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Highlights: 

• ERP and DCM study of two sensory plasticity paradigms: roving MMN and visual 

LTP 

• First demonstration of multiple learning mechanisms under different task demands 

• Evidence for both Predictive Coding and Hebbian learning mechanisms  

• The BDNF Val66Met polymorphism modulates ERPs for both paradigms  

• However, the polymorphism only modulates MMN network connectivity 
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The Roving Mismatch Negativity (MMN), and Visual LTP paradigms are widely used as 

independent measures of sensory plasticity. However, the paradigms are built upon 

fundamentally different (and seemingly opposing) models of perceptual learning; namely, 

Predictive Coding (MMN) and Hebbian plasticity (LTP). The aims of the current study were 

to 1) compare the generative mechanisms of the MMN and visual LTP, therefore assessing 

whether Predictive Coding and Hebbian mechanisms co-occur in the brain, and 2) assess 

whether the paradigms identify similar group differences in plasticity. Forty participants were 

split into two groups based on the BDNF Val66Met polymorphism and were presented with 

both paradigms. Consistent with Predictive Coding and Hebbian predictions, Dynamic Causal 

Modelling revealed that the generation of the MMN modulates forward and backward 

connections in the underlying network, while visual LTP only modulates forward connections. 

Genetic differences were identified in the ERPs for both paradigms, but were only apparent in 

backward connections of the MMN network. These results suggest that both Predictive Coding 

and Hebbian mechanisms are utilized by the brain under different task demands. Additionally, 

both tasks provide unique insight into plasticity mechanisms, which has important implications 

for future studies of aberrant plasticity in clinical populations.  

 

Keywords: Dynamic Causal Modelling, Long Term Potentiation, Mismatch Negativity, 

Neuroplasticity, Perceptual Learning. 
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1. Introduction 

Perceptual learning relies on the structural and functional modification of neural 

networks in response to external stimulation (Fahle, 2004). This experience-dependent 

neuroplasticity within the sensory systems provides an opportunity to non-invasively study the 

mechanisms underlying neuroplasticity throughout the brain. However, different external 

demands (e.g., task demands) may elicit different encoding mechanisms (Koch & Poggio, 

1999) and to date, the differences between such mechanisms have not been characterized.       

The most widely studied form of neuroplasticity is Long Term Potentiation (LTP). LTP 

refers to an activity dependent increase in synaptic efficacy following repeated neuronal co-

activation, and is dependent on an influx of Ca2+ through N-methyl-D-aspartate receptors 

(NMDAR) leading to long term alterations in cell structure and function (Bliss & Lømo, 1973; 

Cooke & Bliss, 2006; Teyler & DiScenna, 1987).	 Importantly, LTP conforms to many Hebbian 

characteristics such as input-specificity, co-activation and associativity (Hebb, 1949). As such, 

Hebbian LTP is regarded as the most likely neuronal mechanism underlying memory 

formation.  

LTP has been primarily studied in laboratory animals using direct neuronal electrical 

stimulation (Bliss & Lømo, 1973; Figurov, Pozzo-Miller, Olafsson, & others, 1996; Harris, 

Ganong, & Cotman, 1984; Kirkwood & Bear, 1994; Teyler & DiScenna, 1987).	However, 

following the demonstration of visually-induced enhancements in the neural activation of 

rodents (Heynen & Bear, 2001), Teyler et al., (2005) presented one of the first 

electroencephalography (EEG) paradigms for measuring LTP-like mechanisms noninvasively 

in humans. High frequency (~9Hz) visual stimulation was used to induce an enhancement of 

the visually evoked potential (VEP) to later low frequency (~1Hz) presentations of the same 

stimulus. Subsequent human and rodent studies have demonstrated that this visually-induced 
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enhancement conforms to many of the Hebbian characteristics seen in rodent LTP such as 

longevity, NMDAR dependence (Clapp, Eckert, Teyler, & Abraham, 2006) and input 

specificity (McNair et al., 2006; Ross et al., 2008). Furthermore, this paradigm has been used 

to demonstrate modulated plasticity in healthy and clinical populations (Çavuş et al., 2012; 

Normann, Schmitz, Fürmaier, Döing, & Bach, 2007; Smallwood et al., 2015; Spriggs, 

Cadwallader, Hamm, Tippett, & Kirk, 2017). Together, this body of human and rodent studies 

indicates that this visually induced enhancement represents the induction of a Hebbian LTP-

like form of neuroplasticity (Clapp, Hamm, Kirk, & Teyler, 2012; Kirk et al., 2010).  

While potentiation of the VEP has been well characterized, modulations to the 

underlying network remain largely unexplored. Both EEG source localization and functional 

magnetic resonance imaging (fMRI) have localized the LTP-like enhancement to extrastriate 

visual cortex (Clapp et al., 2005; Teyler et al., 2005). From extrastriate visual cortex, the ventral 

and dorsal visual streams extend to the medial temporal lobe and parietal lobe respectively 

(Felleman & Van Essen, 1991; Grill-Spector & Malach, 2004). Experience-dependent 

plasticity within these networks is understood to underlie visual perceptual learning (Fahle, 

2004; Kourtzi & DiCarlo, 2006), with changes occurring at some of the earliest levels of 

cortical processing (Cooke & Bear, 2014; Kourtzi & DiCarlo, 2006). The ventral visual stream 

is understood to support object recognition, and is closely intertwined with medial temporal 

memory networks (Desimone et al., 1985; Felleman & Van Essen, 1991; Grill-Spector & 

Malach, 2004; Kourtzi & DiCarlo, 2006).	As such, one can speculate that LTP-induction will 

enhance connectivity within this ventral visual network.  

The characteristics of Hebbian plasticity provide a framework for long-term, 

experience-dependent enhancements in synaptic responses. However, Hebbian plasticity is not 

the only mechanism for experience-dependent plasticity in the neocortex, and growing 

emphasis is being placed on Bayesian models of perceptual learning. Such models propose that 
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the brain is equipped with a generative model, which is built upon prior expectations extracted 

from sensory data and provides a mapping of (hidden) cause to (sensory) consequence (Friston, 

2005; Knill & Pouget, 2004). The Predictive Coding model proposes that prediction errors are 

used to adjust the generative model until divergence is minimized; allowing for an accurate 

model of the cause of incoming information (Bastos et al., 2012; Friston, 2005; Garrido, Kilner, 

Stephan, & Friston, 2009a; Huang & Rao, 2011). The reduction of prediction error is dependent 

on the passing of top down predictions and bottom up prediction errors through hierarchical, 

reciprocally connected networks. Neurocomputational modelling of prediction errors suggests 

that top-down predictions are expressed through NMDAR and GABAergic pathways, while 

bottom up prediction errors rely on fast feedback via AMPA receptors (Corlett, Honey, & 

Fletcher, 2016).  Under the Predictive Coding framework, experience-dependent plasticity 

corresponds to the reciprocal updating of internal models of the environment through these 

pathways.     

The most studied empirical example of Predictive Coding in the brain is the Mismatch 

Negativity (MMN). The MMN is a large, fronto-central negativity induced by a surprising or 

‘deviant’ tone following a sequence of predictable or ‘standard’ tones, (Garrido, Kilner, 

Stephan, et al., 2009). The widely used ‘roving MMN’ paradigm involves the presentation of 

trains of tones of the same frequency, where the first (deviant) tone in each train induces the 

MMN response, and this subsequently returns to a standard response over successive 

presentations. Under the predictive coding framework, the MMN represents a failure to predict 

bottom-up sensory input and, consequently to suppress prediction error (Friston, 2005; 

Garrido, Kilner, Stephan, et al., 2009). In support of this, previous studies have demonstrated 

that the MMN is generated by modulations in intrinsic auditory cortex (A1) connectivity, as 

well as reciprocal message passing within a fronto-temporal network (Auksztulewicz & 

Friston, 2015; Garrido et al., 2008; Garrido, Kilner, Kiebel, Stephan, & Friston, 2007; Moran, 
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Symmonds, Dolan, & Friston, 2014; Schmidt et al., 2013). This suppression of prediction error 

corresponds to perceptual inference (Auksztulewicz & Friston, 2016; Garrido, Kilner, Stephan, 

& Friston, 2009). The MMN paradigm has been used to demonstrate disrupted perceptual 

inference in clinical populations (Boly et al., 2011; Dima, Dietrich, Dillo, & Emrich, 2010) and 

under pharmacological intervention (Rosch, Auksztulewicz, Leung, Friston, & Baldeweg, 

2017; Schmidt et al., 2013).  

While investigating the MMN alone indexes plasticity over peri-stimulus time, the 

roving MMN paradigm allows additional exploration of changes in the mismatch response over 

successive trials. Under Predictive Coding, repetition-dependent changes are a means by which 

the generative model is optimized to provide a more accurate and precise model of sensory 

inputs. The optimization of the model parameters (and the precision of predictions) across 

repetitions corresponds to perceptual learning (Auksztulewicz & Friston, 2016; Garrido, 

Kilner, Stephan, et al., 2009). These precision parameters are mediated by a number of different 

neuromodulators including dopamine, acetylcholine, and serotonin (Corlett et al., 2016; 

Friston, Brown, Siemerkus, & Stephan, 2016; Moran et al., 2013). Pharmaco-EEG studies 

using Ketamine (a NMDA antagonist at low doses) have also demonstrated the strong 

relationship between the balance of NMDAR signaling and the repetition effects (Rosch et al., 

2017; Schmidt et al., 2013). Ketamine, has been found to modulate NMDA- and AMPA- 

mediated frontal-to-parietal connectivity as well as NMDA-mediated GABAergic inhibitory 

interneuronal connectivity within frontal microcircuits (Muthukumaraswamy et al., 2015; 

Rosch et al., 2017). Studies employing the roving MMN paradigm have also have demonstrated 

that repetition dependent changes in intrinsic (precision) and extrinsic (prediction error) 

connectivity occur very quickly, implicating short-term plasticity mechanisms (Garrido, 

Kilner, Stephan, et al., 2009; Rosch et al., 2017; Schmidt et al., 2013).Together, the roving 

MMN paradigm can thus be used as an index of both perceptual inference (the MMN itself) 
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and perceptual learning (repetition suppression) which jointly index sensory plasticity under a 

Predictive Coding framework.  

As illustrated above, both Hebbian and Predictive Coding mechanisms have been 

independently implicated in perceptual learning and the visual LTP and roving MMN 

paradigms were designed to index these models respectively. However, the two models are 

built upon fundamentally different assumptions of how perceptual learning is encoded in the 

brain; primarily, while Predictive Coding is dependent on updating an internal, generative 

model, Hebbian plasticity is not. The coexistence of Hebbian and Predictive Coding 

mechanisms has been explored in models of cortical responses such as the Free Energy 

Principle (Friston, 2005, 2009, 2010). Under the Free Energy Principle, Predictive Coding and 

Hebbian mechanisms are used to define hidden states and causes of an internal generative 

model respectively (Bastos et al., 2012;  Friston, 2010). However, it may be possible that 

Hebbian processes can occur independent of a generative model, and that the brain may employ 

different encoding mechanisms for different tasks (Koch & Poggio, 1999). As such, the first 

aim of the current study was to compare the mechanisms underlying the generation of the 

MMN using the roving MMN paradigm, and the potentiated VEP using the visual LTP 

paradigm. It was hypothesized that the paradigms would induce different changes within the 

underlying neural network. Specifically, as the primary difference between Hebbian and 

Predictive Coding models is dependence on a generative model, it was hypothesized that the 

paradigms would differ in their modulation of top-down connectivity.   

An important assumption of studies using these paradigms with clinical populations is 

that they are sensitive to aberrant plasticity. However, under the hypothesis that the brain uses 

both Predictive Coding and Hebbian mechanisms in different circumstances, it is unclear 

whether aberrant plasticity will manifest uniformly across these encoding mechanisms. As 

such, a secondary aim of the current study was to assess the consistency of group differences 
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across the two paradigms. Participants were split into two groups based on the BDNF 

Val66Met polymorphism. The BDNF gene codes for Brain Derived Neurotrophic Factor; an 

important molecular mediator of neural plasticity (Goldberg & Weinberger, 2004; Park & Poo, 

2013; Tyler, Alonso, Bramham, & Pozzo-Miller, 2002). Approximately 25-50% of the 

population  carry the rs6265 single nucleotide polymorphism (SNP) (4-16% homozygous) 

which substitutes valine to methionine at codon 66 (known as Val66Met) (Goldberg & 

Weinberger, 2004; Shimizu, Hashimoto, & Iyo, 2004). The Met allele of the SNP is associated 

with reduced secretion of BDNF, and thus has previously been implicated in the efficacy of 

NMDAR-dependent neuroplasticity and memory performance (Chen et al., 2004; Egan et al., 

2003; Hariri et al., 2003; Lamb et al., 2015). Previous studies conducted in our lab using the 

LTP paradigm have demonstrated reduced potentiation of the N1b component of the VEP in 

BDNF Met carriers (Thompson et al., in prep). Soltész et al., (2014) assessed the effect of the 

Val66Met polymorphism on the MMN and found no effect on MMN amplitude. There was 

however, no analysis of repetition suppression. Because repetition suppression is NMDAR 

mediated, it is reasonable to hypothesize that there may be an effect of the Val66Met 

polymorphism. Furthermore, neither of the above studies assessed genotype differences in 

connectivity modulation in the networks generating the ERPs, and it was hypothesized that 

group differences would also be apparent in the modulation of connectivity by the two 

paradigms.   
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2. Materials and Methods 

2.1. Participants. 44 male and female participants volunteered for the study (age range: 

19-33, 33 female and 7 male; the imbalance in gender split is due to overlap of participants 

with another study). Four participants were excluded from the final analysis due to insufficient 

data quality, leaving a final sample of 40. Participants were required to have no history of 

neurological conditions or concussion, and normal or corrected to normal vision. This study 

was approved by the University of Auckland Human Participants Ethics Committee. 

Participants provided informed written consent prior to participation.  

2.2. Genotyping. Saliva samples were collected using Oragene Self Collection kits. 

DNA was extracted and genotyped for BDNF Val66Met by the Auckland Sequenom Facility 

using the TaqMan 5’-exonuclease assay. Primers and TaqMan probes were from Applied 

Biosystems Inc. Electrophoresis was used to determine the genotype for each participant. From 

this, participants were split into two groups defined by BDNF Val66Met genotype: Val 

homozygotes (Val/Val N = 21), and Met carriers (Val/Met N= 13, Met/Met N= 6). The 

grouping of Met homozygotes and heterozygotes into a single group is due to the low 

prevalence of Met homozygotes in the general population (4-16%, Shimizu et al., 2004), and 

is consistent with a large body of previous literature (Kambeitz et al., 2012).  

2.3. Equipment. EEG data were collected using 64 channel Acticap Ag/AgCl active 

shielded electrodes and Brain Products MRPlus amplifiers recorded in Brain Vision Recorder 

(Brain Products GmbH, Germany) with a 1000Hz sampling rate, and 0.1µV resolution. FCz 

was used as an online reference, AFz as ground. Electrode impedance was maintained below 

25kΩ.  

Stimuli were displayed on an ASUS VG248QE computer monitor with a screen 

resolution of 1920 x 1800 and 144Hz refresh rate. TTL pulses generated through the parallel 
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port of the display computer provided synchronisation of stimulus events with EEG 

acquisition. 

2.4 Tasks. All participants were presented with both the MMN and LTP task. To avoid 

carry-over effects, the presentation order was such that for 25% of participants the MMN task 

preceded the LTP task, for 25% it followed the LTP task, and for 50% it took place during the 

rest period of the LTP task. 

2.4.1. Mismatch negativity. EEG was recorded continuously while participants engaged 

in a roving auditory oddball task used to probe the mismatch negativity in response to 

unattended stimuli (Figure 1i; Garrido et al., 2008). The task was written and run in MATLAB 

using the Cogent toolbox (www.vislab.ucl.ac.uk/cogent.php).  

The stimuli consisted of trains of one to eleven identical sinusoidal tones. The first tone 

of each train was treated as the deviant tone (typically producing the classic “oddball” 

response), while tone 6 was treated as standard. As such, the oddball and standard in a given 

train have the exact same physical properties, differing only in the number of preceding 

presentations. The variability in the number of tones in a train prevented higher order regularity 

(such as change anticipation). Pseudo-randomisation of train length produced 250 deviant 

presentations of which, 2.5% had one or no repetitions; 3.75% had 2 and 3 repetitions; and 

12.5% had 5 to 10 repetitions.  

Tone frequency varied within 500 and 800Hz in random steps of integer multiples of 

50Hz. The tones were 70ms in length with a 5ms rise and fall time, and 500ms inter-stimulus 

interval (ISI). Tones were presented binaurally at a constant volume that was adjusted for 

individual participants so that it was clear, and comfortable. 

Participants were instructed to focus on a visual distractor task, where they were 

required to press the spacebar key when they detected a change in stimulus luminance. The 
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stimulus was a small fixation cross that changed luminance pseudo-randomly every 2-5 

seconds (unrelated to auditory changes). The change in luminance appeared as a somewhat 

subtle change between black and grey and therefore demanded substantial attention from the 

participant.  

 

2.4.2. Visual LTP. Sensory LTP was measured using a slight modification of an 

established paradigm for inducing LTP-like enhancements of early VEP components (Figure 

1ii; McNair et al., 2006; Teyler et al., 2005). The task was written and run in MATLAB, using 

the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997), with a gamma 

correction applied to the screen.  

The stimuli used were circular vertical and horizontal sine gratings with a spatial 

frequency of 1 cycle per degree. Stimuli were presented at full contrast on a grey background 

subtending 8 degrees of visual angle. For all conditions participants were seated with their eyes 

90cm from the centre of the screen and were instructed to passively fixate on a centrally 

presented red dot.  

The task comprised four conditions. For the first condition (referred to hereafter as pre-

tetanus), both stimuli were presented in a random order 240 times (480 presentations in total) 

for 34.8ms at a temporal frequency of 1Hz. The interstimulus interval was varied using 5 

intervals from 897-1036ms that occurred randomly but equally often. This condition took 

approximately 8 minutes. 

The second condition was the photic tetanus or high frequency stimulation, and directly 

followed the pre-tetanus condition. This consisted of 1000 presentations of either the horizontal 

or vertical stimulus (counterbalanced between participants) for 34.8ms with a temporal 
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frequency of approximately 9Hz. The interstimulus interval was either 62.6 or 90.4ms 

occurring at random but equally often. This condition took approximately 2 minutes.  

The third condition was an early post-tetanus condition that followed 2 minutes after 

the tetanus, allowing retinal after images to dissipate. The fourth condition was a late post-

tetanus block that took place 30mins after the early post-tetanus condition. Both the post 

tetanus conditions had the same parameters as the pre-tetanus condition, but were split across 

the two time points (240 trials each block as opposed to 480) therefore establishing the change 

in response from baseline both immediately following high frequency stimulation, and after an 

extended break.  Each post-tetanus condition took approximately 4 minutes.   

Figure 1. i) Depiction of the Roving MMN paradigm where the first and sixth tone in each sequence 
act as the deviant and standard respectively.  ii) The condition structure and timing for the LTP task. 
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2.5 Data collection and preprocessing. All preprocessing and data analyses were 

performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Data were 

downsampled to 250Hz and re-referenced to the common average. A 0.1-30Hz bandpass filter 

was used to remove both high and low frequency noise. Eye blinks were identified and removed 

by thresholding electro-oculogram (EOG) channels (or Fp1 and Fp2 when EOG channels were 

not available). Visual artifact rejection was performed using the FieldTrip visual artifact 

rejection tools in SPM.  

2.5.1. MMN. The MMN data were baseline corrected and segmented into 500ms epochs 

(-100 - 400ms). Trials were averaged based on tone repetition, collapsed across frequencies. 

This resulted in averaged responses for tone presentations 1-10. Tone 1 was treated as the 

deviant tone, and tone 6 was treated as the standard tone.  

2.5.2. LTP. The LTP data were baseline corrected and segmented in 600ms epochs (-

100ms – 500ms). Data were then averaged based on stimulus condition (tetanized stimulus, 

non-tetanized stimulus) for each of the three time points independently (pre-tetanus, early post-

tetanus, late post-tetanus). 

 

2.6. Analysis of ERPs. For all analyses, main effects were considered significant at p 

< 0.05 family-wise error corrected (FWE-c). A more liberal threshold is reported for interaction 

effects (p < 0.001 uncorrected). Simple effects tests were conducted as appropriate. Where 

multiple significant peaks occur for the same component, a significant time window is reported, 

taken from the t-distribution and only the most significant peak within a cluster is reported.  

2.6.1. LTP. The preprocessed data were converted into NIfTI images using a time 

window of 0-250ms, and were smoothed using a 6 x 6 x 6 FWHM Gaussian kernel. An initial 

manipulation confirmation of the induction of potentiation was conducted by running a 3 x 2 
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ANOVA that probed the effects of time (pre-tetanus, early post-tetanus, and late post-tetanus) 

and stimulus type (tetanised and non-tetanised). In a subsequent analysis, a 2 x 2 x 2 ANOVA 

that probed the effect of time (early vs late tetanus), tetanus (tetanized vs non-tetanized), and 

genotype (Val homozygotes vs Met carriers) was run using difference waves of early post-

tetanus block minus pre-tetanus and, late post-tetanus block minus pre-tetanus. An occipito-

parietal ROI, informed by the prior analysis and by previous studies (McNair et al., 2006; Ross 

et al., 2008) was used, comprising the following electrodes: P1, P2, P3, P4, P5, P6, P7, P8, Pz, 

PO3, PO4, PO7, PO8, PO9, PO10, POz, O1, O2, and Oz.  

2.6.2. MMN. The preprocessed data were converted to NIfTI images using a time 

window of 0-400ms, and images were smoothed using a 6 x 6 x 6 FWHM Gaussian kernel.   

An initial t-test between deviant and standard (i.e., tones 1 and 6) was conducted to confirm 

elicitation of the MMN ERP. A two-tailed t-test was then run to compare the average amplitude 

of the MMN in response to the deviant tone in BDNF Val homozygotes and Met carriers. 

Finally, to assess tone repetition effects, difference waves were calculated between the deviant 

tone and subsequent tones up to the standard (i.e., tone 2, 3, 4, 5 and 6). A 2 x 5 ANOVA was 

then run that probed the effects of genotype (Val homozygotes, vs Met carriers) on these 

difference waves. Simple effects tests were conducted as appropriate.  

 

2.7. Dynamic Causal Modelling. Dynamic Causal Modelling (DCM) was used to assess the 

network architecture underlying the generation of both the MMN and LTP ERPs. DCM uses 

biologically informed models within a Bayesian framework to infer hidden variables relating 

to the modulation of intrinsic and extrinsic connectivity by exogenous input (Friston, 2003). 

EEG data are modelled as perturbations in a non-linear, dynamic, input-state-output system 

where activity in one source is caused by activity in another. The generative model is comprised 

of a neuronal mass model and an electrophysiological model to determine how the hidden 
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neuronal states translate to what is recorded on the scalp (David et al., 2006; Kiebel, David, & 

Friston, 2006). These biological constraints allow for neurobiologically plausible 

interpretations of ERPs as reflecting modulations of effective connectivity within a network. 

2.7.1. Model Specification. The neuronal mass modelling employed in the current study 

represents neuronal processes as the post-membrane potential and firing rate of three 

subpopulations of excitatory pyramidal cells, spiny stellate cells and inhibitory interneurons. 

The subpopulations are connected within each source via intrinsic connections, and between 

sources via extrinsic connections. Based on the Jansen and Rit model (Jansen & Rit, 1995) and 

the connectivity rules described by Felleman and Van Essen (1991), the directionality of 

extrinsic connections (forward, backward, or lateral) can be determined via the neuronal 

population from which they originate and terminate. These constraints allow for the 

construction of hierarchical cortico-cortical networks, and can be specified as a set of 

differential equations that describe the neural dynamics.   

The neuronal model is then passed through the electrophysiological model, where each 

source is modelled as a single Equivalent Current Dipole (ECD). Lead field mapping is 

parameterized in terms of the location and orientation of each dipole (Kiebel et al., 2006). A 

four concentric sphere head model with homogeneous and isotropic conductivity is used as an 

approximation to the brain, cerebrospinal fluid, skull and scalp surfaces. The orientation 

parameters had a prior mean of zero, and a variance of 256mm2. For computational expediency, 

the sensor data in the current study were reduced to 8 dimensions by projecting the data onto a 

subspace defined by the principle eigenvectors (David et al., 2006).  

The generative model is then inverted using a Variational Bayes scheme to assess 

parameter likelihood given the data and the model for each subject individually (Friston, 2002). 

This involves updating the posterior moments (mean and covariance) to minimize the free 

energy, F; an approximation to the log model evidence. This iterative procedure provides an 
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approximation to the posterior probability of the model parameters p(θ|y,m), as well as an 

approximation to the model evidence p(y|m) used for model comparison. 

2.7.2. DCM statistics. Random effects (RFX) Bayesian Model Selection (BMS) was 

used to identify the model of best fit, using F as an approximation to model evidence. In the 

current study, the protected exceedance probability (PXP) was used as an index of model fit. 

The PXP quantifies the probability that any one model is more frequent than the others above 

and beyond chance (Rigoux, Stephan, Friston, & Daunizeau, 2014). The Bayesian Omnibus 

Risk (BOR) was then used as an index of the probability of having erroneously chosen H1 over 

H0. This is therefore the risk that the observed sample occurred by chance, which is comparable 

(though not equivalent) to a p value in classical statistics. BOR≈0.25 is considered strong 

evidence that there is a true difference in model frequencies (Rigoux et al., 2014).  

Finally, a posteriori estimates of model parameters for the winning MMN and LTP 

models were then used for classical inference on parameter modulation by the paradigms. 

Specifically, estimates from individual parameters were subject to t-tests (p<.05, uncorrected).  

2.7.3. Source identification. Sources for the MMN and LTP paradigms were identified 

using group source inversion within the Multiple Sparse Priors method implemented in SPM12 

(Litvak & Friston, 2008).  The time windows for source localization were chosen for both 

paradigms based on the sensor space data. For the MMN, source inversion was performed on 

a 200-300ms time window post stimulus, which was then subject to a t-test comparing deviant 

(tone 1) to standard (tone 6) (p<.001 uncorrected). For the LTP paradigm, sources were 

identified in two time windows corresponding to the two time windows of interest: 128-132ms, 

and 188-208ms. For both time windows, source images were subject to 2(tetanus) x 3(time) 

ANOVAs and sources of interest were identified for the main effect of time (p<.05 

uncorrected).  
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3. Results 

3.1. MMN.  

3.1.1. ERP analyses. t-tests comparing the standard tone ERP to the deviant tone 

revealed a significant difference between 210-310ms that peaked at 256ms (t(39) = 10.45, p < 

0.001 FWE-c) (Figure 2). The t-distribution revealed a frontal cluster consistent with the MMN 

response. In addition, there was a left lateralized significant time-window of 348-380ms that 

peaked at 352ms (t(39) = 4.57, p < 0.01 FWE-c). 

Figure 2. Averaged ERP across genotype i) the MMN response is significant from 210-310ms and is 
shown by the purple line (deviant) compared to the lightest blue line (standard). ii) The t-distribution 
of the significant MMN response (p < .05 FWE-c).  
 

The t-test of genetic effects on the amplitude of the MMN response to the deviant tone 

revealed no significant differences (FWE-c). 

To assess repetition suppression, a 2 x 5 ANOVA comparing the effect of genotype on 

the difference wave of the deviant tone minus subsequent tones (tone 2, 3, 4, 5, and 6) was 
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performed. There was a significant main effect of tone number (see Supplementary Material) 

and a significant interaction between tone number and genotype.  

Investigating an interaction between subsequent tone number and genotype probes the 

effect of genotype on variability between the difference waves for subsequent tones, thus 

exploring the progression in the ERP to a standard response. The interaction revealed a small 

but significant frontal cluster at 188ms that is consistent with the MMN (F(4, 190) = 4.8, p = 0.001 

uncorrected). A corresponding peak at 192ms (F(4, 190) = 4.77, p = 0.001 uncorrected) was 

identified, which is consistent with the temporal positive deflection that has been reported to 

occur alongside the MMN (Rinne, Alho, Ilmoniemi, Virtanen, & Näätänen, 2000). An 

additional significant cluster (392-400ms) was identified that peaked at 392ms (F(4, 190) = 4.72, 

p = 0.001 uncorrected). This was not found to be consistent with known ERPs in this time 

window such as the P3a and may reflect a late occipital positivity reported in some MMN 

studies (Auksztulewicz & Friston, 2015).  

Post-hoc contrasts were performed that probed the interaction between genotype and 

the variability between each difference wave and it’s directly subsequent neighbor (e.g. tone 2 

difference wave compared to tone 3 difference wave, tone 3 difference wave to tone 4 

difference wave and so on). The purpose of this approach (as opposed to simply comparing the 

amplitude of the response to a tone) is to capture the progression from high variability 

(indicating a prediction error or deviant response) to no significant variability (indicating a 

standard response has developed) between successive tones. In doing so, this analysis examines 

the influence of genetic group on repetition suppression by comparing the time-course of the 

return to standard responding, with a sharper reduction in variability indicating more rapid 

learning of the new tone. An approach that analysed between tone variability, rather than 

simply measuring differences in amplitude between genotypes at each tone, was used because 

of the non-linear fashion with which the ERP returns to a standard amplitude (Figure 2). 
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From these post-hoc contrasts, a comparison of tone 2 to tone 3 between genotypes 

revealed a significant interaction; an occipital cluster from 368-400ms that peaked at 388ms 

(F(4, 190) = 15.16, p < 0.001 uncorrected). This was attributed to the occipital component reported 

above. A contrast of tone 3 compared to tone 4 between genotypes revealed a frontal significant 

interaction from 188-215ms, peaking at 188ms (F(4, 190) = 17.54, p < 0.001 uncorrected) 

consistent with the MMN (Figure 3 and Supplementary Material Figure S1). Within the same 

time-window the corresponding temporal positivity also appeared and peaked at 192ms (F(4, 

190) = 16.00, p < 0.001 uncorrected). This interaction is interpreted as greater variability for Val 

homozygotes (Figure 3i) compared to Met carriers (Figure 3ii) in the repetition effect of the 

MMN. Also within this interaction the occipital time-window of 384-400ms appeared and 

peaked at 384ms (F(4, 190) = 14.68, p < 0.001 uncorrected). There were no significant peaks from 

tones 4-5. There was one frontal left lateralized small peak from tone 5-6 at 380ms (F(4, 190) = 

11.75, p < 0.001 uncorrected). 

Figure 3. The difference between the deviant tone and each subsequent tone at electrode F5 illustrates 
the greater variability for Val homozygotes (i) compared to Met carriers (ii). The solid lines draw 
attention to the interaction capturing the difference between tone 3 and 4 compared to standard for each 
genotype (188-215ms). This indicates Met carriers produce a standard response sooner than Val 
homozygotes.  
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3.1.2. Sources. Source analysis in the current study (Figure 4ii) revealed bilateral 

sources in STG (MNI coordinates left: -62,-30, 16, right: 52, -32, 6) and right IFG (MNI 

coordinates 48, 30 12) (p<.001, uncorrected). Coordinates for A1 sources were taken from 

Garrido et al., (2008) (MNI coordinates left: -42, -22, 7, right: 46, -14, 8). The locations for all 

5 sources were used for subsequent dynamic causal modelling of the evoked responses.  

3.1.3. DCM of the Mismatch response. DCMs were specified to assess the modulation 

of extrinsic and intrinsic connectivity by the deviant tone. DCMs modelled a linear change in 

connectivity for tones 1 (deviant), 3, and 6 (standard). Tone 3 was included to ensure that the 

genetic differences apparent in the ERPs for repetition suppression were captured. Three 

different models of extrinsic modulation were examined: 1) forward, 2) backward, and 3) both 

forward and backward. Each of these were also combined with intrinsic modulation in A1 

being either present or absent. This resulted in 6 models for comparison with BMS (Figure 4i). 

Subcortical input was modelled as entering the system through A1 bilaterally, with a post 

stimulus onset of 64ms. DCMs were modelled for a time-window from 0-400ms.  

RFX BMS revealed that the model with the greatest model evidence was the full model, 

with forward and backward extrinsic modulation, as well as intrinsic modulation in A1 (Figure 

4iii). We note that DCM corrects for the extra parameters in the full-model by accounting for 

the extra degrees of freedom introduced by extra free parameters. The PXP (0.98) provides 

strong evidence in favour of the winning model. The BOR (0.02) provide strong evidence that 

this result did not occur by chance. Classical inference on parameter estimates revealed a 

significant increase in left (t(39)=2.97, p=.005) and right (t(39)=3.02, p=.005) intrinsic A1 

connectivity. Additionally, there was a marginal increase in connectivity from right A1 to right 

STG (t(39)=1.82, p=.076) as well as a marginal decrease in connectivity from right IFG to STG 

(t(39)=-1.85, p=.072) (Figure 4iv).  
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Finally, differences in network modulation between genotype groups were assessed 

using two sample t-tests on the parameter estimates (Figure 4iv). While there was an increase 

in STG to A1 backward connectivity for the deviant tone in Val homozygotes, Met carriers 

showed a decrease in these same connections. These differences were significant on the right 

(t(38)=2.19, p=.035) and marginal on the left (t(38)=1.80, p=.080).  

Figure 4. DCM specification and results for the MMN. i) The 6 models specified to assess the 
modulation of effective connectivity. This included three models of extrinsic modulation (forward (F), 
backward (B) and forward and backward (FB)) with intrinsic modulation in A1 either present (Fi, Bi, 
FBi) or absent. ii) Source localization statistical map for the t-test comparing deviant and standard tones, 
with clusters of significant voxels depicted in warm colours (p<.01 uncorrected). iii) Protected 
exceedance probabilities for the 6 models. BMS indicated that FBi was the winning model. iv) Posterior 
parameter estimates from the winning model. Green arrows depict connections significantly modulated 
by the presentation of the deviant. Orange arrows depict connections that differed in their modulation 
between the genetic groups.  
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3.2. LTP 

3.2.1. ERP analyses. The 2 x 2 ANOVA that probed the effect of time and tetanus 

showed an effect of time that confirmed potentiation had occurred. This included a left 

lateralized parieto-occipital time window from 132-156ms that peaked at 132ms (F(2, 234) = 

17.82, p < 0.001 FWE-c) consistent with the N170 (Figure 5i and i.a). In addition there was an 

occipital time window from 160-236ms that peaked at 188ms (F(2, 234) = 28.86, p < 0.001 FWE-

c) consistent with the P2 component (Figure 5ii and ii.a). There was also a small occipital peak 

at 92ms (F(2, 234) = 28.86, p = 0.037 FWE-c) (Figure 5ii and ii.b). Additional significant clusters 

reflected the dipoles of both the N170 and P2. There was no significant effect of tetanus. There 

were also no significant interactions.  

Post-hoc contrasts for the effect of time revealed a change in an early (90ms) negative 

deflection and the N170 in both post tetanus conditions. A t-contrast confirmed this as an 

increase in negativity for the early negative deflection and decrease in negativity for the N170. 

In contrast, potentiation of the P2 was greatest in the post-late condition. A t-contrast confirmed 

this as an increase in positivity for the late condition compared to the early.  

The 2x2x2 ANOVA that probed the effect of genotype, time post-tetanus and tetanizing 

stimulus showed that there was also a main effect of genotype that was approaching 

significance from 196-250ms and peaked at 248ms (F(1, 152) = 18.41, p = 0.05)  and 208ms (F(1, 

152) = 18.41, p = 0.07). Because of the highly conservative nature of the FWE-c this is 

interpreted as indicating a small effect at the P2. There was a main effect of time that replicated 

the effects of time reported above, comparing the early-post tetanus condition with the late 

post-tetanus condition. There was no main effect of tetanized stimulus. There were also no 

significant interactions.  
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Post hoc contrasts of the effect of genotype showed that Met carriers had greater 

potentiation of the P2 component than Val homozygotes.  

Figure 5. Averaged LTP ERPs across genotype i) at electrode P5, the ERP shows the small but 
significant decrease in the N170 component in the Post-Late condition. i.a) The topography of this 
component at 132ms. ii) Taken from electrode POz, there is a significant increase during Post-Late 
condition in the early negative deflection at 92ms and P2 component at 160-210ms. The respective 
topographies for each component are shown at i.a) 92ms and i.b) 188ms. iii) The difference in amplitude 
between Post-Late minus the Pre-Tetanus condition for Val homozygotes compared to Met carriers. As 
we found no effect of specificity for the tetanized stimulus, the graph shows the collapsed average of 
both tetanised and non-tetanised stimulus types. 

 

3.2.2. Sources. Source analysis was performed on two time windows corresponding to 

the two significant clusters of activation from the ERP analysis (128-132ms and 188-208ms 

p<.05 uncorrected). There was substantial overlap in the sources for the two time windows, 

however the anterior sources in the 188-208ms time window were more robust. As such, this 

second time window was used to identify co-ordinates for Dynamic Causal Modelling (Figure 

6ii). Previous literature has localized the potentiation of the N1b to V2/BA18 of the extrastriate 

visual cortex (Clapp et al., 2005; Teyler et al., 2005). Consistent with this, bilateral sources 

were identified in middle occipital gyrus (MOG, MNI coordinates left: -36 -90 4; right: 32, -

92, 2). Additional significant sources were identified in left and right inferior temporal gyrus 
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(ITG left: -52, -28, -24, right: 48, -12, -38) and left middle frontal gyrus (MFG, -26, 58, -4). 

This occipito-temporo-frontal network is consistent with networks important for visual 

memory (Miyashita, 1993) and memory consolidation (Laroche, Davis, & Jay, 2000). . These 

sources were then used for subsequent DCM analysis.  

3.2.3. DCMs of Potentiation. Following an initial validation of connectivity between 

the sources of interest (see Supplementary Material), six DCMs were specified to assess the 

modulation of intrinsic and extrinsic connectivity following induction of LTP.  Similar to the 

MMN paradigm, three models of extrinsic modulation were specified, in which the paradigm 

modulated 1) forward, 2) backward, or 3) forward and backward connectivity. These were each 

coupled with intrinsic modulation in MOG as either present or absent (Figure 6i). DCMs were 

specified for the time window from 0-350ms post stimulus presentation for the pre tetanus, 

early post tetanus, and late post tetanus blocks. Potentiation was modelled as a linear change 

in evoked response from pre-tetanus to early post-tetanus to late post-tetanus Input was 

modelled as entering the network through MOG with a post stimulus onset of 80ms. 

BMS comparing the six models revealed that the model with the greatest model 

evidence was the model including modulation of forward extrinsic connections and intrinsic 

modulation within MOG (Figure 6ii). The PXP (0.87) provided strong evidence in favour of 

the winning model. The BOR (0.09) provided strong evidence that this result did not occur by 

chance.  
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t-tests on the parameter estimates revealed a significant increase in forward 

connectivity from left MOG to ITG (t(39) = 2.138, p=0.038) (Figure 6iii). However, there were 

no significant differences in network modulation between the two genotype groups.  

Figure 6. Specification and results for the DCMs modeling network modulation for the LTP paradigm. 
i) The 6 models specified to assess the modulation of effective connectivity. This included three models 
of extrinsic modulation (forward (F), backward (B) and forward and backward (FB)) with intrinsic 
modulation in MOG either present (Fi, Bi, FBi) or absent. ii) Source localization statistical map for the 
main effect of time, from the 3 (Time) x 2 (Tetanus) ANOVA for the 188-208ms time window, with 
clusters of significant voxels depicted in warm colours (p<.05 uncorrected). iii) Protected exceedance 
probabilities for the 6 models. BMS indicated that the Fi model was the winning model. iv) Posterior 
parameter estimates from the winning model. Green arrows depict connections significantly modulated 
by the paradigm.  
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4. Discussion 

The aims of the current study were twofold. The first aim was to provide the first 

comparison between two electrophysiological paradigms designed to index sensory learning 

and plasticity. The Roving MMN paradigm has been widely used as an index of Predictive 

Coding mechanisms in the brain (Garrido, Kilner, Stephan, et al., 2009), while the visual LTP 

paradigm was designed to index Hebbian plasticity (Teyler et al., 2005).  The second aim was 

to explore the differential sensitivity of the paradigms to group differences in evoked responses 

and underlying architecture. Groups were split based on participants’ expression of the BDNF 

Val66Met polymorphism. Brain Derived Neurotrophic Factor (BDNF) is an important 

mediator of synaptic plasticity (Tyler et al., 2002). As such, the BDNF polymorphism is 

implicated in the efficacy of NMDAR-dependent plasticity (Lamb et al., 2015), which plays a 

central role in both Predictive Coding and Hebbian plasticity.   

Consistent with previous literature, the deviant tone in the roving MMN paradigm 

elicited a large fronto-central negativity peaking 172ms post stimulus (Garrido, Kilner, 

Stephan, et al., 2009; Näätänen, Paavilainen, Rinne, & Alho, 2007). Dynamic Causal 

Modelling (DCM) revealed that this response was generated by the modulation of primarily 

intrinsic, but also forward and backward extrinsic connectivity within a fronto-temporal 

network (Garrido et al., 2008, 2007). While there were no genetic differences in the amplitude 

of the MMN, BDNF Met carriers demonstrated reduced change between tones three and four 

in the tone sequences (indicating reduced variability), and reduced backward connectivity from 

STG to A1 compared to Val homozygotes. Also consistent with previous literature, ERP 

analysis of the visual LTP paradigm revealed a significant shift in the amplitude of the N1b in 

both the early and late post-tetanus conditions, as well as a shift in the P2a components of the 

VEP in the late post-tetanus block (Spriggs et al., 2017; Teyler et al., 2005). Within a generative 

network encompassing occipital, temporal and frontal sources, potentiation modulated forward 
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extrinsic connectivity and intrinsic connectivity in middle occipital gyrus (MOG). While Met 

carriers showed greater potentiation of the P2 component of the VEP, there were no significant 

genetic differences in network modulation between the genetic groups. The current results 

therefore support the hypothesis that the paradigms index divergent processes underlying 

perceptual learning, which has important implications for future studies of aberrant plasticity 

in clinical populations.   

 

4.1. MMN 

The MMN ERP has a long history in electrophysiological research as an index of short 

term plasticity and cognitive function in healthy and clinical populations (Näätänen et al., 2007; 

Naatanen & Tiitinen, 2014). In recent years, the MMN has also been widely used as an index 

of perceptual inference under a Predictive Coding framework (Auksztulewicz & Friston, 2016; 

Garrido, Kilner, Stephan, et al., 2009). The current ERP results are consistent with the 

stereotypical expression of the MMN as a large fronto-central negativity, peaking 172ms after 

stimulus presentation. Additionally, the MMN response was found to be generated by 

modulations in forward, backward and intrinsic connectivity within the underlying fronto-

temporal network. Classical inference on DCM parameter estimates revealed significant 

increases in intrinsic A1 connectivity, a marginal increase in forward connectivity from right 

A1 to right STG, and a marginal decrease in backward connectivity from right IFG to STG for 

the deviant tone. This is consistent with the predictive coding interpretation of MMN 

generation, under which the MMN is elicited by a disparity between sensory input and 

predictions that are made based on the memory trace from previous stimulation (Friston, 2005; 

Garrido, Kilner, Stephan, et al., 2009). A1 intrinsic connectivity is understood to represent the 

strength of memory formation, or more specifically, the precision of prediction errors. As this 

precision increases across successive presentations of a standard tone, it is inappropriately high 
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for the presentation of a new deviant tone. Thus the deviant tone results in an increase in 

intrinsic A1 connectivity. This is coupled with an increase in bottom-up prediction error signals 

(due to the divergence between predictions and sensory input) and a decrease in the passing of 

inaccurate top-down predictions. These results are consistent with a large body of previous 

MMN studies that have identified similar network modulation for the deviant tone 

(Auksztulewicz & Friston, 2015; Boly et al., 2011; Garrido et al., 2008, 2007; Moran et al., 

2014; Schmidt et al., 2013).   

The current study also provides the first examination of the impact of the BDNF 

Val66Met polymorphism on repetition suppression and its underlying architecture using the 

roving MMN paradigm. Consistent with previous literature, there were no genotype differences 

in the amplitude of the MMN (Soltész et al., 2014), and thus no genetic difference in perceptual 

inference. However, Val homozygotes demonstrated greater variability than Met carriers in the 

difference waves of the ERP between tone presentations 3 and 4. More specifically, while Met 

carriers may have reached a ‘standard’ response by tone 3 and 4 (and thus there is less 

variability between the responses), Val homozygotes have not. This suggests that repetition 

suppression is faster in Met carriers, and thus indicates that perceptual learning is more efficient 

in this group.  

Additionally, posterior parameter estimate extraction of the winning DCM revealed a 

decrease in backward connectivity from STG to A1 in BDNF Met carriers for the deviant tone. 

Conversely, Val homozygotes demonstrated an increase in these same connections. 

Suppression of predictions for the deviant tone has been widely documented in the IFG to STG 

connections of the MMN network (Boly et al., 2011; Garrido et al., 2008; Garrido, Kilner, 

Kiebel, et al., 2009). However, Met carriers demonstrate this suppression further down the 

processing hierarchy. As such, Met carriers may be better able to suppress inaccurate 

predictions at all levels of the processing hierarchy, which may lead to a faster repetition 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 17, 2017. ; https://doi.org/10.1101/189944doi: bioRxiv preprint 

https://doi.org/10.1101/189944


Indexing Sensory Plasticity  Spriggs, Sumner et al. 

 27 

suppression (as revealed by the ERP analysis). Together, the current ERP and DCM results 

indicate that Met carriers may have an advantage when predictive coding mechanisms are 

employed.  

 

4.2. LTP 

The visual LTP paradigm was designed as a non-invasive parallel to the electrically-

induced LTP protocols used with rodents. In this study, there was an enhancement of the P2 

component of the VEP following high frequency, or ‘tetanic’, stimulation in the late-post 

tetanus block that is consistent with previous findings (Spriggs et al., 2017). There was also a 

significant enhancement of an early ERP component at around 90ms, which has also been 

found in one other study (Çavuş et al., 2012). These enhancements are understood to represent 

Hebbian plasticity processes within the visual cortex.  

Interestingly, unlike in previous studies, there was no enhancement of the N1b 

component of the VEP following high frequency, or ‘tetanic’, stimulation (Clapp et al., 2005; 

McNair et al., 2006; Ross et al., 2008; Teyler et al., 2005). Instead we found a depressed 

response, or decrease in negativity, that was not only apparent immediately following the 

tetanus (early post-tetanus block), but remained present after a 30min break (late post-tetanus). 

It is not clear why this has occurred in our particular study, however, due to the established 

independence of the N170 and P2 peaks, it is not considered to confound interpretations of P2 

potentiation (Crowley & Colrain, 2004; Freunberger, Klimesch, Doppelmayr, & Höller, 2007). 

The visual system is highly hierarchical (Felleman & Van Essen, 1991; Salin & Bullier, 

1995) and plasticity underlying visual perceptual learning begins at the earliest stages of visual 

processing (Furmanski, Schluppeck, & Engel, 2004; Masquelier & Thorpe, 2007; Schiltz et 

al., 1999; Schoups, Vogels, Qian, & Orban, 2001). The current results indicate that LTP 
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induction not only modulates connectivity within early visual cortex, but also modulates 

forward connections between the striate/extrastriate, inferior temporal, and left prefrontal 

cortices. The inferior temporal lobe plays a crucial role in both object perception and visual 

memory (Miyashita, 1993).  Occipito-temporal connections (corresponding to the ventral 

visual network) are thus central to perceptual learning, and rodent LTP has been extensively 

studied in both these regions (Artola & Singer, 1987; Berry, Teyler, & Taizhen, 1989; Bliss & 

Lømo, 1973; Heynen & Bear, 2001; Teyler & DiScenna, 1987). Additionally, LTP induction 

within the hippocampus has previously been shown to potentiate afferent connections to the 

prefrontal cortex (Gurden, Takita, & Jay, 2000; Jay, Burette, & Laroche, 1995; Laroche, Jay, 

& Thierry, 1990). These fronto-temporal connections are understood to be involved in memory 

consolidation and working memory (Laroche et al., 2000). 

Classical inference on DCM posterior parameter estimates revealed a specific increase 

in forward connectivity from left visual cortex to inferior temporal gyrus (ITG) across the three 

time points (pre-tetanus, early post-tetanus and late post-tetanus). This increase indicates that 

there is an enhancement of the connectivity between these two regions following high 

frequency stimulation, and thus suggests that this pathway has undergone LTP. As opposed to 

the MMN, there was no modulation of backward connectivity. It is important to note that this 

does not suggest that backward connections are not present, rather it indicates that induction of 

LTP does not modulate these connections. Moreover, the absence of backward modulation 

suggests that the significance of the MFG source is not due to attentional modulation, and thus 

is more likely involved in memory consolidation.  

The ERP analysis of the LTP paradigm revealed an effect of the BDNF Val66Met 

polymorphism on the P2 enhancement, where Met carriers demonstrated a greater increase in 

P2 amplitude than Val homozygotes. This is seemly contradictory to previous studies from our 

lab that have identified reduced potentiation of the N1b in Met carriers (Thompson et al., in 
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prep). However, previous analyses have not looked at the P2 component. Additionally, the 

enhancement of the P2 component has not yet been comprehensively characterized, and it may 

represent a downstream consequence of the induction of LTP, or, as hypothesized by Spriggs 

et al., (2017), heterosynaptic LTD. However, there were no significant differences between the 

genotype groups in the modulation of forward or intrinsic connectivity of the underlying 

neuronal architecture.  

 

4.3. Hebbian LTP & Predictive Coding 

The current study presents the first comparison between two paradigms designed to 

index two different models of plasticity; Predictive Coding and Hebbian plasticity. Using the 

MMN as an index of Predictive Coding, and visual LTP as an index of Hebbian plasticity, 

Dynamic Causal Modelling revealed one principle difference between network modulations in 

the two paradigms: the generation of the MMN is dependent on the modulation of backward 

connectivity, while visually-induced LTP is not. Under Predictive Coding, backward 

connections are central to the generation of the evoked response, which represents the error 

between top-down (backwards) predictions and bottom-up sensory information (Garrido, 

Kilner, Stephan, et al., 2009; Huang & Rao, 2011). This study, and a number of previous 

studies, support this reciprocal relationship in the generation of the MMN (Auksztulewicz & 

Friston, 2015; Garrido et al., 2008, 2007; Moran et al., 2014; Schmidt et al., 2013). However, 

this does not appear to be the case for the LTP paradigm, where the winning DCM did not 

include modulation of backward connections. Under a Hebbian model, the strength of synaptic 

connections increases with repeated coactivation of neurons in a network (Cooke & Bliss, 

2006; Teyler & DiScenna, 1987). The current results reflect this increase in forward 

connections only. As there is no need for comparison with a generative model, backward 
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connections are no longer a driver in perceptual learning. The differences between Predictive 

Coding and LTP are depicted in Figure 7.  

Figure 7. This figure shows a modified version of that presented by Stefanics, Kremláček, and Czigler 
(2014) to show the comparison between predictive coding and Hebbian learning forms of plasticity 
explored in this study. Under predictive coding, information passes between error units (E) and 
representation units (R). Backward connections carry predictions, whereas forward connections carry 
prediction errors (for example the MMN in response to a deviant tone). R units receive error information 
from the same node as well as lateral connections to nodes across the same level (not depicted) and 
lower hierarchical levels. Predictions (via backward connections are modulated and updated by the 
interaction between R and E units leading to repetition suppression or the standard response in the 
MMN task. Under Hebbian learning, representation units are updated and forward connections 
strengthened by the repetition of stimulus input, for example via photic tetanus in the visual LTP task. 
 

The BDNF Val66Met polymorphism is understood to impact the efficacy of NMDAR-

dependent plasticity (Chen et al., 2004; Egan et al., 2003; Lamb et al., 2015), which is central 

to both the generation of the MMN (Garrido, Kilner, Stephan, et al., 2009; Schmidt et al., 
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2013), and visual LTP (Clapp, Eckert, Teyler, & Abraham, 2006; Cooke & Bear, 2014). It 

would thus be reasonable to predict a comparable genetic group difference across both 

paradigms. However, genetic differences were only apparent in the modulation of backward 

connections for the MMN paradigm, with no significant genetic differences observed in the 

LTP generative network. This suggests that the BDNF polymorphism specifically modulates 

top-down message passing, which is central to Predictive Coding, but appears to be auxiliary 

for Hebbian mechanisms. It is important to note that the scalp level results indicate that there 

is a BDNF-mediated difference in the ERPs for the both paradigms, which suggests that there 

may be a BDNF-mediated effect that is not being fully captured by the LTP Dynamic Causal 

Models (discussed further below). Regardless, the current genetic results suggest that the 

sensory learning mechanisms indexed by the two paradigms differentially rely on NMDAR-

mediated plasticity, thus supporting the hypothesis that they index different sensory encoding 

mechanisms. 

The current results suggest that the mechanisms underlying experience-dependent 

sensory plasticity are not uniform across the brain and across different tasks. This is not to say 

that such mechanisms are unconditionally independent, and the Free Energy Principle 

demonstrates how Hebbian and Predictive Coding mechanisms can work in combination 

(Friston, 2005, 2009, 2010). Specifically, under the Free Energy Principle, biological agents 

aim to reduce surprise by minimizing free energy. Reducing free energy involves changing the 

‘recognition density’ which is a probabilistic representation of the cause of sensory input (i.e., 

a generative model). Under the Predictive Coding framework, free energy is the difference 

between the recognition density and the sensory input, and is thus prediction error. Hebbian 

plasticity then optimizes the parameters of the generative model, encoding causal regularities. 

Therefore, the Free Energy Principle proposes complementary roles for Hebbian and Predictive 

Coding mechanisms in encoding hidden causes and states respectively. While not antagonistic 
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to this hypothesis, the current results suggest that Hebbian mechanisms can also encode 

perceptual learning independent of a generative model. Further research will be required to 

determine how visual LTP is incorporated into a generative model.  

Moreover, the current results do not suggest that the visual system is Hebbian and the 

auditory system is Bayesian. Numerous previous studies have identified examples of predictive 

coding within the visual system (e.g., Rao & Ballard, 1999; Rauss, Schwartz, & Pourtois, 

2011), and the highly hierarchical and reciprocal nature of the visual system renders it the 

archetypal system for predictive mechanisms. What the current results do suggest is that 

different task demands elicit different encoding mechanisms. Exactly what ‘task demands’ 

elicit different encoding mechanisms is unclear, however, the primary difference between the 

paradigms is that the MMN is understood to result from short-term, echoic memory (Baldeweg, 

2007), while LTP is the leading model of long-term memory (Cooke & Bliss, 2006). Again, 

this is consistent with the roles of Hebbian and Predictive Coding mechanisms encoding hidden 

causes and states respectively. It will be interesting for future studies to further characterize 

these differences.  

Aberrant plasticity features in the neuropathology of a variety of psychological and 

neurological conditions from schizophrenia (Friston & Frith, 1995) to Alzheimer’s disease 

(Klein, 2006; Walsh, Drinkenburg, & Ahnaou, 2016). As such, the identification of disease 

related changes in plasticity has increasingly become a focus of electrophysiological research. 

The roving MMN and the visual-LTP paradigms have been independently used to demonstrate 

modulated plasticity in healthy and clinical populations (Boly et al., 2011; Dima et al., 2010; 

Normann et al., 2007; Rosch et al., 2017; Schmidt et al., 2013; Smallwood et al., 2015; Spriggs 

et al., 2017). However, the results of the current study indicate that the two paradigms not only 

measure different plasticity mechanisms, but also differ in the identification of group 

differences. This calls into question broad conclusions pertaining to the nature of ‘plasticity 
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deficits’ underlying different disorders based on the results from one of these paradigms. 

Therefore, it may be beneficial for future studies exploring population differences in 

neuroplasticity to index multiple plasticity mechanisms, to ensure that any important 

differences between such mechanisms are not overlooked.  

It is important to recognize a few limitations of the current study. Firstly, the reported 

posterior parameter estimates, and genetic effects on the ERPs are uncorrected for multiple 

comparisons. Primarily, this is due to the exploratory nature of these analyses. Secondly, the 

sample was largely female due to the involvement of the participants in an additional study. 

While it is not expected that there would be any sex differences in the measures collected, it 

will be important for future studies to recruit a more balanced cohort. Third, due to the low 

proportion of BDNF Met homozygotes in the general population (4-16%, Shimizu et al., 2004), 

Met homozygotes and heterozygotes were grouped into a single Met carrier group. While this 

is consistent with previous literature, it would be of interest to future studies to establish 

whether there is a dosage effect of the Met allele. Finally, as mentioned above, there were 

genetic differences in the ERPs for the LTP paradigm that did not manifest in the winning 

DCM. It is important to note that this is not due to an inadequate model fit (see Supplementary 

Material Figure S3). Instead, it may be that there are small but consistent genetic differences 

over multiple parameters, rather than a larger genetic effect on a small number of parameters. 

Thus it may be beneficial for future studies to take a more nuanced approach, potentially 

exploring different neuronal models, such as Canonical Microcircuits (Bastos et al., 2012;  

Moran, Pinotsis, & Friston, 2013), which may better capture any additional genetic differences 

in intrinsic connectivity.  

The current study presents the first direct comparison between the visual LTP paradigm 

and auditory roving MMN paradigm in a cohort of healthy participants. While both paradigms 

are understood to index perceptual learning and plasticity, they are built on fundamentally 
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different models of how experience dependent plasticity is encoded in the brain. In support of 

this, the current results indicate that the brain networks generating the LTP and MMN 

responses are modulated differently by the two paradigms. Additionally, the two paradigms are 

able to identify distinct group differences in the modulation of these brain networks. Therefore, 

the current study provides a demonstration of the heterogeneity of neural plasticity under 

differing task demands, and highlights the importance of comparison across paradigms when 

indexing modulated neuroplasticity in heathy and clinical populations. 
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