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Abstract

A critical issue in many neuroimaging studies is the comparison between brain maps. Nonetheless, 

it remains unclear how one should test hypotheses focused on the overlap or spatial 

correspondence between two or more brain maps. This “correspondence problem” affects, for 

example, the interpretation of comparisons between task-based patterns of functional activation, 

resting-state networks or modules, and neuroanatomical landmarks. To date, this problem has been 

addressed with remarkable variability in terms of methodological approaches and statistical rigor. 

In this paper, we address the correspondence problem using a spatial permutation framework to 

generate null models of overlap, by applying random rotations to spherical representations of the 

cortical surface, an approach for which we also provide a theoretical statistical foundation. We use 

this method to derive clusters of cognitive functions that are correlated in terms of their functional 

neuroatomical substrates. In addition, using publicly available data, we formally demonstrate the 

correspondence between maps of task- based functional activity, resting-state fMRI networks and 

gyral-based anatomical landmarks. We provide open-access code to implement the methods 

presented for two commonly-used tools for surface based cortical analysis. This spatial 

permutation approach constitutes a useful advance over widely-used methods for the comparison 

of cortical maps, thereby opening new possibilities for the integration of diverse neuroimaging 

data.
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INTRODUCTION

The spatial dependence in maps of brain activity, morphology, or connectivity impacts 

statistical inference and the interpretation of neuroimaging studies. It is well-understood that 

incorrect estimation of spatial smoothing and related statistical tests may result in inflated 

false negative or false positive rates in functional magnetic resonance imaging (fMRI) 

analyses (Eklund et al. 2016; Slotnick 2017; K. Mueller et al. 2017). However, a related 

issue that has received less attention arises in the comparison between brain maps. 

Specifically, it remains unclear how to evaluate the possibility that two or more brain maps 

are partially convergent or overlapping. Here, we call this “the correspondence problem”.

The extent of overlap or convergence between brain maps is a critical issue in many 

published and ongoing studies of cortical organization. For example, maps of intrinsic 

resting state fMRI connectivity may overlap with maps of white matter connectivity derived 

from diffusion imaging data (Honey et al. 2010; Honey et al. 2009; Hagmann et al. 2008; 

Skudlarski et al. 2008; Horn et al. 2014), or task-based fMRI activation across studies 

(Smith et al. 2009). Structural covariance, derived from correlations between regions in 

morphological properties, has largely been interpreted based on the extent of overlap with 

patterns of intrinsic fMRI connectivity (Kelly et al. 2012; Seeley et al. 2009), white matter 

connectivity (Gong et al. 2012) and longitudinal maturational coupling (Alexander-Bloch et 

al. 2013; Raznahan, Lerch, et al. 2011). Shared neurobiological substrates for cognitive 

functions are often inferred on the basis of overlap between patterns of fMRI activation 

between different tasks (Otto et al. 2014; Wesley & Bickel 2014; van Belle et al. 2014; Xu et 

al. 2013), as are shared (or distinct) cellular or developmental origins on the basis of overlap 

between morphological phenotypes such as cortical thickness and surface area (Maingault et 

al. 2016; Raznahan, Shaw, et al. 2011). Finally, differences between distinct demographic or 

clinical cohorts are often inferred in reference to divergent patterns of brain morphology 

(Douaud et al. 2014) or function (Goksan et al. 2015; Baliki et al. 2014; Zaki et al. 2016). 

Yet, despite numerous examples where investigators compare spatial patterns between 

experiments or conditions, there is currently no standardized statistical method for testing 

convergence.

The manner in which hypotheses about convergence are tested varies remarkably in terms of 

methodological approach and statistical rigor across studies. For example, it is not 

uncommon to simply visualize two maps side by side as evidence of convergence or 

divergence. Areas of overlap are sometimes highlighted (for example, the conjunction of two 

independently statistically significant maps). While suggestive, these approaches neglect the 

possibility, especially for spatially diffuse maps, that such overlap is due to chance and not 

statistically significant. Statistics such as the spatial correlation between maps are also used 

to quantify the extent of convergence between maps, and the reported statistical significance 

of these correlation is in some cases greatly inflated by failing to take into consideration the 

spatial non- independence of brain maps. In other cases a correction for the spatial degrees 

of freedom is derived via Gaussian random field theory (Smith et al. 2009; Casanova et al. 

2007; Bäuml et al. 2015). Another approach is to use the partial correlation between brain 

maps after regressing out the shared relationship with anatomical distance (Honey et al. 

2009; Horn et al. 2014).
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A particular area greatly affected by the correspondence problem is the comparison of 

community structures (for example, clustering solutions, functional modules, anatomical 

parcellations or network partitions). The application of community detection algorithms to 

different datasets is often followed by an attempt to assess whether the resulting community 

structures are similar or distinct from each other. Examples from the literature include the 

following comparisons: resting-state and task-based fMRI networks (Kelly et al. 2012); ICA 

components across different cognitive tasks (Xu et al. 2013); and resting-state modules 

between clinical groups (Glerean et al. 2016; Achard et al. 2012). Group-wise permutation 

approaches can explicitly test hypotheses about differences between groups in community 

structure (Alexander-Bloch et al. 2012), but this approach cannot be extended to the 

straightforward comparison of the spatial properties of two such structures. Although 

statistics such as the adjusted Rand index (Hubert & Arabie 1985) and mutual information 

(Meilă 2007) can quantify the extent of overlap, there is no standard way to interpret the 

significance of these statistics that takes into consideration the spatial dependence of brain 

maps.

A standardized approach to the correspondence problem would help to address several open 

questions in neuroscience, which hinge on the degree of spatial alignment between different 

maps of cortical organization. For example, although superficially similar tasks tend to 

activate similar brain regions, it remains unclear if and how the brain’s diverse cognitive and 

affective capabilities are grouped with reference to statistically-significant spatial overlap in 

their activation maps. Being able to cluster cognitive tasks into sets that show an overlapping 

brain activation, above and beyond the intrinsic spatial dependence in fMRI data, would 

represent a major step forward in the definition of core functional modules within the brain. 

A closely related question involves the degree of spatial correspondence between 

spontaneous fluctuations in activity within the resting brain (Beckmann et al. 2005) and the 

coordinated changes in cortical activity that are induced by tasks (Toro et al. 2008). Again, a 

solution to the correspondence problem would help to resolve this question in a way that 

controls for the inherent spatial smoothness of shifting brain activity during both rest and 

tasks. Furthermore, with a rigorous means of quantifying how statistically surprising any 

given correspondence is, it would be possible to distinguish between brain networks that 

show differing degrees of alignment between rest and task-induced states. These issues are 

central to the detection and definition of a core set of dissociable brain networks for targeted 

investigation in clinical and basic neuroscience (Fornito & E. T. Bullmore 2015). Finally, 

standardized techniques to control for spatial smoothness in the comparison of brain maps 

would directly inform longstanding questions regarding the correspondence (or lack thereof) 

of functional and macroanatomical boundaries within the cortex. To date, this 

correspondence has been examined for a selected sub- set of cognitive tasks and 

macroanatomical gyral boundaries (Frost & Goebel 2012), but this question would benefit 

from examination throughout the entire cortical sheet across a wide range of cognitive 

domains simultaneously.

In this paper, we address the correspondence problem using a spatial permutation framework 

to generate null models of overlap, by applying random rotations to spherical representations 

of the cortical surface. Our work builds upon initial implementations of spatial permutation 

(Vandekar et al. 2015; Gordon et al. 2016), in several notable directions. First, we develop a 
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theoretical statistical framework for studying questions relating to overlapping surface maps, 

which is used to demonstrate how the spatial permutation test controls Type I error. Second, 

we show the applicability of spatial permutation methods across multiple varieties of 

correspondence tests, including (i) the relationships amongst meta-analytic patterns of 

functional activation as defined by the Neurosynth platform (Yarkoni et al. 2011) and (ii) the 

relationship between canonical cortical parcellations defined with reference to resting state 

functional connectivity (Yeo et al. 2011) vs. gyral based anatomy (Desikan et al. 2006). The 

former of these analyses provides a means of determining if sub-groups of cognitive 

functions (Poldrack & Yarkoni 2016; Poldrack et al. 2011) are clustered in terms of their 

anatomical substrates above and beyond potential confounding effects of spatial dependence 

– thereby providing a powerful synthesis of structure- function relationships as charted 

across decades of functional neuroimaging literature. The latter of these analyses addresses a 

long-running debate regarding the inter-relationship between morphological and functional 

boundaries in the human cortex (Ronan & Fletcher 2014). Collectively, the Yeo and Desikan 

atlases have been used in over four thousand prior neuroimaging studies (PubMed, 2018), 

making it especially valuable to understand their relationship with each other and with 

spatial patterns of cortical activation across diverse cognitive tasks (Yarkoni et al. 2011). The 

method that we use to compare these atlases can be used to the significance of the overlap 

between any two community structures, which meets a growing need given the rapid 

proliferation of network-based approaches in neuroimaging science. The ability to ask if and 

how any two parcellations or modular depictions of the brain are aligned would more 

effectively exploit the current diversification of available imaging modalities and techniques 

for parcellation, clustering and community detection (Eickhoff et al. 2017).

We provide code to perform spatial comparison of cortical maps within two popular 

pipelines for surface-based cortical analysis (FreeSurfer and CIVET, https://github.com/

spin-test), so these methods can be easily applied and extended in future work.

METHODS

Data

Meta-analytic patterns of functional activation were derived using Neurosynth (http://

neurosynth.org) (February, 2015 release), which includes automated meta-analyses of 

imaging coordinates associated with >3,300 terms in >10,900 studies. We focused the 

analysis on cognitively relevant maps by filtering for terms that are included in the cognitive 

atlas (http://www.cognitiveatlas.org/concepts/) (Poldrack & Yarkoni 2016; Poldrack et al. 

2011), which resulted in 120 terms. We used the reverse inference maps, comprised of z-

scores corresponding to the likelihood that a term is used in a study given the presence of 

activation in a region (Yarkoni et al. 2011). Compared to the forward inference maps 

(corresponding to the likelihood that a region reported is active in studies that include a 

given term), the reverse inference maps are more selective in excluding regions that are 

diffusely involved in most cognitive tasks. These maps were each projected onto the 

FreeSurfer average surface by nearest neighbor interpolation (fsaverage5, which contains 

10242 vertices per hemisphere), using a mid- gray surface, which lies 50% of the distance 

between the white and pial surfaces.
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As benchmark representations of anatomical regions and functional networks, we used the 

Desikan Atlas (Desikan et al. 2006) and the Yeo Atlas (Yeo et al. 2011), respectively. The 

Desikan Atlas, distributed with FreeSurfer (v5.3.0), was derived by manually identifying 34 

cortical regions of interest using gyral-based landmarks in 40 human brain MRI scans. The 

Yeo Atlas was derived from a mixture model of 1000 resting-state fMRI scans after scans 

were aligned using surface-based realignment. Each vertex was assigned to one of 7 resting-

state networks.

Rotational permutation

Spatial permutation of brain maps was performed using angular permutations of spherical 

projections of the cortical surface. The coordinates corresponding to all of the vertices were 

rotated at angles uniformly chosen between zero and 360 degrees, about each of the x (left-

right), y (anterior-posterior) and z (superior-inferior) axes. For each permutation, the same 

rotation was applied to every vertex, so the spatial features of the original map were 

preserved but in a rotated frame. Please see Figure 1 for a schematic of the permutation 

method, as applied to the Desikan Atlas. For opposite hemispheres, the same rotations were 

applied about the left-right axis of rotation, while opposite (negative) rotations were applied 

about the superior-inferior axis and the anterior-posterior axis, in order to preserve the 

contralateral symmetry of the rotated maps. When non-cortical regions (mid-cut or corpus 

collosum) were rotated into cortical space, these vertices were not included in the calculation 

of the test statistic (the “correspondence statistic”). For statistical comparisons that 

necessitated a one-to-one correspondence between the permuted vertices and the original 

vertices, each vertex in the original coordinate space was compared to the nearest vertex in 

rotated coordinate space, as determined by Euclidean distance. We used several different 

correspondence statistics depending on the specific experimental context, however, the 

significance of these statistics was always derived relative to the empirical distribution 

determined by the spatial permutation procedure. Please see animation for a schematic of the 

null distribution generated in a simplified 2-dimensional case.

Theoretical basis of the spatial permutation test

Briefly, consider each brain surface map as spatial function, X(v), Y(v):𝕊2 ℝ, where 𝕊2

denotes the unit sphere. The correspondence statistic between two such maps is given by 

ψ(X ∘ R, Y), where X ∘ R = X(Rv) denotes a rotation applied to the surface, which 

determines the alignment between the surfaces. Conditional on the observed functions X(v), 

Y(v), we assume the null hypothesis

H0:R X(v), Y(v) Unif(𝕊2),

where Unif( 𝕊2) denotes the uniform distribution on the set of rotation matrices. In words, 

the null hypothesis states that the observed anatomical or functional correspondence 

provides no information about the alignment of the surfaces. In order to perform a test of H0, 

first let ψ(X ∘ Robs, Y) be the nonrandom observed correspondence of the surfaces under 

anatomical alignment. The spatial permutation procedure computes the p-value
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p = ∫ I(ψ(X ∘ R, Y) ≥ ψ(X ∘ Robs, Y))dR (1)

and rejects H0 if p< α for some predetermined rejection threshold α. The integral (1) is 

taken across all possible alignments in 3-dimensional space. We use Monte Carlo integration 

to empirically estimate this quantity. Equation (1) is equal to the probability of observing a 

statistic as or more extreme than the observed statistic under the null hypothesis H0.

The theoretical support for the spatial permutation test depends on how the test is 

interpreted. In general, the validity of a permutation test stems from the exchangeability of 

the permuted observations under the null hypothesis. For example, in a simple test of a 

difference in the means between two groups, the group labels are permuted and the group 

difference is recalculated to generate a null distribution. In this case, the observations must 

be exchangeable under the null hypothesis; in other words, they are assumed to come from 

the same underlying probability distribution. This assumption is likely violated in the case of 

spatial statistics of brain imaging data such as the correlation of two brain maps, because of 

the spatial structure of the data. In contrast, if the null hypothesis of the spatial permutation 

test is true, a random alignment (derived by applying random rotations of the spherical 

surface) plausibly explains the extent of association between the maps, which implies that 

the observed correspondence is not significantly different from chance. It is important to 

note that we condition on the values of the surfaces, so that the brain maps are not are 

interpreted as random variables; thus, we do not require that the points on the surface to be 

exchangeable. Rather, it is the rotational alignment itself that is treated as a random variable 

in the generation of the null distribution of the correspondence statistic with the spatial 

permutation procedure.

For a more formal treatment of the theory underlying the spatial permutation test, please see 

Section 1 of the Supplemental Materials.

Cognitive clusters of meta-analytic patterns of activation (Neurosynth data)

Pearson’s r was used as the correspondence statistic to quantify the degree of relatedness 

between the patterns of activation for the 120 cognitive terms, represented by a 120×120 

correlation matrix. For example, each element of the first row of the correlation matrix 

indicated the correlation between the activation map for the first cognitive term with the 

activation map of on the other cognitive terms. The structure of this correlation matrix was 

investigated in two ways. First, the overall structure was visualized using complete linkage 

hierarchical clustering, with the distance between the maps calculated as 1 – r (Figure 2a). 

This approach does not allow for inferences as to which if any of the correlations are 

statistically significant, although one would expect that any significant correlations would be 

closely clustered by the hierarchical clustering procedure.

To test the statistical significance of the correlations, we used the spatial permutation 

approach described above to generate 1000 rotational permutations of the data. For each 

permutation, we generated a 120×120 permuted correlation matrix (the correlations between 
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the permuted data and the original data). The permuted correspondence statistic was the 

single highest magnitude element of this permuted correlation matrix (not including the 

diagonal elements which indicate the correlations between a map and itself). This approach 

of using the maximum of the permuted correlation matrix as the correspondence statistic 

provides family-wise control for multiple comparisons (Westfall & Young 1993). The 

correspondence statistics from 1000 permutations were used to generate a null-distribution 

to test the significance of the original correlations, and P-values were calculated for each of 

the original correlations based on the frequency with which the magnitude of the permuted 

correspondence statistics equaled or exceeded that of the original correlation. Because the 

null distribution was generated so as to provide family-wise control for multiple 

comparisons, a nominal value of P < 0.05 was used as a cut off for statistical significance. To 

visualize significant correlations, we used network representation where nodes are cognitive 

terms and edges are the significant correlations between their pattern of activation (Figure 

2b).

Overlap between anatomical, gyral-based parcels (Desikan Atlas) and resting-state 
functional parcels (Yeo Atlas)

For the overlap between the Desikan and Yeo atlases, the correspondence statistic was the 

normalized mutual information, NMI (Kvalseth 1987):

NMI(A, B) =
−2 ∑

i = 1

CA
∑

j = 1

CB
Nijlog

NijN
Ni .N . j

∑
i = 1

CA
Ni .log

Ni .
N + ∑

J = 1

CB
N . jlog

N . j
N

where A and B are the partitions, i.e., assignments of vertices to parcels (where parcel refers 

to the resting state networks that comprise the Yeo Atlas and the anatomical regions that 

comprise the Desikan Atlas, respectively); CA is the number of parcels in partition A; CB is 

the number of parcels in partition B; N is the number of vertices, which is the same in both 

partitions; Nij is the overlap between A’s parcel i and B’s parcel j, i.e. the number of vertices 

that they have in common; Ni. is the total number of vertices in A’s parcel i; N.j is the total 

number of vertices in B’s parcel j; and this calculation follows the convention that 

0×log(0)=0. The NMI ranges from 0 to 1, where 0 signifies that the partitions are totally 

independent and 1 that they are identical. See the discussion for an explanation of some of 

the terminology involved in the analysis of partitions, parcellations and functional clusters.

To test the statistical significance of the degree of the NMI between the Desikan atlas and 

the Yeo atlas, we generated 1000 rotational permutations of the data as described above. For 

each permutation, the NMI was re-estimated. The P-value was calculated as the frequency 

that which the permuted NMI estimates equaled or exceeded the actual NMI.

Additionally, we performed a post hoc analysis to determine which regions appeared to 

contribute disproportionately to the observed overlap. We generated a 34×7 confusion 

matrix, quantifying the overlap (in terms of total number vertices) between each region and 
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each resting- state network. For each region and each network (41 total tests), the 

correspondence statistic was the pseudo-X2 testing whether each region was equally 

distributed between networks (weighted based on the total size of each network) and 

whether network was equally distributed between regions (weighted based on the size of 

each region). This statistic is called a pseudo- X2 to emphasize that it is not expected to be 

X2 distributed; rather, the null distribution is empirically determined by the permutation 

procedure. This analysis used FDR-correction for multiple comparisons correction (q<0.05) 

(see Table 1).

Overlap of meta-analytic patterns of activation (Neurosynth data) with anatomical, gyral-
based parcels (Desikan Atlas) and resting-state functional parcels (Yeo Atlas)

For the test of overlap between the Yeo atlas and the 120 Neurosynth maps, the 

correspondence statistic was the pseudo-X2 transformation of the Wilk’s lambda from a 

Multivariate Analysis of Variance (MANOVA) (Krzanowski 1990), treating the Neurosynth 

maps as the multivariate outcome and the Yeo Atlas labels as the independent variable. 

Significance of the observed correspondence statistic was determined with reference to the 

null distribution generated by 1,000 rotational permutations of the data as described above.

As a post hoc analysis to investigate which of the 120 Neurosynth maps contributed 

disproportioinately the global correspondence, we performed 120 separate tests where the 

correspondence statistics were the pseudo-F-statistics from Analysis of Variance (ANOVA) 

tests. Again, this statistic is called a pseudo-F to emphasize that it is not expected to have an 

F- distribution. The null distribution is determined by permutation. FDR correction was used 

to account for 120 comparisons.

The overlap between the Desikan atlas and the 120 Neurosynth maps was tested 

analogously, using MANOVA and post hoc ANOVA tests to generate correspondence 

statistics for spatial permutation tests.

RESULTS

The permutation method allowed for rigorous hypothesis testing of the proposed 

relationships between patterns of functional activation, resting state fMRI networks and 

anatomical regions of interest. The 95% percentile of the probability density distribution, 

used as the threshold for statistical significance at the P<0.05 level, appeared to stabilize by 

1,000 permutations (Figure 1b-c), suggesting 1,000 as an appropriate number of 

permutations for subsequent statistical tests. Please see Section 2 of the Supplemental 

Materials and Supplemental Table S1 for a demonstration of Type 1 error control using 

simulated null data.

Spatial Correspondences Between Metaanalytic Patterns of Activation (Neurosynth) Define 
Cognitive Clusters

The correlation coefficients between the 120 cognitive maps suggested a broad range in 

terms of the degree of relatedness between the maps (mean r = 0.004, sd = 0.12, range = 

−0.41 – 0.68). Hierarchical clustering of the maps revealed a non-trivial structure, for 

example with terms related to the language and reward systems, respectively, grouping 
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together into relatively homogenous clusters of mutual correlation (Figure 2a). Of these 

correlations, 35 were statistically significant based on the family-wise correction for 

multiple comparisons (see Figure 2b). The correlation coefficient corresponding to this 

significance threshold was Pearson’s r= 0.42. A network representation of these significant 

correlations (where nodes are cognitive terms and edges are significant correlations) 

revealed distinct components (edges within but not between sub-groups of nodes) 

corresponding to cognitive clusters including movement and motor planning, language, 

attention, memory, fear and reward (Figure 2b).

In contrast, calculating statistical significance with a standard parametric approach, allowing 

all of the vertices to independently contribute to the degrees of freedom of the test, would 

vastly overestimate the number of significance correlations, with 5,331 of the 7,140 total 

correlation surviving Bonferroni correction at a nominal p-value threshold of 0.05 (see 

Supplemental Materials Section 3 and Supplemental Figure S1).

Gyral-Based Anatomical Regions of Interest (Desikan Atlas) Overlap with Resting-State 
Functional Networks (Yeo Atlas)

The hypothesized overlap between anatomical regions of interest and functional networks 

was supported by the permutation procedure. The actual NMI between the Desikan atlas 

(Figure 3a) and the Yeo atlas (Figure 3b), 0.389, is unlikely to be simply due to chance 

overlap (P=0.034) (Figure 3c). Put differently, patches of brain that form part of the same 

gyral-based region of interest were significantly more likely to also form part of the same 

intrinsic functional network. This overlap is not due simply to spatial dependence, nor to 

contralateral symmetry, as these potential confounds are controlled for by the permutation 

procedure. (The mean of the null distribution generated by the permutation procedure can be 

interpreted as an estimate of the contribution of these potential confounds to the observed 

NMI.)

Post hoc analysis suggested that this statistically significant correspondence resulted 

disproportionately from certain resting state networks and anatomical regions. Specifically, 

the visual, somatomotor and frontoparietal networks showed statistically significant 

correspondence with the gyral boundaries of anatomical regions after FDR correction for 

multiple comparisons (Table 1). Conversely, although no individual region’s statistical 

significance survived FDR correction for multiple comparisons, the anatomical regions that 

corresponded most closely with the boundaries of intrinsic resting-state networks were 

largely visual and motor areas, as evidenced by marginally significant P-values in Table 1.

Metaanalytic Patterns of Activation (Neurosynth) Overlap with Resting-State Functional 
Networks (Yeo Atlas)

Meta-analytic patterns of functional activation did not only cluster in space to define 

overarching cognitive domains, but also demonstrated statistically-significant overlap with 

functional networks defined by patterns of coordinated intrinsic cortical activity at rest 

(spatial permutation test using the pseudo-X2 transformation of the Wilk’s lambda from a 

MANOVA test as the correspondence statistic, P=0.001) (Figure 3e). Put differently, the 

patterns of activation shown by the meta-analyses of cognitive concepts tended to respect the 
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boundaries of the resting-state functional networks. In the 120 post hoc permutation tests 

(using pseudo-F-statistics as the correspondence statistics), only “movement” was 

statistically significant after FDR-correction for multiple comparisons (q<0.05). There was 

suggestive but non-significant correspondence (uncorrected p<0.05, q>0.05) with resting-

state networks for the metaanalytic maps of working memory, pain, autobiographical 

memory and spatial attention (see illustrations in Figure 3d). Movement appeared to 

differentially activate the somato-motor network; working memory differentially activated 

the frontoparietal and dorsal attention networks; autobiographical memory differentially 

activated the default-mode network; and pain differentially activated the ventral attention 

network (see Table 1 for the labels of the individual resting-state networks).

Metaanalytic Patterns of Activation (Neurosynth) Overlap with Gyral-Based Anatomical 
Regions of Interest (Desikan Atlas)

Finally, as would be predicted based on their mutual overlap with intrinsic resting-state 

networks, meta-analytic patterns of activation also demonstrated statistically significant 

overlap with a classical parcellation of the cortical sheet defined by macroanatomical gyral 

boundaries (spatial permutation test using the pseudo-X2 transformation of the Wilk’s 

lambda from a MANOVA test as the correspondence statistic, P=0.038) (Figure 3f). In other 

words, the patterns of activation shown by the metaanalyses of cognitive concepts tended to 

respect gyral boundaries. For the 120 post hoc permutation tests using pseudo-F-statistics as 

the correspondence statistics, only “listening” was statistically significant after FDR-

correction for multiple comparisons (q<0.05). There was suggestive but non-significant 

correspondence (uncorrected p<0.05, q>0.05) with gyral boundaries for the metaanalytic 

maps of movement, pain, speech perception and reward. Listening appeared to differentially 

activate superior temporal gyrus, tranverse temporal gyrus and the bank of the superior 

temporal sulcus; pain disproportionately activated insula, post central and caudal anterior 

cingulate cortex; movement differentially activated precentral, postcentral, supramarginal 

and superior parietal cortex; speech perception differentially activated superior temporal 

gyrus, bank of the superior temporal sulcus and transverse temporal gyrus; reward 

differentially activated the rostral anterior cingulate, lateral orbitofrontal and medial 

orbitofrontal gyrus.

DISCUSSION

Our work addresses a number of methodological issues that arise in the statistical 

comparison of brain maps, and in doing so provides evidence in support of specific 

biological hypotheses regarding functional topography and function-structure relationships 

in the human cerebral cortex. We advocate a spatial permutation approach to the issue of 

comparing cortical maps. This approach demonstrates partial overlap or convergence 

between meta-analytic maps of functional activations, gyral-based anatomical regions of 

interest, and resting-state functional connectivity networks. In making the code for these 

analyses available and discussing the methodological issues, we hope to draw attention to 

this issue and increase the statistical rigor with which “the correspondence problem” is 

approached.
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The benefits of spatial permutation as a statistical approach

The utility of the rotational permutation approach is illustrated by the inter-relationships 

between the anatomical substrates of 120 cognitive functions. Although the 120×120 

correlation matrix appears to have meaningful structure (Figure 2a), P-values generated from 

a parametric test of the significance of these correlation coefficients would have extremely 

high false positive rates, because of falsely assuming spatial and contralateral independence 

(see Supplemental Figure S1). (Non-parametric tests and permutation procedures that do not 

preserve spatial and contralateral dependence would have similarly high false positive rates.) 

In addition, a correction for multiple comparisons across the 7,140 correlations is required, 

but as these correlations are not independent, standard approaches for multiple comparisons 

correction may be too conservative depending on the context. The permutation procedure 

addresses both of these concerns, by generating permuted data with the same spatial and 

contralateral structure of the original data, as well as a null distribution of maximum 

correlation coefficients that allows for a straightforward family-wise correction for multiple 

comparisons. In general, there is an analogy between spatial permutation and other well-

described (although perhaps under-utilized) permutation approaches (E. T. Bullmore et al. 

1999; Nichols & Holmes 2002; Winkler et al. 2014); the spatial coordinates of the maps are 

permuted, rather than the task/rest labels of a functional scan, or the patient/control labels in 

a case-control study.

The approach provides a framework to address both spatial dependence and contralateral 

symmetry, which are multi-faceted and often problematic issues in neuroimaging studies. On 

the one hand, there is ample evidence that spatial constraints are a biological principle of 

brain network organization (E. Bullmore & Sporns 2012). On the other hand, spatial 

dependence is also introduced by image processing pipelines, for example, when images are 

smoothed in order to make statistical comparisons between anatomically divergent 

individuals. In addition, motion artifact may introduce artefactual smoothing into both 

functional (Satterthwaite et al. 2012) and anatomical (Alexander-Bloch et al. 2016) scans. 

Regardless of the underlying source of spatial dependence, or whether it is biological or 

artefactual in a given experimental context, it has the potential to confound statistical 

inference about partial overlap or convergence between brain maps. Contralateral symmetry 

is more generally appreciated as “biological” compared to spatial autocorrelation within 

hemispheres. However, confounds such as motion are likely to similarly impact contralateral 

homologues (which are the same distance from the axes of rotation). Therefore, similarly to 

spatial dependence, symmetry can falsely inflate the apparent overlap when comparing brain 

maps that include both left and right hemisphere data. Spatial permutation addresses both of 

these potential confounds in a single unified framework.

Another important benefit of the spatial permutation procedure is its relevance to analyses of 

functional or anatomical communities. There is no single accepted methodology to compare 

such communities, e.g. brain parcellations or partitions, maps of anatomical regions of 

interest and or intrinsic functional connectivity networks. The terminology can be confusing: 

it is common to call a map of anatomical regions an atlas or a parcellation (Van Essen et al. 

2012), while maps of intrinsic connectivity (or other kinds of connectivity) are described as 

partitions, communities, clusters or modules (Alexander-Bloch et al. 2010). However, the 
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practical distinction between these two kinds of maps is that parcellations of anatomical 

regions, by definition, form spatially contiguous patches. Partitions, while often spatially 

contiguous, may be spatially distributed; in functional parcellations such as the Yeo atlas, 

sensorimotor clusters tend to form distinct patches, while spatially discontiguous clusters are 

distributed across association cortical areas. For the purposes of statistical comparison, 

similar statistics can quantify the degree of overlap, such as the adjusted Rand index (Hubert 

& Arabie 1985), a variation of information criterion (Meilă 2007), and normalized mutual 

information (Kvalseth 1987). Because properties such as the degree of spatial dependence 

and contralateral symmetry affect community structures, it is problematic to interpret these 

statistics without taking these factors into consideration. Spatial permutation provides a 

straightforward way for the significance of these statistics to be evaluated.

Biological relevance of tests of anatomical correspondence

By leveraging these strengths of spatial-permutation testing for the comparison of three 

distinct types of cortical map, our study provides a number of insights into cortical 

organization. First, we provide quantitative evidence that task-induced patterns of brain 

activation (Neurosynth meta-analytic maps) are non-randomly related to patterns of 

coordinated brain activity at rest (Yeo 7-network resting state parcellation). The ability to 

test the apparent similarity between the two modes of coordinated brain activity provides a 

necessary empirical and technical foundation for asking how this similarity arises, and 

whether inter-individual differences in the strength of this spatial coupling are relevant for 

behavioral differences in health and disease (Braga & Buckner 2017).

Second, we provide new evidence about the spatial inter-dependence between functional and 

macroanatomical topography of the cortical sheet. The non-random organization of brain 

function with respect to gyral features is evident with respect to both coordinated brain 

activity at rest (Yeo Atlas) and task-evoked brain activity (Neurosynth data), and varies in 

strength across different functional systems. Specifically, we find that the degree of 

alignment between function and structure tends to be stronger for primary input/output 

systems (visual, auditory, motor) than for higher-order associative systems, which is 

consistent with recent work in this area using different methodological approaches (Sotiras 

et al. 2017). The corresponding gyral features that show closest alignment for the spatial 

organization of brain activity during rest and tasks are aligned with those “primary sulci” 

that arise earliest in prenatal human brain development (Nishikuni & Ribas 2013), show 

least variance in morphology across individuals (Mangin et al. 2004) and most consistent 

correspondence with the boundaries of cytoarchitectonically-defined cortical areas (Fischl et 

al. 2008). These observations suggest the operation of a strong conjoint constraint on the 

anatomical and functionally patterning of lower-order cortical regions, such that these 

display an alignment of gyral and functional boundaries that can be detected at the group 

level. The spatial permutations approach represents a promising quantitative framework for 

moving beyond group-level analyses in future work to probe structure-function relationships 

in individual cortical sheets.

Finally, the clusters of anatomically-corresponding cognitive functions identified by the 

permutation procedure (Figure 2b) support prior biological hypotheses about the functional 
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organization of the cerebral cortex, illustrated by the three largest clusters of statistically 

significant correlations between the Neurosynth maps. Supplemental Figure S2 shows 

positive activation in primary motor and somato-sensory cortex, as well as premotor/

supplementary motor areas, which are coordinated in subserving simple and complex 

motion and motor planning (Mayka et al. 2006; Geyer et al. 2000). A cluster evidently 

related to memory, shown in Supplemental Figure S3, shows, in addition to 

parahippocampal regions in the medial temporal lobe, positive activations in the medial and 

ventrolateral prefrontal cortex, posterior cingulate, lateral temporal and temporoparietal 

junction that have been implicated in autobiographical memory (Svoboda et al. 2006), 

internal monitoring and the “default-mode network” (Buckner et al. 2008). The language 

cluster (Supplemental Figure S4) shows left-lateralized activation in canonical inferior 

frontal and superior temporal gyri as well as other cortical areas that have previously been 

implicated in, for example, reading and object naming (Price 2012; Poeppel et al. 2012). We 

note that this discussion is in no way meant to imply that these cortical regions are not also 

involved in other functions (Poldrack 2011). Clusters of similar functional maps correspond 

to a priori similar cognitive functions, which plausibly explains the correspondence of the 

meta-analytic maps (Rubin et al. 2017) if the same terms appear in similar papers in the 

published literature. However, the recovery of such canonical systems points to the potential 

validity of patterns of anatomical correspondence in other experimental contexts. A goal for 

future work is to investigate the correspondence between other human brain maps, for 

example, based on cytoarchitectonic boundaries, multimodal imaging techniques (Glasser et 

al. 2016) or pleiotropy between regions (Chen et al. 2013; Alexander-Bloch et al. 2017).

Methodological limitations

Several methodological issues with the present analysis should be noted. First, the present 

method is limited to cortical surface maps. It may be possible to extend the method to 

specific sub-cortical or volumetric maps, most readily for structures such as the thalamus 

that could reasonably be modelled as a spherical volume, but there is no simple way to 

extend the approach to maps that include both cortical and subcortical data. This limits the 

current utility of the test to contexts in which it is reasonable to project volumetric data onto 

the cortical surface, and it is worth noting that the accuracy of the maps may be affected by 

the process of projection. Other methods of comparison, including the visual comparison of 

brain maps by informed anatomists, remain superior depending on the experimental context.

The illustrative analyses presented here depend on multiple upstream methodological 

choices. For example, the choice of terms to include in the automated meta-analysis clearly 

constrains downstream results, as does the choice of atlases with greater or fewer numbers of 

regions (which would also directly affect the control for multiple comparisons in the 

regional analysis). Although the functional networks (Yeo Atlas) and anatomical regions 

(Desikan Atlas) that we discuss are comprised of non-overlapping regions, the spatial 

permutation approach could be adapted for use in the case of networks with a mixture of 

overlapping and non-overlapping regions and/or both positive and negative loadings, such as 

ICA components. Each component could be treated separately based on its loading at every 

vertex. This alternative would be similar to the analysis of Neurosynth maps in the present 

study, which include both positive and negative activations.

Alexander-Bloch et al. Page 13

Neuroimage. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The spatial permutation test is theoretically applicable to the question of overlap between 

brain networks, for example, where the correspondence statistic is the proportion of shared 

edges between two networks. In this case, however, the correspondence statistic would be 

expected to scale with the graph density, i.e., more dense graphs will tend to overlap more 

extensively. We would expect the null distribution, estimated via the spatial permutation test, 

to take this trend into consideration and for the test to remain valid across graph densities. In 

the limit case where one of the graphs is fully connected, for example, it is evident that the 

null hypothesis would not be rejected by the spatial permutation test. However, additional 

work may be required to demonstrate the validity of the test depending on the particular 

networks of interest.

Future directions

Although our analysis does not specifically incorporate prior knowledge about functional 

neuroanatomy, this would be a reasonable approach for future work. Such information could 

be incorporated quantitatively into a priori probabilities using a Bayesian approach, or else 

incorporated into the control for multiple comparisons. In this sense, the regional analysis 

shown in Table 1, which attempts to ascertain which specific regions or networks “drive” the 

correspondence between resting state networks (the Yeo Atlas) and anatomical regions (the 

Desikan Atlas), is arguably over-conservative. A less stringent multiple comparisons 

correction might for example indicate that the default mode network – for which the 

permutation test indicated an uncorrected P-value of 0.046, but was not labelled as 

“significant” after FDR correction for multiple comparisons – contributed significantly via 

its overlap with multiple parietal, temporal, frontal and cingulate regions. Alternatively, the 

lack of statistical significance for the overlap between specific functional networks (e.g. the 

resting-state network, the dorsal attention network and the ventral attention network) may 

indicate that these networks “cut across” canonical anatomical boundaries. Many of the 

regions that do not appear to show a significance correspondence are thought to show greater 

morphometric and functional variability across individuals (Mueller et al. 2013), suggesting 

potentially weaker developmental constraints on their patterning which could manifest as 

weaker topographical correspondence between structural and functional features.

The theoretical basis of the spatial permutation test is not the same as that of standard 

permutation procedures, where the permuted observations are assumed to be exchangeable 

under the null hypothesis. Rather, the null hypothesis is that a random alignment of the 

surfaces suffices to account for the observed correspondence. The procedure conditions on 

the surface maps, meaning that the interpretation is restricted to the alignment of the two 

surfaces. The current test does not allow for inference about dataset-to-dataset variability, 

i.e., “what would happen” if the maps were regenerated based on a repetition of the 

necessary experiments. A goal for future work is investigate the validity of the procedure for 

stochastic processes, in which case inference about dataset-to-dataset variability would be 

possible (see Methods and Supplemental Materials). Semantically, it may be appropriate to 

say that the procedure is not a permutation test in the classical sense, but it is a related if 

distinct non-parametric test. Informally, the procedure we describe implements a “spin test” 

for the association between two cortical maps. Another interesting possibility for future 

work would be implement certain constraints on the spins considered in order to test more 
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anatomically specific hypotheses – for example, ensuring that gyri and sulci remain 

overlapping, respectively.

An alternative or complementary approach to the spin test could involve estimating a null 

distribution by resampling in a manner that is biased as a function of the distance between 

vertices on the surface (Radersma & Sheldon 2015). Such an approach would have the 

relative advantage of potentially explaining dataset-to-dataset variability, unlike the current 

approach. One relative disadvantage is that certain spatial features of the original maps 

would be disrupted in such an approach, for example spatially contiguous parcels could 

“fragment” during the resampling procedure. In addition, how conservative this approach is 

depends on the function that is chosen to “bias” the resampling. As a consequence, such an 

approach might require additional, potentially unrealistic, assumptions about the unobserved 

covariance structure of the surfaces.

In summary, the spatial permutation methods described, applied and disseminated by our 

study constitute a useful advance upon current methods for the comparison of cortical maps, 

and thereby open up new possibilities for the surface based integration of diverse 

neuroimaging data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A schematic of the permutation procedure. A) As an illustration, the Desikan atlas is shown 

in the original space (top left) and spherical space (top right). Each color corresponds to 

different regions. The spherical coordinates are rotated (mid right, bottom right) and the 

projected back onto the anatomical surface (mid left, bottom left). B) The degree of 

similarity between the original parcellation and the rotated parcellations were estimated 

using the normalized mutual information (NMI). The probability density distributions of this 

statistic are shown for 100, 500, and 1000 rotations, as well as lines marking the 95th 

percentile of each distribution. C) A Q-Q plot of the two independent distributions of 1000 

rotations each.
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Figure 2. 
Correlation structure and significant correlations between Neurosynth meta-analytic 

activation patterns associated with 120 cognitive terms. A) Heat-map shows 120×120 

correlation matrix. Terms are organized according to hierarchical clustering, with the 

resulting dendrogram shown to the top and to the left of the correlation matrix. Colors 

correspond to correlation coefficient, as shown in color key on top left. The color key also 

shows the frequency distribution of the correlations that comprise the matrix. Labels of the 

terms are shown to the right and to the bottom of the matrix, with the odd number labels 
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shown on the bottom and the even number labels shown on the right (the order of the terms 

is “fear”, “anxiety”, “stress”, “arousal”, “valence,” etc.). B) Network illustration where the 

significant connections are illustrated as edges between the terms, which are illustrated as 

nodes. The resulting network is comprised of 8 disconnected components; edges exist within 

each component’s nodes, but there are no edges between components.
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Figure 3. 
Spatial relationship between regions based on gyral landmarks (Desikan Atlas), intrinsic 

functional connectivity networks (Yeo Atlas), and task-based fMRI brain maps (Neurosynth 

meta-analyses). A) Representation of the Desikan Atlas, derived from manually identifying 

34 in each hemisphere based on gyral landmarks, using 40 high resolution structural MRI 

scans. B) Representation of the Yeo atlas, derived by identifying 7 resting-state functional 

networks using a mixture model of 1000 resting-state fMRI scans. C) The normalized 

mutation information between the Yeo and Desikan Atlas, a measure of the similarity of the 
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two atlases, for the original data as well as the probability density distribution of 1000 

rotational permutations. The P-value is calculated as the frequency with which the permuted 

NMI equals or exceeds the actual NMI. D) Representation of 4 of the 120 brain maps 

derived from automated meta-analyses of cognitive concepts included in the cognitive atlas, 

with color scale corresponding to z-statistic (see methods). The top four cognitive terms are 

shown, ranked via F- statistic of 120 post hoc ANOVA tests of the relationship between 

these maps and the Yeo Atlas. As the maps are largely symmetric, for illustrative purposes, 

the left hemisphere is shown for movement and working memory, while the right 

hemisphere is shown for autobiographic memory and pain. E) The Chi-square 

transformation of the MANOVA test statistic where the networks of the Yeo atlas were the 

dependent variable and the 120 cognitive maps were the independent variables, for the 

original data as well as the probability density distribution of 1000 rotational permutations. 

The P-value was calculated as the frequency with which the permuted Chi-square statistic 

equaled or exceeded the actual test statistic. F) The Chi-square transformation of the 

MANOVA test statistic where the networks of the Desikan atlas were the dependent variable 

and the 120 cognitive maps were the independent variables, for the original data as well as 

the probability density distribution of 1000 rotational permutations. The P-value was 

calculated as the frequency with which the permuted Chi-square statistic equaled or 

exceeded the actual test statistic.
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