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Abstract

Fiber ball imaging (FBI) provides a means of calculating the fiber orientation density function 

(fODF) in white matter from diffusion MRI (dMRI) data obtained over a spherical shell with a b-

value of about 4000 s/mm2 or higher. By supplementing this FBI-derived fODF with dMRI data 

acquired for two lower b-value shells, it is shown that several microstructural parameters may be 

estimated, including the axonal water fraction (AWF) and the intrinsic intra-axonal diffusivity. 

This fiber ball white matter (FBWM) modeling method is demonstrated for dMRI data acquired 

from healthy volunteers, and the results are compared with those of the white matter tract integrity 

(WMTI) method. Both the AWF and the intra-axonal diffusivity obtained with FBWM are found 

to be significantly larger than for WMTI, with the FBWM values for the intra-axonal diffusivity 

being more consistent with recent results obtained using isotropic diffusion weighting. An 

important practical advantage of FBWM is that the only nonlinear fitting required is the 

minimization of a cost function with just a single free parameter, which facilitates the 

implementation of efficient and robust numerical routines.
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1. Introduction

Diffusion MRI (dMRI) is widely applied as a tool for investigating brain microstructure in 

vivo (Le Bihan and Johansen-Berg, 2012). However, determining specific microstructural 

properties from measured dMRI data is challenging due to the intricacies of water diffusion 

within the complex cytoarchitecture of brain tissue (Le Bihan and Iima, 2015). This has led 

to an assortment of “tissue modeling” methods being proposed for dMRI, which are still 

being actively developed and evaluated (Alexander et al., 2017; Ferizi et al., 2014; Jelescu 

and Budde, 2017; Novikov et al., 2016; Panagiotaki et al., 2012; Reisert et al., 2017; 

Yablonskiy and Sukstanskii, 2010).

A common difficulty associated with dMRI tissue models is managing the multiple local 

optima that often arise in nonlinear fitting algorithms with several free parameters, which 

adds to numerical computation times and may increase sensitivity to noise and imaging 

artifacts (Harms et al., 2017; Jelescu et al., 2016a; Novikov et al., 2016; Novikov et al., 

2018). In addition, estimating certain microstructural parameters with good accuracy and 

precision has proven problematic. This is notably true for the intrinsic intra-axonal 

diffusivity (Da), with predictions from different approaches varying by over a factor of two 

(Jelescu et al., 2016a; Novikov et al., 2018; Jensen et al., 2017). Here we present a dMRI 

modeling method based on fiber ball imaging (FBI) (Jensen et al., 2016) intended to 

ameliorate these issues.

FBI is closely related to q-ball imaging (Tuch, 2004) and yields estimates for the fiber 

orientation density function (fODF) in white matter from high angular resolution diffusion 

imaging (HARDI) data, by employing b-values typically in the range of 4000 to 6000 s/mm2 

(Jensen et al., 2016; McKinnon et al., 2017). It can also be used to calculate several 

microstructural properties associated with axonal fiber bundles. An advantage of FBI is that 

the core post-processing step is a straightforward linear transformation of the dMRI signal 

data that avoids the complications of nonlinear fitting.

In this study, we demonstrate how to augment FBI with lower b-value dMRI data in order to 

estimate several additional parameters, including Da, the mean extra-axonal diffusivity ( De), 

and the axonal water fraction (AWF). While determining these extra quantities does require 

nonlinear fitting, the proposed algorithm involves the minimization of a cost function having 

only a single free parameter. This allows the global optimum to be found robustly and 

efficiently.

This approach differs markedly from the conventional tactic of directly fitting the signal 

model corresponding to the assumed microstructural framework (i.e., the tissue model) to 

dMRI signal data, which typically leads to a cost function with multiple adjustable 

parameters and the aforementioned computational challenges. Instead, we regard the outputs 

of the FBI analysis as fixed inputs upon which the cost function is built. Similarly, we also 

use the diffusion tensor, obtained by standard means from the lower b-value dMRI data, as a 

fixed input. In this way, the number of free parameters that need to be determined by 

nonlinear optimization is reduced to one, resulting in a relatively simple numerical 

procedure.
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A principal motivation for this fiber ball white matter (FBWM) modeling approach is to 

improve upon the white matter tract integrity (WMTI) method (Fieremans et al., 2011; 

Jelescu et al., 2016b), which yields predictions for the same basic physical quantities. An 

advantage of WMTI is its simple computational algorithm that uses only comparatively low 

b-value dMRI data. However, WMTI assumes all axons within any given voxel to be aligned 

in approximately the same direction, which may be a significant source of error particularly 

in crossing fiber regions. The FBWM approach overcomes this limitation by employing the 

measured fODF from FBI rather than presuming a specific geometrical arrangement for the 

axons. In order to investigate the extent to which FBWM and WMTI lead to different 

predictions, we utilize experimental results obtained from three healthy volunteers.

2. Theory

2.1. Signal Model

We assume the intra-axonal and extra-axonal spaces can be treated as separate 

compartments, which requires the intra-axonal water exchange time to be large in 

comparison to the diffusion time for the dMRI sequence. Although this exchange rate is not 

known with high precision, it has been estimated to be on the order of seconds (Nilsson et 

al., 2013), which is indeed long relative to typical dMRI diffusion times. In addition, we 

neglect the dMRI signal from myelin water. Myelin water has a T2 of about 10–20 ms 

(MacKay and Laule, 2016), so the myelin water signal will be suppressed by over a factor of 

100 for typical clinical scanner dMRI echo times of about 100 ms.

For the intra-axonal space, we idealize axons as thin, straight cylinders, which implies an 

intra-axonal dMRI signal of the form

Sa(b, n) = S0 f∫ dΩuF(u)exp − bDa(n · u)2 , (1)

where f is the AWF, S0 is the signal without diffusion weighting, b is the b-value for the 

dMRI sequence, n is the diffusion encoding direction unit vector, and F(u) is the fODF as a 

function of a unit vector u that indicates the axon orientation. The integral in Eq. (1) is taken 

over all possible axon orientations, and the fODF is normalized so that

1 = ∫ dΩuF(u) . (2)

This corresponds to the widely used “stick” model for axons (Behrens et al., 2003, Ferizi et 

al., 2014; Kaden et al., 2016; Kroenke et al., 2004; Jespersen et al., 2007; Jespersen et al., 

2010; Novikov et al., 2016; Panagiotaki et al., 2012; Yablonskiy and Sukstanskii, 2010; 

Veraart et al., 2016a; Veraart et al., 2017; Zhang et al., 2012), and it is also employed in FBI 

(Jensen et al., 2016). However, here we adopt a different normalization for the fODF than 

used in our previous work (Jensen et al., 2016), as this is more convenient for our proposed 

FBWM modeling approach.
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For the extra-axonal space, we treat water diffusion as Gaussian so that the signal in a 

diffusion encoding direction n is given by

Se(b, n) = S0(1 − f )exp( − bnTDen), (3)

where De is the extra-axonal diffusion tensor. This same model has been utilized by 

Jespersen and coworkers (Jespersen et al., 2010) and should be appropriate for b-values 

small enough so that the intrinsic kurtosis of the extra-axonal space can be neglected. As we 

shall argue, for FBWM the details of the extra-axonal signal at high b-values should be 

relatively unimportant, since the intra-axonal signal is then much larger and dominates the 

full signal, which is simply the sum of Sa and Se.

2.2. Fiber ball imaging

FBI requires HARDI data for a single spherical b-value shell with a large number of 

uniformly distributed diffusion encoding directions. The chosen b-value, bFBI, should be 

high enough to strongly suppress the dMRI signal from the extra-axonal space, but not so 

big as to induce a significant noise bias. In practice, bFBI would usually be in the range of 

4000–6000 s/mm2, depending on scanner performance and the desired spatial resolution 

(Jensen et al., 2016; McKinnon et al., 2017).

From the HARDI data, one can construct a spherical harmonic expansion for the dMRI 

signal on the b-value shell as

S(bFBI, n) = S0 ∑
l = 0

∞
∑

m = − l

l
al

mY l
m(θ, φ), (4)

where S(b,n) is the signal magnitude as a function of the b-value and the diffusion encoding 

direction, al
m are the expansion coefficients, Y l

m(θ, φ) are the spherical harmonics, and (θ, φ) 

are the spherical angles corresponding to n. In Equation (4), we assume the convention 

(Jackson, 1975)

Y l
m(θ, φ) = 2l + 1

4π · (l − m)!
(l + m)!Pl

m(cos θ)eimφ, (5)

where

Pl
m(x) ≡ ( − 1)m

2ll!
(1 − x2)m/2 dl + m

dl + mx
(x2 − 1)l

(6)

is the associated Legendre function. The expansion coefficients for odd l may be set to zero, 

since reflection symmetry implies S (b, −n) = S (b, n).
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The central result of FBI is then that the fODF is approximately given by (Jensen et al., 

2016)

F(n) = ∑
l = 0

∞
∑

m = − 2l

2l
c2l

mY2l
m(θ, φ), (7)

where

c2l
m =

a2l
mg0(bFBID0)

4πP2l(0)a0
0g2l(bFBID0)

(8)

with Pl(x) = Pl
0(x) being a Legendre polynomial and

g2l(x) = l!x
l + 1

2

Γ(2l + 3
2 )

F1 1(l + 1
2; 2l + 3

2; − x) . (9)

In Eq. (8), D0 represents an upper bound on Da, which would usually be chosen as either 

infinity or as the free water diffusivity at body temperature of about 3.0 µm2/ms (Holz et al., 

2000), while in Eq. (9), 1F1 is the confluent hypergeometric function and Γ is the Gamma 

function. One may verify that Eq. (7) is normalized in accord with Eq. (2). For D0 = ∞, Eq. 

(8) simplifies to

c2l
m =

a2l
m

4πP2l(0)a0
0 , (10)

since g2l(∞) = 1. In this case, the fODF is proportional to the inverse Funk transform 

(Bailey et al., 2003) of the dMRI signal for the b = bFBI HARDI shell. In practice, the 

difference between using a D0 of infinity or 3.0 µm2/ms is typically small, with the fODF 

being slightly sharper with D0 = 3.0 µm2/ms. In general, this parameter becomes more 

irrelevant as bFBI is increased (Jensen et al., 2016).

From Eq. (7), one may show that the diffusion tensor for the intra-axonal compartment, 

within the stick model approximation, is

Da = DaA, (11)

with
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A ≡ 1
c0

0 30

30
3 c0

0 − 6
3 c2

0 + c2
2 + c2

−2 ic2
2 − ic2

−2 −c2
1 + c2

−1

ic2
2 − ic2

−2 30
3 c0

0 − 6
3 c2

0 − c2
2 − c2

−2 −ic2
1 − ic2

−1

−c2
1 + c2

−1 −ic2
1 − ic2

−1 30
3 c0

0 + 2 6
3 c2

0

. (12)

Observe that tr(A) =1. The tensor A is guaranteed to be real, since (cl
m)∗ = cl

−m as follows 

from the requirement that the fODF be real. Even though Da is not known a priori, Eqs. (11) 

and (12) are sufficient to calculate the fractional anisotropy (FA) for the intra-axonal space, 

as well as other related dimensionless properties of Da. More explicitly, this FA for the 

axons (FAA) is given by

FAA =
3∑m = − 2

2 c2
m 2

5 c0
0 2 + 2∑m = − 2

2 c2
m 2 . (13)

The derivations of Eqs. (11)–(13) are discussed in the Appendix. FBI also estimates the 

parameter ζ ≡ f / Da as (Jensen et al., 2016)

ζ = a0
0 bFBI

π . (14)

The FAA is simply related to the axonal dispersion metric by p2 = FAA/ 3 − 2(FAA)2, which 

may be used to calculate a characteristic dispersion angle for the fODF (Novikov et al., 

2018; Veraart et al., 2017).

2.3. Expressions for intra-axonal and extra-axonal signals in terms of AWF

By combining Eqs. (1) and (7), one can show that the spherical harmonic expansion for 

intra-axonal signal may be expressed as (Jensen et al., 2016)

Sa(b, n) = 2πS0ζ π
b ∑

l = 0

∞
∑

m = − 2l

2l
P2l(0)g2l b f 2

ζ2 c2l
mY2l

m(θ, φ) . (15)

A notable feature of the spherical harmonic expansion in Eq. (15) is that the only unknown 

parameter is f, as all the other quantities are determined by FBI. This contrasts with several 

other white matter modeling approaches that utilize multiple free parameters in order to 

represent the intra-axonal signal (Jespersen et al., 2007; Jespersen et al., 2010; Novikov et 

al., 2016; Veraart et al., 2017; Zhang et al., 2012). Consistency of Eqs. (4), (14), and (15) 

requires that
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g0(bFBIDa) = erf  bFBIDa ≈ 1, (16)

where erf indicates the error function; this approximation holds to better than 0.1% provided 

bFBI Da > 5.5.

Now let us assume that, in addition to the HARDI b-value shell acquired for FBI, one also 

obtains low b-value data sufficient for estimating the total diffusion tensor, D, as is 

conventionally done with either diffusion tensor imaging (DTI) (Basser and Jones, 2002) or 

diffusional kurtosis imaging (DKI) (Jensen and Helpern, 2010). The diffusion tensor for the 

extra-axonal space, De, is related to D and Da by

D = f Da + (1 − f )De, (17)

which implies

De =
D − f Da
(1 − f ) . (18)

With the help of Eq. (11) and the definition of ζ, this leads to

De = 1
(1 − f ) D − f 3

ζ2 A . (19)

Except for the AWF, all the quantities on the right-hand side of Eq. (19) can be directly 

calculated from either FBI or low b-value dMRI data. For fitting purposes, we can therefore 

regard De as only a function of f. This also applies to the extra-axonal signal of Eq. (3), 

which is determined by De and f.

2.4. Cost function

The dMRI signal for the full FBWM model is

Smod(b, n) = Sa(b, n) + Se(b, n) . (20)

As we have seen, both Sa and Se can be thought of as functions of the AWF, given the 

information provided by FBI and the total diffusion tensor. Therefore, we may consider the 

total signal Smod to also be a function of the AWF.

In order to determine the AWF, we introduce the cost function
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C( f ) ≡ 1
S0

1
M ∑

i = 1

M 1
Ni

∑
j = 1

Ni
[Smod(bi, ni, j) − Sexp(bi, ni, j)]

2
1/2

, (21)

where Sexp (b, n) is the magnitude of the measured dMRI signal as a function of b-value and 

diffusion encoding direction, M is the number of b-value shells, Ni is the number of 

diffusion encoding directions for the ith shell, bi is the b-value for the ith shell, and ni,j is the 

jth diffusion encoding direction for the ith shell. Normally, one would set bM = bFBI. This 

cost function represents a weighted root-mean-square difference between the model and 

experimental signals divided by the signal for b = 0, with the weight factors depending on 

the number of directions for each shell. The “best” estimate for the AWF is then defined as 

the value of f that minimizes C.

By construction, we expect the model and experimental signals to agree fairly well for both 

low and high b-values, even if f is only roughly correct. Thus in order to predict the AWF 

with useful precision, shells having intermediate b-values should be included in Eq. (21). By 

intermediate, we mean b-values larger than the range for which the signal’s b-value 

dependence is primarily governed by the total diffusion tensor (as assumed for DTI), but 

smaller than the b-values for which the intra-axonal signal predominates (as assumed for 

FBI). In brain, we expect such intermediate b-values to be roughly 2000 to 3000 s/mm2, 

corresponding to the smallest b-values with readily apparent non-Gaussian diffusion effects 

in the dMRI signal (Clark and Le Bihan, 2000; Jensen and Helpern, 2010). A minimal 

FBWM imaging protocol would, therefore, have three nonzero b-value shells, with low, 

medium, and large b-values.

2.5. Microstructural parameters

Once the AWF has been determined by minimizing C, then several other microstructural 

parameters are easily calculated. In particular, the intrinsic intra-axonal diffusivity can be 

found from

Da = f 2

ζ2 , (22)

which follows directly from the definition of ζ, and the mean extra-axonal diffusivity is 

given by

De = 1
(1 − f ) D − f 3

3ζ2 , (23)

where D̅ = tr(D) / 3 is the mean diffusivity (MD), which follows from Eq. (19). If the 

eigenvalues of De are λe,1 ≥ λe,2 ≥ λe,3, then one can also estimate the axial extra-axonal 

diffusivity as
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De, ‖ ≡ λe, 1 (24)

and the radial extra-axonal diffusivity as

De,⊥
≡ 1

2(λe, 2 + λe, 3) . (25)

3. Methods

3.1. Imaging

Diffusion weighted imaging (DWI) data were acquired for three healthy volunteers on a 3T 

Prisma MRI scanner (Siemens Healthcare, Erlangen, Germany) under a protocol approved 

by the Medical University of South Carolina institutional review board. Using a twice-

refocused echo planar imaging pulse sequence to minimize eddy current distortion (Reese et 

al., 2003), 42 axial brain slices with 3.0 mm slice thickness and no interslice gap were 

obtained. The b-values were 0, 1000, 2000, and 6000 s/mm2. For the b=1000 and 2000 

s/mm2 shells, 30 vendor-supplied diffusion encoding directions were employed, while 256 

diffusion encoding directions were acquired for the b =6000 s/mm2 (HARDI) shell. For the 

b= 0 images, 25 separate signal excitations were utilized for each slice. The HARDI shell 

had a large number of directions since these data were applied in estimating the spherical 

harmonic expansion of Eq. (4). The echo time was 98 ms, the repetition time was 5100 ms, 

the field of view was 222×222 mm2, and the acquisition matrix was 74×74, resulting in 

isotropic voxels with dimensions of 3×3×3 mm3. The data were acquired with an in-plane 

parallel imaging factor of 2 and a multiband acceleration factor of 2, using a bandwidth of 

1438 Hz/pixel. Partial Fourier encoding was not employed. This entire DWI scan protocol 

was then repeated, in the same scan session, in order to allow the reproducibility of our 

parameter estimates to be tested. The combined scan time for both runs was 59 min 20 s.

For anatomical reference, T1-weighted (MPRAGE) images were also acquired with 

isotropic 1×1×1 mm3 voxels for 192 slices. The echo time was 2.26 ms, the inversion time 

was 900 ms, the repetition time was 2300 ms, and the total scan time was 5 min 21 s.

3.2. Data analysis

All DWI data were denoised using a principal components analysis approach (Veraart et al., 

2016b), and the method of moments (Gudbjartsson and Patz, 1995) was applied to reduce 

noise bias. Subsequently, a Gibbs ringing correction was employed (Kellner et al., 2015), 

and all DWI images were co-registered to correct for any subject motion.

The DWI images for b =0, 1000 and 2000 s/mm2 were used to calculate the diffusion tensor 

with Diffusional Kurtosis Estimator (https://www.nitrc.org/projects/dke/) in order to estimate 

the total diffusion tensor D on a voxel-by-voxel basis (Tabesh et al., 2011). This DKI-based 

approach was employed instead of DTI in order to improve the accuracy of the tensor 

calculation (Veraart et al., 2011). The spherical harmonic coefficients of Eq. (4) were 
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determined with linear least squares from the b=0 and HARDI data. For our main results, all 

harmonics up to degree l =6 were kept in Eq. (4), but we also considered other maximum 

degrees in auxiliary calculations aimed at investigating the impact of this cutoff. The 

spherical harmonic coefficients for the fODF of Eq. (8) were calculated with D0 = 3.0 

µm2/ms, and the microstructural parameter ζ was obtained from Eq. (14).

In order to estimate the AWF, the cost function C of Eq. (21) was evaluated in each voxel for 

100 equally spaced points between f = 0 and f = 1. For our DWI protocol, we have M = 3, 

N1 = N2 = 30, N3 = 256, b1 = 1000 s/mm2, b2 = 2000 s/mm2, and b3 = bFBI = 6000 s/mm2. 

For each value of f, the eigenvalues of De were calculated with the help of Eq. (18). If any of 

these eigenvalues were less than zero for a particular f, then that value of the AWF was 

excluded as being unphysical. The optimal AWF was taken as the f value that minimized C, 

among all those that were not excluded. From the optimal AWF, parametric maps of Da, D̅
e, 

De,‖, and De,⊥ were obtained by using Eqs. (22)–(25). A flow chart outlining the FBWM 

data analysis procedure is shown in Fig. 1. To process a full whole brain dataset for one 

subject required about 12.5 min on an iMac computer with a 4 GHz Intel Core i7 CPU.

For comparison, the DWI data for b=0, 1000 and 2000 s/mm2 were used with Diffusional 

Kurtosis Estimator to obtain standard DKI maps of MD, FA, mean kurtosis (MK), axial 

diffusivity (D‖), and radial diffusivity (D⊥). These same data were also applied to determine 

ζ, f, Da, D̅
e, De,‖, and De,⊥ following the WMTI procedure of Fieremans and coworkers 

(Fieremans et al., 2011). The parametric maps for all diffusion measures were skull-stripped, 

and a white matter mask was defined as all brain voxels with MK ≥ 1.0 (Yang et al., 2013). 

The white matter mask was based on MK rather than FA, since the FA can be low in white 

matter regions with extensive fiber crossing.

To test reproducibility, the two scans for each subject were analyzed independently. The 

absolute percent difference between the parameter values from Run 1 and Run 2 were then 

calculated for each white matter voxel. From the full set of these voxels, median absolute 

percent differences were found for each of the three subjects. We used the median rather 

than the average difference in order to reduce the effect of outliers, as may arise from 

imaging artifacts and co-registration errors. In calculating overall means for the various 

estimated diffusion parameters, all the white matter voxels from both runs were pooled for 

each subject, with standard deviations being used to indicate the spread in values.

Finally, to compare the FBI and FBWM predictions to those obtained with WMTI, average 

values were calculated for each parameter by binning all white matter voxels for all three 

subjects according to FA, with a bin size of 0.1. Even though the application of the WMTI is 

only recommended for voxels with FA values larger than 0.3 to 0.4 (Fieremans et al., 2011; 

Jensen et al. 2017), we determined all measures for FA values ranging from 0.15 to 0.75 for 

the sake of completeness. The validity of the FBI and FBWM estimates is not expected to 

depend significantly on FA.

3.3. Numerical Simulations

In order to investigate the effect of signal noise on our parameter estimates, we conducted 

numerical simulations by adding varying amounts of Rician noise to a “ground truth” dataset 
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constructed from our signal model with the model parameters set to those estimated for one 

of our in vivo scans (Subject 1, Run 1). Using a signal-to-noise ratio (SNR) ratio of 50, we 

also numerically tested the impact of employing different numbers of diffusion encoding 

directions (30, 64, 128, 256) for the b =6000 s/mm2 HARDI shell, while keeping the number 

of directions for b =1000 and 2000 s/mm2 fixed at 30. In performing the simulations, we 

utilized the same data analysis pipeline as for the in vivo data, except that co-registration 

was not performed (since there was no motion to correct) and denoising was skipped in a 

subset of the simulations in order to demonstrate the effect of this processing step.

4. Results

4.1. In vivo

Our denoising algorithm (Veraart et al., 2016b) generated voxelwise noise maps, which were 

used to estimate the average SNR in white matter. For the b=0 images, the average SNR over 

all scans was 59 ± 9, while for the b=6000 s/mm2 images, the average SNR was 15 ± 5. This 

latter number was obtained by first averaging the b=6000 s/mm2 images over all of the 

diffusion encoding directions prior to dividing by the noise.

Representative examples of the cost function C of Eq. (21) are shown in Fig. 2, for three 

different white matter voxels. In most cases, the cost function has a quasi-parabolic shape 

with a minimum skewed toward higher AWF values. Only 10.4% of white matter voxels had 

multiple local minima out of a total of 16,184 for all three subjects. In any case, finding the 

global minima was not problematic due to our exhaustive grid search strategy.

Parametric maps of selected diffusion parameters for one anatomical slice from Subject 1 

are given in Fig. 3. The Run 1 and Run 2 maps are derived from independent datasets 

obtained during a single scan session. The similarity of the corresponding FBWM metrics 

within white matter regions demonstrates the minimal effect of signal noise (after denoising) 

on the reproducibility of the method. Outside of white matter, both the FBI and FBWM 

values have no clear physical meanings, even though our post-processing algorithms 

generate results for all voxels.

The absolute percent differences of all white matter voxels from each subject, for the same 

set of diffusion parameters as in Fig. 3, are plotted in Fig. 4. For Subjects 1 and 2, the 

voxelwise reproducibility is about 10% or better for all the FBWM measures. For Subject 3, 

the FBWM measures have a reproducibility of about 20% or better. The axial extra-axonal 

diffusivity, De,‖, has the highest degree of variability for Subjects 1 and 2, while De,⊥ has the 

highest variability for Subject 3.

In Fig. 5, FBI, FBWM, and WMTI parameter estimates are plotted as functions of the FA. 

The ζ values are relatively close for both FBI and WMTI, especially at higher FA, which 

confirms the findings of a prior study (Jensen et al., 2017). In addition, the FBWM and 

WMTI averages for De̅ and De,⊥ are comparable. For FAA, f, and De,‖, WMTI shows similar 

trends as FBI/FBWM, but the numerical values are quite different. Importantly, the estimates 

for f found with FBWM are higher than the WMTI values by about 20% or more. Even 

more striking, Da as predicted with FBWM is over twice that from WMTI for all FA values. 
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This discrepancy is a manifestation of the well-known difficulty associated with estimating 

Da accurately (Jelescu et al., 2016a; Novikov et al., 2018). Finally, Fig. 5 also shows that the 

ratio ζ / f for FBI/FBWM (but not for WMTI) to be nearly constant across the full range of 

FA, with tight error bars. This suggests a high correlation between ζ and f, as estimated with 

FBI/FBWM, and indeed their voxelwise Pearson correlation coefficient is r = 0.78.

Average values for the DKI-, FBI-, and FBWM-derived measures over all white matter 

voxels (both runs) for each of the three subjects are listed in Table 1. All the parameters are 

relatively consistent across subjects. For the FBWM-derived metrics, the coefficients of 

variation range from 0.08 for the AWF in Subject 1 to 0.27 for the axial extra-axonal 

diffusivity in Subject 3. Note that the axial diffusivity, D‖, obtained from the diffusion tensor 

is very similar to the axial extra-axonal diffusivity but that the radial diffusivity, D⊥, from 

the diffusion tensor is smaller than the radial extra-axonal diffusivity.

In our model, the principal eigenvectors for the total diffusion tensor D and the extra-axonal 

diffusion tensor De need not be parallel, although on physical grounds one might expect 

them to be approximately parallel in most white matter voxels. For our data the average 

absolute angle between the two eigenvectors was 21° ± 21°. Moreover, for about 14% of the 

white matter voxels, the angle exceeded 45°.

The above FBWM results were calculated by including all spherical harmonics in Eq. (4) up 

to and including the degree l = 6. In order to investigate how varying this maximum degree 

affects the number of local minima, we also calculated the percentage of white matter 

voxels, across all subjects, with more than one local minima for maximum degrees of l = 2, 

4, and 8, obtaining 45.3%, 13.6%, and 9.6%, respectively. This should be compared to the 

10.4% for l = 6, as previously stated. Thus increasing the degree cutoff tends to reduce the 

number of voxels with multiple local minima.

4.2. Simulations

Ground truth maps of a single anatomical slice for the parameters f and Da are given in Fig. 

6 together with the corresponding maps determined with FBWM using different simulated 

noise levels. The full brain slice is shown, even though FBWM is only expected to yield 

meaningful results for white matter. Within white matter regions, the FBWM estimates agree 

fairly well with the ground truth values for SNR of 20 and above, but large discrepancies are 

apparent for SNR = 10. Here the SNR is defined with respect to the b=0 images.

Mean values for ζ, f, Da, and De from the simulations are plotted in Fig. 7 as a function of 

the SNR. The estimates are averages over all 4608 white matter voxels in our simulated 

dataset. The solid line shows the results for our full analysis pipeline, while the dashed line 

shows the effect of skipping the denoising step. With denoising, the parameter estimates are 

close to the ground truth values when the SNR is 20 or higher, but without denoising larger 

errors are apparent especially for Da. The small underestimation of Da at an SNR of 100 is 

primarily due to systematic errors in the calculation of the diffusion tensor from DKI, which 

propagate into the cost function.
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Simulated results (with denoising) using different numbers of diffusion encoding directions 

for the HARDI shell are given in Fig. 8. Little difference in the parameter mean values and 

standard deviations are seen with 64, 128, or 256 directions, but both f and Da are 

significantly underestimated when only 30 directions are employed.

5. Discussion

A premise underlying FBI is that the dMRI signal in white matter is predominately due to 

intra-axonal water for high b-values, as is strongly supported by the observed decrease of the 

direction-averaged signal as 1/ b for large diffusion weightings (McKinnon et al. 2017; 

Veraart et al., 2016a). Furthermore, this 1/ b drop-off is a signature of diffusion restricted 

within thin cylindrical pores, which presumably correspond to axons. These facts allow the 

fODF to be estimated in a simple manner, along with the microstructural parameter 

ζ ≡ f / Da (Jensen et al., 2016).

For low b-values, the dMRI signal is well-described by the total diffusion tensor D, which is 

easily estimated with either DTI or DKI. Knowledge of D, the fODF, ζ, and f are sufficient 

to calculate both the intra-axonal and extra-axonal diffusion tensors via Eqs. (11), (12), and 

(19). Of these quantities, f is the only one of the inputs not determined by the combination of 

FBI and DTI/DKI. Thus one additional condition is needed in order to find the AWF and 

thereby independently characterize the intra-axonal and extra-axonal diffusion 

environments.

Here we have estimated f by requiring the model dMRI signal of Eq. (20) to match the 

measured dMRI signal as closely as possible through minimization of the cost function of 

Eq. (21). As formulated, this is a one-dimensional optimization problem that is 

straightforward to solve numerically, in contrast to some alternative approaches (Harms et 

al., 2017; Jelescu et al., 2016a; Novikov et al., 2018). Moreover, we find empirically that the 

cost function has a single minimum for most white matter voxels so that potential issues 

arising from multiple local minima should be minor. From the optimal f, we are then able to 

calculate the intra-axonal and extra-axonal diffusion tensors, along with a variety of 

associated diffusion parameters (see Fig. 3). A crucial distinction between the FBWM 

optimization and alternative diffusion modeling approaches that also employ a spherical 

harmonic expansion of the dMRI signal (Jespersen et al., 2007; Jespersen et al., 2010; 

Novikov et al., 2016; Veraart et al., 2017) is that, for the alternatives, the number of free 

parameters increases with the number of harmonics used, while for FBWM there is always a 

single free parameter regardless of the number of harmonics. The reason for this is that 

FBWM uses the harmonic expansion coefficients determined with FBI rather than treating 

them as fitting parameters.

Our results suggest that harmonics at least up to a degree of about 6 should be kept for 

numerical calculations, since the occurrence of voxels with multiple local minima increases 

substantially as the maximum degree is reduced below this, raising concerns regarding 

unphysical solutions (Harms et al., 2017; Jelescu et al., 2016a; Novikov et al., 2016; 

Novikov et al., 2018). However, including harmonics with very high degrees may not be 

beneficial as these are likely dominated by signal noise.
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The model for the full dMRI signal is the sum of the intra-axonal and extra-axonal signal 

models. The intra-axonal signal model of Eq. (15) follows directly from the theory for FBI. 

There is, however, no similar basis for the extra-axonal signal model. For our cost function, 

we have adopted the simplest possibility of regarding water diffusion in the extra-axonal 

space as Gaussian, which leads to Eq. (3). It has been argued that treating the extra-axonal 

space as Gaussian is overly simplistic (Kaden et al., 2016), but we hypothesize that this may 

be adequate for b-values of 2000 s/mm2 or less, as would be the case if the kurtosis of the 

extra-axonal space were not too large. Furthermore, for our high b-value shell of 6000 s/

mm2, the form of the extra-axonal signal should be irrelevant, since the dMRI signal in 

white matter is expected to mainly arise from intra-axonal water. Thus, Eq. (3) may be 

appropriate for our dataset, even if it is less accurate than some other models for 

intermediate b-values. Indeed, a possible advantage of our method could be a relative 

insensitivity to the details of the extra-axonal signal model, although further work would be 

necessary to confirm this.

In this initial study, we have applied our FBWM method to estimate several different 

microstructural parameters for characterizing diffusion in white matter using data from three 

healthy volunteers. Most of these parameters have a high degree of reproducibility, as 

demonstrated by Figs. 3 and 4. Their values are all within physically plausible ranges, 

although we have no ground truth for comparison. Alternative approaches have yielded 

variable results, particularly for the intra-axonal diffusivity, which seems to be especially 

difficult to estimate accurately (Jelescu et al., 2016a; Novikov et al., 2018). Nonetheless, our 

results are fairly similar to those from the recently proposed spherical mean technique 

(Kaden et al., 2016), from b-value scaling (Veraart et al., 2016a), and from TE dependent 

diffusion imaging (Veraart et al., 2017), even while these methods employ more complex 

numerical fitting schemes than used here. More specifically, we find a mean value from 

FBWM for the intra-axonal diffusivity of 2.46 ± 0.20 µm2/ms. This is also quite close to the 

value of 2.25 ± 0.03 µm2/ms recently reported by Dhital and coworkers (Dhital et al., 2017b) 

based on multiple diffusion encoding dMRI and a novel analysis method. The discrepancy 

between these two results could either be caused by intersubject differences or by systematic 

errors in the respective estimation methods. It would be of interest to gather data with both 

techniques on the same subjects to better assess their concordance.

Another interesting observation is that the AWF and the microstructural parameter ζ are 

strongly correlated, indicating that the regional variation in ζ is mainly driven by differences 

in the AWF rather than in the intra-axonal diffusivity. This fact can be helpful for 

interpreting FBI results when full FBWM modeling is not available.

A principal motivation for this work is to improve upon the WMTI method, which also uses 

DKI data. Our basic rationale is that FBI can supply the fODF and thus eliminate the need to 

assume, as with WMTI, that all axons are approximately aligned in a single direction. In this 

way, meaningful parameter estimates can be obtained for the entire white matter instead of 

just a small subset of voxels in which the axons may be regarded as largely unidirectional. 

Moreover, fixing the parameter ζ with FBI provides an additional constraint that may 

improve accuracy and precision. Our results show that WMTI and FBWM give similar 

results for ζ in high FA regions, as previously reported (Jensen et al., 2017), but the WMTI 
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estimates of both f and Da are substantially lower in comparison to those from FBWM. We 

speculate that the FBWM values are more accurate, since the FBWM prediction for Da is 

closer to several recent estimates obtained with a variety of techniques, as mentioned above. 

In addition, experiments employing isotropic diffusion weighting (Dhital et al., 2017a) and 

in fixed spinal cord (Jespersen et al., 2017) both indicate that Da > De,‖, which is consistent 

with our FBWM results but not with WMTI.

Our experimental data were acquired with 3 mm isotropic voxels and an average SNR of 

about 59. However, our numerical simulations (Figs. 6 and 7) suggest that an SNR as low as 

20 may be adequate as long as denoising is included as part of the post-processing analysis 

pipeline. Thus higher resolution maps may be attainable with FBWM. In addition, our 

numerical simulations (Fig. 8) indicate that as few as 64 diffusion encoding directions could 

be sufficient for the HARDI shell, which would sharply reduce the dMRI data acquisition 

time for FBWM to about 12 min from the 30 min of our experimental protocol with 256 

HARDI directions. However, actual experiments should be conducted to verify this.

There are two important limitations of our proposed FBWM method. First, it only applies to 

white matter, since the direction-averaged dMRI signal in gray matter does not obey the 1/ b
scaling behavior for large diffusion weightings, as required for FBI (McKinnon et al., 2017). 

This contrasts with several other previously proposed dMRI tissue models that are intended 

to apply to both gray and white matter (Jespersen et al. 2010, Zhang et al., 2012, Kaden et 

al., 2016). Second, the effect of different T2 values for the intra-axonal and extra-axonal 

spaces is not accounted for in FBWM. As a consequence, the estimated AWF may be T2-

weighted. In particular, Veraart and coworkers (Veraart et al., 2017) have recently argued 

that the T2 of intra-axonal water may be substantially longer than for extra-axonal water. 

FBWM might therefore overestimate f, depending somewhat on TE.

The primary goals of this paper have been to describe the FBWM approach in detail and to 

give some preliminary results for healthy human brain. Further work is needed in at least 

three directions. First, the imaging protocol should be optimized in order to reduce the 

acquisition time. Specifically, the 256 directions used for the b=6000 s/mm2 HARDI shell 

could likely be reduced, as our numerical simulations suggest, with minimal impact on the 

parameter estimates. Second, the predictions of FBWM should be more rigorously validated 

by comparison with histology and other dMRI methods. Advanced dMRI techniques that 

employ nonstandard pulse sequences with complex gradient wave forms seem especially 

promising in this regard, as they can potentially estimate diffusion parameters with fewer 

modeling assumptions and thereby yield more reliable results (Dhital et al., 2017a; Dhital et 

al., 2017b; Shemesh et al., 2010; Topgaard 2017; Westin et al., 2016). Finally, the relative 

strengths and weaknesses of FBWM in comparison to the several related alternatives (e.g., 

Jespersen et al., 2017; Reisert et al., 2017) should be more thoroughly investigated. Here we 

have mainly compared FBWM to WMTI and argued that FBWM is both more 

comprehensive and more accurate.
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6. Conclusion

By combining FBI with low to intermediate b-value dMRI data, FBWM provides estimates 

for multiple biophysical parameters that characterize tissue microstructure in white matter. 

FBI is used to determine the orientation of the axonal fibers, while the low/intermediate b-

value dMRI data are employed to find the total diffusion tensor of the system. From these 

two inputs, a cost function is constructed with the AWF as the sole free parameter. The 

minimum of this cost function gives the optimal AWF, from which several other 

microstructural parameters may be calculated. A key advantage of FBWM is the simplicity 

of cost function, which facilitates efficient and robust numerical algorithms. The predictions 

of FBWM differ substantially from those of the WMTI approach, particularly for the 

intrinsic intra-axonal diffusivity, and are in better agreement with results from some 

alternative methods.
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Abbreviations

AWF axonal water fraction

DKI diffusional kurtosis imaging

dMRI diffusion MRI

DTI diffusion tensor imaging

DWI diffusion weighted imaging

FA fractional anisotropy

FAA fractional anisotropy axonal

FBI fiber ball imaging

FBWM fiber ball white matter

fODF fiber orientation density function

HARDI high angular resolution diffusion imaging

MD mean diffusivity

MK mean kurtosis

WMTI white matter tract integrity
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Appendix

Here we sketch the derivations of Eqs. (11) through (13). The diffusion tensor for the intra-

axonal space may be expressed as

Da = ∫ dΩuDaxon(u)F(u), (A1)

where Daxon (u) is the diffusion tensor for an individual axon oriented in a direction u. If 

axons are idealized as thin, straight cylinders (i.e., a stick model), we then have

Daxon(u) = DauuT

= Da

sin2 θ cos2 φ sin2 θ cos φ sin φ cos θ sin θ cos φ
sin2 θ cos φ sin φ sin2 θ sin2 φ cos θ sin θ sin φ
cos θ sin θ cos φ cos θ sin θ sin φ cos2 θ

,

(A2)

where (θ, φ) are the spherical angles for u. From Eqs. (7), (A1) and (A2), one sees that

Da = Da ∑
l = 0

∞
∑

m = − 2l

2l
c2l

m∫ dΩuY2l
m(θ, φ)

sin2 θ cos2 φ sin2 θ cos φ sin φ cos θ sin θ cos φ
sin2 θ cos φ sin φ sin2 θsin2 φ cos θ sin θ sin φ
cos θ sin θ cos φ cos θ sin θ sin φ cos2 θ

.

(A3)

The spherical integrals in Eq. (A3) may be evaluated with the help of Eqs. (5) and (6), which 

leads directly to Eqs. (11) and (12). All the needed integrals correspond to elementary 

trigonometric forms, with those for l > 1 yielding zero.

In order to derive Eq. (13), we exploit the fact that the FAA is given by

FAA = 3
2 ·

‖Da − 1
3 tr(Da)I‖

‖Da‖ , (A4)

where I indicates the identity matrix, tr(…) indicates the trace, and ‖…‖ indicates the 

Frobenius norm (Basser and Pierpaoli, 1996; Glenn et al., 2015). By applying Eq. (A4) to 

Eq. (12), one finds the result of Eq. (13).
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Figure 1. 

Flow chart showing the data analysis pipeline for FBWM. The parameters c2l
m and ζ are 

determined with FBI, while the total diffusion tensor D is found with DKI. The cost function 

C(f) is then constructed from c2l
m, ζ, and D. By minimizing C(f), one obtains a best estimate 

for the AWF. Finally, the AWF, together with the FBI and DKI results, is used to calculate 

the additional microstructural parameters of Da, De, De,‖, and De,⊥.
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Figure 2. 
Representative FBWM cost functions for three individual voxels from the splenium of the 

corpus callosum (SP), frontal white matter (FW), and the internal capsule (IC). The only 

adjustable parameter in the cost function is the AWF, since all other quantities are fixed with 

information supplied by DKI and FBI. For most white matter voxels, the cost function has a 

single local minimum, as illustrated here.
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Figure 3. 
Parametric maps for selected diffusion measures from a single anatomical slice for Subject 

1. Two independent datasets (Runs 1 and 2) were acquired within a single scan session in 

order to test reproducibility. The parameters in Columns 1 and 3 were calculated with DKI 

(MD, FA, MK) and FBI (ζ, FAA), while the parameters in Columns 2 and 4 were calculated 

with FBWM. The corresponding maps for Run 1 and Run 2 are fairly similar for all metrics, 

indicating that they are not overly sensitive to signal noise. The calibration bars for the 

diffusivities (MD, Da, De, De,‖, De,⊥) are in units of µm2/ms, and the calibration bar for ζ is 
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in units of ms1/2/ µm, while all other quantities (FA, MK, FAA, f) are dimensionless. The 

FBI and FBWM results are only meaningful in white matter regions.
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Figure 4. 
Median absolute percent difference between Runs 1 and 2 for selected diffusion measures in 

white matter. These were calculated for all three subjects on a voxelwise basis by using all 

voxels considered as white matter (i.e., MK ≥ 1). In most cases, the percent difference is 

about 10% or less. However, the extra-axonal diffusivites ( De, De,‖, De,⊥) differed by up to 

20% for Subject 3. All quantities were obtained with either DKI (MD, FA, MK), FBI (ζ, 

FAA), or FBWM (f, Da, De, De,‖, De,⊥).
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Figure 5. 
Selected diffusion measures versus FA. All white matter voxels for all three subjects and 

both imaging runs were pooled. The solid data points are averages calculated with either FBI 

(ζ, FAA) or FBWM (f, ζ / f, Da, De, De,‖, De,⊥), while the open data points are all averages 

calculated with WMTI. The error bars indicate standard deviations. For the FBI/FBWM 

parameters, Da, De, and ζ / f vary little with FA, but an FA dependence is discernible for the 

other metrics. The WMTI averages are relatively close to the FBI/FBWM values for ζ, De, 

and De,⊥, at least for FA > 0.5 where the assumptions underlying WMTI are better justified. 
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Otherwise substantial differences are apparent. In particular, the WMTI estimates for Da are 

much smaller than the FBWM estimates over the full range of FA.
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Figure 6. 
Numerical simulations of the effect of signal noise on parametric maps of the AWF and the 

intrinsic intra-axonal diffusivity for a single anatomical slice. The ground truth data are 

based on the signal model of Eq. (20) together with the FBWM fits for Subject 1 (same slice 

as in Fig. 3). Rician noise was added to create SNR values ranging from 10 to 100 (defined 

with respect to the b = 0 images), and the simulated data were processed according to our 

standard analysis pipeline. In white matter regions, where the FBWM approach is expected 

to apply, the parameter values are fairly insensitive to the added noise, for SNR values of 20 

and above. The calibration bar for Da is in units of µm2/ms, while that for f is dimensionless.
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Figure 7. 
Mean values of ζ, f, Da, and De over all white matter voxels for simulated data with varying 

amounts of added noise (solid data points). The ground truth values are indicated by the 

dotted lines, and the open data points give the simulated results with the denoising step 

omitted from the processing pipeline. The error bars indicate standard deviations. With 

denoising, the FBI/FBWM estimates agree well with the ground truth values for SNRs of 20 

and above. Without denoising, both accuracy and precision are noticeably reduced, 

particularly for Da.
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Figure 8. 
Results for selected diffusion measures from simulations with varying numbers of diffusion 

coding directions (30, 64, 128, 256) for the b = 6000 µm2/ms HARDI shell. The data points 

reflect average values over all white matter voxels from the simulated dataset, and error bars 

indicate standard deviations. The SNR is fixed at 50, which is comparable to that of our 

experiments, and the number of directions is set to 30 for both the b =1000 and b = 2000 

µm2/ms shells. The parameter estimates are all similar for 64 directions and above, but are 

much less accurate for f and Da when only 30 directions are used for the HARDI shell.
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Table 1

Mean values (± std. dev.) of diffusion parameters in white matter as estimated with DKI, FBI, and FBWM.

Parameter Subject 1 Subject 2 Subject 3

MD [µm2/ms]* 0.85 ± 0.06 0.87 ± 0.08 0.85 ± 0.08

FA* 0.46 ± 0.14 0.44 ± 0.14 0.46 ± 0.14

MK* 1.09 ± 0.06 1.14 ± 0.08 1.13 ± 0.08

D‖ * 1.31 ± 0.21 1.32 ± 0.23 1.32 ± 0.26

D⊥ * 0.62 ± 0.10 0.64 ± 0.12 0.61 ± 0.11

ζ [ms1/2/ µm]† 0.40 ± 0.04 0.40 ± 0.05 0.42 ± 0.05

FAA† 0.57 ± 0.14 0.56± 0.14 0.58 ± 0.15

f ‡ 0.60 ± 0.05 0.63 ± 0.06 0.62 ± 0.07

Da [µm2/ms] ‡ 2.36 ± 0.31 2.50 ± 0.35 2.23 ± 0.40

D̄e [µm2/ms] ‡ 0.95 ± 0.09 0.93 ± 0.13 1.02 ± 0.18

De,‖ [µm2/ms] ‡ 1.31 ± 0.26 1.29 ± 0.32 1.46 ± 0.39

De,⊥ [µm2/ms] ‡ 0.76 ± 0.11 0.75 ± 0.14 0.80 ± 0.16

*
Estimated with DKI.

†
Estimated with FBI.

‡
Estimated with FBWM.
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