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Abstract 16 

A major problem in psychology and physiology experiments is drowsiness: around a third of 17 

participants show decreased wakefulness despite being instructed to stay alert. In some non-18 

visual experiments participants keep their eyes closed throughout the task, thus promoting the 19 

occurrence of such periods of varying alertness. These wakefulness changes contribute to 20 

systematic noise in data and measures of interest. To account for this omnipresent problem in 21 

data acquisition we defined criteria and code to allow researchers to detect and control for 22 

varying alertness in electroencephalography (EEG) experiments. We first revise a visual-scoring 23 

method developed for detection and characterization of the sleep-onset process, and adapt the 24 

same for detection of alertness levels. Furthermore, we show the major issues preventing the 25 

practical use of this method, and overcome these issues by developing an automated method 26 

based on frequency and sleep graphoelements, which is capable of detecting micro variations in 27 

alertness. The validity of the automated method was verified by training and testing the algorithm 28 

using a dataset where participants are known to fall asleep. In addition, we tested generalizability 29 

by independent validation on another dataset. The methods developed constitute a unique tool 30 

to assess micro variations in levels of alertness and control trial-by-trial retrospectively or 31 

prospectively in every experiment performed with EEG in cognitive neuroscience. 32 

Keywords:  33 
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1. Introduction 36 

Electroencephalography (EEG) has played a pivotal role in the non-invasive study of brain 37 

function (Niedermeyer and Silva, 2004). Typically in an EEG experiment the electrophysiological 38 

activity of the brain is recorded from the scalp of the participant while they are performing a 39 

cognitive task or under task-free conditions (e.g. resting state). In some task-based experiments, 40 

typically in the auditory or tactile domain, the participant performs the task with eyes-closed. 41 

Previous studies have shown that such eyes closed settings can create periods of momentary 42 

lapses of alertness (Barry et al., 2007). These periods are usually attributed to variable and long 43 

inter-trial intervals. The prevalence of this problem can be attested by studies mining large 44 
databases, which show that about a third of participants momentarily fall asleep in resting state 45 

conditions (Tagliazucchi and Laufs, 2014). Further, task-free settings such as mind wandering or 46 

simple non-active instructions can also lead to drowsiness and sleep (Goupil and Bekinschtein, 47 

2012).  48 

The above mentioned variations in alertness can usually be detected using variability in reaction 49 

times (Ogilvie, 2001). However in most of the EEG experiments such lapses are ignored and data 50 

confounded with drowsiness (or low alertness) are used for studying brain functions like 51 

attention and cognition. However, attention and many other cognitive sub-processes are known 52 

to be directly modulated by lack of alertness in normal (Bareham et al., 2014; Chennu and 53 

Bekinschtein, 2012) as well as clinical populations (Dobler et al., 2005). Hence, fluctuations in 54 

alertness need to be measured, to include or exclude trials of low/high alertness to adequately 55 

test predefined hypotheses. This argument is illustrated with an experiment in Figure 1. 56 

Figure 1(B) shows a typical EEG experiment (Kouider et al., 2014) where the participant responds 57 

to auditory stimuli while having their eyes closed. In the beginning of the experiment the 58 

participant responds to the stimuli in a reliable manner (green dots) by less variation in reaction 59 

times. As time progresses the reaction times become more variable and the participant 60 

intermittently fails to respond (red dots). This variation is also captured in the frequency profile 61 

of the EEG (occipital sites) during the pre-trial periods of the task as depicted in Figure 1(A). 62 

When the participant responds reliably, the frequency profile predominantly shows  power in the 63 

alpha range (8-12 Hz) and as they become drowsy the alpha power disappears and low frequency 64 

power in the theta range (6-8 Hz) increases. Thus the frequency profile preceding the trial could 65 

predict the variability in the responses. In other words, such spectral changes can be used to 66 

detect the momentary lapses in alertness that causes variability in the reaction times. 67 

The typical techniques that are used to clean or remove the data from such drowsiness 68 

contaminated episodes would be to score the above mentioned pre-trial periods using traditional 69 

sleep scoring techniques (Berry et al., 2012). These scoring techniques depend on the frequency 70 

profiles described earlier. However, they face multiple problems. Firstly, sleep scoring techniques 71 

rely on having at least 30 sec of data (Berry et al., 2012), whereas in most cognitive experiments 72 

the pre-trial periods last at most 4-5 sec. Secondly, automated methods (Tagliazucchi et al., 2012) 73 

that are validated using such sleep scoring techniques classify data into American Association of 74 

Sleep medicine (AASM) based sleep stages like wakefulness, N1, N2 etc. But such momentary 75 

lapses of alertness require more fine grained scoring techniques that operate on a smaller time 76 

range with different features capable of capturing micro variations in alertness levels. Finally, 77 

some techniques use the simple variation in reaction times mentioned earlier to capture 78 

moments of low alertness. But this suffers from the problem of longer reaction times being 79 

confounded by other factors such as task difficulty (Bareham et al., 2014). 80 
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 81 

Fig 1: Differing alertness levels indicated by frequency profile changes and reaction time variability 82 

during an auditory experiment in a sample participant. (A) Depicts the changes in the power level 83 

in different frequency bands in the Occipital electrodes in the pre-trial period of an auditory 84 

experiment at different time points. (B) Reaction times at trials presented along the different time 85 

points in the same experiment, red dots represent failure to respond and green dots represent 86 

responses. The variability in the reaction times (B) and thus reduction in alertness levels closely 87 

follows the change in the frequency profile (A) from alpha (8-12 Hz) to theta (6-8 Hz) 88 

Thus the above mentioned problem of fluctuations in alertness requires a novel solution. Our 89 

proposal is to tackle the problem in the following manner: Firstly, we identify these alertness 90 

contaminated episodes, through the use of the Hori scale (Tanaka et al., 1996) that captures  91 

micro variations in alertness. Though the prime purpose of the Hori system is to identify and 92 

characterise the sleep onset process, it contains features that enable us to identify variations in 93 

levels of alertness in more fine grained durations (4 sec) compared to traditional sleep scoring 94 

using wakefulness, N1 and N2. Secondly, we use human scorers to identify different levels of 95 

alertness using the Hori scale on a dataset where the participants are allowed to fall asleep while 96 

performing the task. Thirdly, we show that despite the clarity of the Hori scale, it is impractical to 97 

perform, time consuming and difficult to learn, as elucidated by the low degree of agreement 98 

among human scorers. Fourthly, we produce a practical solution to this problem using an 99 

automated technique (involving Support Vector Machine - SVM and individual element detectors) 100 

and compute performance measures by training and testing the algorithm on a dataset labelled 101 

by gold standard ratings (converging Hori ratings from multiple scorers). Finally, to estimate the 102 

reliability and generalisability of our method, we tested the same in another independent dataset 103 

to show its utility. 104 

This paper is organized as follows. In the first section, we describe the method of using the Hori 105 

scale using human scorers and provide an overview of the automated method. In the second 106 

section, we evaluate and scrutinise the results of the human scorers with agreement measures 107 

and motivate the use of automated algorithm using validation measures. In the final section, we 108 
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discuss the developments made in this paper and produce concluding remarks on the usefulness 109 

of the method developed here.  110 

2. Materials and methods 111 

2.1. Participants and datasets 112 

The first dataset (herein Dataset#1) consisted of 20 native English speakers performing a 113 

semantic categorization task while falling asleep (Kouider et al., 2014). The task consisted of 114 

listening to words that belonged to a particular semantic category (e.g. animals or objects) and 115 

classifying them accordingly using a left or right button press. Each trial consisted of an auditory 116 

stimulus (spoken word: animal or object) presented binaurally with an intertrial interval of 6-9 117 

sec. 118 

The second dataset (herein Dataset#2) consisted of 31 participants performing an auditory 119 

masking task while falling asleep (Noreika et al., 2017a). The task consisted of listening to a target 120 

sound (e.g. beep) that was randomly masked by different noise durations. Participants reported 121 

whether they heard the target using a button press. Each trial consisted of an auditory stimulus 122 

(target) sometimes masked by noise, presented binaurally. The next trial was presented after a 123 

pause of 8-12 sec after the response or 13-17 sec (in case of no response). 124 

In both the experiments subjects were seated on a reclining chair in a dark room and were 125 

permitted to fall asleep during the task. The participants were also evaluated on the basis of 126 

Epworth Sleepiness scale (Johns, 1991) and only easy sleepers were recruited. 127 

2.2. EEG acquisition 128 

Dataset#1: EEG was recorded using 64 Ag/AgCl electrodes (NeuroScan labs) with Cz as reference. 129 

The electrode impedances were kept below the recommended levels of the manufacturer. The 130 

signal was acquired at a sampling rate of 500 Hz. 131 

Dataset#2: EEG was recorded using 129 Ag/AgCl electrodes (Electrical Geodesics Inc) with Cz as 132 

reference. The electrode impedances were kept below 100 KΩ. The signal was acquired at a 133 

sampling rate of 500 Hz. 134 

2.3. Pre-processing 135 

EEG data was pre-processed with custom made scripts in MATLAB (MathWorks Inc. Natick, MA, 136 

USA) using EEGLAB toolbox (Delorme and Makeig, 2004). The data was filtered between 1 and 137 

30 Hz and was then resampled to 250 Hz. Furthermore, it was epoched from 4000ms to 0ms to 138 

the onset of the stimuli. Bad channels were then detected if the activity in the spectrum of the 139 

channel exceeds ±4 standard deviation of overall activity in all channels. The detected bad 140 

channels were then interpolated using spherical interpolation,  after which trials that exceed the 141 

amplitude threshold of ±250uV were removed in a semi automatic fashion. The amplitude 142 

threshold was liberal as K-complexes usually exceed ±150uV. 143 

Before proceeding to use the above datasets for scoring using the Hori scale it would be pertinent 144 

for us to first introduce the Hori system of scoring and inform the readers about the 145 

augmentations made in the system to suit the current purpose of measuring changes in alertness 146 

levels. 147 
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2.4. Hori Scale 148 

Hori and colleagues subdivided the sleep onset process into 9 different substages (Tanaka et al., 149 

1996). The first two Hori stages (1,2) correspond to wakefulness. The next six Hori stages (3-8) 150 

correspond to the sleep stage N1. The last stage of Hori (9) corresponds to the beginning of N2 151 

sleep (Iber et al., 2007).  152 

Here we decided to augment classical Hori stages with another stage (10) that would correspond 153 
to the appearance of K-complexes. The rationale behind this addition is the appearance of K-154 

complexes definitively mark the entrance to N2 sleep. While spindles can still serve this purpose, 155 

their variability in duration and disagreement among human raters (Warby et al., 2014) 156 

motivates the use of K-complex. The following is a brief description of the elements in the hori 157 

scale based on (Ogilvie, 2001) and are shown in Figure 2. 158 

2.4.1. Alert elements 159 

Alpha waves:           160 

Alpha waves are elements that occur in the range of 8-12 Hz during relaxed wakefulness. They 161 

are more pronounced in the eyes closed condition, when the participant is transitioning from 162 

alert to relaxed wakefulness (Hori 1-2). Alpha elements are usually more pronounced in EEG from 163 

occipital regions. 164 

Hori 1:  Epoch is composed of only alpha wave trains (at least 20uV).    165 

Hori 2: Alpha wave trains occupy more than 50% (but less than 100%) of the activity in the epoch. 166 

2.4.2. Drowsy elements 167 

Alpha waves:           168 

Alpha activity usually decreases when the participant transitions from relaxed wakefulness to 169 

drowsy (Hori 3).  170 

Theta waves:           171 

Theta waves are elements that occur in the range of 3-8 Hz. They have relatively higher 172 

amplitudes than the alpha elements and characterise the transition to N1. Theta activity is usually 173 

pronounced in the central and temporal regions (Hori 5). 174 

Hori 3: Alpha wave trains occupy less than 50% of the activity in the epoch. 175 

Hori 4: Activity flattening without any clear element (amplitude < 20 uV). 176 

Hori 5: Low voltage theta waves (ripples) with amplitude between 20 uV-50 uV. 177 

2.4.3. Grapho elements 178 

Vertex sharp waves:           179 

Vertex waves are grapho elements that occur in the beginning of the transition to sleep (Hori 6-180 

8). Appearance of them indicates an altered state of responsiveness in the cerebral cortex 181 

(Rodenbeck et al., 2006). The vertex waves can be either monophasic or biphasic. In both cases 182 

there is usually a sharp negative discharge followed by a positive one. In the case of biphasic 183 

waves, the amplitude of the positive components should be at least 50% of the negative 184 

component and at most equal to the level of the negative component.  The amplitude of the vertex 185 

sharp waves is found to be maximal in parietal and frontal regions (Cz based reference). 186 
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Hori 6: Epoch containing only one well defined vertex sharp wave. 187 

Hori 7: Epoch containing more than one vertex sharp wave. 188 

Spindles:             189 

Spindles are grapho elements that occur in the beginning of the transition to stage N2 of sleep 190 

(Hori 9). They are regarded as transient patterns of EEG activity with a frequency of 12-16 Hz 191 

with a minimum duration of 0.5 sec (complete spindles). Spindles in general should be 192 

distinguishable from the background activity. The typical waxing and waning of spindle shape is 193 

vital to distinguish the pattern from high alpha activity. The spindles were found to be prominent 194 

in temporal and frontal regions (Cz based reference). 195 

Hori 8: Contains at least one vertex wave and an incomplete spindle (<0.5 sec). 196 

Hori 9: Contains one well defined spindle (>0.5 sec). 197 

K-complexes:           198 

K-complexes are grapho elements that occur in the N2 stage of sleep (modified Hori 10). It starts 199 

with a sharp positive wave followed by a large negative wave. The duration of the initial negative 200 

wave should be smaller than the positive wave. The overall duration of the K-complex must be at 201 

least 0.5 sec. The K-complexes were found to be prominent in frontal, temporal and parietal 202 

regions (Cz based reference). 203 

Hori 10: Contains at least one well defined K-complex. 204 
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 205 

Fig 2: (A) Modified Hori scale for detecting differing alertness levels using EEG. The grey waves 206 

indicate background activity and coloured regions indicate characteristic elements for respective 207 

Hori stages. AASM based sleep stage classification is also represented for compatibility to classical 208 

sleep scoring. Grapho-elements of Hori scale in detail: (B) Vertex sharp waves: Biphasic consists of a 209 

sharp negative deflection followed by a positive one, whereas Monophasic consists of only a sharp 210 

negative deflection. (C) Spindles: transient patterns with frequency (12-16 Hz) and minimum 211 

duration of 0.5 sec. (D) K-complex elements: sharp positive deflection followed by a larger negative 212 
one with a duration of at least 0.5 sec. 213 
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 214 

Fig 3: (A) Electrode sites used for manual Hori scoring based on 21 channels of the locations mainly 215 

derived from 10-20 electrode sites. (B) Electrodes used for automatic algorithmic method based on 216 

sampling from locations in Occipital, Central, Temporal, Parietal, Frontal regions. (C) Step by step 217 

technique to manually score each trial using the Hori scale. The preliminary step involves identifying 218 

presence of grapho-elements followed by specific identification of k-complexes, spindles and vertex 219 

waves. In the absence of grapho-elements, the trials are scored with identification of alpha rhythms. 220 

(D) Brief flow chart of the automatic algorithm. The preliminary step involves computation of the 221 

predictor variance and coherence features, followed by identification of alert and drowsy trials using 222 

SVM. Further, drowsy trials are identified into specific grapho-elements using detectors of elements 223 

like vertex, k-complex, spindles. 224 
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2.5. Manual Hori-scoring 225 

For the purpose of manually scoring each epoch according to the Hori scale, the EEG data was 226 

further low pass filtered below 20 Hz and only 21 channels (Fig. 3(A)) derived using the standard 227 

10-20 system were evaluated. The details of manual scoring is as follows: 228 

Dataset#1: Each pre trial epoch (-4000 to 0ms) was rated independently by 3 raters. Of which 229 

one was an experienced electrophysiologist (rater C) and 2 of the other raters (A, B) had learnt 230 
the technique immediately prior to scoring them independently.  All participants were scored by 231 

the 3 raters, except for one participant that was scored only by raters A and B. As data from all 232 

participants was used based on consensus rule developed in section 2.6.1 this did not affect the 233 

results in anyway. 234 

Dataset#2: Each pre trial epoch (-4000 to 0ms) was rated independently by 1 rater and was 235 

further verified with another experienced rater. One participant was ignored from further 236 

analysis as the original trial order could not be recovered from the raw EEG data. 237 

The raters in dataset#1 scored each trial based on a manual algorithm depicted in Fig 3(C). The 238 

rater in dataset#2 scored each trial based on the description provided in (Ogilvie, 2001). 239 

2.6. Automatic method 240 

The automatic algorithm was first developed and tested using Dataset#1 and then independently 241 

validated using Dataset#2. 242 

2.6.1. Group consensus rule: creation of gold standard dataset  243 

Before training and testing the algorithm, we decided to create labels in our input data 244 

(Dataset#1) that can be used by our algorithm for supervised learning. In our case, we decided to 245 

create a gold standard label for each trial that is based on a group consensus rule. For this 246 

purpose, we first subdivided the Hori ratings of each epoch per rater into Alert (Hori: 1,2), 247 

Drowsy-mild (Hori: 3,4,5), Drowsy-severe (Hori: 6,7,8,9,10). The gold standard label was 248 

computed using a simple majority among the raters. If there was no consensus, then the 249 

corresponding trials were ignored from further analysis. This group consensus rule was used in 250 

Dataset#1 and each trial was labelled into Alert, Drowsy (mild), Drowsy (severe). The creation of 251 

this gold standard dataset ensured that the algorithm was trained and tested with trials that were 252 

unambiguous and non-spurious. 253 

2.6.2. Electrode Choices 254 

The electrodes depicted in Fig 3(B) were chosen for computing the various features used in 255 

different steps of the algorithm. The electrodes were chosen in such a way that we sample the 256 

Occipital, Frontal, Central, Parietal, Temporal regions. Furthermore, the choices were motivated 257 

for maximising the signal to noise ratio for the given reference electrode (Cz). 258 

Dataset#1: Occipital: Oz, O1, O2; Frontal = F7, F8, Fz; Central = C3, C4;                 259 

Parietal = Pz; Temporal =  T7, T8, TP8, FT10, TP10; 260 

Dataset#2: Occipital: E75, E70, E83; Frontal = E27, E123, E11; Central = E35,          261 

E110; Parietal = E90; Temporal =  E109, E101, E115, E100; 262 

A brief flow chart of the automatic algorithm is shown in Fig 3(D). 263 
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2.6.3. Support Vector Machines 264 

The first step in our algorithm involves computing features that are capable of distinguishing the 265 

various levels of alertness in the data.  After which the features are used to devise a classifier 266 

capable of separating the Alert (Hori:1-2) from Drowsy (Hori: 3-10). We decided to use Support 267 

vector machines for this part of the classification as the classification problem is guaranteed to 268 

converge to an optimal solution (Platt, 1998; Tagliazucchi et al., 2012). 269 

Support vector machines (SVM) are a class of supervised learning models. Formally, SVM consists 270 

of building a hyperplane or a set of hyperplanes in a high dimensional space with the criteria to 271 

maximise the distance of separation between the closest data (train-data) point of any class 272 

(functional margin) (Cortes and Vapnik, 1995). The choice of such a functional  margin would 273 

lower the generalization error for new data points (test-data). The motivation to map the data 274 

onto higher dimensional space is driven by the fact that most often the classes are inseparable in 275 

the lower dimensional space (Boser et al., 1992). The mapping to higher dimensional space is 276 

achieved by the use of a kernel function 𝑘(𝑥, 𝑦). 277 

The kernel function avoids the need to compute individual data points in the transformed data 278 

space (computationally expensive) by using the euclidean inner product (kernel trick). In our 279 

paper, we used the MATLAB interface of the open source machine learning library (LIBSVM)  280 

(Chang and Lin, 2011) that supports use of kernel SVMs for nonlinear mappings. We used the 281 

Radial Basis Function (RBF) as our kernel 𝑘(𝑥, 𝑦) = 𝑒
(−γ||𝑥−𝑦||

2
)
 . 282 

For training the classifier to produce optimal performance (accuracy) we need to select the 283 

optimal value of (γ, C).  γ  controls the curvature of the hyperplane and C  represents the penalty 284 

parameter for the soft-margin. Parameter selection is achieved by performing a grid search in 285 

(γ, C) in the space 2−1, . . , 2225 . We could not perform a leave one participant out cross validation, 286 

as this would produce an overfitting of parameters as different people fell asleep in different ways 287 

(proportion of alert, drowsy(mild), drowsy(severe) trials). Hence the data from all participants 288 

was collated and then divided into 5-folds (Tagliazucchi et al., 2012). Each of the 5-folds was made 289 

using stratified sampling such that the overall representation of sub-classes remained similar in 290 

each fold. This will avoid the problems of over-representation prevalent while using random-291 

sampling. The first four folds were used to train the classifier to choose the parameters (γ, C) and 292 

the last fold was used to test the same. In order to measure the performance of the classifier we 293 

decided to use sensitivity, specificity, f1- score. 294 

The definition of the performance measures used are as follows: 295 

Accuracy: This is defined as the number of correctly classified data points divided by the overall 296 

number of classifications made. 297 

Sensitivity: This refers to the ability of a classifier to correctly detect the true class among the 298 

classifications made. It is obtained by the (TP/TP+FN). It is also known as recall. TP: True 299 

Positives, FN: False Negatives. 300 

Specificity: This refers to the ability of a classifier to correctly ignore the classes that don’t belong 301 

to the true condition. It is obtained by (TN/TN+FP).  TN: True Negatives, FP: False Positives. 302 

F1-score: This is the harmonic mean between precision and recall. Precision refers to measure of 303 

exactness of classifier. It is obtained by (TP/TP+FP). Recall refers to the sensitivity of the 304 

classifier. 305 

As the input data contains different kinds of features, it was scaled using the minimum value and 306 

range before applying the SVM.  307 
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2.6.4. Feature Computation 308 

To use the above mentioned SVM for classification we need to compute the following features 309 

that can allow the classifier to distinguish between different classes.  310 

Predictor Variance:                     311 

The EEG data in the occipital region was first decomposed into time-frequency for each spatial 312 

sample (electrode) per epoch (-4000 to 0ms pre-trial). Predictors for each epoch were then 313 

generated based on the variations in the spectral power of the frequency bins A:[2-4 Hz], B:[8-10 314 

Hz], C:[10-12 Hz], D:[2-6 Hz] per epoch. The predictors were then fit to the data per electrode-315 

epoch and the variance explained is computed per electrode-epoch.  316 

The first step is to transform the data 𝑥[𝑛] into time-frequency representation (predictors) using 317 

the formula below, where 𝑛  represents time domain with  1 ≤ 𝑘 ≤ 𝑁 318 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒
−𝑗2𝜋(𝑘−1)(𝑛−1)

𝑁

𝑁

𝑛=1

 319 

The next step is to compute the power in the transformed representation 320 

𝑃𝑜𝑤𝑒𝑟 = 𝑋(𝑘). 𝑋∗(𝑘)   321 

Followed by computing the predictor variance 322 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 = 100 − 100 ∗ 
𝑉𝑎𝑟(𝑃𝑜𝑤𝑒𝑟−𝑋(𝑘𝑖))

𝑉𝑎𝑟(𝑋(𝑘𝑖))
   323 

Where 𝑖 represents the frequency band index (A,B,C,D) and 𝑉𝑎𝑟 represents the residual variance. 324 

Intuitively, the predictor variance tries to capture the variance in the signal explained by different 325 

frequency bands and the SVM later on uses this feature for classification. 326 

Coherence:          327 

Coherence was computed per trial in the electrodes in the occipital, frontal, central, temporal 328 
regions in the frequency bins: Delta:[1-4 Hz], Theta:[4-7 Hz], Alpha:[7-12 Hz], Sigma:[12-16 Hz], 329 

Gamma:[16-30 Hz] 330 

𝐶(𝑡, 𝑓) =
|𝑆𝑖𝑗 (𝑡, 𝑓)|2

𝑆𝑖𝑖 (𝑡, 𝑓). 𝑆𝑗𝑗 (𝑡, 𝑓)
 331 

Where 𝐶(𝑡, 𝑓) represents the coherence value at trial 𝑡 and frequency band 𝑓 332 

 𝑆𝑖𝑗  represents cross power spectral density between signal 𝑖  and 𝑗  333 

 𝑆𝑖𝑖 , 𝑆𝑗𝑗    represents auto power spectral density. 334 

After the detection of the drowsy trials using the above mentioned features, the following 335 

detectors are used to further subclassify them into drowsy (mild) and drowsy (severe). 336 

 337 

 338 

 339 
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2.6.5. Grapho element detectors 340 

2.6.5.1. Vertex-wave-detectors 341 

Both monophasic and biphasic waves were detected using the parietal electrodes. The signal was 342 

first resampled to 100 Hz and then filtered from 0.25-6 Hz. After which the signal in each trial 343 

was further scaled with respect to its minima. Peaks that are above a specific threshold are then 344 

detected and  the negative peaks are used to classify the elements as mono or biphasic 345 

(algorithmic, parametric details described in supplementary methods) 346 

2.6.5.2. Spindle detectors 347 

Spindles were detected using the temporal electrodes. The signal was first resampled to 100 Hz 348 

and then a continuous wavelet transform using morlet function as the mother wavelet was 349 

applied. The coefficients of this transform are then normalized and then further provided a rank 350 

according to the magnitude. Each rank is further normalized to compute the probability of the 351 

spindle occurrence at each time point. Further spindle locations are pruned using a snapshot of 352 

the detected location (algorithmic, parametric details described in supplementary material). 353 

2.6.5.3. K-complex detectors 354 

K-complexes were detected using all the electrode sites in Fig 3(B). The signal was first resampled 355 

to 100 Hz and then filtered from 0.25-6 Hz. After which the signal in each trial was further scaled 356 

with respect to its maxima. Peaks that are separated by at least 1.5 sec and below a specific 357 

threshold are then detected. Further to which peaks above a specific threshold in the next 1.5 sec 358 

are detected. The positive peak should be at least half of the magnitude of the negative 359 

(algorithmic, parametric details described in supplementary material).  360 

In summary a total of 32 features (12 from predictor variance; 20 from coherence) are used in 361 

the first stage detection of alert trials from drowsy trials. After the drowsy trials are parsed by 362 

the element detectors, the spindle elements are pruned again by a separate SVM using the same 363 

32 features as above (depicted in Figure 3(D)). 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 
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3. Results 375 

3.1. Manual Hori-scoring 376 

In order to measure the reliability of scores given by the 3 different raters on different subjects 377 

in Dataset#1 we used two different measures of inter-rater agreement (Fig 4).  378 

Firstly, we used Krippendorff’s alpha to compute the agreement between the 3 raters (A, B, C) per 379 

subject of Dataset#1.  In general alpha scores of above 0.8 are reliable and those between 0.8 and 380 

0.667 can only be used to draw tentative conclusions (Giannantonio, 2010). We can observe from 381 

Fig 4(A) that at least 9 subjects are below 0.667 (mean 0.65) indicating the unreliable nature of 382 

scoring each subject among raters. Secondly, we used Cohen’s kappa score (weighted) to measure 383 

the degree of inter-rater agreement between pairs of raters (AB, AC, BC) of Dataset#1. In general 384 

kappa values of above 0.8 are considered strong, between 0.8 and 0.4 as strong to weak, below 385 

0.4 as poor (McHugh, 2012). We can observe from Fig 4(B) that at least 12 subjects are below 0.4 386 

in the various scorer pairs again indicating the unreliable nature of scoring per subject among 387 

raters. 388 

In particular the degree of disagreement was high for subjects that didn’t have a dominant alpha, 389 

thereby affecting the ability to rate the Hori scores as (1,2,3). For other subjects the degree of 390 

disagreement mainly arose due to the mislabelling of graphical elements. Examples of such 391 

typical cases of grapho elements are shown in Fig 4(C, D, E). 392 

3.2. Automatic method 393 

3.2.1. External Validation: Spindle, K-complex detectors  394 

The Spindle, K-complex detectors were validated externally using the DREAMS database along 395 

with other state of the art algorithms (Devuyst et al., 2011, 2010; Tsanas and Clifford, 2015) 396 

(detailed validation method in supplementary material). The validation results are shown in Fig 397 

5. This validation ensured the element detectors perform on par with the state of the art methods. 398 

The parameters used in spindle, k-complex detectors (like spindle duration, k-complex amplitude 399 

etc.) were fixed with respect to the external databases and the same parameters were used in the 400 

validation of both Dataset #1, #2. 401 

3.2.2. Validation: Dataset#1   402 

After the group consensus rule (sec 2.6.1) was applied on Dataset#1, the number of trials in the 403 

gold standard dataset in each class were: Alert:475, Drowsy(mild):1104, Drowsy(severe):281. 404 

Around 1306 trials (40%) did not have a consensus rating and hence were ignored from further 405 

analyses. This shows that about 40% of the overall trials didn’t have any consensus among the 3 406 

different raters, further adding evidence to the disagreement among scorers mentioned in section 407 

3.1. 408 

Trials from all participants in Dataset#1 were first collated and then partitioned into 5 folds. The 409 

partition was made using stratified sampling such that the overall representation of sub-classes 410 

remained similar in each fold.  The training set further constituted of the first 4 folds and the test 411 

set consisted of the 5th fold.  This procedure was repeated for 5 times as described in Fig 6(A). 412 

For each iteration the performance measures like sensitivity, specificity, f-1 scores were 413 

generated and the results are shown in   Fig 7(A, B, C). 414 
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3.2.3. Independent validation: Dataset#2   415 

We decided to validate the algorithm (trained using dataset#1) on an independent dataset#2 to 416 

test its generalisability. This would mean that the hyper parameters (γ, C), support vectors 417 

trained using dataset#1 were directly applied on the dataset #2 without retraining.  The number 418 

of trials in dataset#2 in each class were: Alert: 6049, Drowsy(mild): 7200, Drowsy(severe): 475. 419 

The dataset was divided into 5 folds using stratified sampling as before. The set#1 consisted of 420 

the first 4 folds and the set#2 consisted of the 5th fold. Thus set#1 contained atleast 4 times the 421 

number of trials in set#2 and hence similar in composition to the train and test sets in dataset #1 422 

where train had at least 4 times the number of trials in test set. The same procedure was repeated 423 

5 times as described in Fig 6(B). For each iteration the performance measures like sensitivity, 424 

specificity, and f-1 scores were generated and the results are shown in Fig 7(D, E, F). 425 

The above mentioned methods in Dataset#2 tend to validate the automatic method against the 426 

human scorer. However, to claim that the automatic method out performs the human scorer in 427 

Dataset#2, we decided to further validate the same against an independent measure of 428 

drowsiness. Coefficient of variation (CoV) in reaction times has been used previously to measure 429 

drowsiness and is independent of both the observer and the algorithm’s pre-trial information 430 

(Bareham et al., 2014). We separated the trials among different classes of drowsiness using both 431 

the automatic and manual method. Further, CoVs were computed per participant for all classes 432 

(generated both by automatic and manual method) that contained at least 10 trials. Repeated 433 

measures ANOVAs on classes from automatic method yielded a main effect of drowsiness on CoV 434 

with F(2,22) = 9.25, p< 0.01. Post-hoc tests (Bonferroni corrected for multiple comparisons) 435 

yielded differences between mild and severe drowsiness (Cohen’s d: -0.95, p< 0.05), alert and 436 

severe drowsiness (Cohen’s d: -0.91, p< 0.05). However, the manual method failed to produce any 437 

main effect of drowsiness on CoV with F(2,8) = 1.2 with p> 0.05. These measures shown in Fig 438 

7(G), clearly indicate the utility of the automatic method over manual scoring. 439 
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 440 

Fig 4: Inter-rater agreement among different scorers (A,B,C). (A) depicts agreement measured using 441 

Krippendorff’s alpha. Each data point refers to score from a single subject. (B) depicts agreement 442 

measured using Cohen’s kappa. Each data point refers to kappa scores from a single subject based 443 

on a pair of two different scorers. Inter-rater disagreement is typically caused due to 444 

misclassification of Grapho elements: (C) depicts typical Vertex wave agreement/disagreement 445 

among scorers highlighted in red. (D) depicts typical Spindle element agreement/disagreement 446 

among scorers highlighted in magenta. (E) depicts typical K-complex agreement/disagreement 447 

among scorers highlighted in cyan. Full agreement refers to cases where all 3 raters agree, Partial 448 

agreement refers to cases where 2 of them agree, and false positives refer to cases where at least one 449 

of the rater misclassifies an element. 450 
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 451 

Fig 5: Performance validation of grapho-element detectors with online database (DREAMS). The 452 

spindle detector was validated with state of the art algorithms from (Devuyst et al., 2011; Tsanas 453 

and Clifford, 2015). The rank* algorithm developed in this paper performs comparably to the 454 

above mentioned algorithms. The K-complex detector was validated with state of the art algorithms 455 

from (Devuyst et al., 2010). The peak* algorithm developed in this paper performs comparable to 456 

the above mentioned algorithms. 457 

 458 

 459 

Fig 6: Curation of test and train datasets. (A) depicts creation of test and train dataset using Dataset 460 

#1 by five-fold stratified partition and this procedure is repeated for 5 times to produce validation 461 

measures. (B) depicts creation of Set #1, Set#2 using Dataset #2 by five-fold stratified partition and 462 

Set#1 is created by merging the first four sets and fifth set is constituted as Set #2 and this procedure 463 

is repeated for 5 times to produce validation measures. 464 
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 465 

Fig 7: Validation measures of the automatic algorithm. Validated with Dataset#1 using steps 466 

described in Fig 6(A). Results are depicted in the figure (A,B,C). The automatic algorithm was 467 

validated in an independent manner using Dataset#2 using steps described in Fig 6(B). Results are 468 

depicted in the figure (D,E,F). Validation with an independent measure (Coefficient of variation in 469 

reaction times) shows the algorithm reliably detecting differences (using repeated measures 470 

ANOVA) better than the manual scoring in figure G. ns: denotes p>0.05, * denotes p<0.01 (bonferroni 471 

corrected) 472 
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4. Discussions and Conclusions  473 

In this paper, we have first described the pervasive problem of varying levels of alertness during 474 

cognitive experiments, particularly during eyes closed experiments. Such a scenario is further 475 

exacerbated in resting state EEG recordings. In many cases data from such experiments are used 476 

to compute measures like connectivity etc. that may further be contaminated by participants 477 

falling asleep (Tagliazucchi et al., 2012). This situation potentially contributes to wider problems 478 

faced by the scientific community such as the replication crisis. 479 

In the past the problem of extreme relaxation and drowsiness has been sometimes ignored by 480 

cognitive scientists, who only take this confound into account by looking at reaction times and 481 

removing the sections where the participant was not responding or was too slow. Apart from 482 

visible changes in reaction times, there are changes in important processes like attention and 483 

perception as the participant drifts across varying levels of alertness (Goupil and Bekinschtein, 484 

2012). Hence it is of paramount importance to control for varying levels of alertness. We have 485 

tried to solve this problem in an objective manner as follows.  We first described the use of Hori 486 

scale that has been validated previously to detect the levels of alertness during the sleep onset 487 

process. However, the Hori scoring with 4 sec epochs is impractical to perform as it is highly 488 

subjective and time consuming (Ogilvie, 2001). In a typical experiment of about 600 trials well 489 

trained scorers take at least a day to score a single subject, and training new scorers takes atleast 490 

a month before they can be used for scoring.  Using 3 independent raters on Dataset#1 we further 491 

quantified the inter-rater agreement using Krippendorff’s alpha and Cohen’s kappa metrics to 492 

show poor levels of agreement among the raters. This motivated us to develop an algorithmic 493 

solution that can be used to measure the level of alertness in a reliable manner. 494 

Other attempts in the past to detect varying level of alertness using algorithms have suffered from 495 

several disadvantages. Firstly, such rule based algorithms (Olbrich et al., 2009) have validated 496 

their system using physiological measures like heart-rate variability etc. This further adds a layer 497 

of confound as measures of alertness need to be related again with physiological measures. 498 

Secondly, other algorithms (Crisler et al., 2008; Gudmundsson et al., 2005; Tagliazucchi et al., 499 

2012) have been developed using traditional sleep stage based scoring. Such systems suffer from 500 

lack of resolution as they are validated with sleep scoring techniques that use 30 sec epochs. Thus 501 

they are unsuitable to match the micro dynamics in alertness observed during cognitive tasks. To 502 

our knowledge this is the first time an algorithmic solution has been attempted to measure 503 

varying levels of alertness and simultaneously verified using a previously well validated system 504 

like Hori. 505 

In the current work we have shown that predictor variance, coherence and grapho element 506 

detectors allow us to micro measure the level of alertness. We have constructed a classifier based 507 

on SVM and individual element detectors and have achieved sensitivity, specificity, f1-score of 508 

more than 0.8 in all subclasses (alert, drowsy (mild), drowsy (severe)) with respect to manual 509 

Hori scoring (gold standard from different raters). We have also validated our algorithm with a 510 

second independent dataset using different task conditions and recording electrode sites (using 511 

the same hyper parameters and support vectors trained using the first dataset). This produced a 512 

sensitivity, specificity, and f1-score of more than 0.7 in all subclasses. The main reason the 513 

performance reduces for drowsy (severe) subclass in dataset#2 is due to the lack of a gold 514 

standard comparison and fewer trials in this category. As the dataset#2 is scored only by one 515 

person it is prone to error (in a fashion similar to dataset#1 as depicted by varying levels of 516 

interrater agreement in Fig 4). This motivated us to show that our algorithm outperforms the 517 

manual scorer. Hence we employed a previously established independent behavioural measure 518 

of drowsiness using CoV in reaction times. We further showed that the automatic algorithm 519 
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captures the variations in CoV better than the manual scorer in Fig 7(G). This stands testament to 520 

the generalisability of our method in detecting alertness levels across new datasets. 521 

However, the use of Hori scale as validator has some disadvantages. Firstly, it is difficult to detect 522 

Hori stages (1-3) on participants who lack prominent alpha waves (Ogilvie, 2001). This would 523 

make these participants difficult to score manually, thereby explaining the lower sensitivity of 524 

the algorithm in the Drowsy (mild) subclass compared to the other classes. However, this is a 525 

problem for the human scorer, as the automatic algorithm is relatively immune to this problem, 526 

as it operates on relative variances across different bands rather than raw amplitude. Secondly, 527 

it has also been reported that the Hori stage (4) also doesn’t last long and hence is difficult to 528 

score (Ogilvie, 2001). Such samples would have had a high level of disagreement among scorers 529 

and hence would have been ignored while computing the gold standard dataset. Consequently, 530 

the difficult trials would not have been used for training the algorithm and hence it may not be 531 

able to detect any such trials in a new dataset. Thirdly, one of the main reasons for validating the 532 

algorithm with 3 subclasses is mainly due to lack of consensus in individual grapho elements. In 533 

order to truly validate the grapho elements we would need a dataset rich in those elements and 534 

also scorers who are able to consistently detect the grapho elements in a correct fashion.  535 

The automatic algorithm devised here could be improved in several ways. Firstly, the current 536 

algorithm uses SVM with RBF kernels; other kernel choices like polynomial functions could be 537 

evaluated for making the optimal choice. Secondly, we performed only basic preprocessing of the 538 

pre trial data. However, it is well known that artifacts like eye movement, sweating, and muscle 539 

artifacts can contribute to noise in the data.  Hence the performance of the algorithm would 540 

improve if noise reduction measures are employed. However, we didn’t employ such measures 541 

as they are not standardized and we wanted to establish that the performance of the algorithm is 542 

robust under all conditions and hence performing specific pre-processing steps should not be an 543 

impediment for users of our method.  Thirdly, we could also try to reduce the duration of epochs 544 

considered for labeling e.g. we can check the classification accuracies of signal durations of 1, 2, 3 545 

secs etc. However, validating the same would be difficult as we also need to redo the human 546 

scoring with the corresponding reduced length of epochs. Fourthly, the automatic algorithm has 547 

been developed only for eyes closed condition. But many cognitive experiments have eyes open 548 

conditions and participants are also known to fall asleep under such active paradigms. The 549 

algorithm could be adapted for such paradigms; however detailed validation needs to be 550 

performed with other parallel measures of drowsiness like eye-tracking (as the Hori scale has not 551 

been validated for such purposes). Fifthly, the algorithm could further be refined to produce 552 

stages analogous to individual Hori stages. This would be helpful for researchers studying the 553 

sleep onset process in an objective manner as many complex non-linear changes in behaviour are 554 

known to occur in individual Hori stages (Noreika et al., 2017b). Finally, for quick paced 555 

experiments (short pre-trial periods), the parameters for detecting certain graphoelements 556 

(vertexes, k-complexes) are flexible to account for the shorter duration of the signal. 557 

The applications of the algorithm include the following. Firstly, pre-trial data can  be computed 558 

from task data (cognitive experiments) and the non-alert trials can  be removed thus controlling 559 

for the effects of change in alertness levels. Secondly, we can  detect and remove non-alert periods 560 

of data from resting state EEG experiments in a reliable manner. Thirdly, we can measure 561 

alertness as an independent variable and measure its effect on measures of interest. Fourthly, the 562 

method circumvents the subjective nature of the manual Hori scoring and thus enables to study 563 

the transition to sleep in an objective way. One of the most interesting aspects is the 564 

generalisability of the SVM classifier and other element detectors to the independent dataset#2, 565 

showing the high degree of transferability of this method, without having to retrain the classifier. 566 

Fifthly, when combined with online stimulus delivery techniques, the ability of our method to 567 
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detect grapho elements (vertex, spindles, k-complexes) also allows us to investigate the effects of 568 

these elements on cognitive processes, for example by modulating the stimulus delivery 569 

according to the occurrence of these elements. Finally, sleep researchers can use this method for 570 

detecting N1 periods in the beginning of the night as well as awakenings and N1 periods during 571 

the full night period; further, they can also validate the detection of N2 periods by using the 572 

appearance of specific graphoelements (spindles, k-complexes).  573 

All of the above mentioned facets make our method a powerful solution that can be used to micro 574 

measure varying alertness levels and thereby providing a valuable contribution to the study of 575 

both cognitive and resting state EEG experiments at large. 576 

 577 
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6.  Supplementary methods 694 

6.1. Vertex wave detectors 695 

The two kinds of vertex waves depicted in Fig 2(B) are detected using the algorithm in Fig 8(A). 696 

As there was no online database available for vertex sharp waves it was not validated 697 

independently. 698 

6.2. Spindle detectors 699 

The spindles are detected using the algorithm in Fig 8(B). The algorithm was validated against an 700 

online database (DREAMS) (Devuyst et al., 2011) The data in the .edf format was first converted 701 

into EEGLAB format and was filtered from 0.5 - 20 Hz. The data was further resampled to 100 Hz 702 

and further epoched for each 4 sec. The gold standard dataset was created by merging the 703 

annotations from two experts for all the eight excerpts in the database. Our spindle detection 704 

algorithm was then validated against this gold standard along with state of the art methods that 705 

have already been validated against the same database (Devuyst et al., 2011; Tsanas and Clifford, 706 

2015) 707 

6.3. K-complex detectors 708 

The Kcomplexes are detected using the algorithm in Fig 8(C). The approach developed here is 709 

similar (in terms of minima detection) to detectors developed elsewhere (Lajnef et al., 2015). The 710 

algorithm was validated against an online database (DREAMS) (Devuyst et al., 2010). The data in 711 

the .edf format was first converted into EEGLAB format and was filtered from 0.5 - 20 Hz. The 712 

data was further resampled to 100 Hz and further epoched for each 4 sec. The gold standard 713 

dataset was created by merging the annotations from two experts for the five excerpts in the 714 

database. Our kcomplex detection algorithm was then validated against this gold standard along 715 

with state of the art methods that have already been validated against the same database 716 

(Devuyst et al., 2010) 717 
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 718 

Fig 8: (A) Vertex wave detector algorithm. The preliminary step involves resampling, filtering and 719 

scaling of the signal to identify the peaks in the signal. Further the specific characteristics of the 720 

peaks are used to identify mono and biphasic vertex waves. (B) Spindle detector algorithm. The 721 

preliminary step involves resampling and using wavelet transform to identify the regions with high 722 

probability of occurrence of spindle waves. Further the specific characteristics of the waves are used 723 

to prune them. (C) K-complex detector algorithm. The preliminary step involves resampling, filtering 724 

and scaling of the signal to identify the peaks in the signal. Further the specific characteristics of the 725 

peaks are used to identify k-complex waves. 726 
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