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Abstract

An organizational pattern seen in the brain, termed structural covariance, is the statistical

association of pairs of brain regions in their anatomical properties. These associations,

measured across a population as covariances or correlations usually in cortical thickness

or volume, are thought to reflect genetic and environmental underpinnings.

Here, we examine the biological basis of structural volume covariance in the mouse

brain. We first examined large scale associations between brain region volumes using an

atlas-based approach that parcellated the entire mouse brain into 318 regions over which

correlations in volume were assessed, for volumes obtained from 153 mouse brain images

via high-resolutionMRI. We then used a seed-based approach and determined, for 108 dif-

ferent seed regions across the brain and using mouse gene expression and connectivity data

from the Allen Institute for Brain Science, the variation in structural covariance data that

could be explained by distance to seed, transcriptomic similarity to seed, and connectivity

to seed.

We found that overall, correlations in structure volumes hierarchically clustered into

distinct anatomical systems, similar to findings from other studies and similar to other types

of networks in the brain, including structural connectivity and transcriptomic similarity

networks. Across seeds, this structural covariance was significantly explained by distance
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(17% of the variation, up to a maximum of 49% for structural covariance to the visceral

area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28%

for structural covariance to the primary visual area) and connectivity (15% of the variation,

up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in

the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic

similarity explained 37% of structural covariance, up to a maximum of 63% for structural

covariance to the visceral area. Additionally, this pattern of explained variation differed

spatially across the brain, with transcriptomic similarity playing a larger role in the cortex

than subcortex, while connectivity explains structural covariance best in parts of the cortex,

midbrain, and hindbrain. These results suggest that both gene expression and connectivity

underlie structural volume covariance, albeit to different extents depending on brain region,

and this relationship is modulated by distance.

Keywords: Structural covariance, volume, correlation, MRI, mouse, gene expression,

transcriptomic similarity, connectivity, Allen Institute for Brain Science
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1. Introduction

Patterns of covariation in the thickness or volume of brain regions (“structural co-

variance”), measured across a population, have been linked to both structural and func-

tional networks of the brain. Previously, Gong et al. (2012) showed that approximately

35-40% of cortical regions that positively correlated in thickness were also connected by5

fibre tracts estimated from probabilistic tractography on diffusion MRI data. The spatially

widely-distributed nature of structural covariance networks suggest that they might arise

from functional connectivity along with specific fibre connections; Lerch et al. (2006)

demonstrate that cortical thickness covariance arises between structurally and functionally

connected regions, and Segall et al. (2012) provide evidence that functional connectiv-10

ity might also explain structural covariance (of gray matter density) by showing promi-

nent correlations between many independent component pairs of structural covariance and

resting state networks. More recently, Reid et al. (2016) use cross-species data to show

a correspondence between cortical thickness networks, tractographic networks obtained

from diffusion-weighted MRI (DWI), and resting-state fMRI; here, approximately 15%15

of cortical thickness covariance was predicted by DWI and fMRI in humans, and 25%

in macaques. Together, these studies point to a link between connectivity and structural

association of brain regions. Indeed, given this link to connectivity, structural covari-

ance networks are particularly appealing to examine neuropsychiatric disorders in which

aberrations in structural and functional networks have been implicated. Alterations in net-20

works of structural covariance have been demonstrated in autism (Zielinski et al., 2012;

Bernhardt et al., 2014; Valk et al., 2015; Bethlehem et al., 2017), schizophrenia (Shi et al.,

2012; Wheeler et al., 2014; Alexander-Bloch et al., 2014), epilepsy (Bernhardt et al., 2011;

Yasuda et al., 2015; Bernhardt et al., 2016), and grapheme-color synesthesia (Hänggi et al.,

2011), to name a few such disorders.25

The mechanisms that underlie structural covariance have yet to be well characterized.

Correlations with structural and functional networks suggest that structural covariance

might arise due to network mediated plasticity—regions that fire together and wire to-

gether might also couple in volumes together due to mutually trophic, plasticity-related

changes at the synaptic and cellular levels (Evans, 2013). The previous studies mentioned30
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suggest that this plasticity might only partially account for structural covariance. While

it is likely that this might be due to methodological constraints (for example, estimates

of the proportion of white matter voxels which contain crossing fibres range from a third

(Behrens et al., 2007) to 90% (Jeurissen et al., 2013), making comparisons to tractography-

estimated structural connectivity challenging), other biological factors might also explain35

covariation patterns. Another such (not necessarily mutally exclusive) mechanism is co-

ordinated neurodevelopment (Alexander-Bloch et al., 2013a; Evans, 2013). Alexander-

Bloch et al. (2013b) showed that networks of cortical thickness covariance agree strongly

with networks of cortical thickness change, a measure of this synchronized neurodevelop-

ment. Such networks of anatomical change (“maturational coupling”) are conjectured to40

arise from the expression of common genetic cues during early development of the cortex

(Raznahan et al., 2011). Supporting this are twin studies implicating genetics and struc-

ture (Schmitt et al., 2008; Rimol et al., 2010; Docherty et al., 2015), with one by Schmitt

et al. (2008) suggesting that the small-world network organization of structural covariance

(He et al., 2007) might be explained by genetic correlations that display a similar pattern.45

The extent that transcriptomic similarity mediates covariance, particularly in relation to

connectivity, remains to be seen, however. Nevertheless, given this link between neu-

rodevelopment, genetics, and structural covariance, it is not surprising that alterations in

structural covariance arise in relation with aberrant gene expression (Pezawas et al., 2008;

Schmitt et al., 2016; Bruno et al., 2016) or early sensory deprivation (Voss & Zatorre,50

2015).

To probe the mechanisms that underlie structural covariance and examine the role of

genetics and connectivity in particular, we asked the question, to what extent do tran-

scriptomic similarity and structural connectivity underlie structural volume covariance?

Here, we leveraged connectivity and gene expression data from theAllen Institute for Brain55

Science in order to address this question in the mouse brain. Genetic and environmental

control of mice allow for the comparison of structural covariance to connectivity and ex-

pression similarity in highly similar populations. Pagani et al. (2016) have shown that

networks of structures that covary together in volume, consistent with neuroanatomical

systems, emerge in an analysis of structural covariance in the mouse brain. A seed-based60

approach further shows the presence of bilateral and neuroanatomically specific networks
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of covariance (Pagani et al., 2016). In this study, we first analyze parcellation-derived

networks constructed from MR images of mouse brains in relation to connectivity, tran-

scriptomic similarity networks, and distance between structures. Then, using a seed-based

approach with 108 injection sites from the Allen Institute’s mouse connectivity experi-65

ments as seeds, we examine the variation in structural covariance that can be explained

by transcriptomic similarity, structural connectivity, and physical distance to seed, and

explore the spatial pattern of this explained variation.

2. Methods

2.1. Outline and definitions70

In this study, we use the term structural covariance to describe correlations in vol-

umes between pairs of regions. We examine the biological basis of structural covariance

in two separate ways: 1) using a parcellation-based approach in which structural covari-

ance is computed between the volumes of regions that are defined by a 318 structure neu-

roanatomical atlas, and 2) a seed-based in which structural covariance is computed for the75

whole brain in a voxelwise manner to each seed, for a set of 108 seed regions. In both

cases, we used the Pearson correlation coefficient as a measure of structural covariance

because, unlike the unscaled covariance, it does not span many orders of magnitude.

In the parcellation-based approach, we examine the spatial structure of the structural

covariance (correlation)matrix, and compare this to similarly constructedmatrices for tran-80

scriptomic similarity, structural connectivity, and Euclidean distance.

In the seed-based approach, we examine the variation in structural covariance values

at each voxel (i.e. correlation coefficients) that can be explained by transcriptomic simi-

larity, structural connectivity, and Euclidean distance. To do so, we construct a structural

covariance map (i.e. a 3D dataset) for each of the 108 seed regions and fit linear models85

with structural connectivity, transcriptomic similarity, and distance to seed as predictors

for structural covariance values. For a given structural covariance map and a model, we

used the R2 value (adjusted for multiple predictors where applicable) of the linear model

to quantify the extent that a structural covariance map is associated with the model’s pre-

dictors; this is the variation in the structural covariance data that can be explained by the90
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model (variation explained for short).

2.2. External data sources

For this study, we used mouse connectivity (Oh et al., 2014) and gene expression (Lein

et al., 2007) data from the Allen Institute for Brain Science. The mouse connectivity data

consists of neuronal tracers injected into a variety of regions in the mouse brain that show95

projections that emanate from the injection sites. Neuronal tracers avoid tractography-

related issues that arise when inferring connectivity from diffusion MRI data, and allow

for the visualization of fine tracts that might not be detected throughMRI. The mouse gene

expression data consists of 3D images for a set of genes that show the spatial expression

pattern of each gene, and is the most comprehensive high-resolution dataset to date.100

Mouse connectivity. Data from the Allen Institute’s mouse connectivity experiments (Oh

et al., 2014) were used to assess structural connectivity between structures. In a series of

tracer injection experiments, the Allen Institute injected a recombinant adeno-associated

viral (rAAV) tracer that expresses enhanced green fluorescent protein (EGFP) under con-

trol of a human synapsin I promoter and thereby labels neurons. Injections (for the data105

used in this study) were in adult (age: postnatal days P56 ± 2) male wildtype C57Bl6/J

mice. The tracer used does not cross synapses to label further downstream axons, and

thus describes directed, monosynaptic connectivity. The injected brains were imaged by

the Allen Institute for Brain Science using serial two-photon microscopy at an in-slice

resolution of 0.35µm and coronal slice interval of 100µm, and further processed. Process-110

ing steps included intensity correction and stitching of images, followed by a nonlinear

alignment to a 3D reference model that forms the basis of the Allen Institute defined Com-

mon Coordinate Framework (Version 3, “CCFv3”). Further processing to detect EGFP

expression includes intensity rescaling, noise removal, tissue segmentation, and projec-

tion signal segmentation. As a summary of the high-resolution projection data, the Allen115

Institute made available the projection density, a 3D image that grids the post-processed

fluorescence data at 50 µm and expresses the proportion of voxels at original resolution

which show a tracer signal. These projection density (50 µm grid) data, which consists

of a 3D image ranging in values between 0 and 1 (inclusive) per injection site, describes
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anterograde connectivity from the injection site. All projection density data (50 µm grid120

aligned in CCFv3 space) for injections in wildtype C57Bl/6J mice consisting of a total of

488 injection experiments1 were downloaded.

Mouse gene expression. To assess transcriptomic similarity, 4345 3D gene expression

images for 4082 unique genes were downloaded from the Allen Institute’s coronal expres-

sion dataset (Lein et al., 2007) were used. Gene expression data were obtained by the Allen125

Institute following a pipeline that involved semi-automated riboprobe generation, tissue

preparation and sectioning, in-situ hybridization (ISH), imaging, and data post-processing.

Mice used for these gene expression studies were similar in age (postnatal day P56), sex

(male), and strain (C57Bl/6J) to those used in the connectivity studies. Briefly, for a given

expression image, a mouse brain was sectioned into 8 series of slices, 6 of which were hy-130

bridized to the given gene and 2 of which were Nissl stained for anatomical reference. The

Nissl and expression images obtained from the ISH experiments were processed by the

Allen Institute in steps that included intensity and white balance normalization, separation

of foreground from background, removal of noise, connected component analysis, align-

ment to a 3D reference model, tissue segmentation, and expression detection. The Allen135

Institute provided summaries of the spatial expression data at a 200 µm resolution, termed

the gene expression energy. This gene expression energy, defined as the sum of expressing

pixel intensity divided by the sum of all pixels in a division, increases in regions of high

expression, and is bounded by zero in regions of no expression. Note that the Allen Insti-

tute also provides a sagittal expression dataset comprising of images for ∼20000 genes.140

We chose to use the coronal dataset because of its whole-brain coverage and quality.

2.3. Animals and imaging

Structural covariance is a property of a population and is therefore measured over a

group of individuals. Here, we constructed structural covariance networks in a group of

153 mice imaged via MRI. Ex-vivo images were high resolution and covered the whole145

brain.

1at the time this study was conducted
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MR images were obtained in-house at the Mouse Imaging Centre in a multiple mouse

imaging setup (Lerch et al., 2011a) and as part of other studies’ wildtype groups (Ellegood

et al., 2015; Cahill et al., 2015). All 153 images were T2-weighted and obtained ex-vivo

on a 7T Varian MR scanner, with brains perfused with a gadolinium-based contrast agent150

before imaging (de Guzman et al., 2016). Since the images were collected over a period

of several years, a variety of MR scan parameters were used to obtain the images, which

ranged in resolution from 32-56µm (isotropic). Mice were selected to match those used

in the Allen Institute for Brain Science’s connectivity and gene expression experiments in

terms of strain, sex, and age (adulthood). As such, mice were male C57Bl/6 and adults155

(ranging in age from postnatal days P60-112). Some mice underwent interventions (exer-

cise wheel in cage, saline injection). Table 1 describes all mice used.

2.4. Registration and volumes

Deformation-based morphometry was used to register the mouse brains images (after

correcting for geometric distortions) to a common non-linear average brain (Lerch et al.,160

2011a). The purpose of registration was to determine volumes of neuroanatomical regions

required to compute the structural covariance networks. The 153 images were registered

in four separate groups based on the images’ experimental source and environmental inter-

actions; images were registered to group consensus averages in an iterative pipeline (Lerch

et al., 2011a). Registering to separate group averages is analogous to regressing out vol-165

ume differences resulting from different exposures. Nonlinear registration was achieved

using ANTS (Avants et al., 2009). The PydPiper framework (Friedel et al., 2014) was used

for image registration; registration was carried out on the General Purpose Cluster at the

SciNet HPC Consortium (Loken et al., 2010). The registration procedure outputs a series

of spatial transformations that map the non-linear average of all images to each input im-170

age, along with a corresponding set of Jacobian determinant images that are measures of

local volume deviations of each mouse from the average image. The Jacobian determinant

images were further log-transformed to reduced skewness (Leow et al., 2007). Structure

volumeswithin eachmouse imagewere computed by summing over Jacobian determinants

at each voxel within the structure as defined by the atlas after mapping onto the average175

image (Lerch et al., 2011a).

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 1, 2017. ; https://doi.org/10.1101/183004doi: bioRxiv preprint 

https://doi.org/10.1101/183004
http://creativecommons.org/licenses/by-nc-nd/4.0/


St
ud
y

M
ou
se
da
ta

Im
ag
in
g
pa
ra
m
et
er
s

Sa
m
pl
e

si
ze

St
ra
in

Se
x

A
ge

(d
ay
s)

In
te
rv
en
tio
n

So
ur
ce

Sc
an
ne
r

Se
qu
en
ce

R
es
ol
ut
io
n

D
at
a

co
lle
ct
ed

8
C
57
B
l/6

M
64

Sa
lin
e
in
je
ct
io
n

LS
N

V
ar
ia
n
7T

T2
w
FS
E

40
µ
m

20
15

10
C
57
B
l/6

M
60

Sa
lin
e
in
je
ct
io
n

JE
V
ar
ia
n
7T

T2
w
FS
E

56
µ
m

20
12
-

20
15

10
C
57
B
l/6

M
60

Sa
lin
e
in
je
ct
io
n
+

m
at
er
na
ls
ep
ar
at
io
n

JE
V
ar
ia
n
7T

T2
w
FS
E

56
µ
m

20
12
-

20
15

22
C
57
B
l/6

M
60

N
on
e

JE
V
ar
ia
n
7T

T2
w
FS
E

56
µ
m

20
12
-

20
15

11
C
57
B
l/6

M
60

N
on
e

JE
V
ar
ia
n
7T

T2
w
FS
E

56
µ
m

20
12

9
C
57
B
l/6

M
60

N
on
e

JE
V
ar
ia
n
7T

T2
w
FS
E

32
µ
m

20
10

10
C
57
B
l/6

M
60

N
on
e

JE
V
ar
ia
n
7T

T2
w
FS
E

40
µ
m

20
13

13
C
57
B
l/6

M
60

N
on
e

JE
V
ar
ia
n
7T

T2
w
FS
E

56
µ
m

20
11
-

20
13

30
C
57
B
l/6

M
11
2

N
on
e

LS
C

V
ar
ia
n
7T

T2
w
FS
E

56
µ
m

20
12

30
C
57
B
l/6

M
11
2

Ex
er
ci
se
w
he
el

LS
C

V
ar
ia
n
7T

T2
w
FS
E

56
µ
m

20
12

Ta
bl
e
1:
M
ou
se
da
ta
an
d
im
ag
in
g
pa
ra
m
et
er
s.
A
ll
ag
es
re
fe
rt
o
th
e
ag
e
in
po
st
na
ta
ld
ay
sa
tw

hi
ch

th
e
m
ic
e
w
er
e
pe
rf
us
ed
.S

ou
rc
e
ac
ro
ny
m
sr
ef
er
to
au
th
or
in
iti
al
s.
T2
w
FS
E
st
an
ds

fo
rT

2-
w
ei
gh
te
d
fa
st
sp
in
ec
ho
.A

ll
re
so
lu
tio
ns

re
po
rte
d
ar
e
is
ot
ro
pi
c.

9

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 1, 2017. ; https://doi.org/10.1101/183004doi: bioRxiv preprint 

https://doi.org/10.1101/183004
http://creativecommons.org/licenses/by-nc-nd/4.0/


All analyses were carried out in CCFv3 space. Nonlinear average images of each group

were registered individually to the two-photon microscopy CCFv3 (50 µm in-slice resolu-

tion) reference average from the Allen Institute using ANTS. Invidiual images (including

the Jacobian determinant images) were further transformed to CCFv3 space on the basis180

of the transformation defined between the average and CCFv3 space, and then resampled

at 50 µm isotropic resolution, thereby allowing direct voxelwise comparisons across all

images.

Using an atlas which defines 318 structures (see Section 2.5) that cover the whole brain,

structure volumes were computed for each mouse allowing for an atlas-based exploration185

of structural covariance. The seed-based analyses was carried out voxelwise, using log-

transformed Jacobian determinants as a measure of local volumes.

2.5. Parcellation-based exploration

To explore large-scale patterns of structural covariance in the mouse brain, an atlas-

based approach was used in which the correlations between the volumes of predefined190

brain structures were computed.

We used an atlas that defines 318 structures in total when considering bilateral struc-

tures separately; this atlas combined a high-resolution three-dimensional brain atlas of

C57Bl/6J mice by Dorr et al. (2008) with a segmentation of cerebellar structures by Stead-

man et al. (2014) and a segmentation of the neocortex by Ullmann et al. (2013) (the “Dorr-195

Steadman-Ullmann” or DSU-atlas). To avoid spurious correlations driven by whole-brain

volume, we considered for each mouse the normalized volumes of these structures, relative

to the whole-brain volume (i.e. percent volume).

For each pair of the 318 DSU-atlas regions, the Pearson correlation coefficient was

computed between relative structure volumes and over all individual mouse brain images,200

resulting in a 318×318 matrix of correlations representing the group-wise structural vol-

ume covariance network. Given that the Allen Institute’s mouse connectivity experiments

consisted of injections only in the right hemisphere, the structural covariance matrix was

subsetted to include only source structures in the right hemisphere (target structures in both

the right/ipsi- and left/contralateral hemispheres were kept).205
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Structural connectivity matrix. We used correlations in tracer fluorescence as a measure

of connectivity between structures in the parcellation-based analysis. For each projec-

tion density image, tracer projection density values from the Allen Institute were averaged

over voxels in each of the 318 structures. Correlations in average tracer projection density

values were computed between every pair of regions, and over a set of tracer projection210

density images. The set of tracer images used included all projection density images from

the 488 injection experiments, along with the same 488 images flipped across the mid-

sagittal plane to account for contralateral afferent connectivity. For the parcellation-based

analysis, we used correlations over tracer images as a metric of connectivity rather than the

raw projection density values since this describes bidirectional connectivity (efferent and215

afferent) via a symmetric matrix, is the samemeasure of association as volume correlations

and transcriptomic similarity (and does not scale across multiple orders of magnitude), and

allows for visually clear comparison of clusters. Directional information is maintained in

the seed-based analysis below (Section 2.6).

Transcriptomic similarity matrix. Mean gene expression energies were computed within220

each of the 318 DSU-atlas defined regions for each gene. This was done by downsam-

pling the DSU-atlas labels at the 200 µm resolution of the expression images, and then

by averaging each gene’s expression energy values within each region (thus providing a

4345 × 318 table). For a given gene (row), values were further normalized by dividing

each element by the total mean expression (i.e., row sum). A correlation matrix repre-225

senting transcriptomic similarity was computed by correlating pairwise these normalized

mean expression of 4345 genes under each pair of structure labels. Expression images

were not processed any further to remove any noise or missing data artefacts since these

were rare within any given structure, and this noise was expected to be overcome by the

strong correlation signal driven by large sample size.230

Distance matrix. Pairwise distances were computed between all pairs of 318 structures as

the Euclidean distance between structure centroids.

Matrix comparisons and statistical methods. The structural covariance matrix data were

clustered to determine which regions form communities of similar interregional correla-
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tions. Specifically, correlations in volume between each source structure and all target235

structures were represented as a vector. These vectors were hierarchically clustered (us-

ing average linkage) to determine structures that tend to associate together in structural

covariance patterns. The optimal number of clusters was determined by examining using

a scree plot in which the within-sum-of-squares (WSS) cluster distance is plotted for dif-

ferent cluster numbers; the optimal cluster number is taken to be the cluster number above240

which an increase in the number of clusters results in little change in the WSS.

Apart from visual comparisons, a partial least-squares (PLS) analysis was used to quan-

tify the correspondence between the visually similar structural covariance and transcrip-

tomic similarity matrices. In this analysis, structural covariance and transcriptomic simi-

larity matrices, subsetted to include regions in the right hemisphere, were decomposed to245

maximize the covariance between component matrices.

2.6. Seed-based voxelwise analysis

In addition to the parcellation-based analysis described above, we used a seed-based

approach to examine the relationship between structural covariance and physical distance,

transcriptomic similarity, and structural connectivity. In this approach, we constructed250

structural covariance maps voxelwise to predefined seed regions of interest. Our approach

was to examine the variation in these structural covariance data that could be attributed to

a) neuronal tracer data from the Allen Institute, b) transcriptomic similarity images con-

structed from Allen Institute expression data, and c) physical distance to the seed. As

described below, seed regions were selected from the Allen Mouse Brain Connectivity255

Atlas injection sites.

Seed selection criteria. The 488 injection experiments (in wildtype C57Bl/6J mice) from

the Allen Institute’s mouse connectivity dataset (Oh et al., 2014) provided a corresponding

set of injections sites, which we considered as the seed regions of interest. We found

that tracer tract volume (i.e. volume of voxels outlined by tracer) and projection length260

depended on the volume of the injected tracer when the amount of tracer injectedwas small,

suggesting that in this volume regime, projection tracts might be missed out when not

enough tracer was injected. We thus selected only connectivity experiments in which the
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Figure 1: Injection experiments in which the volume of the injection was greater than 0.4 mm3 were considered

in order to avoid experiments where projection tracts are missed due to not enough tracer uptake. Above this

threshold, (a) the volume of voxels which show a tracer signal and (b) the maximum distance the tracer projects

both do not depend on the injection volume (compared to the strong relationship below the threshold). A total of

108 seed regions fit this constraint; renderings of these seed (injected) regions in the mouse brain were considered

for this study are shown in (c). Coverage of injection regions is hemisphere-wide, with the notable exceptions of

the cerebellum and olfactory bulbs.

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 1, 2017. ; https://doi.org/10.1101/183004doi: bioRxiv preprint 

https://doi.org/10.1101/183004
http://creativecommons.org/licenses/by-nc-nd/4.0/


injection volume was >0.4 mm3 as reported by the Allen Institute; above this threshold the

dependence of tract volume and length on injection volume was not apparent (see Figure265

1a,b). 108 injection sites (51 in the cortex [Allen Institute classification: “cerebrum”], 57

in the subcortex [Allen Institute classification: “brain stem”]) matched this criterion and

were considered as seed regions for this study. No cerebellar or olfactory bulb seed regions

matched this criterion. Figure 1c shows the spatial distribution of these 108 seed regions,

which cover approximately 18% of grey matter in the right hemisphere.270

Connectivity 3D datasets. We used the projection density values associated with each

seed for the voxelwise analysis. These projection density data, aligned to the structural

covariance data, allows for direct voxelwise comparisons between the two datasets.

Estimated polysynaptic connectivity 3D datasets. The rAAV tracer used in generating

the connectivity datasets does not cross the synapse. We generated a prediction of what275

the tracer image would look like if the tracer could “hop” across synapses by combining

overlapping tracer images; Figure S2 is an illustrative example of this procedure.

First, since the projection data only consisted of tracer injections in the right hemi-

sphere, we flipped each of the 488 tracer images across the midsagittal plane to represent

the set of projections emanating from the contralateral (left) hemisphere. Then, we com-

puted the projection density-weighted overlap between the projection density image asso-

ciated with each of the 108 seed regions considered in this experiment and the injection

seed region for all 976 projection density images (488 × 2 hemispheres). The projection

density-weighted overlap was computed as

overlap ≡

∑
v∈voxels

tvsv∑
v∈voxels

sv

where tv is the tracer projection density value and sv is the Allen Institute defined injection

fraction value at voxel v. For each of the 108 seed regions, the estimated polysynaptic con-

nectivity image was constructed by choosing all projection density images corresponding280

to seed regions with an overlap of greater than 0.25; these images were merged voxelwise

by taking the maximum projection density across overlapping images.
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This image combination process was repeated to generate an estimate of polysynaptic

connectivity mediated across two synapses (“2 hops”). We note that the seed regions cor-

responding to the complete set of 976 projection density images cover only about 30% of285

grey matter in the whole mouse brain, and therefore the polysynaptic connectivity images

likely miss some projection tracts.

Transcriptomic similarity 3D datasets. Transcriptomic similarity was computed voxel-

wise as the Pearson correlation coefficient between expression image voxel values and the

mean expression value within the seed across all 4345 gene expression images. This re-290

sulted in 108 transcriptomic similarity images that describe the extent that voxels across

the brain share similar gene expression profiles to the seed. As in the parcellation-based

analysis (Section 2.5), expression images were not preprocessed in any way. Indeed, the

transcriptomic similarity images computed voxelwise were spatially smooth and free of

any artefacts.295

Distance 3D datasets. For each of the 108 injection experiments considered, distances be-

tween each voxel in the brain and the boundary of the seed was computed. These distances

were computed using via the fast marching method (Sethian, 1996) using Python/scikit-

fmm inside a mask of the brain, emanating from the zero contour set as the boundary of

the injection region.300

Voxelwise structural covariance 3D datasets. Since the tracer connectivity data shows

fine neuronal tracts, comparing these to large-scale covariance patterns determined through

parcellation-based methods is not ideal. Therefore, a voxelwise approach in which struc-

tural covariance patterns are localized to specific voxels is warranted.

For each of the 108 injection sites as seed regions of interest, voxelwise structural305

covariance images were constructed by correlating log Jacobian determinants at each voxel

in the brain with the mean of the log Jacobian determinants of voxels in the seed region.

Log-transformed Jacobian determinants were used for computing correlations in order to

reduce skewness in their distribution (Leow et al., 2007). As with the parcellation-based

values, relative volumes were used by computing Jacobians based only on the nonlinear310
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part of the transformations. This also avoids spurious correlations driven only by variations

in whole-brain volume.

3D voxelwise data comparisons and statistical methods. The 108 datasets, each cor-

responding to a seed region of interest, comprised of a tracer projection density image

that shows monosynaptic connectivity, two polysnaptic connectivity images that estimates315

tracer connectivity if the tracer could hop across one and two synapses, a transcriptomic

similarity image, a physical distance image, and an image of structural covariance to the

seed. Structural covariance was assessed in a population of 153 mice, well above the esti-

mated 30-40 suggested by Pagani and colleagues as necessary for reliable covariance maps

(Pagani et al., 2016). Figure 2 shows the data for one of the 108 seed regions (the medial320

mammillary nucleus).

For each of the 108 datasets, linear models were fit between structural covariance voxel

values (Pearson correlations) and voxel values for monosynaptic connectivity, estimated

polysynaptic connectivity (“1 hop” and “2 hops”), transcriptomic similarity (Pearson cor-

relation), distance, and various combinations of the aforementioned predictors. Since the325

Allen Institute connectivity experiments consisted of injections only in the right hemi-

sphere, these linear models were fit using voxels from the right (ipsilateral) and left (con-

tralateral) hemispheres and compared separately. Additionally, voxels within the seed re-

gion were not considered to avoid selection bias. Each linear model was fit to approxi-

mately 2 million voxels. The coefficient of determination of each linear model, adjusted330

for multiple predictors (i.e. adjusted R2), was used as a measure of the variation in struc-

tural covariance values explained by the predictors. A total of 24 linear models for different

combinations of predictors were fit (2 hemispheres× (5 univariate predictors+ 5 bivariate

predictors + 2 trivariate predictors)). Tables 2 and 3 list all the models.

Distributions (each comprising of 108 R2 values) representative of the variation ex-335

plained by the models were tested for significance using a permutation test in which seed

region labels were permuted 100000 times for each model. Additionally, the data were

bootstrapped (i.e. resampled with replacement) 100000 times to generate a distribution

of median values which provide intervals of confidence. The p-value for each model was

assessed as the proportion of permutation-obtained medians that were greater than the 5th340
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percentile of the bootstrapped distribution of medians. P-values were further pooled to-

gether across the 38 different models and corrected for multiple comparisons using the

false discovery rate method as specified by Benjamini and Yekutieli (Benjamini & Yeku-

tieli, 2001).

Seed regions were further clustered based on the variation in structural covariance that345

could be explained by distance, monosynaptic connectivity, and transcriptomic similar-

ity. For each seed, feature vectors consisting of the three R2 values associated with the

three aforementioned models were hierarchically clustered (using average linkage) into

four clusters. Cluster number was determined via a scree plot. The null distribution ob-

tained from the unclustered data (by permuting the seed region labels 100000 times for350

each model) was again used to calculate p-values; as before, the p-value for each model

and cluster was calculated as the proportion of permutation-obtained medians that were

greater than the 5th percentile of the bootstrapped distribution of medians. A total of 96

p-values (2 hemispheres × (5 univariate predictors + 5 bivariate predictors + 2 trivari-

ate predictors) × 4 clusters) were corrected for multiple testing using the Benjamini and355

Yekutieli method (Benjamini & Yekutieli, 2001).

Lastly, distributions of variation explained (R2) values were examined for dependen-

cies on tracer image properties and on variance of seed region volumes.

3. Results

3.1. Parcellation-based exploration360

We first used an atlas to define structures over which a matrix of volume correlations

was calculated, and compared this structural covariancematrix (Figure 3a) to similarly con-

structed matrices for transcriptomic similarity (Figure 3b), structural connectivity (Figure

3c), and source-target distance (Figure 3d).

Transcriptomic similarity, structural connectivity, and distance correlate with structural365

covariance. A visual inspection of matrices in Figures 3a-d indicates a correspondence

between structural covariance and transcriptomic similarity, structural connectivity, and

distance. At a coarse scale, strong cortex-cortex and cerebellum-cerebellum structural co-

variance are seen, but cortical regions generally do not correlate positively with cerebellar
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Figure 3: A region-based comparison of (a) structural covariance to (b) transcriptomic similarity, (c) structural

connectivity, and (d) source-target distance. Rows and columns of each matrix denote atlas-defined structures,

and each matrix element quantifies the association between the row-column structure pair (Pearson correlation

for structural covariance, transcriptomic similarity, and structural connectivity; millimeters for distance). Rows

map to source structures in the right hemisphere, while columns identify target structures ipsilateral (left half

of each matrix) and contralateral (right half matrix) to the source. Structural covariance data was hierarchically

clustered into 19 clusters (number of clusters determined via a scree plot (e); at 19 clusters, increasing the number

of clusters did not increase the within-sum-of-squares cluster distance as much as for lower number of clusters).

Coarse scale clustering of structural covariance (hierarchically clustered into 4 clusters) is shown in (f) with

arbitrary colours. All matrices were ordered according to structural covariance clustering for 19 clusters. Colour

bands flanking rows and columns identify the cluster in which each region row/column lies within, the same

colours identify the regions on sagittal and coronal slices of the mouse brain (g). Labels at the top of the matrices

indicate major structures that lie within each cluster.
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structures. Other notable correlations are between pons, medulla, and other nuclei nearby,370

including the pontine and cuneate nuclei.

A particularly strong concordance with transcriptomic similarity is seen at the whole-

brain scale. For example, the structural covariance within the cerebral cortex (yellow la-

bels) and cerebellar lobules (green and blue labels) share similar transcriptomic similarity

and covariance profiles. A partial least squares decomposition and subsequent comparison375

of the structural covariance and transcriptomic similarity matrices with the first compo-

nent results in anR2 value of approximately 50% for the structural covariance matrix, and

approximately 54% for the transcriptomic similarity matrix; this component roughly out-

lines the separation of cortical and cerebellar structures (Figure S1). Not every pair of re-

gions strongly correlated in volume also share similar gene expression profiles—structural380

covariance between hindbrain (medulla, pons) and cerebellum was not accompanied by

transcriptomic similarity for example. Conversely, no pairs of structures with strong tran-

scriptomic similarity but weak structural covariance were readily identified.

Structural covariance patterns also reflect structural connectivity organization (as de-

scribed by the correlation matrix in Figure 3c), albeit to a much weaker extent. Connec-385

tivity patterns are much sparser, though clusters of structurally connected regions that also

strongly covary in volume together can be readily identified. Connectivity-structural co-

variance concordance is stronger in the ipsilateral hemisphere. The structural connectivity

matrix also resembles the transcriptomic similarity matrix in that similar clusters of re-

gions can be visually identified, indicating that some variation in structural covariance that390

is explained by transcriptomic similarity could be shared by structural connectivity.

Source-target distance also correlates with structural covariance. In general, structures

closer together tend to correlate more strongly in volume, although exceptions to this rule

are the cuneate nucleus andmedial septum, which have a correlation coefficient of∼0.5 but

are relatively distant to each other, and the flocculus and paraflocculus in the cerebellum,395

which correlate weakly but are quite close to each other.

Figure 3 suggests that structural covariance patterns are predominantly bilateral, with

the correlation structure to contralateral regions mirroring ipsilateral correlations. Al-

though some connections are weaker (particularly contralateral cortex-cortex correlations).

This bilateral covariance is reflected in the transcriptomic similaritymatrix. Structural con-400
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nectivity and distance matrices are also bilateral at the whole-brain scale (the two largest

clusters of connected regions are preserved), but deviate at the level of individual struc-

tures, with cortical structures showing the largest bilateral differences.

Regions cluster into a hierarchy of neuroanatomical systems based on structural covari-

ance patterns. We observed that hierarchical clusters of regions which covary in volume405

emerge. A scree plot (within-sum-of-squares (WSS) cluster distances plotted against clus-

ter number) quantifies the emergence of these hierarchies as plateaus followed by drops

in the WSS as the number of clusters is increased (Figure 3e). Anatomical clustering at

a coarse scale (four clusters) is shown in Figure 3f. The four clusters can be labeled as:

olfactory bulb and amygdalopiriform areas, cerebral cortex and striatum, hypothalamus410

and hindbrain, and thalamus and hippocampus.

Increasing the cluster number decreases the WSS until 19 clusters at which the WSS

plateaus; the four matrices were thus split and ordered into 19 clusters, with regions lying

in the same cluster being grouped together. Row and column colour bands flanking the

correlationmatrices represent the cluster to which each region is assigned; the same colours415

are used to show this clustering in anatomical space in Figure 3g. At this finer scale,

clusters formed are contiguous; regions most strongly coupled together in their volume are

also neighbouring regions. Clusters vary in size (both in the number of regions contained

and in volume of the brain covered), ranging from the large cortical cluster of similar

covariance patterns (yellow) to the single region cluster consisting of the basal forebrain420

(pink).

3.2. Seed-based voxelwise analysis

In the seed-based analysis, the associations between structural covariance and tran-

scriptomic similarity, structural connectivity, and distance to seed, were assessed voxel-

wise for each seed by fitting linear models.425

Variation explained by univariate models. Table 2 shows the variation explained by dis-

tance, transcriptomic similarity, and connectivity, across the 108 large seeds chosen and

over voxels in the hemisphere ipsilateral to the seed regions (right hemisphere). In general,
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variation explained in the ipsilateral hemisphere was slightly higher than in the contralat-

eral hemisphere. The median variation explained values under all models were highly un-430

likely to be explained by chance (p<0.0001 for all models, except p=0.00033 for distance

in the contralateral hemisphere). Since the “2 hop” estimated polysynaptic connectivity

predictor did not explain much more variation than its “1 hop” counterpart in either hemi-

sphere, it was not used in any further analyses.

Variation explained

Ipsilateral hemisphere

Variation explained

Contralateral hemisphere

Model predictors Bootstrapped median Range Bootstrapped median Range

Distance 17% (p<0.0001) 0-49% 10% (p=1.0) 0-45%

Transcriptomic similarity 13% (p<0.0001) 0-28% 11% (p=0.0102) 0-27%

Monosynaptic connectivity 12% (p<0.0001) 1-28% 4% (p<0.0001) 0-18%

Polysynaptic connectivity

(1 hop)
15% (p<0.0001) 0-32% 7% (p<0.0001) 0-26%

Polysynaptic connectivity

(2 hops)
14% (p<0.0001) 0-34% 9% (p<0.0001) 0-36%

Table 2: Variation in structural covariance, explained by univariate models. P-values reported are corrected for

multiple testing as specified by Benjamini and Yekutieli (Benjamini & Yekutieli, 2001).

Variation explained by multivariate models. Overlap in the explanatory value of the pre-435

dictors was assessed through multivariate linear models that included interactions. Table 3

shows the variation explained by combinations of the predictors, across the 108 large seeds

chosen and over voxels in separate hemispheres. Bivariate models explain more variation

than univariate models. Apart from the predictors explaining slightly less variation, partic-

ularly for models involving distance, trends in the contralateral hemisphere mirror that of440

the ipsilateral hemisphere. Figure 4 shows the variation explained by all models (univariate

and multivariate).
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Variation explained

Ipsilateral hemisphere

Variation explained

Contralateral hemisphere

Model predictors Bootstrapped median Range Bootstrapped median Range

Distance ×

Transcriptomic similarity
33% (p<0.0001) 1-60% 26% (p<0.0001) 1-53%

Distance ×

Monosynaptic connectivity
25% (p<0.0001) 3-52% 13% (p=0.4040) 0-48%

Transcriptomic similarity ×

Monosynaptic connectivity
22% (p<0.0001) 3-38% 16% (p<0.0001) 2-29%

Distance ×

Polysynaptic connectivity
27% (p<0.0001) 3-57% 15% (p=0.0041) 2-48%

Transcriptomic similarity ×

Polysynaptic connectivity
24% (p<0.0001) 4-44% 18% (p<0.0001) 2-34%

Distance ×

Transcriptomic similarity ×

Monosynaptic connectivity

36% (p<0.0001) 6-61% 28% (p<0.0001) 6-54%

Distance ×

Transcriptomic similarity ×

Polysynaptic connectivity

37% (p<0.0001) 6-63% 29% (p<0.0001) 6-54%

Table 3: Variation in structural covariance, explained by multivariate models including interaction terms. In

models that contain the polysynaptic connectivity term, the “1 hop” variant was used. P-values reported are

corrected for multiple testing as specified by Benjamini and Yekutieli (Benjamini & Yekutieli, 2001).

Variation explained by connectivity does not depend on tracer properties. To ensure

that explained variation values are not due to tracer experiment confounds, we examined

whether explained variation for each seed correlated with tracer volume, maximum dis-445

tance the tracer projects, estimated polysynaptic tracer volume, and the maximum polysy-

naptic tracer distance (Figure S3a,b,d,e). We found that the variation explained bymonosy-

naptic connectivity did not depend on tracer volumes or the maximum distances that the
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tracers projected; a similar lack of relationship held for polysynaptic connectivity. We also

verified that injection volume did not affect variation explained by monosynaptic connec-450

tivity, thus validating our seed choice criteria (Figure S3c).

Variation explained by expression similarity is correlated with transcriptomic common-

ness. Lastly, we defined the transcriptomic commonness of a seed region as the sum of

transcriptomic similarity correlation coefficients over all voxels in the brain, multiplied by

the voxel volume. Noting that this measure represents the uniqueness of transcriptome (the455

higher the transcriptomic commonness, the less spatially unique the transcriptomic simi-

larity pattern is) and is not necessarily a confound, we found that the variation explained by

transcriptomic similarity depends on transcriptomic commonness (Figure S3f). Given that

cortical and subcortical regions share different gene expression and explained variation

patterns, we examined cortical and subcortical seeds separately and found that variation460

explained by transcriptomic similarity correlates more strongly with transcriptomic com-

monness in the cortex than subcortex.

Seed regions cluster into distinct neuroanatomical systems based on patterns of explained

variation. To examine whether structural covariance is explained by transcriptomic simi-

larity, connectivity, and distance differently based on location of the seed, we clustered the465

seed regions into four groups via hierarchical clustering, using the variation explained by

distance, transcriptomic similarity, and monosynaptic connectivity to each seed as a three

dimensional vector associated with each seed (Figure 5). The four clusters consist of seeds

distributed in a spatially unique patterns, and map to unique explained variation trends.

These are as follows,470

• Cluster A (43 seeds located primarily in the midbrain, posterior cortex/visual areas,

and posterior hypothalamus): distance, transcriptomic similarity, and connectivity

each explain equal amounts of variation (∼14-18%, more than chance) in the ipsi-

lateral hemisphere.

• Cluster B (22 seeds, located primarily in the anterior and posterior hypothalamus):475

distance and transcriptomic similarity explain almost no variation (<5%), connec-

tivity explains some variation (∼3-8%) above chance in the ipsilateral hemisphere.
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• Cluster C (23 seeds, located primarily in the hindbrain): transcriptomic similarity

explains almost no variation, most variation is explained by distance (∼25%) al-

though connectivity also has a role (∼12-17%). Distance and connectivity explain480

structural covariance in the ipsilateral hemisphere more so than can be explained by

chance alone.

• Cluster D (20 seeds, located primarily in the anterior cortex): distance explains

the most variation by far (∼40%), but transcriptomic similarity and connectivity

also explain structural covariance more than chance can (∼9-22%) in the ipsilateral485

hemisphere.

These results suggest that transcriptomic similarity is primarily associated with struc-

tural covariance to the cortex, whereas variation explained by connectivity is less localized,

and is particularly high for hindbrain regions.

Variation explained does not depend on the variance in volumes of seed regions. We490

examined whether the lack of variation explained for seed regions in Cluster B could be

attributed to low variance in volumes of those seed regions. If a certain amount of variance

in seed region volumes might be attributed to noise, then constructing structural covariance

maps for the seeds with variance below the noise threshold will result in noise driven

correlations. Variance in seed region volumes are indeed lower for seeds in Cluster B495

(Figure S4a), but a further investigation shows no positive correlation between variation

explained values and variance in seed region volumes within clusters (Figure S4b).

Variation explained by distance, transcriptomic similarity, and structural connectivity

demonstrate spatially nonuniform and distinct patterns. To examine brainwide patterns

of explained variation, we repeated this voxelwise comparison of structural covariance to500

distance, transcriptomic similarity, and connectivity using every voxel as a seed, albeit at a

4x lower resolution so that computations were feasible. Not every voxel was in a seed re-

gion, we therefore used correlations over tracer images (as in the atlas-based analysis) as a

measure of structural connectivity. Figure 6 shows the extent that distance, transcriptomic

similarity, monosynaptic connectivity, and all three combined predictors explain structural505
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covariance to each voxel. Broadly, transcriptomic similarity seems to best explain struc-

tural covariance to the cortex and striatum. Connectivity explains structural covariance

to the cortex, striatum, and hindbrain. Distance explains most variation in frontal areas

of the cortex and hindbrain; together, the three predictors explain most of the variation in

cortex (cingulate, motor, somatosensory, orbital, and frontal association areas) and hind-510

brain (pons, medulla, and parts of the cerebellum, medial septum), and least variation in

the thalamus, hypothalamus, and hippocampi.

Seed region data, variation explained values for all 24 models (12 × 2 hemispheres),

and cluster assignment data are provided for each of the 108 seed regions in the Supple-

mentary Table S1.515

4. Discussion

Connectivity related plasticity and coordinated neurodevelopment (guided by spatially

and temporally coordinated patterns of gene expression) are two interacting mechanisms

that are thought to underlie structural covariance (Evans, 2013). Our objective was to ex-

amine the association between structural volume covariance and structural connectivity,520

transcriptomic similarity, and distance, and thereby provide insights into why regions cou-

ple together in their volumes.

Comparisons to transcriptomic similarity, structural connectivity, and distance.

The parcellation-based exploration shows a strong correspondence between the structural

covariancematrix and transcriptomic similaritymatrix, suggesting a role for transcriptomic525

similarity in structural covariance. Clusters of highly correlated regions within the cortex,

cerebellum, and hindbrain (correlated in transcriptomic similarity and volume) connect re-

gions of common developmental origins, pointing to the idea that the structural covariance

network seen might arise from coordinated gene expression during neurodevelopment. An

interesting feature of the cortex is that regions within the cortex cluster more strongly to-530

gether than other pairs of regions. In the atlas-based clustering into 19 clusters, most of

the cerebral cortex remained in one cluster, indicating that cortical volumes might arise

from common underlying factors that spans the cortex. Recent work by Romero Garcia
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et al. (2017) suggests that human supragranular enriched genes might be one such fac-

tor. Longitudinal volume data along with expression data at earlier timepoints would help535

further probe the temporal development of structural covariance networks and determine

whether structural covariance arises from coordinated expression of developmental cues

during brain growth.

Structural covariance also reflects structural connectivity patterns, although this asso-

ciation is not as strong as with transcriptomic similarity. This might be due to the sparse-540

ness of tracers, i.e. not enough tracer experiments were considered in building a whole-

brain connectivity matrix (the seeds selected covered 18% of grey matter in the right hemi-

sphere). Nonetheless, the patterns of structural connections (mediated by projection tracts

that do not cross synapses) also reflect structural covariance more than chance can explain

alone. We note that connectivity and transcriptomic similarity are not necessarily mutu-545

ally independent. Spatial and temporal gene expression patterns guide the development

of the brain, including the formation of the structural connectome via, for example, the

expression of neuron growth factors and axon guidance molecules (Plachez & Richards,

2005). Indeed, rodent connectivity can be predicted from the spatial coexpression patterns

of a set of genes related to neurodevelopment (French & Pavlidis, 2011), and in the case550

of the cortex, age-related changes in structural covariance during adolescence are predom-

inant in the frontal lobe, consistent with the tuning of frontal lobe structural connections

during this developmental period (Vasa et al., 2017). Given that the human supragranular

genes implicated in structural covariance (Romero Garcia et al., 2017) are associated with

cortico-cortical connectivity (Krienen et al., 2016), structural connectivity driven by the555

coexpression of neuron-related genes between regions is a candidate mechanism for the

coupling of volumes between those regions.

Related to structural connectivity, another measure to examine would be functional

connectivity. In both humans and mice, networks of functional connections are associated

with both structural connectivity (Honey et al., 2009; Grandjean et al., 2017; Mills et al.,560

2017) and transcriptomic similarity (Richiardi et al., 2015; Vértes et al., 2016; Mills et al.,

2017). Furthermore, specific functional tasks have been shown to correlate with volumes

of regions subserving those tasks in both mice (Lerch et al., 2011b) and humans (Maguire

et al., 2000). Thus, functional connectivity is also expected to associate with structural
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covariance. Whether functional connectivity explains any more variation in structural co-565

variance beyond the variance explained by distance, transcriptomic similarity, and distance

remains to be seen.

The association between structural covariance and distance between regions is also ap-

parent, but this link is not entirely clear. Our results show that if a region grows in volume,

it does not push against and thereby compress neighbouring regions. Instead, neighbour-570

ing regions also tend to grow. This preference for structural covariance (positive corre-

lations) at short distances might arise from the fact that nearby regions tend to share the

same gene expression profiles due to their common embryonic origins, although the ten-

dency for nearby regions to connect together (Scannell et al., 1995) might also explain high

structural covariance. In constructing structural covariance maps, the registration proce-575

dure includes a regularization term which smooths the deformation fields from which the

Jacobian determinants are computed. This spatial smoothing would also explain positive

correlations between voxels that are very close to each other.

The voxelwise analysis quantified the link between structural covariance and transcrip-

tomic similarity, structural connectivity, and distance by quantifying the variation in struc-580

tural covariance that could be explained by the aforementioned data. Multivariate models

consisting of multiple predictors tend to explain more variation than single predictors, sug-

gesting that the explanatory values of transcriptomic similarity, connectivity, and distance

add to some extent, rather than completely overlap. In the voxelwise analysis, we also

examined structural connectivity mediated by synapse-separated tracts by computation-585

ally estimating what the rAAV tracer would look like if it could cross synapses. This

was motivated by the observation of bilateral patterns of structural covariance, and gen-

erally weaker monosynaptic projections from seeds to contralateral areas as compared to

ipsilateral areas. Considering connectivity mediated by multiple tracts connecting across

synapses would also better reflect functional connectivity and explain contralateral coac-590

tivations and structural covariance. Unsurprisingly, polysynaptic connectivity explains

slightly more variation than monosynaptic connectivity in the contralateral hemisphere.

Interestingly, polysynaptic connectivity “hopping” across 2 synapses did not explain much

more variation than the single hop variant, likely due to more of the brain being filled by

the (computationally estimated) tracer, including in areas of low structural covariance.595
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Lastly, variation explained by structural connectivity did not depend on tracer con-

founds. Structural covariance to seeds with high transcriptomic commonness were ex-

plained more by transcriptomic similarity however, especially for cortical seeds, suggest-

ing that a common set of cortical development factors might underlie covariance.

In this study, we did not address negative correlations. Negative correlations are gen-600

erally weak (especially in the voxelwise images). Similar to negative correlations that arise

in fMRI data when removing the global signal (Murphy et al., 2009), negative correlations

seen in this study can frequently be attributed to normalization by overall brain volume.

Spatial patterns of explained variation. Clustering into four groups the explained varia-

tion data across 108 seeds results in distinct trends of variation explained, and these trends605

split seed regions into spatially distinct areas. It is important to note that the source of

transcriptomic similarity data (in-situ hybridization) and connectivity data (projection den-

sity derived from two-photon fluorescence signal) are quite different, and this constrains

comparisons on the extent that one predictor drives structural covariance in relation to the

other. We can examine the variation explained by individual models across seeds, clusters,610

or space however. For the four clusters of seeds, transcriptomic similarity tends to explain

clusters with seeds in the cortex better than others, again pointing to a role for coordinated

neurodevelopment in cortical structural covariance. Which genes are involved in structural

covariance, particularly in the cortex, have yet to be identified. Connectivity on the other

hand plays a role in explaining structural covariance in all clusters, although explained615

variation is low in the hypothalamus (yellow) cluster. Interestingly, transcriptomic sim-

ilarity or distance also does not play a large role in hypothalamic structural covariance.

While the variances in the volumes of seed regions in the hypothalamic cluster were low,

this does not explain the low variation in structural covariance explained by all models.

Overall, structural covariance in the two clusters (red and green) corresponding to corti-620

cal seeds are explained to the same extent by transcriptomic similarity and connectivity,

though distance has a larger role for seeds in the anterior cortex (green cluster). This sug-

gests that the association of structural covariance to distance might not entirely be due to

similar transcriptomic similarity nearby, or short range projection tracts.

The brainwide maps of explained variation largely mirror variation explained patterns625
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seen from clustering the seeds: transcriptomic similarity is associated with structural co-

variance in the cortex, while connectivity is associated with structural covariance across

the brain, and particularly strongly in the cortex, striatum, and hindbrain. Figure 4 of Lein

et al. (2007) demonstrates that for the top 100 genes expressed in a chosen structure, the

hippocampus, olfactory bulbs, cortex, and thalamus exhibit highly enriched gene expres-630

sion, while the hypothalamus, midbrain, pons, and medulla exhibit spatially overlapping

patterns of expression. This spatial separation of structures by their expression patterns

seems to mirror the pattern of variation explained by transcriptomic similarity, suggest-

ing that structural covariance that is linked to transcriptomic similarity might arise from a

smaller set of locally enriched genes. Within specific structures, differences in explained635

variation might map to functional differences; for example, differences in explained vari-

ation in the dorsal and ventral striatum might reflect the different connectivity profiles

(Hintiryan et al., 2016) and functions (Koenigs & Grafman, 2009) of these areas. Sim-

ilarly, structural covariance to different nuclei in the thalamus are explained to different

extents by transcriptomic similarity and connectivity. These results were unexpected; we640

had hypothesized that connectivity would explain structural covariance better in the cortex

(typically considered to be more plastic than hindbrain structures), while transcriptomic

similarity would explain structural covariance better in the less-plastic and developmen-

tally older subcortical and hindbrain regions.

What explains the rest of the variation?. Even if structural covariance was perfectly cor-645

related with transcriptomic similarity or structural connectivity, noise introduced by data

acquisition and processing would result in an imperfect correlation. For instance, regis-

tration of mouse MR images does not perfectly recover volume differences, particularly

for small or non-compact structures (van Eede et al., 2013). Potential explanations for

this missing variation beyond noise could be both data related (i.e., the data does not cap-650

ture all sources of variation) and model related (linear models might underfit the data). A

data-related constraint was that we used gene expression data which quantified expression

levels at around postnatal day 60 of the mouse, while critical periods of brain develop-

ment are notably missed. Given that coordinated neurodevelopment through these early

timepoints shape the volumes used to construct structural covariance maps in this cross-655
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sectional study, we suspect that if a similar analysis was performed with gene data through

development, transcriptomic similarity might explain a larger amount of variation in struc-

tural covariance. As for the latter point, underestimating explained variation might arise

from the use of linear—rather than non-linear—models. Our model assumes a linear re-

sponse of structural covariance to transcriptomic similarity, connectivity, and distance. It660

is not difficult to imagine that transcriptomic similarity or connectivity might induce a

more discrete transition in structural covariance; for example, below a certain transcrip-

tomic similarity threshold, similarity in the expression profiles might not result in structural

covariance and vice versa. Although the datamight be underfitted by our assumption of lin-

earity, we chose to use linear models because of the simple interpretation of the coefficient665

of determination R2 (adjusted for multiple predictors) as variation explained. Analogues

of theR2 value exist for non-linear models (e.g. theMcFaddenR2 (McFadden, 1974)), but

are thought to underestimate variation explained (Domencich &McFadden, 1975). Lastly,

we note that structural covariance was computed in a group of inbred C57Bl/6 mice. We

hypothesize that in outbred strains, increased genetic heterogeneity might induce stronger670

transcriptomic similarity-associated structural covariance between regions.

Conclusions and future considerations. In this study, we show that structural covariance

is explained by transcriptomic similarity, structural connectivity, and distancemore so than

chance alone. Given the neuronal tracer data as a representation of structural connectivity

underlying plasticity (regions that “fire together, wire together, grow together”) and tran-675

scriptomic similarity images as a model of coordinated neurodevelopment, our results sug-

gest a role for both connectivity driven plasticity and coordinated neurodevelopment in the

coupling of structures in their volumes. The extent to which these mechanisms drive struc-

tural covariance varies across the brain however, with cortical and subcortical structures

showing different patterns of variation explained by structural connectivity, transcriptomic680

similarity, and distance. Our results support previous findings that structural covariance

patterns closely mirror patterns of coordinated neurodevelopment, and that covariance is

related to (but is not fully explained by) structural connectivity. Together with the afore-

mentioned studies, these results point to a role for structural covariance in the search for

biomarkers of disease and treatment response in neurodevelopmental or connectivity dis-685
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orders such as autism. The exploratory analysis that we carried out might help focus future

biomarker searches to specific regions of the brain—structural covariance studies on dis-

orders of gene expression might be better suited in examining cortical volumes, although

if aberrant connectivity is involved, other brain areas such as the hindbrain might also be

of interest.690
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Supplementary Figures

Figure S1: A visualization of the first component obtained from a partial least-squares decomposition of tran-

scriptomic similarity and structural covariance matrices, plotted on sagittal slices of the mouse brain. Regions are

coloured (red: positive, blue: negative) according to the value of the corresponding element in the component.

These images show a separation of the cortex and anterior areas of the brain from the hindbrain and posterior

areas that is common to both structural covariance and transcriptomic similarity matrices.
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Figure S2: An illustration of the method used to estimate where the tracer would project if it were allowed to cross

a single synapse. Shown are sagittal slices of the mouse brain close to the midline, demonstrating: (a) the original

injection region, (b) the original tracer which does not cross synapses, (c) other injection regions which overlap

the original tracer (by at least 25% of overlapping injection regions’ volume), and (d) the original tracer merged

with tracer projections emanating from the overlapping injection sites (merging was performed voxelwise as the

maximum value across tracer projection density images).
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Figure S3: Dependence of explained variation (R2) on tracer injection and expression image properties. Shown

(for the 108 seed regions) are (a) variation explained by monosynaptic connectivity as a function of maximum

tracer projection distance, (b) variation explained by polysynaptic connectivity as a function of maximum polysy-

naptic projection distance, (c) variation explained by monosynaptic connectivity as a function of tracer fluores-

cence volume, (d) variation explained by polysynaptic connectivity as a function of polysynaptic tracer volume,

(e) variation explained by monosynaptic connectivity as a function of injection volume, and (f) variation ex-

plained by transcriptomic similarity as a function of transcriptomic commonness, split by seed location in the

cerebral cortex [Allen Institute classification: “cerebrum”] and subcortex/hindbrain [Allen Institute classifica-

tion: “brain stem”]. Transcriptomic commonness is a measure of the uniqueness of the gene expression profile

of the seed measured across voxels, i.e. the higher the transcriptomic commonness, the more voxels share a

similar expression profile as the seed, and therefore the less unique the expression profile is within the seed.
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Supplementary Tables

See attached Supplementary Table 1

Table S1: Information on the 108 seed regions, along with variation explained by each of the 24 models (12 ×

2 hemispheres) for each seed.

Supplementary Data900

Processed data described in this manuscript are contained in a .RData file,

manuscript_data.RData, attached as a gzipped archive in the supplementary ma-

terials. The data can be loaded in R via load(). The data is provided in a nested list structure,

and includes

• Processed data used in the parcellation analysis905

– volumetric data

* brain region volumes, for 153 mice

* gene expression in each region, for 4345 expression images

* tracer projection density mean value in each region, for 976 connectiv-

ity datasets (488 experiments with seed region in each of the two hemi-910

spheres)

* estimated polysynaptic projection density mean value in each region, for

976 connectivity datasets (488 experiments with seed region in each of

the two hemispheres)

– matrix data915

* structural covariance (correlation) matrix

* transcriptomic similarity matrix

* monosynaptic connectivity matrix

* polysynaptic connectivity matrix

* distance matrix, for Euclidean distance between centroids of regions920

– atlas structure names and cluster assignments
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– Allen Institute-associated experiment IDs for 488 connectivity experiments

considered

– Gene names and Allen Institute-associated experiment IDs for the 4345 coro-

nal expression datasets used925

• Processed data used in the seed-based voxelwise analysis

– seed region information and associated variation explained values for each of

the 24 models (same as Supplementary Table S1)

– summaries of variation explained values for each of the 24 models, including

bootstrapped estimates of the median variation explained and p-values930
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