
Accepted Manuscript

Heritability estimates of cortical anatomy: The influence and reliability of different
estimation strategies

Sejal Patel, Raihaan Patel, Min Tae M. Park, Mario Masellis, Jo Knight, M. Mallar
Chakravarty

PII: S1053-8119(18)30412-9

DOI: 10.1016/j.neuroimage.2018.05.014

Reference: YNIMG 14939

To appear in: NeuroImage

Received Date: 7 January 2018

Revised Date: 23 April 2018

Accepted Date: 3 May 2018

Please cite this article as: Patel, S., Patel, R., Park, M.T.M., Masellis, M., Knight, J., Chakravarty, M.M.,
Heritability estimates of cortical anatomy: The influence and reliability of different estimation strategies,
NeuroImage (2018), doi: 10.1016/j.neuroimage.2018.05.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.neuroimage.2018.05.014


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Abbreviations: cortical thickness (CT), surface area (SA), region on interest (ROI), magnetic resonance imaging 

(MRI), Human Connectome Project (HCP) 

 

 

Heritability estimates of cortical anatomy: the influence and reliability of 1 

different estimation strategies 2 

Sejal Patel1,2*, Raihaan Patel3,4, Min Tae M. Park3,5, Mario Masellis6,  Jo Knight1,2,7,a, M. Mallar 3 

Chakravarty3,4,8,a*  4 

 
5 

1 Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, 6 

ON, Canada 7 

2 Institute of Medical Science, University of Toronto, Toronto, ON, Canada 8 

3 Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Verdun, QC, 9 

Canada 10 

4Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada 
11 

5 Schulich School of Medicine and Dentistry, Western University, London, ON, Canada 12 

6 Department of Neurology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada 13 

7Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK 14 

8 Department of Psychiatry, McGill University, Montreal, QC, Canada 15 

* Corresponding authors at:  16 

Sejal Patel, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 17 

250 College Street, Toronto, ON, M5T 1R8, Canada 18 

Email address: Sejal.Patel@camh.ca (S. Patel) 19 

M. Mallar Chakravarty, Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill 20 

University, 6875 Boulevard LaSalle, Verdun, QC, H4H 1R3 Verdun,  Canada 21 

Email address: mallar@cobralab.ca (M.M. Chakravarty). 22 

a M. Mallar Chakravarty and Jo Knight contributed equally as senior authors to this manuscript. 23 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
S. Patel and M.M. Chakravarty 

 

2 

 

ABSTRACT 24 

Twin study designs have been previously used to investigate the heritability of neuroanatomical 25 

measures, such as regional cortical volumes. Volume can be fractionated into surface area and cortical 26 

thickness, where both measures are considered to have independent genetic and environmental bases. 27 

Region of interest (ROI) and vertex-wise approaches have been used to calculate heritability of cortical 28 

thickness and surface area in twin studies. In our study, we estimate heritability using the Human 29 

Connectome Project magnetic resonance imaging dataset composed of healthy young twin and non-twin 30 

siblings (mean age of 29, sample size of 757).  Both ROI and vertex-wise methods were used to 31 

compare regional heritability of cortical thickness and surface area. Heritability estimates were 32 

controlled for age, sex, and total ipsilateral surface area or mean cortical thickness. In both approaches, 33 

heritability estimates of cortical thickness and surface area were lower when accounting for average 34 

ipsilateral cortical thickness and total surface area respectively. When comparing both approaches at a 35 

regional level, the vertex-wise approach showed higher surface area and lower cortical thickness 36 

heritability estimates compared to the ROI approach. The calcarine fissure had the highest surface area 37 

heritability estimate (ROI: 44%, vertex-wise: 50%) and posterior cingulate gyrus had the highest cortical 38 

thickness heritability (ROI: 50%, vertex-wise 40%). We also observed that limitations in image 39 

processing and variability in spatial averaging errors based on regional size may make obtaining true 40 

estimates of cortical thickness and surface area challenging in smaller regions. It is important to identify 41 

which approach is best suited to estimate heritability based on the research hypothesis and the size of the 42 

regions being investigated. 43 

 44 

Keywords: Heritability, Cortical thickness, Surface area, Extended twin design, Region of interest 45 

approach, Vertex-wise approach  46 
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1. INTRODUCTION 47 

Many twin studies have explored the variability of neuroanatomical measures (Baare et al., 2001; Eyler 48 

et al., 2012; Panizzon et al., 2009; Pennington et al., 2000; Thompson et al., 2001a; Winkler et al., 49 

2010). In twin studies, three factors are typically used to explain the variation within a trait, namely: 50 

genetics, shared and unique environment. Heritability is defined as the proportion of inherited genetic 51 

variation observed within the trait (Jacquard, 1983). While some previous studies have investigated the 52 

heritability of regional cortical volumes (Baare et al., 2001; Geschwind et al., 2002; Kremen et al., 2010; 53 

Patel et al., 2017; Pennington et al., 2000; Thompson et al., 2014), it is critical to consider that volume 54 

can be fractionated into surface area (SA) and cortical thickness components (CT), each of which is 55 

suspected to have an independent genetic basis and relationship to environmental factors. At a cellular 56 

level, local measures of cortical SA are thought to be defined by the number of neuronal columns per 57 

unit area that result from the migration of neurons along radial glial cells during neurodevelopment 58 

(Rakic, 1988, 2007). By contrast, CT measures represent the number of cells in a column across radial 59 

glia during embryonic and fetal brain development (Rakic, 1988). However, in spite of their proximity, 60 

the genetic correlation between SA and CT (the shared genetic variation between two traits), has been 61 

reported to be near zero in twins (Panizzon et al., 2009) and family pedigree studies (Winkler et al., 62 

2010).  CT and SA measures from both region of interest (ROI) and vertex-wise approaches have been 63 

used in the investigation of the heritability on these measures of different brain structures (Eyler et al., 64 

2012; Ge et al., 2015; Panizzon et al., 2009; Rimol et al., 2010; Winkler et al., 2010). In the ROI 65 

approach heritability is calculated on average CT and total SA of brain regions and vertex-wise 66 

heritability estimates are based on CT and SA at each vertex across the brain. The effects of genetic 67 

variation on measures across the brain can be continuous, making it difficult to map to restricted 68 

boundaries found in the ROI approach. The vertex-wise approach can capture these patterns by creating 69 

a continuous surface heritability brain map without being restricted to regional boundaries.  70 

 71 

In our study, we compare regional heritability of CT and SA by using both ROI and vertex-wise 72 

methods. Previous studies (Docherty et al., 2015; Eyler et al., 2012; Panizzon et al., 2009), have used the 73 

Vietnam Era Twin Study of Aging data however, this consists only of elder male twin pairs (average age 74 

of 55.8 years). We take advantage of the Human Connectome Project (HCP) having higher resolution 75 

magnetic resonance imaging (MRI) data and a healthy young sample composed of not only males but 76 

also female twins along with non-twin siblings. We further investigate the influence of total SA and 77 

mean CT on both measures that we examine. In addition, we explore potential reasons for heritability 78 

estimates to be underestimated in the ROI approach, an observation seen in the current and previous 79 
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studies (Eyler et al., 2012). The work presented in this manuscript can be used in the future for critical 80 

examination of neuroimaging endophenotypes in imaging-genetics studies. 81 

  82 
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2. METHODS 83 

2.1.  Human Connectome Project Dataset  84 

Heritability analysis was performed using the Human Connectome Project (HCP) data. The aim of the 85 

HCP is to investigate the connection between neuroanatomical structures with function and behavioural 86 

traits of healthy adults (Van Essen et al., 2013).  Investigators from Washington University St. Louis, 87 

University of Minnesota, and Oxford University (the WU-Minn HCP consortium) lead the consortium 88 

with an aim to recruit 1200 healthy twin and non-twin sibling adults (Van Essen et al., 2013). Data 89 

collection started in 2013 and the data is publically available. The final dataset is designed to capture the 90 

ethnic, racial, behavioural and economic demographic variability of the United States. Individuals with 91 

high blood pressure and diabetes were excluded as are those with siblings who had neurodevelopmental, 92 

neuropsychiatric, or neurological disorders. Premature twins (born before 34 weeks gestation) and non-93 

twins (born before 37 weeks gestation) were excluded. Individuals who were overweight or who were 94 

smokers were included in the study. Individuals with a history of heavy drinking or use of a recreational 95 

drug who have not experienced severe symptoms (e.g., individual not hospitalized for substance abuse 96 

for two days or more) were included to be used for future psychiatric studies (Van Essen et al., 2013). 97 

For more information on the inclusion and exclusion criteria, see supplemental Table S1 of Van Essen 98 

DC et al., 2013.  99 

 100 

Data used in this study is from the December 2015 release (900 subjects of which 875 had MRI). High-101 

resolution MRI was collected using a Siemens 3 Tesla (T) Skyra scanner (Van Essen et al., 2012). To 102 

increase the maximum gradient strength, the scanner was modified with a Siemens SC72 gradient coil 103 

from 40 mT/m to 100 mT/m (Van Essen et al., 2013; Van Essen et al., 2012). In our study, we used 3T, 104 

high-resolution T1-weighted MRI (0.7mm isotropic voxel dimensions). The acquisition parameters 105 

were: inversion time = 1000ms, echo time = 2.14ms, repetition time = 2400ms, acquisition time = 7min 106 

40sec, flip angle = 8 degrees and field of view = 224mm x 224mm (Van Essen et al., 2012). 107 

 108 

2.2.  Image processing  109 

For the work presented in this manuscript we obtained preprocessed T1-w data from the HCP. Detailed 110 

information on the preprocessing steps can be found in the HCP S900 Release Reference Manual and 111 

Glasser et al., (2014). Briefly, the preprocessing steps included: gradient distortion correction, co-112 

registration of T1-w runs and averaging of the runs, ACPC registration for distortion correction which 113 

are done in native volume space. In addition, initial brain extraction, along with field map and bias field 114 

correction and atlas registration was done (Glasser et al., 2014; Glasser et al., 2013).  Then HCP images 115 
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were further processed in our lab using minc-bpipe-library (https://github.com/CobraLab/minc-bpipe-116 

library.git). N4 correction was applied to correct for intensity non-uniformity across the image before 117 

analysis of CT and SA. The N4 correction helps improve images to pass quality control, during the 118 

downstream analysis.   119 

 120 

After processing the images using the minc-bpipe library, CIVET 1.1.12 pipeline (Ad-Dab’bagh et al., 121 

2006; Collins et al., 1994; Lerch and Evans, 2005; MacDonald et al., 2000) was used to measure CT and 122 

SA of T1-weighted MRI scans. In CIVET, each subject’s surfaces are registered to a study specific 123 

average derived from the population under study. This iterative approach was used to find the optimal 124 

vertex as described by Lyttelton et al., (2007). T1 weighted images of 0.7x0.7x0.7mm3 isotropic voxel 125 

dimension were used in the CIVET pipeline with the following parameters: N3 correction of non-126 

uniformities was set to a distance of 50, affine 12-parameter transformation to stereotaxic space was 127 

used and the cortical surfaces were resampled to obtain vertex-based areas. CT and SA were output 128 

separately for the left and right hemisphere. The Anatomical Automatic Labeling (AAL) atlas is defined 129 

in the vertex-wise space, a label number for each vertex corresponded to a region within the atlas. 130 

Briefly, first the images were registered linearly to standard stereotaxic space as defined by the MNI 131 

ICBM 152 model (Collins et al., 1994). Then for each subject, each voxel is classified as white matter 132 

(WM), gray matter (GM) or cerebrospinal fluid (CSF). A deformable ellipsoid polygonal surface mesh 133 

model is used to fit the WM and GM interface in order to generate the WM surface. The GM surface is 134 

generated by expanding the WM surface to the GM/pial interface using the Laplacian approach (Kim et 135 

al., 2005). Each of the final meshes has 40,962 vertices within each hemisphere and CT is estimated in 136 

millimeters (mm), between WM surface and GM surface at each vertex (Lerch and Evans, 2005). A 137 

surface based smoothing kernel of 20mm full-width at half maximum (FWHM) was applied to CT data. 138 

SA of each vertex is calculated at the middle cortical surface (the geometric center between the inner 139 

and outer cortical surface). SA at each vertex is estimated as the average area of the 6 triangles 140 

connected to that specific vertex (Lyttelton et al., 2007). For the SA data, a surface based smoothing 141 

kernel of 40mm FWHM was applied. In the CIVET analysis the AAL atlas is used to calculate the 142 

average CT and SA for defined regions (Tzourio-Mazoyer et al., 2002). These values were used in the 143 

ROI approach to calculate heritability estimates. In total there are 39 regions for each hemisphere where 144 

each vertex of the 40,962 vertices is allocated within each AAL parcellations.  145 

 146 

On all resultant outputs from CIVET, we performed intense manual quality control of the images to 147 

examine possible confounds due to blood vessels or dura that may be captured by the algorithm. A total 148 
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of 875 subjects from the HCP data were processed using CIVET to extract CT and SA at each vertex. 149 

From the 875 subjects 840 passed manual quality control which was further reduced to 757 subjects 150 

after removal of individuals with no siblings within the families.  151 

 152 

2.3. Heritability estimates for vertex-wise and ROI approach 153 

Vertex-wise approach: Heritability was estimated at each vertex on the cortex for both SA and CT 154 

measures. Average and standard deviations of heritability were estimated in the vertex-wise approach 155 

for all vertices labelled within a region of the AAL atlas.  156 

ROI approach: Heritability and 95% confidence intervals were estimated based on mean CT and total 157 

SA of each region defined by the AAL atlas. In OpenMx, confidence intervals was calculated from the 158 

maximum likelihood estimates on the parameters  A , C, and E (Neale and Miller, 1997). 159 

 160 

2.4. Verification of distributions  161 

We examined the normality of the average CT and total SA measurement for each region within the 162 

AAL atlas before estimating heritability within the ROI approach. Shapiro-Wilk normality test was 163 

applied for all the 39 regions in both the right and left hemispheres defined by the AAL atlas.  164 

 165 

2.5. Heritability calculations  166 

Broad-sense heritability of CT and SA in both the vertex-wise and ROI approach was estimated using 167 

OpenMx version 2.6.9 (Neale et al., 2016) R package. Heritability is defined as the ratio of variance 168 

from a phenotypic measurement (as defined by a numerator of genetic variation [A] and denominator of 169 

the total observed variation due to genetics [A], shared environment [C] and unique environment [E]). In 170 

our analyses we defined shared environment [C] as being identical within a family (C=1 for all siblings 171 

within a family). We set A=1 for MZ twin pairs under the assumption of identical genetic makeup and 172 

A=0.5 for DZ twins under the assumption that non-twin siblings share ~50% of all genetics (Jacquard, 173 

1983; Plomin et al., 1976).  Since MZ twins have identical genetic makeup, it is worth considering that 174 

this is likely to lead to greater similarity in cortical morphology, in terms of sulci and gyri location. This 175 

can be a possible confounding factor resulting into higher heritability estimates in SA. Therefore, before 176 

drawing conclusions from heritability estimates we need to keep in mind that there are factors such as 177 

similar morphology which are not accounted for in the calculations and may bias the results.  178 

 179 
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Full ACE univariate models were used for both vertex-wise and ROI approaches. The final sample size 180 

used for heritability calculation was 757 individuals including: 168 MZ twins, 158 DZ twins and 431 181 

non-twin siblings (total of 282 families, 37 families had only twin pairs, 126 families had twin pairs with 182 

non-twin siblings and 119 families consisted of non-twin siblings only). To address the concern of 183 

discordant sex sibling on heritability estimates, a sensitivity analysis was performed on same sex 184 

siblings calculating heritability estimates. The number of same sex DZ twin pairs were 78 out of 185 

79. In our sample the majority of non-twin sibling families were sex discordant. Therefore 186 

isolating non-twin sibling pairs of the same sex reduced the sample size greatly. See 187 

Supplementary section: Sensitivity Analysis (Same sex sample, see Inline Supplementary Table 188 

S8) for results on same sex sibling sample. To account for the sex differences, a direct way of 189 

minimizing the impact of biological sex is to adjust or remove sex on SA and CT for each 190 

individual via a general linear model. As a result, the heritability estimates are based on the newly 191 

adjusted measures within our model. Furthermore, heritability was estimated in two different analysis in 192 

order to examine the influence of total brain size: 1) adjusting for sex and age (henceforth referred to as 193 

‘partially adjusted’) and 2) adjusting for sex, age and ipsilateral total brain SA or ipsilateral average 194 

brain CT, known as ‘completely adjusted’.  195 

 196 

2.6. Investigation of near-zero heritability: 197 

 During our analyses we observed that some regions had heritability estimates of zero or near zero at the 198 

vertex-level and in the ROI approach. To further investigate these results, we explored the twin 199 

correlation of CT and SA within the vertex-wise and ROI approach for both the MZ and DZ twin pairs. 200 

To adjust for vertex-level heritability measures, vertices with <1% heritability were removed from the 201 

estimation of the averages.   202 
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3. RESULTS 203 

3.1. Human Connectome Project demographics  204 

After quality control of images processed through CIVET and removal of families with only one 205 

individual, the final sample size used for heritability analysis was 757 subjects, which included 424 206 

women and 333 men with an age range of 22-37 years old and with an average age of 28.90 (3.62± SD) 207 

years old. The Edinburgh inventory was used to measure handedness (Oldfield, 1971), the average 208 

handedness for our sample was 65.33(45.14±SD). The scale for handedness ranges from -100 (left-hand 209 

dominant) to 100 (right-hand dominant). Fluid intelligence was measured using the Raven’s Progressive 210 

Matrices test, the number of correct responses were out of 24 questions with an overall average of 211 

16.55(4.85± SD). Demographic information is summarized in Table 1.   212 

TABLE 1. Demographic breakdown of monozygotic twins (MZ), dizygotic twins (DZ) and non-213 

twin siblings from the subset data of the HCP, including averages and standard deviation (± SD) 214 

 N 
Average Age 
(year ± SD) 

Age 
Range 

Sex  
Female: 
Male 

Average 
handedness (± 
SD) 

Average fluid 
intelligence (± 
SD) 

MZ 168 29.83(3.36) 22-36 120:48 68.75(46.13) 16.21 (4.66) 

DZ 158 28.98(3.32) 22-35 91:134 64.62(42.39) 17.02(4.78) 
Non-twin 
siblings 431 28.51(3.75) 22-37 213:218 64.26(45.75) 16.51(4.94) 
Total 757 28.90(3.62) 22-37 424:333 65.33(45.14) 16.55(4.85) 

 215 

3.2. Imaging processing: Average CT and total brain SA heritability estimates  216 

The average mean brain CT was 3.33mm ±0.11 SD and 3.32mm ±0.11 SD, left and right hemisphere 217 

respectively. The average total brain SA was 94065.30mm2 ±8213.00 SD and 94502.79mm2 ±8306.58 218 

SD, left and right hemisphere respectively. Table 2 includes the average mean brain CT and total brain 219 

SA along with standard deviation for MZ, DZ and non-twin siblings. Lower SA is seen in MZ twins 220 

compared to DZ twins and non-twin siblings; potentially due to higher ratio of females in MZ groups 221 

compared to the other two groups. Overall, after adjusting for sex and age the heritability of mean CT 222 

was 46% (left) and 67% (right). Furthermore the heritability of total brain SA was 75% (left) and 73% 223 

(right).      224 

TABLE 2. Average left and right mean brain cortical thickness (CT) and total brain surface area 225 

(SA) and standard deviation (±SD) in monozygotic twins (MZ), dizygotic twins (DZ) and non-twin 226 

siblings. 227 

Sample N Average mean 
left CT (mm ± 

SD) 

Average mean  
right CT (mm ± 

SD) 

Average total  
left SA (mm2 ± 

SD) 

Average total  
right SA (mm2 ± 

SD) 

MZ 168 
3.32 (±0.11) 3.32(±0.10) 91581.25 

(±7284.53) 
92033.74  

(±7480.45) 
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DZ 158 
3.35 (±0.10) 3.34(±0.10) 94013.8  

(± 84013.8) 
94487.53  

(±8530.80) 
Non-twin 
siblings 431 

3.33 (±0.12) 3.33 (±0.12) 95052.43 
(±8293.25) 

95470.80  
(±8347.81) 

Total 757 
3.33 (±0.11) 3.32 (±0.11) 94065.30 

(±8213.00) 
94502.79  

(±8306.58) 
 228 

3.3.  Verification of distributions 229 

In the ROI approach, a Shapiro-Wilk normality distribution test was performed on regions defined using 230 

the AAL atlas revealed that some regions for both CT and SA (partially and completely adjusted) were 231 

not normally distributed. This was observed at the level of SA measures of smaller regions such as the 232 

Heschl Gyrus. P values for each region are shown in the supplementary section, see Inline 233 

Supplementary Table S1. As many distributions were skewed we attempted to transform the data using a 234 

LOG transformation, however heritability estimates before and after transformation were similar. 235 

Therefore, we used non-transformed data for heritability calculations. In literature it has been shown that 236 

SEM is robust when dealing with violation of normality within a dataset (Bollen, 1989; Diamantopoulos 237 

et al., 2000). In addition Reinartz et al (2009) observed no major differences using maximum likelihood 238 

estimator on different kurtosis and skewness levels of samples (Reinartz et al., 2009).  239 

 240 

3.4.  Vertex–wise approach: High heritability estimates in SA compared to CT 241 

Overall, vertex-wise average heritability estimates were higher in SA compared to CT for both partially 242 

and completely adjusted values for most of the brain regions. Specifically, high heritability estimates 243 

were observed within regions of the occipital lobe (Table 3; see Inline Supplementary Figure S1a-b). 244 

See Inline Supplementary Table S2a for vertex-wise average heritability estimates along with standard 245 

deviations.   246 

 247 

In the vertex-wise approach there were a portion of vertices that had zero or near zero heritability 248 

estimates, vertices with heritability less than 1% were removed (we later show the zeros are likely to be 249 

due to the estimation errors, see section 4). For partially adjusted CT and SA measures, the portion of 250 

vertices removed was 3% and 1% respectively. For completely adjusted measures, 8% of CT and 7% of 251 

SA vertices were removed. See Inline Supplementary Table S2b for the total number of vertices within 252 

the region used to calculate average heritability estimates before and after adjustments. Figure 1a shows 253 

a surface-map of heritability estimates of partially and completely adjusted CT and SA mapped at each 254 

vertex of the brain (40,962 vertices in each hemisphere). In partial and complete adjustments for CT, 255 
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heritability estimates of less than 1% (grey colour) are scattered throughout the brain whereas for SA, 256 

they were predominantly found in the frontal lobe regions, and in parts of the superior temporal gyrus 257 

(Figure 1a). See Inline Supplementary Figure S1c-d for complete analysis of brain maps on common and 258 

shared environment. Figure 1a showed a lower heritability estimates after complete adjustment for both 259 

CT and SA compared to partially adjusted measures. Average heritability estimates for partially adjusted 260 

SA ranged from 22% (right insula) to 68% (left posterior cingulate gyrus) and were lower in the 261 

completely adjusted SA model (Table 3, Figure 1b), ranging from 6% (right inferior parietal) to 51% 262 

(left calcarine fissure and surrounding cortex). For partially adjusted CT the average heritability 263 

estimates ranged from 17% (left anterior cingulate and paracingulate gyri) to 54% (right rolandic 264 

operculum) and decreased in completely adjusted CT from 12% (right inferior parietal) to 42% (right 265 

posterior cingulate gyrus) (Table 3, Figure 1c). 266 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

S. Patel and M.M. Chakravarty 

 

12 

 

Figure 1a. Vertex-wise heritability map of partially adjusted (sex and age) and completely adjusted (sex, age, ipsilateral average brain 267 

cortical thickness or ipsilateral total brain surface area) cortical thickness and surface area. Regions in which vertices with heritability 268 

estimates of less than 1% are coloured grey. 269 

 270 
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Figure 1b. Average heritability estimates (H2) on vertex-wise surface area (SA) for partially adjusted (controlled for sex and age) and 271 

completely adjusted value (controlled for sex, age, ipsilateral total brain surface area). Average heritability estimates are calculated in 272 

left and right regions of the AAL atlas. The error bars for the vertex-wise approach represent the standard deviation from the 273 

averaged heritability estimates.  274 

 275 
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Figure 1c. Average heritability estimates (H2) on vertex-wise cortical thickness (CT) for partially adjusted (controlled for sex and age) 276 

and completely adjusted value (controlled for sex, age, average brain cortical thickness).  Average heritability estimates are calculated 277 

in left and right regions of the AAL atlas. The error bars for the vertex-wise approach represent the standard deviation from the 278 

averaged heritability estimates.279 

 280 
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3.5. ROI approach: High heritability estimates in CT compared to SA  281 

Overall, in the ROI approach, most regions had higher heritability estimates of CT than SA in both 282 

partially and completely adjusted values (Table 3; see Inline Supplementary Figure S2a-b). See Inline 283 

Supplementary Table S3 for ROI heritability estimates with confidence intervals.   284 

 285 

In partially adjusted SA the heritability ranged from 4% (left superior frontal gyrus: medial orbital) to 286 

71% (left precuneus) and after complete adjustment, the heritability estimates were lower in the range 287 

from 2% (left middle frontal gyrus orbital part and right superior frontal gyrus orbital part) to 48% (right 288 

precuneus), Table 3 and Figure 2a. Furthermore, the heritability estimates of partially adjusted CT 289 

ranged from 16% (right olfactory cortex) to 71% (left supramarginal gyrus) and decreased moderately 290 

after complete adjustment from 6% (left superior temporal gyrus) to 59% (median cingulate and 291 

paracingulate gyri), Table 3 and Figure 2b.   292 
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Figure 2a. ROI approach of heritability estimates (H2) on total surface area (SA) for partially adjusted (controlled for sex, age,) and 293 

completely adjusted value (controlled for sex, age, ipsilateral total brain surface area) within left and right regions defined using the 294 

AAL atlas. The dashed error bars in the ROI approach represent 95% confidence intervals from maximum likelihood estimates on the 295 

parameters A (genetics).296 

297 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

S. Patel and M.M. Chakravarty 

 

17 

 

Figure 2b. ROI approach of heritability estimates (H2) on mean cortical thickness (CT) for partially adjusted (controlled for sex, age,) 298 

and completely adjusted value (controlled for sex, age and ipsilateral average brain cortical thickness) within left and right regions 299 

defined using the AAL atlas. The dashed error bars in the ROI approach represent 95% confidence intervals from maximum 300 

likelihood estimates on the parameters A (genetics). 301 

302 
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3.6. ROI and vertex-wise approach: Heritability estimates of zero  303 

In the ROI approach, we noticed that some regions either in the left/right partially or completely 304 

adjusted models had heritability estimates near zero for SA and CT (Table 2). Similarly, this was also 305 

observed in the vertex-wise approach, a subset of number of vertices had heritability estimates of zero.  306 

In both approaches, the MZ twin correlation compared to DZ twins for both SA and CT was lower in a 307 

subset of vertices and in smaller regions. See Inline Supplementary Table S4 for exploratory analysis of 308 

MZ and DZ twin correlation on a subset of vertices and Table S5 for smaller regions in the ROI 309 

approach with heritability estimates of zero. We selected 5 large regions from the AAL atlas that had 310 

heritability estimates not near zero (supplementary table S6) using the ROI approach, as expected MZ 311 

twin correlation was larger or near DZ twin correlation, unlike the small regions.  312 

 313 

3.7. Higher SA and lower CT heritability estimate in the vertex-wise compared to ROI approach 314 

Overall, the adjusted ROI heritability estimates were lower compared to vertex-wise average heritability 315 

estimates of SA. However, in contrast, the ROI approach had higher heritability estimates of CT than the 316 

vertex-wise approach (Table 2, Figure 3a-b). To show this trend we compared completely adjusted 317 

heritability estimates of CT (Figure 3c) and SA (Figure 3d) between both approaches of 5 selected 318 

regions. Each region was selected within each lobe of the brain in order to best represent the whole 319 

brain. The regions selected were the left and right calcarine fissure, temporal pole (superior temporal 320 

gyrus), superior parietal gyrus, paracentral lobule and posterior cingulate gyrus. In the vertex-wise 321 

approach the standard error represents the standard deviation from the averaged heritability estimates 322 

and in the ROI approach the error bars are 95% confidence intervals (Figure 3c-d).  323 
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Figure 3a.  Completely adjusted left/right surface area (SA) heritability estimate H2 for vertex-wise and ROI approach. Completely 324 

adjusted values are controlled for sex, age and ipsilateral total brain surface area. Solid error bars for the vertex-wise approach 325 

represent the standard deviation from the averaged heritability estimates. Dashed error bars in the ROI approach represent 95% 326 

confidence intervals. 327 

328 
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Figure 3b.  Completely adjusted left/right cortical thickness (CT) heritability estimate H2 for vertex-wise and ROI approach. 329 

Completely adjusted values are control for sex, age and ipsilateral average brain cortical thickness. Solid error bars for the vertex-wise 330 

approach represent the standard deviation from the averaged heritability estimates. Dashed error bars in the ROI approach represent 331 

95% confidence intervals. 332 

333 
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Figure 3c. Completely adjusted left/right surface area heritability estimate (H2) for vertex-wise 334 

and ROI approach in 5 regions. Completely adjusted values are control for sex, age and ipsilateral 335 

total brain surface area. Solid error bars for the vertex-wise approach represent the standard 336 

deviation from the averaged heritability estimates. Dashed error bars in the ROI approach 337 

represent 95% confidence intervals. 338 

 339 

 340 

 341 
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Figure 3d. Completely adjusted left/right cortical thickness heritability estimate (H2) for vertex-342 

wise and ROI approach in 5 regions. Completely adjusted values are control for sex, age and 343 

ipsilateral average brain cortical thickness. Solid error bars for the vertex-wise approach 344 

represent the standard deviation from the averaged heritability estimates. Dashed error bars in 345 

the ROI approach represent 95% confidence intervals. 346 

347 
  348 
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4. DISCUSSION     349 

In this study we investigated heritability estimates of CT and SA using both vertex-wise and ROI 350 

approaches. Heritability estimates for both CT and SA were lower when accounting for ipsilateral 351 

average brain CT and total brain SA, respectively. These findings suggest that there are regional 352 

differences in heritability estimates after the influence of global measures are removed. This replicates 353 

similar findings in previous studies (Eyler et al., 2012; Panizzon et al., 2009; Winkler et al., 2010). To 354 

the best of our knowledge, there have been no studies of CT and SA heritability completed to date in a 355 

young healthy population using a large dataset such as the HCP.  The Vietnam Era Twin Study of Aging 356 

data is a common dataset used in heritability studies, however it only contains elder male twins (age 357 

range of 51 to 59 years). Males have large total brain volume compared to females (Kretschmann et al., 358 

1979; Swaab and Hofman, 1984), and since volume is the product of SA and CT, it is important to 359 

examine heritability of a sample that better represents the general population including females. 360 

Furthermore, along with male and female twins in our model, we also included non-twin siblings. 361 

Adding non-twin siblings into the model increases statistical power to identify heritability (Posthuma 362 

and Boomsma, 2000). Therefore the HCP which includes a young healthy population of males and 363 

female (age range of 22-37) is a better representation of the general population to be used in heritability 364 

analysis.    365 

 366 

Overall, SA was observed to have higher heritability estimates than CT at a global and regional level. 367 

This observation has also been seen in previous studies (Panizzon et al., 2009, Winkler et al., 2010), 368 

suggesting that the genetic mechanisms underlying SA and CT measures differ. The study by Dochert et 369 

al. (2015) demonstrated a slightly higher heritability of regional SA compared to CT after adjusting for 370 

global SA and CT measures. This led to the interpretation that environmental factors may have a greater 371 

influence on CT than SA. Similar to our findings, Eyler et al., 2012 showed high heritability estimates 372 

near the parietal lobe. In our data, the precuneus and Calcarine Fissure were observed to have highly 373 

heritable SA and CT measures. In contrast, we observed low heritability estimates in the precentral and 374 

postcentral gyrus for both CT and SA compare to regions within the occipital lobe. Therefore, we 375 

suggest that the architecture of the precentral and postcentral gyrus may be influenced by factors such as 376 

sensory experience. In a heritability study using data from both pediatric and young adult twins, Lenroot 377 

et al. (2008) observed lower heritability estimates in adults compared to young children within the 378 

primary motor cortex (precentral gyrus) and somatosensory cortex (postcentral gyrus) (Lenroot and 379 

Giedd, 2008). These regions play a role in daily sensory experiences and motor activities from 380 

environmental cues (Thompson et al., 2001b), suggesting that the accumulation of environmental 381 
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exposures may decrease the influence of genetics. Furthermore, from an evolutionary perspective, the 382 

primary somatosensory cortex in humans underwent more recent evolution, as of the need for finer 383 

motor skills has increased (i.e., we have hands that have larger representation within brain than simple 384 

paws do in lower order animals). Therefore, heritability may be lower in these regions due to the lack of 385 

functional conservation within the region based on the adapted nature of brain function between species. 386 

Regions that undergo somewhat more minimal evolutionary adaptation (such as primary occipital 387 

region, which plays a role in basic function) may be prone to being more highly conserved across 388 

species, therefore maintaining a more pronounced heritability (Kaas, 2008). It is important to consider 389 

our findings of heritability in the context of evolution, brain development, and their relationship with 390 

respect to cortical connectivity. The radial unit hypothesis has been used in literature to explain the 391 

development of CT and SA at a cellular level (Rakic, 1988, 2009).  SA has been altered dramatically 392 

between humans and other primates compared to CT. The dramatic expansion of the cortical sheet 393 

consistently observed in higher-order species (particularly in humans), has typically been associated 394 

with the need to “fit” more of the cortical grey matter into a confined space defined by the skull. 395 

Increased in CT does not necessarily reflect increases in long range connectivity. The radial glial units 396 

that promote migration of neural progenitors and other cell types to the cortex eventually differentiate 397 

into axons; therefore connectivity throughout the brain occurs at the same time that we begin to observe 398 

expansion of the cortical sheet during development. Moreover, CT differences are likely to reflect 399 

alteration in local architecture (at the level of cortical columns) as defined by local changes in synaptic 400 

connectivity, changes in composition of glial cells, changes in neuronal number and size, and potentially 401 

even cortical myelination (Barry et al., 2014; Noctor et al., 2001; Rakic, 1988, 2009; Steindler, 1993). 402 

Long range white matter connections are unlikely to be impacted in this regard. Furthermore, the 403 

discovery of intermediate progenitor cells (IPC) which develop into neurons has modified the radial unit 404 

hypothesis (Noctor et al., 2004; Pontious et al., 2008). IPCs play a role in the modulation of SA 405 

expansion at a regional level which defines the cortical cytoarchitecture (Pontious et al., 2008). If IPCs 406 

are regionally specific this may support the increase in SA of the prefrontal region within humans which 407 

plays a role in higher function compared to other primates. Reflecting back to our findings, a weak trend 408 

is seen where CT heritability estimates were higher than SA in certain areas, such as the prefrontal 409 

regions. The genetic etiology and evolution of CT and SA is complex and difficult to untangle its 410 

influence on heritability estimates. Before drawing conclusions on regional heritability between CT and 411 

SA of the brain, one needs to keep in mind many factors that influence the estimates such as function, 412 

evolution between species and the genetic etiology of these measure.  413 

 414 
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The heritability estimates for SA after adjusting for ipsilateral total brain SA in the vertex-wise approach 415 

were higher compared to the ROI approach when comparing corresponding regions. In contrast, 416 

heritability estimates derived from the vertex-wise approach after adjusting for ipsilateral average brain 417 

CT was lower in most regions compared to the ROI approach. When taking regional averages of 418 

neuroanatomical measures, there is greater variability associated with taking an average of smaller 419 

regions containing less vertices compared to larger regions in the ROI approach (Eyler et al., 2012). 420 

Errors associated with spatial averaging may violate the assumption that MZ phenotypic twin correlation 421 

should be equal to or greater than DZ twins for a given trait.  This assumption within the model is not 422 

met within smaller regions causing the model to fail resulting in heritability estimates of zero within 423 

both approaches. Specifically, in the ROI approach we observed more instances of underestimated 424 

heritability in smaller regions for SA compared to CT (such as Heschl gyrus, anterior cingulate and 425 

paracingulate gyri). This can be due to the limitation in defining boundaries of smaller regions. 426 

Heritability estimates in some regions are lower than expected, such as the orbitofrontal regions 427 

compared to the precuneus region. The orbitofrontal regions within the AAL atlas is divided into 4 parts, 428 

each part having a low number of vertices ranging from 350 vertices in the right middle frontal gyrus to 429 

973 vertices in the right inferior frontal gyrus. Heritability estimates within these regions were low, 430 

especially seen in the left middle frontal gyrus: orbital part having an estimate of 1% within the ROI 431 

approach. In the precuneus region, the number of vertices are far more, around 2268, and there is an 432 

associated high heritability estimates. Defining neuroanatomical measures of larger regions has less 433 

variability across the sample, suggesting more reliable heritability scores. In addition, large variance 434 

within the 95% confidence intervals was observed within smaller regions compared to larger regions in 435 

the ROI approach. For example, the temporal pole is a smaller region compared to the superior parietal 436 

gyrus which had wider 95% confidence interval variance that included 0% heritability estimate within 437 

the interval for both CT and SA measures. The temporal pole is composed of 563 and 628 vertices (left 438 

and right hemisphere respectively), however the superior parietal gyrus has greater number of vertices 439 

(1336 and 1448, left and right hemisphere respectively). Therefore, confidence intervals that include 0 440 

are disproportionately observed in regions that are smaller (based on number of vertices) compared to 441 

larger regions, resulting in unreliable heritability estimates.   442 

 443 

To further explore unreliable heritability estimates of smaller regions, we combined the 4 smaller 444 

regions that make up the orbitofrontal region to examine the effects of regional size on heritability 445 

estimates of CT and SA using vertex-wise and ROI approach. The 4 regions that made up the 446 

orbitofrontal region included: 1) Superior Frontal Gyrus: Orbital Part, 2) Inferior Frontal Gyrus: Orbital 447 
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Part, 3) Superior Frontal Gyrus: Medial Orbital, and 4) Middle Frontal Gyrus: Orbital Part (see Table 448 

S7). In the vertex-wise approach SA heritability estimate for the total orbitofrontal region was 16% on 449 

the left side with a slightly higher estimate on the right side, and the heritability estimates for CT was 450 

20% for the left and similar pattern was seen on the right. The estimates of the combined region for both 451 

CT and SA were very similar to the smaller individual regions such as the left and right inferior frontal 452 

gyrus. In contrast, within the ROI approach, heritability estimates for both SA and CT were higher for 453 

the combined areas of the orbitofrontal region compared to the individual regions such as the superior 454 

frontal gyrus: medial orbital. In the ROI approach, SA of the total orbitofrontal region had heritability 455 

estimates of 33% left with similar estimate on the right side, and heritability estimate of CT was 43% 456 

left with a slightly lower estimate on the right side. Furthermore, in the ROI approach the heritability 457 

confidence intervals included 0 for the individual regions of the orbitofrontal region, however when the 458 

four regions were combined the confidence intervals showed a narrower range and did not include 0 459 

(Table S7). The results suggest that combining smaller regions may result in more reliable heritability 460 

estimates compared to individual smaller regions in which heritability of 0 are seen, particularly in the 461 

ROI approach. This supports the idea that defining boundaries of smaller regions is difficult compared to 462 

larger regions which can result in heritability estimates that are not reliable or are not biologically 463 

plausible.  464 

 465 

In previous work, Eyler et al., (2012) also explored regional size and differences between 466 

heritability estimates of ROI and vertex-wise approaches. Eyler et al., (2012) examined heritability 467 

estimates in a ratio form which was ROI heritability estimate over vertex-wise heritability estimate of a 468 

region (h2 ROI/h2 vertex-wise). They plotted the ratio against the size of the ROI (measured in vertices) 469 

and the line of best fit showed greater difference (low ratio) in heritability estimates between both 470 

approaches in smaller regions compared to larger ROI regions where similar heritability estimates were 471 

observed (ratio closer to 1). Similar observations were seen in our study, for example using the ratio 472 

equation the left precentral gyrus region which had 1192 vertices had a ratio of 0.78 for CT and 0.68 for 473 

SA, however the ratio was lower in smaller regions, such as the left supramarginal gyrus which has half 474 

the number of vertices (564 vertices, ratio CT = 0.61, ratio SA= 0.42). The sensitivity analysis of the 475 

orbitofrontal region in our study along with the ratio quantification by Eyler et al., (2012), suggest 476 

that changing the size of the regions to obtain the optimal size in order to get reliable heritability 477 

estimates should be considered, specifically in the ROI approach. Furthermore, by definition 478 

combining regions will lead to higher heritability estimates compared to smaller regions. For example, 479 

heritability of mean CT or total brain volume will always be higher than a regional measure. Further 480 
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research needs to be done to properly address the regional size effect on heritability estimates which 481 

would require a well-designed systematic approach in varying regional sizes to find reliable heritability 482 

estimates. 483 

 484 

In spatial smoothing, target signals are averaged with neighbouring signals; therefore anatomical 485 

boundaries of a region are blurred based on the spatial correlation between target and neighbouring 486 

signals. Defining boundaries of smaller regions becomes harder based on the interference of 487 

neighbouring signals during spatial smoothing, making it difficult to obtain accurate estimates of SA. In 488 

this work, a larger spatial smoothing kernel was used for SA (40 mm) compared to CT (20 mm). 489 

Therefore the SA smoothing kernel incorporates greater amount of neighbouring signal which can 490 

interfere with target signals when defining smaller regions compared to the smoothing kernel used for 491 

CT. We chose these values as they are the values most commonly used in MRI studies that employ 492 

CIVET (Lax et al., 2013; Lyttelton et al., 2009; Sussman et al., 2016).  Nonetheless, we do acknowledge 493 

that larger smoothing kernels incorporate a greater number of neighbouring vertices, which may 494 

interfere with the target signal at the vertex-level. In an exploratory analysis we examined the effect of 495 

multiple smoothing kernels for SA (20mm, 10mm FWHM) and CT (5mm, 10mm FWHM) on 496 

heritability estimates in a vertex-wise approach.  Supplementary section: Sensitivity Analysis (see Inline 497 

Supplementary Table S9), shows heritability estimates for each reduced smoothing kernel.  Overall, 498 

heritability estimates were similar between original smoothing kernel value and decreased kernel values. 499 

For example the right inferior parietal (supramarginal and angular gyri) and both the left and right 500 

parahippocampal gyrus had similar estimates particularly seen in SA compared to CT. Interestingly, a 501 

trend was observed where larger the kernel value, greater the heritability estimates and smaller the 502 

kernel value the lower the heritability estimates. Future studies should examine the influence of 503 

smoothing kernel on heritability estimates in a systematic approach using a spectrum of different 504 

smoothing kernels, this would add value to the imaging-genetics research field. Throughout the 505 

discussion we have addressed some of the shortcomings of image processing; however there are also 506 

limitations with the HCP sample. The sample is relatively young with an age group of 22-37 that does 507 

not encompass the entire lifespan. Furthermore, information of intrauterine environment or pre and post 508 

complication for twins and non-twin siblings in our study is not given which can influence 509 

neuroanatomical measures affecting heritability estimates (Buckler and Green, 2004; Peterson et al., 510 

2000). 511 

 512 
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Similar heritability estimates between our study and Eyler’s et al., 2012 study are observed throughout 513 

different regions of the brain. For example, Eyler et al., 2012 reported heritability estimates of CT in the 514 

fusiform gyrus region to be 40% (left) and 29% (right) in the vertex-wise approach compared to the ROI 515 

approach which was 35% (left) and 44% (right). We showed slightly lower estimates using the vertex-516 

wise approach (24% left and 28% right) and similar results in the ROI approach (33% left and 47% 517 

right). However, there were differences in heritability estimates which can be due to the demographics 518 

of the sample and the type of imaging pipeline used. In our study, the CIVET pipeline was used to 519 

measure CT and SA, whereas other heritability studies have used FreeSurfer (Docherty et al., 2015; 520 

Eyler et al., 2012; Panizzon et al., 2009; Winkler et al., 2010). CIVET uses a skeleton mesh model base 521 

and FreeSurfer uses a deformation of the inner surface model base. A one-to-one comparison between 522 

FreeSurfer and CIVET-CLASP (slightly different from the CIVET version used in this study) on CT has 523 

been done, and FreeSurfer CT measures were lower by one third compared to CIVET-CLASP (Redolfi 524 

et al., 2015). This study also reported that CIVET-CLASP is more prone to topological errors whereas 525 

FreeSurfer is more prone to geometric inaccuracies when forming the 3D mesh (Redolfi et al., 2015). 526 

Both types of errors can influence the true estimate of CT and SA. Interestingly, in FreeSurfer the total 527 

vertices mapped to the brain were 327,680 compared to our study which consisted of 81,924 vertices. As 528 

a result, on a regional level, the number of vertices within a region is greater in FreeSurfer than CIVET 529 

which may result in different overall averages of regional CT and SA between both pipelines, therefore 530 

influencing overall regional heritability estimates. A comparison of results is difficult across CIVET and 531 

FreeSurfer when different atlases are being used to define regions across the brain within the ROI 532 

approach. As a supplementary analysis we selected 16 regions that were similar between CIVET and 533 

FreeSurfer to compare heritability estimates. Results are seen in Supplementary Section: Sensitivity 534 

Analysis (see Inline Supplementary Table S10). Many of the regions showed similar heritability 535 

estimates with a difference of less than 10% between estimates, such as the parahippocampal gyrus and 536 

posterior cingulate gyrus. However there were extreme differences in heritability estimates in some 537 

regions, such as the superior temporal gyrus. Based on differences in imaging pipelines, a one-to-one 538 

comparison of results is difficult since different atlases are being used, with different numbers of 539 

vertices within each region to define the boundaries. This can influence CT and SA measures which in 540 

turn influences heritability estimates between the different imaging pipelines. Therefore, a systematic 541 

comparison study using same sample, same MRI resolution scans and atlases would benefit the imaging-542 

genetics field by showing the reliability and reproducibility of heritability estimates within different 543 

imaging pipelines.  544 

 545 
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There are several studies that examine heritability estimates of neuroanatomical measures of the cortex 546 

(Eyler et al., 2012; Ge et al., 2016; Patel et al., 2017; Winkler et al., 2010). For example, Winkler et al., 547 

2009, uses an extended family pedigree design in a ROI approach to examine the relationship between 548 

regional grey matter volume, CT and SA measures and their heritability estimates. However, in our 549 

study we focused on heritability estimates using both ROI and vertex-wise approaches and examine the 550 

impact of input choice on downstream heritability estimates. In addition, we take advantage of a larger 551 

sample size using the HCP dataset of twin and non-twin first degree related siblings. We believe it is 552 

important to report heritable estimates using the publically available HCP dataset, which has not been 553 

done before on CT and SA measures. We are aware of two studies that uses the HCP dataset to calculate 554 

heritability estimates on different structural neuroanatomical measures. A study done by our group used 555 

the 500 subject release from the HCP in an univariate model determining if heritability of hippocampal 556 

subfields volumes were influenced by global measures such as total brain volume (TBV) and ipsilateral 557 

hippocampal volume. Furthermore, a bivariate model was used to investigate the shared heritability and 558 

genetic correlation of the subfield volumes with TBV and ipsilateral hippocampal volume (Patel et al., 559 

2017). A second study by Ge et al, (2016) used the HCP dataset as a replication set to calculate 560 

heritability of volume and shape of subcortical structures (Ge et al., 2016). However, in our current 561 

study we focused on heritability of SA and CT of all cortical regions, instead of volume and shape of 562 

subcortical structures. Furthermore, our study had a larger sample size of 757 for heritability analysis on 563 

HCP data compared to Ge et al., 2016 and Patel et al., 2017. We are not aware of any heritability 564 

estimates released from the HCP using the FreeSurfer output for CT and SA.  Furthermore, the main 565 

focus and novelty of our study was to investigate why heritability estimates fail within the model when 566 

we examine smaller regions, which has not been previously done. 567 

 568 
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5. CONCLUSION  569 

In our study we used a univariate model to investigate the unique heritability estimates of CT and SA 570 

within a young healthy population of male and female twins along with non-twin siblings. We have 571 

shown that global structures such as total brain SA and average brain CT influence these regional 572 

measures within the brain using both vertex-wise and ROI approaches. The heritability estimates we 573 

produced in our study for CT and SA can be used by other researchers in choosing quantitative 574 

phenotypes in imaging-genetics studies. CT and SA measures are less reliable and less accurate in 575 

smaller regions compared to larger regions within the brain. This can cause the heritability model to fail 576 

when the assumption that MZ twin correlation of a trait should be equal to or greater than DZ twins is 577 

not met, resulting in heritability estimates of zero. Comparison studies focusing on reliability of 578 

heritability estimates on smaller structures between different imaging pipelines can aid in capturing 579 

accurate heritability estimates of brain regions that are difficult to define from imaging scans. Therefore, 580 

it is important to identify which approach is best suited based on the research hypothesis and the size of 581 

the regions being investigated in heritability analysis. Understanding the genetic variation of CT and SA 582 

at a vertex and regional level through heritability is important in order to establish quantitative 583 

phenotypes. These phenotypes can be used in understanding neurophysiological, neurodevelopmental 584 

and neurodegenerative diseases in larger scale imaging genetics studies such as the ENIGMA 585 

consortium (Stein et al., 2012; Thompson et al., 2014).  586 

  587 
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TABLES 723 

 724 

TABLE 3. Heritability estimates (H2) for cortical thickness and surface area from vertex-wise and 725 

ROI approach along with number of vertices within each region. Heritability estimates are 726 

defined in left and right regions from the AAL atlas. Partially adjusted values are controlled for 727 

sex and age. Completely adjusted values are controlled for sex, age and ipsilateral average brain 728 

cortical thickness or ipsilateral total surface area.  729 

    Mean Cortical Thickness  Total Surface Area 

    Partially 

adjusted  

Completely  

adjusted 

Partially 

adjusted  

Completely  

adjusted 

Region  Number of 

vertices 

Vertex ROI Vertex ROI Vertex ROI Vertex ROI 

Frontal Lobe 

Precentral Gyrus-Left 1192 33% 42% 22% 35% 39% 57% 20% 35% 

Precentral Gyrus-Right 1183 38% 59% 21% 32% 47% 50% 21% 22% 

Superior Frontal Gyrus: 

Dorsolateral-Left 

1598 29% 45% 24% 25% 35% 48% 17% 29% 

Superior Frontal Gyrus: 

Dorsolateral-Right 

1394 39% 60% 25% 32% 40% 51% 13% 28% 

Superior Frontal Gyrus: 

Orbital Part-Left 

903 35% 47% 29% 42% 47% 39% 24% 17% 

Superior Frontal Gyrus: 

Orbital Part-Right 

848 37% 54% 30% 45% 48% 20% 19% 2% 

Superior Frontal Gyrus: 

Medial-Left 

1280 36% 55% 28% 45% 38% 45% 13% 22% 

Superior Frontal Gyrus: 

Medial-Right 

781 48% 67% 30% 42% 44% 35% 13% 8% 

Superior Frontal Gyrus: 

Medial Orbital-Left 

409 20% 0% 22% 0% 30% 4% 10% 0% 

Superior Frontal Gyrus: 

Medial Orbital-Right 

403 37% 55% 22% 32% 52% 27% 20% 8% 

Middle Frontal Gyrus-Left 1823 30% 54% 22% 53% 39% 56% 17% 25% 

Middle Frontal Gyrus-Right 2112 34% 66% 17% 34% 48% 68% 18% 36% 

Middle Frontal Gyrus: Orbital 

Part-Left 

350 19% 28% 14% 16% 46% 0% 30% 1% 

Middle Frontal Gyrus: Orbital 

Part-Right 

410 35% 53% 26% 44% 52% 30% 17% 6% 

Inferior Frontal Gyrus: 

Opercular Part-Left 

520 41% 49% 23% 22% 56% 22% 25% 2% 

Inferior Frontal Gyrus: 

Opercular Part-Right 

516 40% 50% 28% 31% 50% 44% 29% 34% 

Inferior Frontal Gyrus: Orbital 

Part-Left 

965 22% 26% 19% 24% 28% 30% 18% 19% 

Inferior Frontal Gyrus: Orbital 

Part-Right 

973 31% 38% 24% 41% 42% 41% 27% 30% 

Inferior Frontal Gyrus: 

Triangular Part-Left 

782 44% 61% 30% 44% 34% 22% 19% 23% 
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    Mean Cortical Thickness  Total Surface Area 

    Partially 

adjusted  

Completely  

adjusted 

Partially 

adjusted  

Completely  

adjusted 

Region  Number of 

vertices 

Vertex ROI Vertex ROI Vertex ROI Vertex ROI 

Inferior Frontal Gyrus: 

Triangular Part-Right 

819 38% 67% 27% 49% 44% 12% 25% 7% 

Paracentral Lobule-Left 842 30% 32% 29% 38% 27% 26% 20% 19% 

Paracentral Lobule-Right 644 32% 29% 32% 41% 33% 27% 20% 9% 

Rolandic Operculum-Left 445 51% 64% 23% 30% 55% 37% 28% 24% 

Rolandic Operculum-Right 456 54% 66% 26% 22% 42% 15% 17% 0% 

Supplementary Motor Area-

Left 

916 39% 58% 29% 49% 44% 37% 18% 17% 

Supplementary Motor Area-

Right 

1006 49% 69% 30% 41% 44% 40% 27% 29% 

Olfactory Cortex-Left 183 19% 15% 30% 34% 58% 35% 40% 31% 

Olfactory Cortex-Right 132 22% 16% 17% 9% 46% 0% 24% 0% 

Gyrus Rectus-Left 502 28% 21% 32% 33% 44% 20% 25% 15% 

Gyrus Rectus-Right 481 42% 57% 29% 42% 51% 38% 28% 29% 

Parietal Lobe 

Postcentral Gyrus-Left 1693 33% 43% 24% 53% 38% 52% 15% 22% 

Postcentral Gyrus-Right 1617 39% 59% 27% 31% 41% 44% 22% 18% 

Superior Parietal Gyrus-Left 1366 44% 53% 31% 56% 51% 29% 31% 18% 

Superior Parietal Gyrus-Right 1448 36% 51% 26% 47% 46% 42% 23% 18% 

Inferior Parietal: 

Supramarginal and Angular 

Gyri-Left 

670 25% 27% 15% 34% 48% 34% 24% 22% 

Inferior Parietal: 

Supramarginal and Angular 

Gyri-Right 

388 33% 40% 12% 15% 29% 12% 6% 4% 

Supramarginal Gyrus-Left 564 44% 71% 18% 23% 38% 16% 16% 8% 

Supramarginal Gyrus-Right 805 42% 59% 22% 28% 38% 30% 26% 27% 

Angular Gyrus-Left 633 31% 49% 14% 31% 51% 29% 37% 19% 

Angular Gyrus-Right 636 27% 49% 17% 29% 44% 39% 21% 27% 

Precuneus-Left 2268 33% 50% 25% 42% 64% 71% 41% 44% 

Precuneus-Right 2271 41% 62% 25% 29% 62% 68% 43% 48% 

Temporal Lobe 

Superior Temporal Gyrus-Left 1531 35% 48% 24% 6% 36% 48% 22% 38% 

Superior Temporal Gyrus-

Right 

1789 42% 66% 25% 25% 33% 20% 27% 8% 

Temporal Pole: Superior 

Temporal Gyrus-Left 

563 27% 28% 27% 30% 32% 14% 15% 7% 

Temporal Pole: Superior 

Temporal Gyrus-Right 

628 34% 40% 30% 35% 46% 45% 32% 25% 
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    Mean Cortical Thickness  Total Surface Area 

    Partially 

adjusted  

Completely  

adjusted 

Partially 

adjusted  

Completely  

adjusted 

Region  Number of 

vertices 

Vertex ROI Vertex ROI Vertex ROI Vertex ROI 

Middle Temporal Gyrus-Left 2076 31% 52% 17% 48% 33% 38% 24% 27% 

Middle Temporal Gyrus-Right 1813 36% 59% 24% 45% 37% 59% 24% 33% 

Temporal Pole: Middle 

Temporal Gyrus-Left 

169 25% 36% 24% 32% 28% 15% 15% 17% 

Temporal Pole: Middle 

Temporal Gyrus-Right 

224 40% 49% 33% 42% 25% 0% 18% 0% 

Inferior Temporal Gyrus-Left 975 28% 52% 19% 39% 52% 53% 28% 30% 

Inferior Temporal Gyrus-Right 1086 31% 65% 20% 44% 41% 45% 25% 24% 

Parahippocampal Gyrus-Left 1130 41% 54% 35% 43% 51% 45% 28% 31% 

Parahippocampal Gyrus-Right 1126 39% 45% 36% 42% 47% 43% 31% 31% 

Fusiform Gyrus-Left 1169 33% 45% 24% 33% 45% 9% 16% 2% 

Fusiform Gyrus-Right 1149 37% 70% 28% 47% 49% 43% 23% 26% 

Heschl Gyrus-Left 271 40% 41% 28% 27% 42% 0% 23% 0% 

Heschl Gyrus-Right 252 51% 62% 34% 38% 31% 0% 17% 0% 

Occipital Lobe 

Superior Occipital Gyrus-Left 841 45% 45% 37% 56% 45% 29% 31% 21% 

Superior Occipital Gyrus-Right 796 35% 48% 24% 43% 48% 39% 28% 25% 

Middle Occipital Gyrus-Left 1685 36% 64% 17% 38% 34% 19% 24% 15% 

Middle Occipital Gyrus-Right 1374 26% 43% 14% 18% 41% 31% 21% 13% 

Inferior Occipital Gyrus-Left 495 32% 27% 16% 0% 43% 0% 28% 8% 

Inferior Occipital Gyrus-Right 630 26% 30% 17% 16% 47% 17% 25% 11% 

Calcarine Fissure and 

Surrounding Cortex-Left 

1102 28% 45% 24% 45% 60% 51% 51% 41% 

Calcarine Fissure and 

Surrounding Cortex-Right 

1086 31% 49% 25% 56% 61% 56% 48% 44% 

Cuneus-Left 1309 36% 48% 28% 53% 63% 50% 49% 40% 

Cuneus-Right 1325 38% 55% 29% 51% 58% 33% 46% 29% 

Lingual Gyrus-Left 964 30% 38% 27% 43% 50% 37% 34% 31% 

Lingual Gyrus-Right 949 32% 51% 24% 41% 56% 44% 39% 39% 

Insula and Cingulate Gyri 

Insula-Left 1042 40% 37% 34% 42% 36% 55% 17% 37% 

Insula-Right 1077 35% 37% 31% 41% 22% 29% 20% 35% 

Anterior Cingulate and 

Paracingulate Gyri-Left 

662 17% 15% 17% 24% 43% 1% 15% 0% 

Anterior Cingulate and 

Paracingulate Gyri-Right 

1076 37% 56% 26% 37% 47% 12% 23% 0% 

Median Cingulate and 

Paracingulate Gyri-Left 

1070 41% 62% 26% 52% 48% 20% 25% 20% 
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    Mean Cortical Thickness  Total Surface Area 

    Partially 

adjusted  

Completely  

adjusted 

Partially 

adjusted  

Completely  

adjusted 

Region  Number of 

vertices 

Vertex ROI Vertex ROI Vertex ROI Vertex ROI 

Median Cingulate and 

Paracingulate Gyri-Right 

1258 45% 64% 31% 59% 53% 37% 27% 3% 

Posterior Cingulate Gyrus-Left 328 35% 36% 38% 49% 68% 22% 45% 14% 

Posterior Cingulate Gyrus-

Right 

325 48% 50% 42% 52% 65% 42% 45% 32% 

Whole Brain 

Brain Hemisphere - Left     - 46% - - - 75% - - 

Brain Hemisphere - Right    - 67% - - - 73% - - 

  730 


