper-triangle: 
associated surrogate uncertainty (predicted st-dev.) showing lowest uncertainty around the 

best sample, which is a good indicator of convergence. Diagonal: weighted mean and st-dev. 
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of evaluated scores, calculated within each dimension across all samples. Higher bars 

indicate “preferred” values for the corresponding parameters (similar to the distributions 

shown in Fig. 10, but considering all samples).
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Table 1

Baseline parameters for the Wilson-Cowan model (see Eq. 3,4). Where subscripts are omitted, the description 

and value of the parameter apply to both subpopulations. The excitatory input Pe is controlled during our 

experiments. The response parameters (μ, σ) were set such that small inputs (compared to the dynamic range) 

would cause the system to oscillate. The couplings were set according to a ratio of 80% self-excitation (cee/

(cee + cei) = 0.8), and such that the relative strength of excitation and inhibition would be equal (cee + cei = cie 

+ cii).

Symbol Description Value

τ Time-constant 10 ms

μ Response threshold 3

σ Dynamic range μ/6

cee, cei Excitatory coupling 28, 7

cie, cii Inhibitory coupling −35, 0

Pi Inhibitory input −0.3

Neuroimage. Author manuscript; available in PMC 2019 January 08.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Hadida et al. Page 45

Table 2

Network parameters controlled during optimisation. The ranges correspond to the boundaries of the search 

space (required by GPSO). The parameter variants Pe and γ are defined in §2.3.3. Short names are used in 

figures 7, 10 and 12.

Symbol Description Short-name Range

Pe
Relative input Input (0.6, 1)

γ Relative coupling Coupling (1, 3)

λ Average delay (ms) Delay (1, 50)

h Inter-hem. scaling IH Scaling (0, 4)

τ Time-constants (ms) Tau (4, 16)
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Table 3

GPSO hyperparameters and initial values used for all experiments. The optimism ς corresponds to confidence 

bounds of 99.5% (i.e. erfc−1(0.005)), which was found to strike a good balance between exploration and 

exploitation.

Function Hyperparameter Value

UCB ς 1.98

Constant mean μ 0

Gaussian likelihood σ 0.001

Isotropic Matèrn covariance (order 5) Length 0.25

Magnitude 1
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