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Abstract

This work presents an automatically annotated fiber cluster (AAFC) method to enable 

identification of anatomically meaningful white matter structures from the whole brain 

tractography. The proposed method consists of 1) a study-specific whole brain white matter 

parcellation using a well-established data-driven groupwise fiber clustering pipeline to segment 

tractography into multiple fiber clusters, and 2) a novel cluster annotation method to automatically 

assign an anatomical tract annotation to each fiber cluster by employing cortical parcellation 

information across multiple subjects. The novelty of the AAFC method is that it leverages group-

wise information about the fiber clusters, including their fiber geometry and cortical terminations, 

to compute a tract anatomical label for each cluster in an automated fashion. We demonstrate the 

proposed AAFC method in an application of investigating white matter abnormality in emotional 

processing and sensorimotor areas in major depressive disorder (MDD). Seven tracts of interest 

related to emotional processing and sensorimotor functions are automatically identified using the 

proposed AAFC method as well as a comparable method that uses a cortical parcellation alone. 

Experimental results indicate that our proposed method is more consistent in identifying the tracts 

across subjects and across hemispheres in terms of the number of fibers. In addition, we perform a 

between-group statistical analysis in 31 MDD patients and 62 healthy subjects on the identified 

tracts using our AAFC method. We find statistical differences in diffusion measures in local 

regions within a fiber tract (e.g. 4 fiber clusters within the identified left hemisphere cingulum 

bundle (consisting of 14 clusters) are significantly different between the two groups), suggesting 

the ability of our method in identifying potential abnormality specific to subdivisions of a white 

matter structure.
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) enables detection of microstructural white 

matter (WM) changes in vivo (Makris et al., 1997; Pajevic and Basser, 2003; Shimony et al., 

1999). dMRI tractography is a noninvasive neuroimaging technique that is able to identify 

WM fiber tracts in the human brain (Basser et al., 2000; Ciccarelli et al., 2008). A fiber tract 

is a collection of central nervous system axons having a common site of origin and a 

common destination (Makris et al., 1997; Noback et al., 2005). For instance, the 

corticospinal tract (CST) originates in the cerebral cortex and ends in the spinal cord. 

Important goals of tractography research are to identify brain connective structures in vivo 

and to measure biological properties of these structures that are sensitive to clinical 

abnormalities. To investigate local WM abnormalities in specific structures, tractography has 

been employed in quantitative analysis of scalar measures derived from the diffusion tensor, 

such as anisotropy or diffusivity measures (Johansen-Berg and Behrens, 2006; O’Donnell 

and Westin, 2011). Whole-brain tractography, however, produces an unstructured set of 

thousands of fiber trajectories by estimating the course of all connections in the entire WM, 

whereas clinical applications often demand targeted tracking of specific fiber tracts.

To understand such massive amounts of data, whole-brain tractography is often segmented 

to identify fiber tract(s) of interest. One commonly used method identifies key fiber tracts by 

requiring manual tracing of regions of interest (ROIs) followed by assessment of the fibers 

that pass through the ROIs (Mori et al., 2006). This manual identification of ROIs used to 

define fiber tracts is operator dependent and time-consuming (Huang et al., 2004). 

Moreover, manual selection methods can suffer from operator bias (Bürgel et al., 2009; 

Radmanesh et al., 2015; Voineskos et al., 2009). Therefore, a number of automatic tract 

identification strategies have been proposed, which can be generally categorized into 

cortical-parcellation-based (CPB) (Cloutman and Ralph, 2012; O’Donnell et al., 2013; 

Wassermann et al., 2016) and fiber clustering (FC) methods (Guevara et al., 2016; Moberts 

et al., 2005; O’Donnell et al., 2013). CPB takes into account morphological information 

from the cortical folding pattern, while FC considers the shape and the trajectory of the 

fibers once these leave the cortex.

CPB methods (O’Donnell et al., 2013; Sporns et al., 2005; Wassermann et al., 2016), e.g. the 

white matter query language (WMQL) (Wasser-mann et al., 2016), segment tractography 

according to a cortical parcellation, focusing on the structural connectivity between pairs of 

parcellated cortical/subcortical regions (Gong et al., 2008; Honey et al., 2009; Zhang et al., 

2017). While this allows for highly specific identification, fibers that do not intersect the 

gray matter (GM) are excluded from the identification and this may hence result in a low 

sensitivity of tract identification (Vercruysse et al., 2014). In addition, the CPB method is 

dependent on the cortical parcellation of individual subjects, which could be affected by 
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individual anatomical variations (Ashburner and Friston, 2000; Bonilha et al., 2015; Fischl 

et al., 2004).

Compared to CPB, FC relies on a different WM connectivity modeling assumption, aiming 

to group neighboring fibers with similar trajectories into clusters, which reconstruct fiber 

tracts according to the WM anatomy (Guevara et al., 2012; Maddah et al., 2008; O’Donnell 

and Westin, 2007). A variety of methods have been developed for unsupervised clustering of 

whole brain tractography in individual subjects based on various types of features such as 

geometry, anatomy, connection, or function (Garyfallidis et al., 2012; Ge et al., 2012, 2013; 

Guevara et al., 2011; Wassermann et al., 2010). Our work in groupwise fiber clustering 

(O’Donnell et al., 2012; O’Donnell and Westin, 2007) has demonstrated that white matter 

regions can be automatically clustered, correspond across subjects, and be augmented with 

anatomical annotations. Recently, we have applied the groupwise fiber clustering strategy to 

perform data-driven white matter parcellation, enabling whole-brain white matter analyses 

in groups of subjects, for example in autism (Zhang et al., 2018a), attention deficit 

hyperactivity disorder (Zhang et al., 2018b) and patients with brain tumors (O’Donnell et al., 

2017). While both CPB and FC eliminate operator-specific intra- and inter-subject 

inconsistencies in tract delineation, our previous work (Zhang et al., 2017) demonstrated that 

FC may have a higher white matter parcellation consistency across subjects than the CPB 

method.

While the data-driven fiber clustering method has high consistency across subjects, it does 

have one drawback in interpretation of the fiber clusters. Fiber clusters obtained by 

unsupervised clustering need anatomical labels to identify anatomically meaningful white 

matter structures. Unlike the connections defined by a CPB method that are easily 

interpreted because their cortical terminations are known, in the FC approach this 

interpretation requires additional expert analyses to identify anatomically meaningful tracts 

by manually assigning an anatomical annotation to each fiber cluster (Guevara et al., 2012; 

O’Donnell and Westin, 2007). The combination of the two methods, representing a hybrid 

strategy, has been suggested to have advantages over their individual usages (Xia et al., 

2005; Li et al., 2010; Ros et al., 2013; Wassermann et al., 2016; Ge et al., 2012; Siless et al., 

2018; Tunç et al., 2013; Wang et al., 2013a; Guevara et al., 2017; Román et al., 2017).

In this study, we propose a hybrid white matter atlasing approach by combining CPB and FC 

strategies for automatic anatomical annotation of fiber clusters, which we refer to as the 

automatically annotated fiber clustering (AAFC) method. The goal of the proposed method 

is to provide an automated pipeline to perform white matter parcellation to identify 

anatomical fiber tracts. While FC provides a data-driven groupwise fiber clustering for fine 

parcellation according to white matter anatomy, CPB allows us to define anatomical 

annotations (such as the corticospinal tract (CST)) of fiber clusters. The combination of the 

two strategies allows the anatomical annotation of fiber tracts by including both brain GM 

and WM anatomy into the analysis. The benefits of the AAFC method are that: 1) it 

provides an automatic anatomical tract annotation pipeline to create study-specific white 

matter parcellations without using any expert annotation of fiber tracts, 2) it derives a high 

consistency of the identified fiber tracts across multiple subjects and across hemispheres, 
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and 3) it allows investigation of local regions of certain fiber tracts (e.g. we obtained 7 

subdivisions of the CST tract).

We demonstrate the proposed method in an application to analyze between-group white 

matter tract differences in a dataset including major depressive disorder (MDD) and healthy 

control (HC) groups. MDD is a common psychiatric disorder that is characterized by 

cognitive deficits and affective symptoms. Research studies have recognized MDD as a 

disconnection problem that involves many neural connections between brain functional 

regions (Cheng et al., 2016; Fu et al., 2015; Gong and He, 2015; Korgaonkar et al., 2014; 

Kostic et al., 2016; Liao et al., 2013). An increasing number of neuroimaging studies have 

focused on emotion regulation and have consistently shown that emotion dysregulation is 

one of the central features and underlying mechanisms of MDD. In particular, dMRI studies 

have suggested that there could be white matter abnormalities in emotional processing and 

sensorimotor areas in MDD (Delvecchio et al., 2012; Lu et al., 2016; Rizk et al., 2017; 

Smith and Bulman-Fleming, 2005; Tucker et al., 1999; Tymofiyeva et al., 2017; Zhang et al., 

2011). Therefore, in this study, we apply our AAFC method to automatically identify the 

fiber tracts that are related to these brain functional areas and investigate potential white 

matter group differences specific to local regions of these tracts. We hypothesize that our 

method can reveal white matter changes within subdivisions of the fiber tracts, as defined by 

fiber clustering. A between-group (MDD vs HC) difference analysis is performed by 

comparing fractional anisotropy (FA) and mean diffusivity (MD) measured from each 

identified fiber tract and each fiber cluster of the fiber tract. To our knowledge this work 

represents the first automatic anatomical tract annotation method applied to investigate local 

white matter abnormality in MDD.

2. Materials and methods

2.1. Overview

The proposed AAFC method has four main steps (Figure 1): whole brain tractography, 

study-specific data-driven groupwise fiber clustering, parcellation-based cluster 

identification, and automatic tract annotation across subjects. The purpose of these steps is 

to identify common white matter structures (fiber clusters) in the population and then to 

assign the fiber clusters to anatomically known white matter tracts according to the 

anatomical definitions that are predefined in the white matter query language (WMQL) 

(Wassermann et al., 2016).

2.2. Data acquisition and processing

2.2.1. Participants and MRI acquisition—The study requested access to data 

collected at the Department of Psychiatry at the Affiliated Brain Hospital of Guangzhou 

Medical University for the purpose of scientific investigation. Demographic information and 

results of between-group comparisons are shown in Table 1. A total of 93 subjects were 

studied, including 31 medication-free MDD patients and 62 healthy controls. All subjects 

were right-handed and of Han Chinese ancestry (age, 28.7±6.5; male/female, 39/54). The 

diagnosis of MDD was established with the Structured Clinical Interview of the DSM-IV 

(SCID) criteria. All patients had a score of at least 20 on the 24-item Hamilton Depression 
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Rating Scale (HDRS). Patients were not taking any antidepressants in the current episode. 

HCs were screened using the SCID Non-Patient Edition to confirm the lifetime absence of 

Axis I illness and no history of psychiatric illness in the healthy comparison subjects or in 

any of their first-degree relatives. All subjects had no lifetime history of seizures, head 

trauma, serious medical or surgical illness, substance abuse or dependence, or 

contraindications for MRI. Written informed consent was obtained from all subjects and 

approved by the local ethics committees of the Affiliated Brain Hospital of Guangzhou 

Medical University. No significant differences in age, gender or education were observed 

between participants with MDD in comparison to HC participants (Two-sample t-tests were 

performed for age and education and chi-square distribution test for gender).

MRI data was acquired on a 3.0-Tesla MR imaging system (Achieva X-series, Philips 

Medical Systems, Best, the Netherlands) with an eight-channel SENSE head coil, in the 

Department of Radiology, the Affiliated Brain Hospital of Guangzhou Medical University, 

Guangzhou, China. Tight but comfortable foam padding was used to reduce head motion 

and earplugs to muffle scanner noise. Participants were instructed to rest with their eyes 

closed during scanning. No participant reported falling asleep during the scan when 

routinely asked immediately after scanning. High resolution anatomical T1-weighted images 

were acquired for each subject. T1-weighted three-dimensional (3-D) turbo field-echo (TFE) 

parameters included 188 sagittal 1mm slices; 1mm isotropic; 256 × 256 matrix; repetition 

time/echo time (TR/TE)=8.2/3.7ms; flip angle=7°; and inversion time=1100ms. Single-shot 

spin echo-echo planar imaging (SE-EPI) diffusion-weighted imaging was acquired aligned 

with the AC-PC plane using the following parameters: repetition time/echo time (TR/TE) 

10067/92ms; flip angle 90, field of view (FOV) 256 × 256mm2; acquisition matrix 128 × 

128; slice thickness 2mm, no gap; voxel size 2 × 2 × 2mm3; and 75 continuous axial slices. 

The diffusion sensitizing gradients were applied along 32 non-collinear directions (b = 

1000s/mm2), together with an acquisition without diffusion weighting (b = 0).

2.2.2. Data processing—For both images (T1-weighted and diffusion weighted images 

(DWIs)), the DICOM images were converted to NRRD format using DWIConvert software. 

For each participant, a brain mask of the T1-weighted image was calculated by applying the 

3D skull strip tool from Analysis of Functional NeuroImages (AFNI) (Cox, 1996). 

Automated reconstruction and labeling of cortical and subcortical regions was performed 

using Freesurfer (Fischl, 2012) on the masked T1-weighted images.

Pre-processing was performed on DWI images including eddy current-induced distortion 

correction and motion correction using the Functional Magnetic Resonance Imaging of the 

Brain (FMRIB) Software Library tool (Jenkinson et al., 2012). Prior to tractography, each 

DWI data was aligned to its image center1 so that the DWI data from all subjects was 

roughly aligned. To further correct for distortions caused by magnetic field inhomogeneity 

(which leads to intensity loss and voxel shifts), an EPI distortion correction was performed 

with reference to the T2-weighted image using the Advanced Normalization Tools (ANTS) 

(Avants et al., 2009). We corrected for EPI distortion using the T2-weighted image because 

our DWI data was acquired with only one phase encode direction. Because T2-weighted 

1https://github.com/pnlbwh/pnlutil/blob/master/scripts-pipeline/center.py
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images were not acquired in this project, we generated a synthetic T2-weighted image from 

a T1 weighted image using the T1 to T2 conversion toolbox2. For each participant a 

nonlinear registration (restricted to the phase-encode direction) was computed from the b0 

image to the synthetic T2-weighted image to make a EPI corrective warp. Then, the warp 

was applied to each DWI image. Finally, each individual’s Freesurfer segmentation was 

transformed from T1 space into DWI corrected (b0) space via nonlinear registration using 

ANTS.

2.2.3. Whole-brain Tractography—Whole brain tractography was performed using a 

multi-fiber model to improve sensitivity in anatomical regions of crossing fibers. The 

unscented Kalman filter (UKF) tractography method (Baumgartner et al., 2012; Malcolm et 

al., 2010b,a) with a combined two-tensor and free-water model (Pasternak et al., 2009) was 

conducted to trace whole brain tractography. The free water model is a second tensor that is 

isotropic, with eigenvalues equal to the diffusivity of free water (Bergamino et al., 2016). 

UKF tractography fits the diffusion model to the data during fiber tracking, taking advantage 

of prior information from the previous step along the fiber. The UKF tractography method is 

widely used for neuroscientific studies (Chen et al., 2015, 2016; Cho et al., 2015; Joo et al., 

2017; Liao et al., 2017). In this study, UKF tractography was employed to obtain the whole-

brain tractography for each subject, with default seeding and stopping parameters that have 

been well tuned for datasets with a b-value of 1000. In details, tractography was seeded 

within the binary brain mask in all voxels where FA was greater than 0.15. 5 seeds were 

initiated per voxel. A two-tensor diffusion model was fitted at each point while tracking, and 

FA (as well as mean diffusivity (MD)) was measured from the first tensor of each point. 

Tractography stopped when FA (of the tensor being tracked) fell below 0.15 or the 

normalized average signal (the sum of the normalized signal across all gradient directions) 

fell below 0.1. The normalized average signal measure was employed to robustly distinguish 

between white/gray matter and cerebrospinal fluid (CSF) regions. As a result, the whole 

brain tractography obtained for each subject contained approximately 338,000 fibers. 

Tractography results for all subjects underwent a quality check using the quality control tool 

in the whitematteranalysis package3.

2.3. Data-driven Groupwise Whole Brain Fiber Clustering

A study-specific groupwise fiber clustering was conducted using a well-established pipeline 

to parcellate the whole-brain tractography into multiple fiber clusters (O’Donnell et al., 

2012; O’Donnell and Westin, 2007), aiming to segment common white matter structures in 

the study population. This process (Figure 2) included the three steps of groupwise 

tractography registration, groupwise fiber clustering atlas generation, and subject-specific 

fiber clustering according to the atlas. This pipeline has been successfully applied in 

multiple recent studies (O’Donnell et al., 2017; Zhang et al., 2018b,a). Note that the whole 

pipeline works in an automated data-driven groupwise way based on the input tractography, 

without using any additional prior information of brain anatomy.

2https://github.com/pnlbwh/T1toT2conversion
3https://dmri.slicer.org/whitematteranalysis
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2.3.1. Multi-subject group registration for whole brain tractography—
Tractography from all subjects is registered into a common space (Figure 2c) via an 

unbiased multi-subject affine then B-spline-based tractography registration (O’Donnell et 

al., 2012). The method performs an entropy-based registration in a multiscale manner based 

on the pairwise fiber trajectory distances to simultaneously align fibers from the multiple 

subjects. The B-spline model is used to enable non-rigid groupwise registration to improve 

the spatial correspondence quality. 20,000 fibers were randomly sampled from each 

subject’s full tractography to perform the tractography registration.

2.3.2. High-dimensional data-driven fiber cluster atlas—After group registration, 

each fiber is converted to a point in a spectral embedding space, where the fiber clustering is 

performed. In this step, a high-dimensional data-driven fiber atlas (O’Donnell and Westin, 

2007) is automatically generated using the group spectral clustering of tractography from all 

subjects. In this study, 10,000 fibers were randomly sampled from each subject (n = 93) for a 

total of 930,000 fibers for the fiber clustering atlas generation. Similar fibers from all or 

most subjects are thus grouped into the same population white matter cluster, leading to the 

cluster atlas (Figure 2d). To improve clustering robustness, bilateral clustering is applied to 

simultaneously cluster fibers in both hemispheres (O’Donnell and Westin, 2007). We 

generated an atlas of 800 fiber clusters to provide a fine scale parcellation with the goal of 

separating all WM structures considered to be different anatomically (O’Donnell et al., 

2017). Figure 3 shows the histogram of the number of fibers of each cluster in the atlas. In 

general, 89.5% had between 500 and 1500 fibers.

2.3.3. Cluster tractography for each subject—In this step, fiber clustering is 

performed for subject-specific WM segmentation according to the data-driven atlas to divide 

all fibers in the whole-brain tractography into clusters (O’Donnell et al., 2017). We note that 

unlike the atlas generation that used a sample of fibers per subject (10,000 fibers from about 

a total of 338,000 fibers), in this step each subject’s full tractography data was clustered 

according to the atlas. Each fiber from the whole-brain tractography of each subject is 

assigned to the closest atlas cluster in the spectral embedding space (O’Donnell et al., 2017; 

O’Donnell and Westin, 2007). After that, outlier fibers of each fiber cluster of each subject 

were removed if their fiber probability/affinity given the atlas cluster was over 2 standard 

deviations from the cluster’s mean fiber probability (O’Donnell et al., 2017). Considering 

the bilateral clustering of the atlas (O’Donnell and Westin, 2007), the subject clusters 

represented fiber tracts in both hemispheres or commissural. We separated fiber clusters per 

subject into hemispheric or commissural (Zhang et al., 2018b, 2017).

2.4. Anatomical Tract Annotation

After obtaining fiber clusters of each subject, a novel method is proposed to automatically 

assign an anatomical tract annotation to each fiber cluster according to the common brain 

anatomical regions the fiber cluster passes through across multiple subjects. There are two 

main steps: anatomical tract structure definitions using WMQL and population-based fiber 

cluster anatomical annotation.

Wu et al. Page 7

Neuroimage. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4.1. Anatomical tract definitions using WMQL—We first employ an anatomical 

definition of a fiber tract using the white matter query language (WMQL) (Wassermann et 

al., 2016). Each fiber tract definition includes a set of brain anatomical regions through 

which the fiber tract passes (or does not pass). For example, a fiber belonging to the CST 

tract can be determined if the fiber passes through the brainstem and the precentral or 

postcentral cortex regions. Recently, WMQL has been successfully applied in multiple 

studies to identify anatomical fiber tracts, such as the cingulum bundle (Lee Masson et al., 

2017; Olivetti et al., 2016), inferior occipito frontal fascicle (Olivetti et al., 2016), uncinate 

fascicle (Jolles et al., 2016; Lee Masson et al., 2017; Olivetti et al., 2016), arcuate fascicle 

(Olivetti et al., 2016; Reddy and Rathi, 2016), and corticospinal tract (Shenton et al., 2015). 

Detailed WMQL anatomical definitions of the tracts of interest in this study (including 

Corticospinal Tract (CST), Uncinate Fasciculus (UF), Inferior Longitudinal Fasciculus 

(ILF), Cingulum Bundles (CB), Thalamo-Frontal fibers (TF), Thalamo-Parietal fibers (TP) 

and Thalamo-Occipital fibers (TO)) are available online4.

2.4.2. Population-based fiber cluster anatomical annotation—We calculate a 

probability that each fiber cluster belongs to a certain anatomical tract in the population by 

using the WMQL results for the fibers in that fiber cluster. In this study, the Freesurfer 

segmentation in DWI (b0) space and each fiber cluster in an individual subject are input into 

WMQL to identify fibers belonging to particular tracts according to WMQL anatomical 

definitions of the tracts of interest. We focus on annotation of hemispheric fiber clusters for 

this study, so we remove the commissural fiber clusters (e.g. corpus callosum) from the 

cluster annotation process. Let ck represent the k-th fiber cluster (k = 1…K) in atlas and tj 
represent the j-th fiber tract (j = 1…7). We calculate a population-based probability of a fiber 

cluster ck belonging to tj

p ck t j =
∑i = 1

n mi jk

∑i = 1
n mik

(1)

where mik is the total number of fibers of ck of subject i, and mi jk is the number of fibers in 

ck of subject i that passed the WMQL definitions of tract tj, and the sums are over the total 

number of subjects, n.

Given the population-based probability, we then determine if a fiber cluster ck can be 

assigned to a particular anatomical tract tj. Here, we define an adaptive probability threshold 

λj; i.e. a fiber cluster ck is annotated as part of an anatomical tract tj if it has p(ck|tj) greater 

than λj. The adaptive threshold is computed as the sum of the mean and one standard 

deviation of the population-based probability p(ck|tj):

λ j =  mean  P j +  std  P j (2)

4https://github.com/pnlbwh/pnlutil/blob/master/pipeline/wmql-2.0.qry
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P j = p ck t j k = 1…800 (3)

This threshold allows us to identify the clusters likely to belong to tract tj as those with 

probabilities that are statistically higher among all clusters. One benefit of this adaptive 

threshold is that it could be commonly used across the multiple tracts of interest. Each 

cluster passing the threshold for tract tj is then given an anatomical annotation according to 

the name of tract tj (e.g. CST).

2.4.3. Tracts of interest for the study—In this study, we focus on WM tracts related 

to human emotional processing (Bylsma et al., 2008; Catani et al., 2013; LeDoux, 1995, 

2000; Rive et al., 2013; Rolls, 2000). In particular, several tracts of interest were studied, 

including the inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF) and cingulum 

bundle (CB) which are related to emotional processing, and the fiber tracts related to the 

thalamus (thalamo-frontal fibers (TF), thalamoparietal fibers (TP) and thalamo-occipital 

fibers (TO)). CB has been suggested to be related to emotional processing (Bechara et al., 

2000; Catani and De Schotten, 2008; Pugliese et al., 2009), and has been investigated in 

multiple MDD studies (Arnold et al., 2012; Wang et al., 2013b). The thalamus is an 

important subcortical structure that receives sensory information and relays it to the 

appropriate part of the cerebral cortex. Several research studies of MDD (Fava and Kendler, 

2000; Korgaonkar et al., 2014; Liao et al., 2013; Osoba et al., 2013; Zhang et al., 2011) have 

reported alterations of the WM connections related to the thalamus. In addition, the 

corticospinal tract (CST) is also included in our study to investigate potential alterations of 

the corticospinal motor tract excitability that are related to emotional states in MDD 

(Baumgartner et al., 2007; Coombes et al., 2009; Hajcak et al., 2007). Therefore, these 

comprise a total of 7 fiber tracts of interest.

In this study, we employ the available definitions for WMQL5. The definitions are based on 

human brain anatomy expertise (Breiter et al., 1997; Fischl et al., 2002, 2004; Wassermann 

et al., 2016). For each of the 7 tracts, fiber clusters from the whole brain fiber clustering 

(Section 2.3) belonging to the tract are identified as introduced above (Section 2.4).

2.5. Diffusion quantitative measurement and statistical analysis

Diffusion quantitative measurements were computed after the tract annotation to 

quantitatively describe the fiber tracts. Fractional anisotropy (FA) and mean diffusivity (MD) 

measures, which have been suggested to be highly affected in MDD (Bergamino et al., 2016; 

Jenkins et al., 2016; Wise et al., 2016; Yip et al., 2013), were measured in this study. For 

each fiber cluster, the mean statistic of all points along the fibers of each measure was 

computed. We note that FA and MD were computed at each point along the fibers during 

fiber tracking (see Section 2.2.3). Unlike traditional diffusion tensor imaging (DTI) 

tractography (Basser et al., 2000) that performs tensor estimation in each voxel prior to fiber 

tracking, the UKF tractography is microstructure based and estimates the microstructure 

5https://github.com/pnlbwh/pnlutil/blob/master/pipeline/wmql-2.0.qry
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model during fiber tracking, resulting in tensors at each point along the fiber (as in many 

other microstructure tractography methods (Girard et al., 2015; Daducci et al., 2015)). (This 

enables the UKF method to use prior information from the previous tracking step.) 

Therefore, we used the microstructure statistics of all points along the fibers for quantitative 

tract description as in multiple recent studies (Zhang et al., 2018a,b; Sydnor et al., 2018; 

Gong et al., 2018; Hong et al., 2018).

To analyze between-group (MDD vs HC) statistical differences in FA and MD, a 

permutation t-test (Holmes et al., 1996) was conducted for each fiber cluster (left-/right-

hemisphere) within each of the identified tracts (10000 permutations, as implemented in 

Matlab R2016a (The MathWorks, Inc., Natick, Massachusetts, United States)). This was 

followed by a multiple comparison correction across the clusters within each identified tract 

using false discovery rate (FDR) (Benjamini and Hochberg, 1995) to determine corrected 

statistical significance, with a significance level of p = 0.05.

3. Experiments and Results

3.1. Data-driven groupwise whole brain fiber clustering

We first investigated whether the clusters were present or absent in each subject to 

demonstrate that the white matter connections were consistently identified in the population. 

Tractography from all subjects from the MDD and HC groups was used for groupwise fiber 

clustering to obtain a study-specific fiber atlas, and then all fiber clusters were parcellated 

from all subjects. We then calculated how many fiber clusters could be identified from each 

subject. We observed that the 800 fiber clusters were highly consistent across all subjects: 

798 of 800 clusters (99.75%) were detected in all the subjects, and all 800 clusters were 

detected in 92 subjects (98.92%). This result suggested that groupwise fiber clustering 

tended to find highly consistent and corresponding white matter connections across the 

population in this study.

3.2. Annotation of key tracts in fiber cluster atlas

The seven fiber tracts identified by AAFC are displayed in Figure 4, each consisting of 

multiple fiber clusters. The first image in each box in Figure 4 shows the annotated fiber 

tracts in the atlas, and the second and third figures show the tracts from the HC and MDD 

groups, respectively. For the two group-wise visualizations, we appended the corresponding 

subject-specific fiber clusters across all subjects in each group, then downsampled the fibers 

for a better visualization. The results of fiber clustering across all subjects showed the 

method’s ability to identify multiple fiber clusters within each identified tract. This provided 

fine subdivisions of white matter structures, which corresponded across subjects. 

Tractography visualization was performed in 3D Slicer6 (Fedorov et al., 2012; Gering et al., 

2001) via the SlicerDMRI project7 (Norton et al., 2017).

Each tract identified by the proposed AAFC method was composed of the fibers that met 

and did not meet the WMQL definition. To quantitatively evaluate the fibers uncaught by 

6https://slicer.org
7https://dmri.slicer.org
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WMQL, we performed an experiment by measuring their fiber geometric distances (Zhang 

et al., 2018b) to the fibers that met the WMQL definition. The goal was to show that if the 

fibers uncaught by WMQL had similar white matter anatomy (small geometric distance) to 

the fibers caught by WMQL, they were more likely to belong to the same white matter 

structure. In details, for each of the fibers uncaught by WMQL in a certain tract per subject, 

we identified the closest fiber within the ones caught by WMQL and recorded this closest 

distance. Then, a mean closest distance was computed across all fibers uncaught by WMQL. 

Table 2 shows the mean and the standard deviation of the mean closest distance across all 

subjects under study for each tract. In general, the geometric distances between the fibers 

that met and did not meet the WQML definition in our identified tracts were small (around 

5mm or 2 to 3 voxels), suggesting a very similar white matter anatomy between these fibers.

We then performed a quantitative evaluation to investigate how many fibers were 

misclassified in our identified anatomical tracts based on all available tract definitions 

provided in WMQL. Specifically, given a certain identified tract (e.g. CST), we found the 

fibers that belonged to any other tracts defined in WMQL, and computed the percentage of 

these fibers given the total number of fibers of the tract of each subject. We note that all 

available anatomical definitions (including a total of 45 white matter tracts) were used here. 

Then, across all subjects under study, we calculated a mean percentage of the fibers that 

were misclassified given all available WMQL tract definitions, as shown in Table 3. In 

general, a very small percentage of fibers (under 5%) were misclassified.

3.3. Visualization and Comparison between AAFC and WMQL methods

To compare two key tract segmentation strategies, the WMQL and AAFC methods, in 

identifying the seven tracts in this study, visualizing and quantifying experiments were 

carried out. Two example subjects (one MDD subject (subject 1) and one HC subject 

(subject 2)) were randomly selected for visualizing the comparison of the two tract 

segmentation strategies (Figure 5).

For quantitative comparison of the WMQL and AAFC methods in identifying the tracts of 

interest across subjects, we calculated the number of fibers in each tract to investigate if the 

corresponding tracts across subjects represented similar WM connections. Figure 6 shows 

the coefficient of variation (CV) of the number of fibers (streamline count) from the 

corresponding tracts across all subjects. (The CV is the ratio of the standard deviation to the 

mean.) Two-tailed paired t-tests were used to compare the CV from the two methods in the 

left hemisphere (p = 0.0153) and the right hemisphere (p = 0.0274). The AAFC method 

obtained a significantly lower mean CV when compared to the the WMQL method. The 

tracts in this study are expected to be relatively symmetric (Latini et al., 2017; de Schotten et 

al., 2011) according to studies of the white matter anatomy, so we assessed hemispheric 

lateralization of the tracts detected by both methods. Figure 7 shows the absolute values of 

the laterality index (LI) (O’Donnell et al., 2010; Prop-per et al., 2010; de Schotten et al., 

2011) of the number of fibers for each tract. The absolute LI of a tract was measured as |(mR 

− mL)/(mR + mL)|, where mL and mR are the number of fibers in the left and right 

hemispheres of the tract. Paired t-tests were used to compare mean absolute LIs of the 
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number of fibers (streamlines) for each tract across methods. A significantly lower mean 

absolute LI was obtained by the AAFC method (Figure 7) in 6 of 7 tracts.

3.4. Statistical analysis

Significant differences between groups in the identified tracts and the fiber clusters of the 

identified tracts are summarized in Tables 4 and 5, respectively. Table 4 reports the average 

and standard deviation of FA and MD of each tract of interest. Significant differences 

between groups identified by the AAFC method at the tract level are highlighted, including 

the left ILF, the left CB and the right TF based on the MD measure. We also performed a 

tract level comparison for these three tracts identified using the WMQL method. The 

average MD values in each tract were as follows: left ILF: MDD (0.702 ± 0.029) vs HC 

(0.717 ± 0.026, p-value = 0.017; left CB: MDD (0.733 ± 0.023) vs HC (0.744 ± 0.021), p-

value = 0.027; right TF: MDD (0.667 ± 0.018) vs HC (0.675 ± 0.016), p-value = 0.048. The 

results showed that there were significantly increased MD values in the MDD group in these 

tracts, which were in the same trend as the results obtained using our AAFC method. Table 5 

reports the average and standard deviation of FA and MD in each fiber cluster with 

significant differences between groups. Also, Figure 8 shows selected views displaying the 

tracts with the significant fiber clusters in red color.

4. Discussion

In this paper, we proposed an automatically annotated fiber cluster (AAFC) method to 

enable robust anatomical fiber tract identification across subjects, and to allow investigations 

of WM abnormalities specific to local regions (clusters) within the identified tracts. We 

demonstrated our method with an application to study group WM differences using a dataset 

of 31 MDD patients and 62 HCs. We have several overall observations about the results, 

which are discussed below.

The proposed AAFC method was highly consistent in identifying corresponding anatomical 

fiber tracts across multiple subjects. We found a more consistent performance of the 

proposed AAFC method when compared to the WMQL method, based on quantitative 

experiments. We measured a significantly lower mean CV of the number of fibers in each 

fiber tract across subjects using the AAFC method (Figure 6). We also found a lower 

absolute LI was obtained using the AAFC method, indicating the identified tracts were more 

similar across hemispheres. The high consistency of the proposed method can be interpreted 

from the following aspects. First, the proposed AAFC method relied on a fiber clustering 

pipeline to enable identification of corresponding WM parcels in the whole brain of all 

subjects. Given the 800 fiber clusters, 99.75% of fiber clusters were consistently found 

across all subjects. Second, we applied bilateral clustering that simultaneously clustered 

fibers in both hemispheres. Due to its ability in finding corresponding white matter 

structures across the hemispheres (O’Donnell and Westin, 2007), which enables the 

comparison of these structures across hemispheres, the bilateral clustering is beneficial in 

investigating potential lateralized microstructural changes in the white matter. When 

applying this method, although similar structures are bilaterally clustered across 

hemispheres, the structures may still be asymmetric in the number of fibers. The higher 
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magnitude of asymmetry in the tracts identified by WMQL could potentially relate to the 

fibers that do not fully reach cortex in individual subjects (Olivetti et al., 2016; Vercruysse et 

al., 2014), such as in the UF tract of subject 1 (Figure 5). Third, unlike the WMQL method 

that relied on brain anatomical parcellation of individuals, the proposed AAFC method 

leveraged information from the whole population, including the group-wise whole brain 

fiber geometry (via the data-driven fiber clustering) and the population-based cortical 

parcellation (via the population fiber cluster annotations).

In interpreting our findings, we make the claim that less lateral variation (in terms of the 

number of fibers) is beneficial, because we feel that it is important to robustly identify each 

anatomical structure in both hemispheres. It is important to mention that this could 

potentially reduce findings of lateralization, especially in terms of the number of fibers. 

However, most tract-specific studies do rely on diffusion properties of the tracts rather than 

relatively non-anatomical measures such as fiber count (Jones et al., 2013). To our 

knowledge, to date there have been few studies of brain lateralization specifically in MDD. 

Prior studies have found lateralized results that are present only in either left or right 

hemisphere structures (Wise et al., 2016; Jiang et al., 2017). We note that recent meta-

analyses of FA studies in MDD have general findings of non-lateralized changes, in both the 

corpus callosum and bilateral superior longitudinal fasciculus (Wise et al., 2016; Jiang et al., 

2017).

One potential benefit of the proposed AAFC method is that it identifies anatomical fiber 

tracts that are composed of multiple fiber clusters, which allows statistical analyses specific 

to subdivisions of a WM structure (Table 5). This enables identification of group differences 

in local WM regions, which could be more affected when compared to the whole tract. In 

the application of studying MDD, we found that several fiber clusters survived the multiple 

comparison corrected statistical test in the left CB, the right CST and the right TF. For 

example, the CB tract consisted of 14 fiber clusters, within which four clusters (Figure 8) 

were significantly different between the MDD and HC groups when comparing the MD. On 

the other hand, we also observed that while the whole left ILF tract passed the statistical test 

at the tract level, none of its fiber clusters survived the fiber-cluster-based comparison of MD 

(corrected for multiple comparisons). This could be attributed to the fact that the individual 

clusters had similar or higher t-test-based group statistics (p-values) to the whole tract.

In the application of the AAFC method to study the WM differences between MDD and 

healthy controls, we found that diffusion properties were affected in left ILF, right CST, left 

CB and right TF, which suggested potential WM abnormalities in emotional processing and 

sensorimotor areas in MDD. Similar to our findings, previous studies have reported WM 

abnormalities in the right CST (Osoba et al., 2013; Sacchet et al., 2014b,a; Wang et al., 

2013b), the left CB (Arnold et al., 2012; Emberson et al., 2014; Wang et al., 2013b), the 

right TF (Lyden et al., 2014; Schnyer et al., 2017; Wang et al., 2013b) and the left ILF (de 

Diego-Adelino et al., 2014; Kieseppä et al., 2010). In this study, we found generally 

decreased MD and increased FA in the MDD subjects compared to the healthy controls. 

While many studies have reported increased MD and decreased FA in MDD compared to 

HC (Arnold et al., 2012; Benedetti et al., 2011; Osoba et al., 2013; Serafini et al., 2015; 

Vasavada et al., 2016; Wang et al., 2013b; Zalsman et al., 2017), other works have found 
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different change directions (similar to our results), as follows. Decreased MD values in 

MDD were found in left-hemisphere CB (Arnold et al., 2012; Lyden et al., 2014; Wang et 

al., 2013b) and TF (Lyden et al., 2014; Schnyer et al., 2017; Wang et al., 2013b). In addition, 

significantly increased FA was found in CST in MDD (Osoba et al., 2013; Sacchet et al., 

2014b,a; Wang et al., 2013b).

Other research groups have also proposed using a combination of tractography information 

and other anatomical information for identifying fiber tracts, which can be categorized as 

hybrid methods (O’Donnell et al., 2013). The earliest work uses the brain parcellation from 

a gray matter (GM) atlas to initialize the fiber clusters connecting to the same anatomical 

brain region (Xia et al., 2005). There have also been studies applying WM/GM atlases to 

guide anatomical tract identification after obtaining fiber clusters in individual subjects (Li 

et al., 2010; Ros et al., 2013; Wassermann et al., 2016). In addition, works have been 

conducted by incorporating fiber anatomical information into the fiber distance/similarity 

computation (Ge et al., 2012; Siless et al., 2018; Tunç et al., 2013; Wang et al., 2013a). 

These methods in general rely on the anatomical parcellation of individuals under study and 

thus are limited to the success of applying the voxel-based WM/GM atlases to each 

individual. In contrast, in our method, we apply a groupwise fiber clustering strategy, which 

provides a tract-based model that can be highly robust in identifying corresponding WM 

structures across subjects (e.g. we have successfully applied our fiber clustering atlases to 

brain tumor patients even though they have very large individual brain anatomy variations 

(O’Donnell et al., 2017)). A post-hoc fiber cluster anatomical annotation is anatomically 

computed with respect to the GM and WM information of the entire population that is used 

for the fiber cluster atlas generation. One benefit of this combination is the potential of 

applying our annotated fiber cluster atlas to new subjects without requiring individual 

anatomical prior information. Another benefit is that the proposed method provides an 

automated way to generate study-specific white matter atlases and corresponding subject-

specific white matter parcellations for each subject under study.

Potential limitations of the current work are as follows. We found that the tracts identified in 

the AAFC method were relatively larger in terms of the number of fibers when compared to 

those identified in the WMQL method. There are two potential causes leading to this 

difference. First, we applied a relatively low threshold (Section 2.4.2) which was more 

inclusive to avoid missing any potential clusters belonging to a certain anatomical fiber tract. 

While this threshold allowed us to perform cluster annotations across the multiple tracts of 

interest in an automated manner, certain annotated clusters may not strongly belong to the 

tract. For example, there are some outlier fibers in our identified UF, CB and TO tracts 

(Figure 5). Applying a more strict threshold could reduce the possibility of including outliers 

fibers into the tract, but with the expense of losing part of the tract. To enable a more tract-

specific threshold decision, as well as the study of tracts not yet included in WMQL, it 

would be of interest to enhance the tract annotation by employing expert knowledge. 

Second, the proposed AAFC method uses a white-matter-centric fiber clustering method that 

allows identification of the fibers whose endpoints are near the GM, while the WMQL 

method can only include the fibers ending in or passing through the GM. This is expected to 

increase the number of detected fibers in AAFC compared to the WMQL method. In this 

study, we chose a parcellation scale of K = 800 that has been suggested to well separate 
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white matter structures considered to be anatomically different (O’Donnell et al., 2017; 

Zhang et al., 2018b). We have recently found that, when testing parcellation scales from K = 

200 to 4000, K = 800 is a reasonable value to separate different anatomical tracts while 

providing a good parcellation consistency across subjects (Zhang et al., 2018c). In the 

present study, our quantitative result (Table 3) showed that with K = 800 only a small 

percentage of fibers were misclassified based on based on all available WMQL tract 

definitions, suggesting that the current parcellation provided a good performance in 

identifying the anatomical tracts. However, because the fiber clusters are white-matter-

centric subdivisions according to fiber shape and location, fibers within a cluster may not 

perfectly correspond to the WMQL definition of a particular tract. For example, the CST, 

part of the corona radiata (CR) (Jang, 2009), has similar WM anatomy to non-CST CR 

tracts. Hence, there could be a cluster annotated as CST that includes part of the non-CST 

CR. To handle this, a potential future research direction could include investigating a finer 

WM fiber clustering parcellation (K ≥ 800) to obtain clusters more specific to local 

subdivisions of a WM structure. For example, our currently applied K = 800 WM 

parcellation subdivided the CST into 7 clusters, but a finer parcellation (e.g. K = 1000) 

would subdivide the CST into more clusters which could be more specific to local regions of 

the CST. We note that in our recent work, we found that 800 clusters enabled whole-brain 

statistical analysis (Zhang et al., 2018b), while fine WM subdivisions (K = 2000) were 

found to be beneficial for machine learning classification (Zhang et al., 2018a). Third, our 

quantitative evaluation result about the misclassified fibers in the identified anatomical tracts 

(Table 3) was based on all currently available tract definitions in WMQL. A comprehensive 

evaluation would include more tract definitions if they would be available in the future. 

Another potential limitation is that we applied the mean measurements of the diffusion 

features (i.e. FA and MD) to investigate local WM abnormality in MDD compared to HC. 

However, advanced diffusion measurements may provide better tract quantitative 

descriptions. For example, multi-shell dMRI features, such as return-to-the-origin 

probability (RTOP) (Zhang et al., 2018b), could be combined with along-tract statistical 

analysis (Colby et al., 2012; O’Donnell et al., 2009; Yeatman et al., 2012) to study between 

group white matter alterations.

5. Conclusion

In this study, we have presented an automatically annotated fiber cluster (AAFC) method to 

identify WM structures from whole brain tractography. The proposed method automatically 

annotated the anatomical tracts with a high consistency across multiple subjects without 

requiring any expert selection of fiber tracts. The proposed method allows investigation of 

local regions of certain fiber tracts. Experimental results suggest that our method in general 

is more consistent across subjects and hemispheres when compared to the WMQL method, 

in terms of the number of fibers that are detected. The example application to the study of 

MDD demonstrates that the proposed method can allow identification of group WM 

differences specific to subdivisions of anatomical fiber tracts, while enabling whole-tract-

based analyses.

Wu et al. Page 15

Neuroimage. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

We gratefully acknowledge funding provided by the following National Institutes of Health (NIH) grants: U01 
CA199459, P41 EB015898, P41 EB015902, and R01 MH074794; the National Science Foundation of China 
(NSFC): 61379020, 61703369, 81571333; Science and Technology Department of Guangdong Province major 
science and technology: 2016N010108003; National R&D program focused on precision medical research of 
China: 2016YFC0906302; and the Guangzhou Municipal Health Bureau: 20151A011066. Ye Wu was supported by 
a scholarship from the China Scholarship Council (CSC).

References

Arnold JF, Zwiers MP, Fitzgerald DA, van Eijndhoven P, Becker ES, Rinck M, Fernández G, Speckens 
AE, Tendolkar I, 2012 Fronto-limbic microstructure and structural connectivity in remission from 
major depression. Psychiatry Research: Neuroimaging 204, 40–48. [PubMed: 23010567] 

Ashburner J, Friston KJ, 2000 Voxel-based morphometrythe methods. NeuroImage 11, 805–821. 
[PubMed: 10860804] 

Avants BB, Tustison N, Song G, 2009 Advanced normalization tools (ANTS). Insight Journal 2, 1–35.

Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A, 2000 In vivo fiber tractography using DT-MRI 
data. Magnetic resonance in medicine 44, 625–632. [PubMed: 11025519] 

Baumgartner C, Michailovich O, Levitt J, Pasternak O, Bouix S, Westin C, Rathi Y, 2012 A unified 
tractography framework for comparing diffusion models on clinical scans, in: International 
Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 
Computational Diffusion MRI, Workshop, pp. 27–32.

Baumgartner T, Willi M, Jäncke L, 2007 Modulation of corticospinal activity by strong emotions 
evoked by pictures and classical music: a transcranial magnetic stimulation study. Neuroreport 18, 
261–265. [PubMed: 17314668] 

Bechara A, Damasio H, Damasio AR, 2000 Emotion, decision making and the orbitofrontal cortex. 
Cerebral cortex 10, 295–307. [PubMed: 10731224] 

Benedetti F, Absinta M, Rocca MA, Radaelli D, Poletti S, Bernasconi A, Dallaspezia S, Pagani E, 
Falini A, Copetti M, et al., 2011 Tract-specific white matter structural disruption in patients with 
bipolar disorder. Bipolar disorders 13, 414–424. [PubMed: 21843281] 

Benjamini Y, Hochberg Y, 1995 Controlling the false discovery rate: A practical and powerful 
approach to multiple testing. Journal of the royal statistical society. Series B (Methodological). 57, 
289–300.

Bergamino M, Pasternak O, Farmer M, Shenton ME, Hamilton JP, 2016 Applying a free-water 
correction to diffusion imaging data uncovers stress-related neural pathology in depression. 
NeuroImage: Clinical 10, 336–342.

Bonilha L, Gleichgerrcht E, Fridriksson J, Rorden C, Breedlove JL, Nesland T, Paulus W, Helms G, 
Focke NK, 2015 Reproducibility of the structural brain connectome derived from diffusion tensor 
imaging. PloS one 10, e0135247. [PubMed: 26332788] 

Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, 
Gastfriend DR, Riorden JP, et al., 1997 Acute effects of cocaine on human brain activity and 
emotion. Neuron 19, 591–611. [PubMed: 9331351] 

Bürgel U, Mädler B, Honey C, Thron A, Gilsbach J, Coenen V, 2009 Fiber tracking with distinct 
software tools results in a clear diversity in anatomical fiber tract portrayal. Central European 
Neurosurgery 70, 27–35. [PubMed: 19191204] 

Bylsma LM, Morris BH, Rottenberg J, 2008 A meta-analysis of emotional reactivity in major 
depressive disorder. Clinical psychology review 28, 676–691. [PubMed: 18006196] 

Catani M, De Schotten MT, 2008 A diffusion tensor imaging tractography atlas for virtual in vivo 
dissections. Cortex 44, 1105–1132. [PubMed: 18619589] 

Catani M, DellAcqua F, De Schotten MT, 2013 A revised limbic system model for memory, emotion 
and behaviour. Neuroscience & Biobehavioral Reviews 37, 1724–1737. [PubMed: 23850593] 

Chen Z, Tie Y, Olubiyi O, Rigolo L, Mehrtash A, Norton I, Pasternak O, Rathi Y, Golby AJ, 
O’Donnell LJ, 2015 Reconstruction of the arcuate fasciculus for surgical planning in the setting of 

Wu et al. Page 16

Neuroimage. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



peritumoral edema using two-tensor unscented Kalman filter tractography. NeuroImage: Clinical 
7, 815–822.

Chen Z, Tie Y, Olubiyi O, Zhang F, Mehrtash A, Rigolo L, Kahali P, Norton I, Pasternak O, Rathi Y, et 
al., 2016 Corticospinal tract modeling for neurosurgical planning by tracking through regions of 
peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography. 
International journal of computer assisted radiology and surgery 11, 1475–1486. [PubMed: 
26762104] 

Cheng W, Rolls ET, Qiu J, Liu W, Tang Y, Huang CC, Wang X, Zhang J, Lin W, Zheng L, et al., 2016 
Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in 
depression. Brain 139, 3296–3309. [PubMed: 27742666] 

Cho KIK, Shenton ME, Kubicki M, Jung WH, Lee TY, Yun JY, Kim SN, Kwon JS, 2015 Altered 
thalamo-cortical white matter connectivity: Probabilistic tractography study in clinical-high risk 
for psychosis and first-episode psychosis. Schizophrenia bulletin 42, 723–731. [PubMed: 
26598740] 

Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A, 2008 Diffusion-based tractography 
in neurological disorders: concepts, applications, and future developments. The Lancet Neurology 
7, 715–727. [PubMed: 18635020] 

Cloutman LL, Ralph MAL, 2012 Connectivity-based structural and functional parcellation of the 
human cortex using diffusion imaging and tractography. Frontiers in neuroanatomy 6, 34. 
[PubMed: 22952459] 

Colby JB, Soderberg L, Lebel C, Dinov ID, Thompson PM, Sowell ER, 2012 Along-tract statistics 
allow for enhanced tractography analysis. NeuroImage 59, 3227–3242. [PubMed: 22094644] 

Coombes SA, Tandonnet C, Fujiyama H, Janelle CM, Cauraugh JH, Summers JJ, 2009 Emotion and 
motor preparation: a transcranial magnetic stimulation study of corticospinal motor tract 
excitability. Cognitive, Affective, & Behavioral Neuroscience 9, 380–388.

Cox RW, 1996 AFNI: software for analysis and visualization of functional magnetic resonance 
neuroimages. Computers and Biomedical research 29, 162–173. [PubMed: 8812068] 

Daducci A, Dal Palù A, Lemkaddem A, Thiran JP, 2015 COMMIT: convex optimization modeling for 
microstructure informed tractography. IEEE transactions on medical imaging 34, 246–257. 
[PubMed: 25167548] 

Delvecchio G, Fossati P, Boyer P, Brambilla P, Falkai P, Gruber O, Hietala J, Lawrie SM, Martinot JL, 
McIntosh AM, et al., 2012 Common and distinct neural correlates of emotional processing in 
bipolar disorder and major depressive disorder: a voxel-based meta-analysis of functional 
magnetic resonance imaging studies. European Neuropsychopharmacology 22, 100–113. 
[PubMed: 21820878] 

de Diego-Adelino J, Pires P, Gomez-Anson B, Serra-Blasco M, Vives-Gilabert Y, Puigdemont D, 
Martin-Blanco A, Alvarez E, Perez V, Portella M, 2014 Microstructural white-matter 
abnormalities associated with treatment resistance, severity and duration of illness in major 
depression. Psychological medicine 44, 1171–1182. [PubMed: 23962469] 

Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, 
Donnan G, et al., 2014 Effect of treatment delay, age, and stroke severity on the effects of 
intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual 
patient data from randomised trials. The Lancet 384, 1929–1935.

Fava M, Kendler KS, 2000 Major depressive disorder. Neuron 28, 335–341. [PubMed: 11144343] 

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, 
Fennessy F, Sonka M, et al., 2012 3D Slicer as an image computing platform for the quantitative 
imaging network. Magnetic resonance imaging 30, 1323–1341. [PubMed: 22770690] 

Fischl B, 2012 Freesurfer. NeuroImage 62, 774–781. [PubMed: 22248573] 

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, 
Kennedy D, Klaveness S, et al., 2002 Whole brain segmentation: automated labeling of 
neuroanatomical structures in the human brain. Neuron 33, 341–355. [PubMed: 11832223] 

Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, 
Goldstein J, Kennedy D, et al., 2004 Automatically parcellating the human cerebral cortex. 
Cerebral cortex 14, 11–22. [PubMed: 14654453] 

Wu et al. Page 17

Neuroimage. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fu CH, Costafreda SG, Sankar A, Adams TM, Rasenick MM, Liu P, Donati R, Maglanoc LA, Horton 
P, Marangell LB, 2015 Multi-modal functional and structural neuroimaging investigation of major 
depressive disorder following treatment with duloxetine. BMC psychiatry 15,82. [PubMed: 
25880400] 

Garyfallidis E, Brett M, Correia MM, Williams GB, Nimmo-Smith I, 2012 Quickbundles, a method for 
tractography simplification. Frontiers in neuroscience 6, 175. [PubMed: 23248578] 

Ge B, Guo L, Zhang T, Hu X, Han J, Liu T, 2013 Resting state fMRI-guided fiber clustering: methods 
and applications. Neuroinformatics 11, 119–133. [PubMed: 23065648] 

Ge B, Guo L, Zhang T, Zhu D, Li K, Hu X, Han J, Liu T, 2012 Group-wise consistent fiber clustering 
based on multi-modal connectional and functional profiles, Springer pp. 485–492.

Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WEL, Jolesz FA, Black PM, Wells 
WM, 2001 An integrated visualization system for surgical planning and guidance using image 
fusion and an open MR. Journal of Magnetic Resonance Imaging 13, 967–975. [PubMed: 
11382961] 

Girard G, Fick R, Descoteaux M, Deriche R, Wassermann D, 2015 AxTract: microstructure-driven 
tractography based on the ensemble average propagator, in: International Conference on 
Information Processing in Medical Imaging, Springer pp. 675–686.

Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C, 2008 Mapping anatomical 
connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. 
Cerebral cortex 19, 524–536. [PubMed: 18567609] 

Gong Q, He Y, 2015 Depression, neuroimaging and connectomics: a selective overview. Biological 
psychiatry 77, 223–235. [PubMed: 25444171] 

Gong S, Zhang F, Norton I, Essayed WI, Unadkat P, Rigolo L, Pasternak O, Rathi Y, Hou L, Golby AJ, 
O’donnell LJ, 2018 Free water modeling of peritumoral edema using multi-fiber tractography: 
Application to tracking the arcuate fasciculus for neurosurgical planning. PloS one 13, e0197056. 
[PubMed: 29746544] 

Guevara M, Román C, Houenou J, Duclap D, Poupon C, Mangin JF, Guevara P, 2016 Creation of a 
whole brain short association bundle atlas using a hybrid approach, in: Engineering in Medicine 
and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, IEEE pp. 
1115–1119.

Guevara M, Román C, Houenou J, Duclap D, Poupon C, Mangin JF, Guevara P, 2017 Reproducibility 
of superficial white matter tracts using diffusion-weighted imaging tractography. NeuroImage 147, 
703–725. [PubMed: 28034765] 

Guevara P, Duclap D, Poupon C, Marrakchi-Kacem L, Fillard P, Le Bihan D, Leboyer M, Houenou J, 
Mangin JF, 2012 Automatic fiber bundle segmentation in massive tractography datasets using a 
multi-subject bundle atlas. NeuroImage 61, 1083–1099. [PubMed: 22414992] 

Guevara P, Poupon C, Rivière D, Cointepas Y, Descoteaux M, Thirion B, Mangin JF, 2011 Robust 
clustering of massive tractography datasets. NeuroImage 54, 1975–1993. [PubMed: 20965259] 

Hajcak G, Molnar C, George MS, Bolger K, Koola J, Nahas Z, 2007 Emotion facilitates action: a 
transcranial magnetic stimulation study of motor cortex excitability during picture viewing. 
Psychophysiology 44, 91–97. [PubMed: 17241144] 

Holmes AP, Blair R, Watson J, Ford I, 1996 Nonparametric analysis of statistic images from functional 
mapping experiments. Journal of Cerebral Blood Flow & Metabolism 16, 7–22. [PubMed: 
8530558] 

Honey C, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P, 2009 Predicting 
human resting-state functional connectivity from structural connectivity. Proceedings of the 
National Academy of Sciences 106, 2035–2040.

Hong Y, O’Donnell LJ, Savadjiev P, Zhang F, Wassermann D, Pasternak O, Johnson H, Paulsen J, 
Vonsattel JP, Makris N, Westin CF, Rathi Y, 2018 Genetic load determines atrophy in hand cortico-
striatal pathways in presymptomatic Huntington’s disease. Human Brain Mapping.

Huang H, Zhang J, van Zijl P, Mori S, 2004 Analysis of noise effects on DTI-based tractography using 
the brute-force and multi-ROI approach. Magnetic Resonance in Medicine 52, 559–565. [PubMed: 
15334575] 

Wu et al. Page 18

Neuroimage. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jang SH, 2009 A review of corticospinal tract location at corona radiata and posterior limb of the 
internal capsule in human brain. NeuroRehabilitation 24, 279–283. [PubMed: 19458436] 

Jenkins LM, Barba A, Campbell M, Lamar M, Shankman SA, Leow AD, Ajilore O, Langenecker SA, 
2016 Shared white matter alterations across emotional disorders: A voxel-based meta-analysis of 
fractional anisotropy. NeuroImage: Clinical 12, 1022–1034. [PubMed: 27995068] 

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM, 2012 FSL. NeuroImage 62, 782–
790. [PubMed: 21979382] 

Jiang J, Zhao YJ, Hu XY, Du MY, Chen ZQ, Wu M, Li KM, Zhu HY, Kumar P, Gong QY, 2017 
Microstructural brain abnormalities in medication-free patients with major depressive disorder: a 
systematic review and meta-analysis of diffusion tensor imaging. Journal of psychiatry & 
neuroscience: JPN 42, 150. [PubMed: 27780031] 

Johansen-Berg H, Behrens TE, 2006 Just pretty pictures? What diffusion tractography can add in 
clinical neuroscience. Current opinion in neurology 19, 379. [PubMed: 16914977] 

Jolles D, Wassermann D, Chokhani R, Richardson J, Tenison C, Bammer R, Fuchs L, Supekar K, 
Menon V, 2016 Plasticity of left perisylvian white-matter tracts is associated with individual 
differences in math learning. Brain Structure and Function 221, 1337–1351. [PubMed: 25604464] 

Jones DK, Knösche TR, Turner R, 2013 White matter integrity, fiber count, and other fallacies: the 
do’s and don’ts of diffusion MRI. Neuroimage 73, 239–254. [PubMed: 22846632] 

Joo SW, Chon MW, Rathi Y, Shenton ME, Kubicki M, Lee J, 2017 Abnormal asymmetry of white 
matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset 
schizophrenia. Schizophrenia Research.

Kieseppä T, Eerola M, Mäntylä R, Neuvonen T, Poutanen VP, Luoma K, Tuulio-Henriksson A, Jylhä 
P, Mantere O, Melartin T, et al., 2010 Major depressive disorder and white matter abnormalities: a 
diffusion tensor imaging study with tract-based spatial statistics. Journal of affective disorders 120, 
240–244. [PubMed: 19467559] 

Korgaonkar MS, Fornito A, Williams LM, Grieve SM, 2014 Abnormal structural networks 
characterize major depressive disorder: a connectome analysis. Biological psychiatry 76, 567–574. 
[PubMed: 24690111] 

Kostic M, Canu E, Agosta F, Munjiza A, Novakovic I, Dobricic V, Ferraro P, Miler Jerkovic V, 
Pekmezovic T, Lecic Tosevski D, et al., 2016 The cumulative effect of genetic polymorphisms on 
depression and brain structural integrity. Human brain mapping 37, 2173–2184. [PubMed: 
26956059] 

Latini F, Mårtensson J, Larsson EM, Fredrikson M, Åhs F, Hjortberg M, Aldskogius H, Ryttlefors M, 
2017 Segmentation of the inferior longitudinal fasciculus in the human brain: A white matter 
dissection and diffusion tensor tractography study. Brain research 1675, 102–115. [PubMed: 
28899757] 

LeDoux JE, 1995 Emotion: Clues from the brain. Annual review of psychology 46, 209–235.

LeDoux JE, 2000 Emotion circuits in the brain. Annual review of neuro-science 23, 155–184.

Lee Masson H, Wallraven C, Petit L, 2017 “Can touch this”: Cross-modal shape categorization 
performance is associated with microstructural characteristics of white matter association 
pathways. Human brain mapping 38, 842–854. [PubMed: 27696592] 

Li H, Xue Z, Guo L, Liu T, Hunter J, Wong ST, 2010 A hybrid approach to automatic clustering of 
white matter fibers. NeuroImage 49, 1249–1258. [PubMed: 19683061] 

Liao R, Ning L, Chen Z, Rigolo L, Gong S, Pasternak O, Golby AJ, Rathi Y, O’Donnell LJ, 2017 
Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model. 
NeuroImage: Clinical 15, 819–831. [PubMed: 28725549] 

Liao Y, Huang X, Wu Q, Yang C, Kuang W, Du M, Lui S, Yue Q, Chan RC, Kemp GJ, et al., 2013 Is 
depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in 
patients with MDD. Journal of psychiatry & neuroscience: JPN 38, 49. [PubMed: 22691300] 

Lu Y, Liang H, Han D, Mo Y, Li Z, Cheng Y, Xu X, Shen Z, Tan C, Zhao W, et al., 2016 The 
volumetric and shape changes of the putamen and thalamus in first episode, untreated major 
depressive disorder. NeuroImage: Clinical 11, 658–666. [PubMed: 27222797] 

Wu et al. Page 19

Neuroimage. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lyden H, Espinoza R, Pirnia T, Clark K, Joshi S, Leaver A, Woods R, Narr K, 2014 Electroconvulsive 
therapy mediates neuroplasticity of white matter microstructure in major depression. Translational 
psychiatry 4, e380. [PubMed: 24713861] 

Maddah M, Grimson WEL, Warfield SK, Wells WM, 2008 A unified framework for clustering and 
quantitative analysis of white matter fiber tracts. Medical image analysis 12, 191–202. [PubMed: 
18180197] 

Makris N, Worth A, Papadimitriou G, Stakes J, Caviness V, Kennedy D, Pandya D, Kaplan E, 
Sorensen A, Wu O, et al., 1997 Morphometry of in vivo human white matter association pathways 
with diffusion-weighted magnetic resonance imaging. Annals of neurology 42, 951–962. 
[PubMed: 9403488] 

Malcolm JG, Michailovich O, Bouix S, Westin CF, Shenton ME, Rathi Y, 2010a A filtered approach to 
neural tractography using the Watson directional function. Medical Image Analysis 14, 58–69. 
[PubMed: 19914856] 

Malcolm JG, Shenton ME, Rathi Y, 2010b Filtered multi-tensor tractography. IEEE transactions on 
medical imaging 29, 1664–1675. [PubMed: 20805043] 

Moberts B, Vilanova A, Van Wijk JJ, 2005 Evaluation of fiber clustering methods for diffusion tensor 
imaging, in: IEEE Transactions on Visualization and Computer Graphics, IEEE pp. 65–72.

Mori S, Wakana S, Nagae-Poetscher L, van Zijl P, 2006 MRI atlas of human white matter. American 
Journal of Neuroradiology 27, 1384.

Noback CR, Strominger NL, Demarest RJ, Ruggiero DA, 2005 The human nervous system: structure 
and function. 744, Springer Science & Business Media.

Norton I, Essayed WI, Zhang F, Pujol S, Yarmarkovich A, Golby AJ, Kindlmann G, Wasserman D, 
Estepar RSJ, Rathi Y, et al., 2017 SlicerDMRI: Open source diffusion MRI software for brain 
cancer research. Cancer research 77, e101–e103. [PubMed: 29092950] 

O’Donnell LJ, Golby AJ, Westin CF, 2013 Fiber clustering versus the parcellation-based connectome. 
NeuroImage 80, 283–289. [PubMed: 23631987] 

O’Donnell LJ, Suter Y, Rigolo L, Kahali P, Zhang F, Norton I, Albi A, Olubiyi O, Meola A, Essayed 
WI, et al., 2017 Automated white matter fiber tract identification in patients with brain tumors. 
NeuroImage: Clinical 13, 138–153. [PubMed: 27981029] 

O’Donnell LJ, Wells WM, Golby AJ, Westin CF, 2012 Unbiased groupwise registration of white 
matter tractography, in: International Conference on Medical Image Computing and Computer-
assisted Intervention (MICCAI), Springer pp. 123–130.

O’Donnell LJ, Westin CF, 2007 Automatic tractography segmentation using a high-dimensional white 
matter atlas. IEEE transactions on medical imaging 26, 1562–1575. [PubMed: 18041271] 

O’Donnell LJ, Westin CF, 2011 An introduction to diffusion tensor image analysis. Neurosurgery 
clinics of North America 22, 185–196. [PubMed: 21435570] 

O’Donnell LJ, Westin CF, Golby AJ, 2009 Tract-based morphometry for white matter group analysis. 
NeuroImage 45, 832–844. [PubMed: 19154790] 

O’Donnell LJ, Westin CF, Norton I, Whalen S, Rigolo L, Prop-per R, Golby AJ, 2010 The fiber 
laterality histogram: Affinew way to measure white matter asymmetry, in: International 
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 
225–232.

Olivetti E, Sharmin N, Avesani P, 2016 Alignment of tractograms as graph matching. Frontiers in 
neuroscience 10, 554. [PubMed: 27994537] 

Osoba A, Hänggi J, Li M, Horn DI, Metzger C, Eckert U, Kaufmann J, Zierhut K, Steiner J, Schiltz K, 
et al., 2013 Disease severity is correlated to tract specific changes of fractional anisotropy in MD 
and CM thalamusa DTI study in major depressive disorder. Journal of affective disorders 149, 
116–128. [PubMed: 23489404] 

Pajevic S, Basser PJ, 2003 Parametric and non-parametric statistical analysis of DT-MRI data. Journal 
of magnetic resonance 161, 1–14. [PubMed: 12660106] 

Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y, 2009 Free water elimination and mapping from 
diffusion MRI. Magnetic resonance in medicine 62, 717–730. [PubMed: 19623619] 

Propper RE, ODonnell LJ, Whalen S, Tie Y, Norton IH, Suarez RO, Zollei L, Radmanesh A, Golby 
AJ, 2010 A combined fMRI and DTI examination of functional language lateralization and arcuate 

Wu et al. Page 20

Neuroimage. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fasciculus structure: effects of degree versus direction of hand preference. Brain and cognition 73, 
85–92. [PubMed: 20378231] 

Pugliese L, Catani M, Ameis S, Dell’Acqua F, de Schotten MT, Murphy C, Robertson D, Deeley Q, 
Daly E, Murphy DG, 2009 The anatomy of extended limbic pathways in Asperger syndrome: a 
preliminary diffusion tensor imaging tractography study. NeuroImage 47, 427–434. [PubMed: 
19446642] 

Radmanesh A, Zamani AA, Whalen S, Tie Y, Suarez RO, Golby AJ, 2015 Comparison of seeding 
methods for visualization of the corticospinal tracts using single tensor tractography. Clinical 
neurology and neurosurgery 129, 44–49. [PubMed: 25532134] 

Reddy CP, Rathi Y, 2016 Joint multi-fiber NODDI parameter estimation and tractography using the 
unscented information filter. Frontiers in neuroscience 10, 166. [PubMed: 27147956] 

Rive MM, van Rooijen G, Veltman DJ, Phillips ML, Schene AH, Ruhé HG, 2013 Neural correlates of 
dysfunctional emotion regulation in major depressive disorder. A systematic review of 
neuroimaging studies. Neuroscience & Biobehavioral Reviews 37, 2529–2553. [PubMed: 
23928089] 

Rizk MM, Rubin-Falcone H, Keilp J, Miller JM, Sublette ME, Burke A, Oquendo MA, Kamal AM, 
Abdelhameed MA, Mann JJ, 2017 White matter correlates of impaired attention control in major 
depressive disorder and healthy volunteers. Journal of affective disorders 222, 103–111. [PubMed: 
28688263] 

Rolls ET, 2000 On the brain and emotion. Behavioral and brain sciences 23, 219–228.

Román C, Guevara M, Valenzuela R, Figueroa M, Houenou J, Duclap D, Poupon C, Mangin JF, 
Guevara P, 2017 Clustering of whole-brain white matter short association bundles using hardi data. 
Frontiers in neuroinformatics 11.

Ros C, Güllmar D, Stenzel M, Mentzel HJ, Reichenbach JR, 2013 Atlas-guided cluster analysis of 
large tractography datasets. PloS one 8, e83847. [PubMed: 24386292] 

Sacchet MD, Prasad G, Foland-Ross LC, Joshi SH, Hamilton JP, Thompson PM, Gotlib IH, 2014a 
Characterizing white matter connectivity in major depressive disorder: Automated fiber 
quantification and maximum density paths, in: Biomedical Imaging (ISBI), 2014 IEEE 11th 
International Symposium on, pp. 592–595.

Sacchet MD, Prasad G, Foland-Ross LC, Joshi SH, Hamilton JP, Thompson PM, Gotlib IH, 2014b 
Structural abnormality of the corticospinal tract in major depressive disorder. Biology of mood & 
anxiety disorders 4, 8. [PubMed: 25295159] 

Schnyer DM, Clasen PC, Gonzalez C, Beevers CG, 2017 Evaluating the diagnostic utility of applying 
a machine learning algorithm to diffusion tensor MRI measures in individuals with major 
depressive disorder. Psychiatry Research: Neuroimaging 264, 1–9. [PubMed: 28388468] 

de Schotten MT, Bizzi A, Dell’Acqua F, Allin M, Walshe M, Murray R, Williams SC, Murphy DG, 
Catani M, et al., 2011 Atlasing location, asymmetry and inter-subject variability of white matter 
tracts in the human brain with MR diffusion tractography. NeuroImage 54, 49–59. [PubMed: 
20682348] 

Serafini G, Amore M, Rihmer Z, et al., 2015 Microstructural brain abnormalities, affective 
temperaments, and suicidal behavior in patients with major depression. Neuroimmunol 
Neuroinflammation 2, 200–14.

Shenton E, Westin CF, Rathi Y, 2015 A joint compressed-sensing and super-resolution approach for 
very high-resolution diffusion imaging. NeuroImage 125, 386–400. [PubMed: 26505296] 

Shimony JS, McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, Lori NF, Cull TS, Conturo TE, 
1999 Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and 
anatomic analysis. Radiology 212, 770–784. [PubMed: 10478246] 

Siless V, Chang K, Fischl B, Yendiki A, 2018 AnatomiCuts: Hierarchical clustering of tractography 
streamlines based on anatomical similarity. NeuroImage 166, 32–45. [PubMed: 29100937] 

Smith SD, Bulman-Fleming MB, 2005 An examination of the right-hemisphere hypothesis of the 
lateralization of emotion. Brain and cognition 57, 210–213. [PubMed: 15708218] 

Sporns O, Tononi G, Kötter R, 2005 The human connectome: a structural description of the human 
brain. PLoS computational biology 1, e42. [PubMed: 16201007] 

Wu et al. Page 21

Neuroimage. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sydnor VJ, Rivas-Grajales AM, Lyall AE, Zhang F, Bouix S, Karmacharya S, Shenton ME, Westin CF, 
Makris N, Wassermann D, O’donnell LJ, Kubicki M, 2018 A comparison of three fiber tract 
delineation methods and their impact on white matter analysis. NeuroImage.

Tucker DM, Hartry-Speiser A, McDougal L, Luu P, et al., 1999 Mood and spatial memory: emotion 
and right hemisphere contribution to spatial cognition. Biological psychology 50, 103–125. 
[PubMed: 10403200] 

Tunç B, Smith AR, Wasserman D, Pennec X, Wells WM, Verma R, Pohl KM, 2013 Multinomial 
probabilistic fiber representation for connectivity driven clustering, in: Information processing in 
medical imaging (IPMI), pp. 730–741.

Tymofiyeva O, Connolly CG, Ho TC, Sacchet MD, Blom EH, LeWinn KZ, Xu D, Yang TT, 2017 DTI-
based connectome analysis of adolescents with major depressive disorder reveals 
hypoconnectivity of the right caudate. Journal of affective disorders 207, 18–25. [PubMed: 
27673479] 

Vasavada MM, Leaver AM, Espinoza RT, Joshi SH, Njau SN, Woods RP, Narr KL, 2016 Structural 
connectivity and response to ketamine therapy in major depression: A preliminary study. Journal 
of affective disorders 190, 836–841. [PubMed: 26630613] 

Vercruysse D, Christiaens D, Maes F, Sunaert S, Suetens P, 2014 Fiber bundle segmentation using 
spectral embedding and supervised learning, in: International Conference on Medical Image 
Computing and Computer Assisted Intervention (MICCAI) Computational Diffusion MRI, 
Workshop. Springer, pp. 103–114.

Voineskos AN, O’donnell LJ, Lobaugh NJ, Markant D, Ameis SH, Niethammer M, Mulsant BH, 
Pollock BG, Kennedy JL, Westin CF, et al., 2009 Quantitative examination of a novel clustering 
method using magnetic resonance diffusion tensor tractography. NeuroImage 45, 370–376. 
[PubMed: 19159690] 

Wang Q, Yap PT, Wu G, Shen D, 2013a Application of neuroanatomical features to tractography 
clustering. Human brain mapping 34, 2089–2102. [PubMed: 22461221] 

Wang T, Huang X, Huang P, Li D, Lv F, Zhang Y, Zhou L, Yang D, Xie P, 2013b Early-stage 
psychotherapy produces elevated frontal white matter integrity in adult major depressive disorder. 
PLoS One 8, e63081. [PubMed: 23646178] 

Wassermann D, Bloy L, Kanterakis E, Verma R, Deriche R, 2010 Unsupervised white matter fiber 
clustering and tract probability map generation: Applications of a gaussian process framework 
for white matter fibers. NeuroImage 51, 228–241. [PubMed: 20079439] 

Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M, Westin CF, 2016 The white 
matter query language: a novel approach for describing human white matter anatomy. Brain 
Structure and Function 221, 4705–4721. [PubMed: 26754839] 

Wise T, Radua J, Nortje G, Cleare AJ, Young AH, Arnone D, 2016 Voxel-based meta-analytical 
evidence of structural disconnectivity in major depression and bipolar disorder. Biological 
psychiatry 79, 293–302. [PubMed: 25891219] 

Xia Y, Turken U, Whitfield-Gabrieli SL, Gabrieli JD, 2005 Knowledge-based classification of 
neuronal fibers in entire brain, in: International Conference on Medical Image Computing and 
Computer-Assisted Intervention (MICCAI), Springer pp. 205–212.

Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM, 2012 Tract profiles of white matter 
properties: automating fiber-tract quantification. PloS one 7, e49790. [PubMed: 23166771] 

Yip SW, Chandler RA, Rogers RD, Mackay CE, Goodwin GM, 2013 White matter alterations in 
antipsychotic-and mood stabilizer-naive individuals with bipolar II/NOS disorder. NeuroImage: 
Clinical 3, 271–278.

Zalsman G, Weller A, Shbiro L, Barzilay R, Gutman A, Weizman A, Mann JJ, Wasserman J, 
Wasserman D, 2017 Fibre tract analysis using diffusion tensor imaging reveals aberrant 
connectivity in a rat model of depression. The World Journal of Biological Psychiatry 18, 615–
623. [PubMed: 27388597] 

Zhang F, Norton I, Cai W, Song Y, Wells WM, O’Donnell LJ, 2017 Comparison between two white 
matter segmentation strategies: An investigation into white matter segmentation consistency, in: 
Biomedical Imaging (ISBI), 2017 IEEE 14th International Symposium on, IEEE pp. 796–799.

Wu et al. Page 22

Neuroimage. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhang F, Savadjiev P, Cai W, Song Y, Rathi Y, Tunc B, Parker D, Kapur T, Schultz RT, Makris N, 
Verma R, ODonnell LJ, 2018a Whole brain white matter connectivity analysis using machine 
learning: an application to autism. NeuroImage 172, 826–837. [PubMed: 29079524] 

Zhang F, Wu W, Ning L, McAnulty G, Waber D, Gagoski B, Sarill K, Hamoda HM, Song Y, Cai W, 
Rathi Y, O’donnell LJ, 2018b Suprathreshold fiber cluster statistics: Leveraging white matter 
geometry to enhance tractography statistical analysis. NeuroImage 171, 314–354.

Zhang F, Wu Y, Norton I, Rathi Y, Makris N, O’Donnell LJ, 2018c A data-driven groupwise fiber 
clustering atlas for consistent white matter parcellation and anatomical tract identification of 
subjects across the lifespan, in: Annual Meeting of the International Society for Magnetic 
Resonance in Medicine (ISMRM).

Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q, 2011 Disrupted brain connectivity 
networks in drug-naive, first-episode major depressive disorder. Biological psychiatry 70, 334–
342. [PubMed: 21791259] 

Wu et al. Page 23

Neuroimage. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Overview of the automatically annotated fiber cluster (AAFC) method. Given the diffusion 

MRI dataset (a) of each subject, whole-brain tractography (b) is performed. Next, data-

driven groupwise whole brain fiber clustering is performed to produce a fiber cluster atlas 

(c) across multiple subjects, which is applied to obtain fiber clusters (e) (black fibers show 

one example cluster from the cluster atlas (d)) in each individual subject. Then, a 

parcellation-based cluster identification (PBCI) is performed using each subject’s cortical 

parcellation to identify fibers belonging to known tracts (e.g. the blue fibers in (f) belong to 
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the corticospinal tract (CST)). Finally, an annotating strategy for each fiber cluster across 

subjects is performed to label all fiber clusters belonging to CST (g).
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Figure 2: 
Overview of the data-driven groupwise whole brain fiber clustering. Input tractography 

across all subjects (a) for data-driven learning of a white matter parcellation. Sub figures (b) 

and (c) show the overlaid tractography from 10 randomly selected example subjects 

(different colors indicate different subjects) before and after the groupwise tractography 

registration. Then, group-wise clustering produces the fiber atlas (d), where the colors 

represent different atlas fiber clusters. Some example clusters are displayed in (e).
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Figure 3: 
Histogram of the number of fibers of each cluster in the atlas.
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Figure 4: 
Visualization of the fiber tracts (each cluster has a different color) annotated by AAFC. The 

first image in each box shows the tract in the atlas. The second and third images show the 

fiber tracts from the HC and MDD groups, respectively. (a) Inferior Longitudinal Fasciculus 

(ILF) is the union of 6 fiber clusters; (b) Cingulum Bundle (CB) is the union of 14 fiber 

clusters; (c) Uncinate Fasciculus (UF) is the union of 8 fiber clusters;(d) Corticospinal Tract 

(CST) is the union of 7 fiber clusters; (e) Thalamo-Frontal fibers (TF) is the union of 16 

fiber clusters; (f) Thalamo-Parietal fibers (TP) is the union of 7 fiber clusters; (g) Thalamo-

Occipital fibers (TO) is the union of 2 fiber clusters. A partially transparent model of the 

brain is displayed as a background to show the relative position of each tract in the brain.
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Figure 5: 
Visual presentation of the AAFC method (left) and the WMQL method (right) results 

segmenting fiber tracts, ILF, CB, UF, CST, TF, TP and TO, respectively. Two subjects (one 

MDD subject (Subject 1) and one HC subject (Subject 2)) were randomly selected for 

visualization. Fibers in each tract are colored by the fiber orientation.
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Figure 6: 
Coefficient of variation (CV) of the number of fibers from each tract across all subjects, as 

identified by WMQL and the proposed AAFC method. (a) Left hemisphere (p = 0.0153, 

two-tailed paired t-test of CV across seven left-hemisphere tracts between AAFC and 

WMQL); (b) Right hemisphere (p = 0.0274, two-tailed paired t-test of CV across seven 

right-hemisphere tracts between AAFC and WMQL). Lower CV values indicate lower 

variability across subjects.
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Figure 7: 
Absolute value of hemispheric laterality index (LI) of the numbers of fibers for each tract. A 

lower absolute LI indicates a more symmetric tract identification across hemispheres. The 

fiber tracts with significant difference between methods (p < 0.01) are highlighted using the 

two asterisks.
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Figure 8: 
Visualization of CST (a), CB (b) and TF (c) tracts showing significant differences in FA 

(CST) and MD (CB and TF) in the MDD patients compared with the HCs. The first row 

displays the significant clusters overlaid on the whole tract to show the relative position of 

the significant clusters. The second row shows only the significant clusters for a better 

visualization. Red parts represent the fiber clusters with significant difference (1 fiber cluster 

in the identified right-hemisphere CST had significantly increased FA in MDD, 4 fiber 

clusters in the identified left-hemisphere CB had significantly decreased MD in MDD, and 2 

fiber clusters in the identified right-hemisphere TF had significantly decreased MD in 

MDD). A partially transparent model of the brain is displayed as a background to show the 

relative position of each tract in the brain.
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Table 1:

Demographics and Clinical Characteristics of the Subjects

HC MDD p-value

Number of subjects 62 31 -

Age (years) 19–44 (28.69 ± 6.20) 19–45 (28.84 ± 7.11) 0.92

Gender (male/female) 26/36 13/18 0.93

Education 6–20 (13.66 ± 2.57) 6–22 (13.61 ± 3.79) 0.92

HAMD NA 21–53 (32.5 ± 7.40) -

HAMA NA 7–39 (20.0 ± 8.60) -

Onset age (years) NA 16–43 (27.0 ± 7.40) -

Episodes (n, patients) (First) NA 24 -

Episodes (n, patients) (Recurrence) NA 7 -

HAMD, Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Scale; MDD, major depressive disorder; HC, healthy control; Course of 
Disease, General course.
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Table 2:

The geometric distances between the fibers that met and did not meet the WQML definition in our identified 

anatomical fiber tracts.

Tracts CB (mm) CST (mm) UF (mm) ILF (mm) TF (mm) TO (mm) TP (mm)

5.59 ± 0.40 6.81 ± 0.65 4.27 ± 0.39 5.84 ± 0.57 5.02 ± 0.42 4.36 ± 0.62 5.16 ± 0.57
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Table 3:

Percentages of fibers that were misclassified in the anatomical fiber tracts based on all available WMQL tract 

definitions.

Tracts CB (%) CST (%) UF (%) ILF (%) TF (%) TO (%) TP (%)

3.15 ± 1.65 0.01 ± 0.03 1.08 ± 0.94 2.36 ± 2.49 2.74 ± 2.64 1.97 ± 1.91 4.85 ± 2.50
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Table 4:

Comparison of group average value of FA and MD for the tracts of interest identified by AAFC in patients 

with MDD versus HC subjects.

Tracts
FA MD

MDD HC p-value MDD (× 1e-3) HC (× 1e-3) p-value

ILF (L) 0.554 ± 0.030 0.541 ± 0.031 0.051 0.719 ± 0.029 0.732 ± 0.024 0.043

ILF (R) 0.551 ± 0.032 0.547 ± 0.037 0.634 0.708 ± 0.017 0.712 ± 0.022 0.253

CB (L) 0.477 ± 0.025 0.477 ± 0.030 0.997 0.718 ± 0.025 0.730 ± 0.021 0.032

CB (R) 0.466 ± 0.028 0.464 ± 0.028 0.806 0.712 ± 0.029 0.720 ± 0.020 0.086

UF (L) 0.470 ± 0.036 0.471 ± 0.038 0.843 0.728 ± 0.032 0.726 ± 0.025 0.752

UF (R) 0.472 ± 0.042 0.464 ± 0.035 0.326 0.724 ± 0.028 0.730 ± 0.024 0.263

CST (L) 0.649 ± 0.027 0.638 ± 0.023 0.068 0.683 ± 0.022 0.688 ± 0.020 0.290

CST (R) 0.641 ± 0.022 0.633 ± 0.022 0.126 0.675 ± 0.017 0.679 ± 0.017 0.339

TF (L) 0.536 ± 0.026 0.529 ± 0.021 0.193 0.662 ± 0.021 0.668 ± 0.022 0.191

TF (R) 0.526 ± 0.023 0.520 ± 0.020 0.192 0.665 ± 0.017 0.673 ± 0.016 0.035

TP (L) 0.522 ± 0.035 0.518 ± 0.027 0.639 0.691 ± 0.024 0.700 ± 0.023 0.075

TP (R) 0.523 ± 0.026 0.521 ± 0.024 0.779 0.695 ± 0.021 0.701 ± 0.019 0.168

TO (L) 0.586 ± 0.035 0.578 ± 0.035 0.341 0.745 ± 0.039 0.746 ± 0.031 0.891

TO (R) 0.585 ± 0.045 0.593 ± 0.039 0.385 0.737 ± 0.032 0.738 ± 0.027 0.868
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Table 5:

Comparison of group average value of FA and MD for fiber clusters within tracts of interest identified by 

AAFC in patients with MDD versus HC subjects. Multiple comparison correction is performed across the 

clusters within each identified tract using the false discovery rate (FDR) method.

Tracts
FA MD

MDD HC p-value Cluster MDD (× 1e-3) HC (× 1e-3) p-value Cluster

ILF (L) - - - - - - - -

ILF (R) - - - - - - - -

0.709 ± 0.027 0.728 ± 0.027 0.007 No.299

CB (L)

- - - - 0.738 ± 0.031 0.755 ± 0.026 0.040 No.384

0.735 ± 0.034 0.759 ± 0.035 0.007 No.449

0.698 ± 0.025 0.717 ± 0.026 0.005 No.613

CB (R) - - - - - - - -

UF (L) - - - - - - - -

UF (R) - - - - - - - -

CST (L) - - - - - - - -

CST (R) 0.662 ± 0.030 0.643 ± 0.033 0.035 No.760 - - - -

TF (L) - - - - - - - -

TF (R)
- - - - 0.666 ± 0.024 0.680 ± 0.023 0.048 No.162

0.668 ± 0.022 0.681 ± 0.017 0.048 No.403

TP (L) - - - - - - - -

TP (R) - - - - - - - -

TO (L) - - - - - - - -

TO (R) - - - - - - - -
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Table 6:

List of the Freesurfer regions to which the fiber clusters with significantly different FA or MD measures 

between HC and MDD groups (Table 5) connect. Abbreviations: hemisphere, L - left; R - right.

Fiber cluster Connection between areas

CB (L)

No.299 Left superior frontal cortex and left cuneus cortex

No.384 Left posterior cingulate cortex, left precuneus cortex and left cuneus cortex

No.449 Left precuneus cortex and left cuneus cortex

No.613 Left superior frontal cortex and left precuneus cortex

CST (R) No.760 Brainstem and right precentral cortex

TF (R)
No.162 Right thalamus proper and right precentral cortex

No.403 Right thalamus proper and right superior frontal cortex
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