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Abstract

This work presents an anatomically curated white matter atlas to enable consistent white matter 

tract parcellation across different populations. Leveraging a well-established computational 

pipeline for fiber clustering, we create a tract-based white matter atlas including information from 

100 subjects. A novel anatomical annotation method is proposed that leverages population-based 

brain anatomical information and expert neuroanatomical knowledge to annotate and categorize 

the fiber clusters. A total of 256 white matter structures are annotated in the proposed atlas, which 

provides one of the most comprehensive tract-based white matter atlases covering the entire brain 

to date. These structures are composed of 58 deep white matter tracts including major long range 

association and projection tracts, commissural tracts, and tracts related to the brainstem and 

cerebellar connections, plus 198 short and medium range superficial fiber clusters organized into 

16 categories according to the brain lobes they connect. Potential false positive connections are 

annotated in the atlas to enable their exclusion from analysis or visualization. In addition, the 

proposed atlas allows for a whole brain white matter parcellation into 800 fiber clusters to enable 

whole brain connectivity analyses. The atlas and related computational tools are open-source and 

publicly available.

We evaluate the proposed atlas using a testing dataset of 584 diffusion MRI scans from multiple 

independently acquired populations, across genders, the lifespan (1 day to 82 years), and different 

health conditions (healthy control, neuropsychiatric disorders, and brain tumor patients). 

Experimental results show successful white matter parcellation across subjects from different 

populations acquired on multiple scanners, irrespective of age, gender or disease indications. Over 

99% of the fiber tracts annotated in the atlas were detected in all subjects on average. One 

advantage in terms of robustness is that the tract-based pipeline does not require any cortical or 

subcortical segmentations, which can have limited success in young children and patients with 

brain tumors or other structural lesions. We believe this is the first demonstration of consistent 

automated white matter tract parcellation across the full lifespan from birth to advanced age.
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) provides the only existing technique to study 

brain white matter structures in a non-invasive way and to map the structural connections of 

the living human brain (Basser et al., 1994). dMRI allows the analysis of individual white 

matter fiber tracts in the brain via a process called tractography (Basser et al., 2000), which 

has been widely used for understanding neurological development, brain function, and brain 

disease, as described in several reviews (Ciccarelli et al., 2008; Yamada et al., 2009; Pannek 

et al., 2014; Piper et al., 2014; Essayed et al., 2017). Tractography methods estimate fiber 

trajectories by following their probable tract orientations, enabling the measurement of 

microstructural white matter properties of fiber pathways (Basser et al., 2000; Mori and van 

Zijl, 2002; Westin et al., 2002). Performing whole brain tractography on one individual 

subject can generate hundreds of thousands of fibers, which are not immediately useful to 

clinicians or researchers. Therefore, white matter tract parcellation, i.e. dividing the massive 

number of tractography fibers into multiple fiber parcels (or fiber fascicles), is the first and 

essential step to enable tract quantification and visualization. White matter tract parcellation 

can enable whole brain connectivity analysis, for example via graph theory (Sporns et al., 

2005; Bullmore and Sporns, 2009; Gong et al., 2009; Zalesky et al., 2012; Bastiani et al., 

2012; Ingalhalikar et al., 2014; Yeh et al., 2016; Bassett and Bullmore, 2017) or fiber 

clustering methods (Ding et al., 2003; O’Donnell and Westin, 2007; Wassermann et al., 

2010; Visser et al., 2011; Guevara et al., 2012; Jin et al., 2014; Prasad et al., 2014; Kumar et 

al., 2017; Garyfallidis et al., 2017; Siless et al., 2018). White matter tract parcellation is also 

important for identification of specific anatomical white matter tracts for clinical 

visualization (Nimsky et al., 2006; Golby et al., 2011; O’Donnell et al., 2017) or hypothesis-

driven research (Alexander et al., 2007; Yeo et al., 2014; Wu et al., 2015; Shany et al., 

2017). Though many methods exist to perform parcellation of the white matter tracts, 

challenges remain. Consistent automated white matter tract parcellation–across the lifespan, 

across different diffusion MRI acquisitions, and across healthy and patient populations–has 

not yet been demonstrated, to our knowledge.

In related work, most automated white matter tract parcellation methods use prior 

information in the form of an atlas. Gray matter atlases, e.g. those provided in Freesurfer 

(Fischl, 2012) or MNI–ICBM152 (Mazziotta et al., 2001), are popularly applied to 

parcellate white matter tracts according to their terminations in cortical and subcortical 

structures (Gong et al., 2009; Ingalhalikar et al., 2014; Wassermann et al., 2016). However, 

such methods are not yet applicable across the lifespan (Kazemi et al., 2007; Shi et al., 2011; 

Makropoulos et al., 2017b) and may be challenged by cortical variability (Amunts et al., 

1999; Fischl et al., 1999) or prematurely terminating tractography (Yamada et al., 2009; 

Calabrese et al., 2014; Sotiropoulos and Zalesky, 2017). Region of interest (ROI) atlases 

have been proposed to define regions that are useful for selecting the trajectories of 

particular fiber tracts (Wakana et al., 2007; Catani and De Schotten, 2008; Lawes et al., 

2008; Zhang et al., 2008; Verhoeven et al., 2010; Lebel et al., 2012; Zhang et al., 2010; 

Kammen et al., 2016; Wassermann et al., 2016). However, such methods can be challenged 

by multi-fiber tractography (which requires more ROIs to select due to its increased 
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sensitivity (O’Donnell et al., 2017)) and are able to parcellate a limited number of fiber 

tracts.

Multiple types of white matter atlas have been proposed. White matter atlases have been 

proposed to encode whether a particular tract is present at a particular location in the brain 

(voxel-based binary or probabilistic atlases (Hua et al., 2008; Hagler et al., 2009; Bazin et 

al., 2011; Yendiki et al., 2011; de Schotten et al., 2011; Suarez et al., 2012; Ros et al., 2013; 

Varentsova et al., 2014; Van Baarsen et al., 2016; Akazawa et al., 2016; Tang et al., 2018)) 

or to characterize tractography fibers that are representative of particular fiber tracts (tract-

based atlases (Maddah et al., 2005; O’Donnell and Westin, 2007; Ziyan et al., 2009; Guevara 

et al., 2012; Tunç et al., 2014; Yoo et al., 2015; Guevara et al., 2017; Román et al., 2017; 

O’Donnell et al., 2017; Yeh et al., 2018)). These atlases are specific to the white matter, and 

as such may have advantages for enabling white matter parcellation.

Table 1 gives a summary of existing white matter atlases to describe the current state of the 

art in terms of the tracts that are defined, as well as the populations used to create and test 

the atlases. Most existing white matter atlases do not enable parcellation of the whole white 

matter, and are limited to a few fiber tracts. Initial studies have shown the potential of white/

gray matter atlases to enable white matter tract parcellation across age ranges (Verhoeven et 

al., 2010; Lebel et al., 2012; O’Donnell et al., 2017); however the full lifespan from birth to 

advanced age has not yet been demonstrated. In addition, many of the atlases are not 

publicly available.

This work represents what we believe is the first demonstration of automated white matter 

tract parcellation that is consistent across the full lifespan and in a relatively large dataset of 

584 diffusion MRI scans from multiple independently acquired populations (including 

healthy and patients with brain diseases) from different scanners. The method relies on a 

well-established fiber clustering pipeline from our research group (O’Donnell and Westin, 

2007; O’Donnell et al., 2012), which has been successfully applied and significantly 

improved in our recent research studies (O’Donnell et al., 2017; Zhang et al., 2017a,b, 

2018a,b; Gong et al., 2018; Sydnor et al., 2018; Wu et al., 2018). The pipeline employs 

groupwise fiber clustering to identify common white matter structures in a population, and it 

provides methods to automatically identify these structures in novel subject datasets.

A novel fiber cluster anatomical annotation method is proposed, leveraging population-

based brain anatomical information and expert neuroanatomical knowledge, to annotate and 

categorize the fiber clusters. Each fiber cluster (a total of 800 clusters) represents an 

anatomical structure and its variability in 100 subjects. We note that in related work, 

multiple groups have previously proposed expert annotation for labeling fiber clusters 

(O’Donnell and Westin, 2007; Ziyan et al., 2009; Guevara et al., 2012; Tunç et al., 2014; Jin 

et al., 2014; Yeh et al., 2018), and many groups have studied the interactive use of fiber 

clustering to augment tractography visualization and annotation (O’Donnell et al., 2006; 

Jianu et al., 2009; Garyfallidis et al., 2012; Tax et al., 2015; Porro-Muñoz et al., 2015). A 

total of 256 white matter structures covering the entire brain are annotated, which generates 

one of the most comprehensive tract-based white matter atlases to date. These structures are 

composed of 58 deep white matter tracts including the major long range association and 
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projection tracts, the commissural tracts, and the tracts related to the brainstem and 

cerebellar connections, plus 198 short and medium range superficial fiber clusters organized 

into 16 categories according to the brain lobes they connect. Potential false positive tracts 

are annotated in the atlas to enable exclusion from analysis or visualization. In addition, the 

proposed atlas allows for a whole brain white matter parcellation into 800 fiber clusters to 

enable whole brain connectivity analysis. One advantage in terms of robustness of atlas-

based white matter parcellation is that the tract-based pipeline does not require any cortical 

or subcortical segmentations, which can have limited success in young children and patients 

with brain tumors or other structural lesions. The pipeline and atlas (https://dmri.slicer.org/

atlases) are open-source and available online, as part of the whitematteranalysis software1 

via the SlicerDMRI project2 (Norton et al., 2017).

In the rest of the paper, we first describe the datasets and related preprocessing steps used in 

this study, followed by the generation of the proposed white matter parcellation atlas from 

100 healthy adults. Then, we demonstrate our method with an application of the atlas to a 

total of 584 subjects (independent from the atlas population) from multiple independently 

acquired populations. Comprehensive quantitative and qualitative evaluations are performed 

to evaluate the consistency and reliability of the white matter tract parcellation.

2. Methods

Figure 1 gives an overview of the proposed work, including: (a) data-driven fiber clustering 

atlas generation from 100 healthy subjects (Section 2.2), (b) anatomically curated white 

matter atlas creation using the proposed fiber cluster anatomical annotation method (Section 

2.3), (c) subject-specific whole brain white matter parcellation and (d) subject-specific 

anatomical tract identification by applying the proposed white matter atlas (Section 2.4).

2.1. Datasets, preprocessing and tractography

2.1.1. Datasets—In this study, we used a total of 684 subjects (100 subjects for atlas 

creation and 584 for experimental evaluations) across genders (253 females vs 331 males), 

the lifespan (neonates, children, young adults and older adults, ranging in age from 1 day to 

82 years), and different health conditions (healthy control, neuropsychiatric disorders, and 

neurosurgical patients with brain tumors). These subjects were from multiple datasets and 

were scanned with different diffusion imaging protocols. Table 2 gives an overview of the 

demographics and the diffusion image acquisitions of the datasets under study.

1) Human Connectome Project (HCP) dataset.: The HCP dataset (Van Essen et al., 

2013) (https://www.humanconnectome.org) includes high-quality neuroimaging data from 

healthy young adults. In our study, we used two data subsets from the HCP dataset. The first 

subset (i.e. the HCP-atlas dataset) consisting of 100 subjects was used for fiber clustering 

atlas generation and cluster anatomical annotation. The second subset (i.e. the HCP-test 
dataset) was composed of another 100 subjects (with matched ages (p-value = 0.8288 in a 

1http://github.com/SlicerDMRI/whitematteranalysis
2http://dmri.slicer.org
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two-tailed t-test) and the same gender distribution as the HCP-atlas subjects) for testing the 

white matter tract parcellation at different scales (Section 3.1).

2) Developing Human Connectome Project (dHCP) dataset.: The dHCP dataset 

(Makropoulos et al., 2017b) (http://www.developingconnectome.org) was used for white 

matter tract parcellation evaluations on data from healthy new-born babies. 40 individuals, 

ages ranging from 1 to 27 days, were studied.

3) Autism Brain Imaging Data Exchange II (ABIDE-II) dataset.: The ABIDE-II 

dataset (Di Martino et al., 2017) (http://fcon_1000.projects.nitrc.org/indi/abide/

abide_II.html) was used for evaluations on tractography data from children. 70 individuals 

from 5 to 17 years old including 49 autism (AUT) and 21 healthy subjects were studied.

4) Consortium for Neuropsychiatric Phenomics (CNP) dataset.: The CNP dataset 

(Poldrack et al., 2016) (https://openfmri.org/dataset/ds000030/) was used for evaluations on 

data from young adults. The CNP dataset includes imaging data of healthy adults, as well as 

individuals diagnosed with neuropsychiatric disorders including schizophrenia (SZ), bipolar 

disorder (BD) or attention-deficit/hyperactivity disorder (ADHD). In our study, we used a 

population of 204 subjects.

5) Parkinson’s Progression Markers Initiative (PPMI) dataset.: The PPMI dataset 

(Marek et al., 2011) (http://www.ppmi-info.org) was adopted for evaluations on data from 

older adults. In our study, we used 144 subjects, including Parkinson’s disease (PD) patients 

and healthy individuals.

6) Brain Tumor Patient (BTP) dataset.: A retrospective dataset from 26 neuro-surgical 

patients was used for evaluations in generalizing to brains with tumors. Imaging data was 

acquired at Brigham and Women’s Hospital. The usage of the data was approved by the 

Partners Healthcare Institutional Review Board, and informed consent was obtained from all 

participants prior to scanning.

2.1.2. Data preprocessing—Here, we introduce the data preprocessing steps used for 

each dataset. The output of the data preprocessing included a diffusion MRI scan per 

subject, which was well corrected to exclude any potential artifacts, e.g., from eddy current 

and head motion effects. In addition, a Freesurfer brain segmentation was obtained upon a 

successful application of the Freesurfer software. Table 2 lists the availability of Freesurfer 

segmentations for each dataset. The Freesurfer segmentations were used in this study for the 

following purposes: 1) the initial cluster annotation computation for the anatomically 

curated atlas creation (Section 2.3.1), 2) experimental evaluations for tract anatomical 

coherence (Section 2.5.3), and 3) experimental comparisons with the WMQL-based methods 

(Section 3.3.2). We note that for whole brain white matter parcellation and anatomical tract 

identification using our method, the Freesurfer segmentation results were not required. 

Details of the preprocessing steps for each dataset under study are included in Appendix A.

2.1.3. Multi-fiber tractography—We conducted whole brain tractography using a two-

tensor unscented Kalman filter (UKF) method (Malcolm et al., 2010; Reddy and Rathi, 

Zhang et al. Page 5

Neuroimage. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.developingconnectome.org
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
https://openfmri.org/dataset/ds000030/
http://www.ppmi-info.org


2016), as implemented in the ukftractography3 package. The UKF method fits a mixture 

model of two tensors to the diffusion data while tracking fibers. In contrast to other methods 

that fit a model to the signal independently at each voxel (Qazi et al., 2009), in the UKF 

framework each tracking step employs prior information from the previous step to help 

stabilize model fitting. The two-tensor UKF model was shown to be more sensitive than 

standard single-tensor tractography, in particular in the presence of crossing fibers and 

peritumoral edema (Baumgartner et al., 2012; Chen et al., 2015, 2016; Liao et al., 2017). For 

each of the subjects under study, there were about 1 million fibers in the whole brain 

tractography. Details of the related tractography parameters are included in Appendix A. 

Visual and quantitative quality control of the tractography was performed using a quality 

control tool in the whitematteranalysis software. (To demonstrate the proposed parcellation 

method’s ability to generalize to tractography data from different methods, we have included 

another two tractography methods, as introduced in the supplementary material.)

2.2. Whole brain fiber clustering white matter parcellation atlas learned from 100 healthy 
subjects

A whole brain fiber clustering atlas was generated using a well-established data-driven fiber 

clustering pipeline, including groupwise tractography registration (O’Donnell et al., 2012) 

and groupwise spectral clustering of tractography (O’Donnell and Westin, 2007; O’Donnell 

et al., 2017). The pipeline has been shown to have high performance in our recent research 

studies (O’Donnell et al., 2017; Zhang et al., 2017a,b, 2018a,b; Gong et al., 2018; Sydnor et 

al., 2018; Wu et al., 2018). The fiber clustering divides the whole brain tractography into 

multiple fiber clusters (as shown in Figure 1(a)) in a data-driven fashion according to the 

common white matter anatomy across multiple subjects. Details about the fiber clustering 

pipeline for atlas generation are included in Appendix B.

In this study, a large population of 100 HCP healthy adults (see Section 2.1.1 for 

demographics) was used to learn the fiber clustering atlas. 10,000 fibers were randomly 

sampled from each subject’s full tractography for a total of 1 million fibers for the fiber 

clustering atlas generation. Related parameters were set to the default settings in the 

whitematteranalysis software. We generated multiple fiber clustering atlases to investigate 

the whole brain white matter parcellation at different scales (number of clusters, K, ranging 

from 200 to 4000). An atlas consisting of K = 800 clusters4 was chosen (see experiments in 

Section 3.1 and Discussion in Section 4 supporting this choice) for anatomical curation 

(Section 2.3). During this stage, we also generated a population mean T1 image by 

transforming all subjects’ T1 images into the fiber clustering atlas space according to the 

groupwise tractography registration. This population mean T1 image was used to assist the 

expert judgment when creating the anatomically curated atlas.

2.3. Anatomically curated white matter atlas creation

Given the chosen fiber clustering atlas (K = 800), each fiber cluster was annotated with an 

anatomical label (e.g. the corticospinal tract (CST)) to create an anatomically curated white 

3https://github.com/pnlbwh/ukftractography
4Please see the video S1 included in the supplementary material for a visualization of each individual fiber cluster within this atlas.
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matter atlas for anatomical tract identification. Each anatomical tract consists of multiple 

fiber clusters, where each cluster represents a white matter structure and its anatomical 

variability across the 100 subjects, as illustrated in Figure 1(b). A novel fiber cluster 

anatomical annotation method is proposed to annotate and organize the clusters, as 

illustrated in Figure 2, including an initial cluster annotation computation, followed by 

expert judgment.

2.3.1. Initial fiber cluster annotation computation—The purpose of this initial 

computation step is to bootstrap the expert cluster annotation with a first pass that can be 

performed automatically by the computer. This is crucial to enable expert annotation of such 

a large dataset, which is not possible in the traditional way of independently visualizing all 

data from each subject. (100 subjects times 800 fiber clusters gives a total of 80,000 fiber 

clusters that would need to be viewed.) We propose a strategy of computing a potential 

annotation for each cluster by leveraging all known anatomical information across all 100 

HCP-atlas subjects, including subject-specific fiber clusters and cortical and subcortical 

segmentation information (Freesurfer segmentation (Fischl, 2012) was used). Unlike the 

atlas creation, which relied on a sample of fibers (10,000 fibers per subject), this step 

leveraged subject-specific fiber clusters that were computed from the full tractography from 

each of the 100 HCP-atlas subjects. This data was on the order of 1 million fibers per subject 

(including the 10,000 fibers in the atlas), and was clustered using the atlas (following the 

computations introduced in Section 2.4.1). In this way, we could use the maximal tract 

information from these 100 subjects for the initial fiber cluster annotation. We note that the 

cortical and subcortical segmentations were only used for assisting the anatomically curated 

atlas creation, while white matter tract parcellation for a new subject (Section 2.4.1) did not 

require any cortical or subcortical segmentations.

There were two initial automated fiber cluster annotation steps, as illustrated in Figure 2. 

First, we applied White Matter Query Language (WMQL) (Wassermann et al., 2016), which 

provides anatomical definitions of fiber tracts based on their intersected Freesurfer regions, 

to initially identify fiber clusters potentially belonging to common association, commissural 

and projection tracts. WMQL allows extraction of anatomical tracts based on the labeled 

Freesurfer regions through which the fibers pass (or do not pass), known as anatomical 

definitions5. In our study, the basic idea of this step was to use the fibers with known 

anatomical definitions within a cluster to compute a potential anatomical label. WMQL 

anatomical definitions of 45 tracts were used. Specifically, given a cluster c and an 

anatomical tract t, we calculated how many fibers within c met the WMQL definition of t in 

each HCP-atlas subject. Then, we considered that the cluster c had an initial potential label 

of the tract t if at least one HCP-atlas subject had fibers in c meeting the definition of t.

Second, we computed a tract anatomical profile (TAP) of each cluster, i.e. the set of 

segmented brain Freesurfer regions through which the cluster passed, for identifying another 

13 deep white matter tracts (e.g. the cerebellar tracts) and the superficial tracts. This gave an 

5Anatomical tract definitions in WMQL are written as queries that are established by an expert neuroanatomist (NM). A query file 
that defines 45 anatomical tracts can be found at https://github.com/pnlbwh/pnlutil/blob/master/pipeline/wmql-2.0.qry. We note that 
the queries are an updated version of those originally presented in (Wassermann et al., 2016), reflecting improvements following query 
testing and modification by NM and colleagues.

Zhang et al. Page 7

Neuroimage. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/pnlbwh/pnlutil/blob/master/pipeline/wmql-2.0.qry


initial potential annotation of tracts that were not defined in WMQL. The TAP was 

calculated based on the 100 HCP-atlas subjects, as follows. For a cluster c, we first 

computed the set of intersected Freesurfer regions of each fiber per subject. Then, we 

identified the set of regions intersected by all or most fibers across all subjects to define the 

cluster’s TAP. In our study, we included a region into a cluster’s TAP if at least 40% of 

fibers of this cluster across the 100 subjects intersected with this region (see Appendix C for 

the choice of this threshold). As a result, the TAP provided population-based characteristics 

of the brain regions though which a cluster passed. (We note that the TAP of each cluster is 

provided along with the proposed atlas in the whitematteranalysis software.) Next, the 

computed TAP was used for initial cluster annotation. For example, for the potential 

cerebellar tracts, we identified all clusters with a TAP containing any cerebellum-related 

Freesurfer regions (i.e. cerebellum-white-matter and cerebellum-cortex). In addition, 

potential superficial fiber clusters were identified and organized into categories based on 

their connecting brain lobes, including within-lobe connections and connections between 

neighboring lobes. This gave 8 categories of superficial fiber clusters per hemisphere, for a 

total of 16 categories including both hemispheres.

The initially annotated tracts covered almost 90% of the 800 clusters, while the remaining 

were annotated as initially unclassified. Given the initial annotation output, we obtained a 

small number of potential candidate clusters for each tract (e.g. 17 fiber clusters potentially 

belonging to the CST were initially identified) for expert judgment. We note that any 

misidentified clusters during the initial annotation process would be corrected by the expert 

judgment, and any clusters that were missed (e.g. classified to another tract category) would 

be also corrected.

2.3.2. Expert fiber cluster annotation judgment—The purpose of this step was to 

perform final expert annotation of the fiber clusters by a neuroanatomist (NM), in order to 

produce the anatomically cu-rated white matter atlas. This step leveraged the previous initial 

annotation computation to make it possible for the neuroanatomist to view data from all 

subjects for every tract in an organized way. For each tract, groupwise data (atlas fiber 

clusters containing fibers from all 100 subjects) and individual subject data were viewed 

until a determination was made about the annotations of all clusters within the tract. For 

each cluster, the neuroanatomist accepted or rejected the initial annotation result, and he 

gave correct annotations when the initial annotations were rejected.

Specifically, for each fiber cluster, the neuroanatomist (NM) viewed the 3D tract overlaid on 

an anatomical T1-weighed image in the 3D Slicer software, including the following two 

steps. First, the atlas fiber cluster was viewed with reference to the population mean T1 

image (Section 2.2) from all HCP-100 subjects. This enabled viewing of the white matter 

structure and its variability across all HCP-100 subjects. Then, to confirm the population-

based decision, the corresponding subject-specific cluster from a randomly selected HCP-

atlas subject was checked with reference to the subject’s T1 image. Additional subjects were 

visualized as needed to clarify the decision of the cluster annotation. We note that for some 

clusters that were judged to clearly belong to a certain anatomical tract, we did not need to 

perform the second step in the individual subjects. For example, the apparent C-shaped fiber 

clusters connecting the temporal, parietal, and frontal lobes belonged to the arcuate 
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fasciculus (AF) tract. A final iteration of expert checking was conducted by viewing the 

whole anatomical fiber tract by combining all individual clusters together in the atlas. This 

step allowed identification of any clusters that were inconsistent with the others within a 

tract.

58 deep white matter tracts and 198 superficial fiber clusters organized into 16 categories 

according to their connecting brain lobes were annotated in the proposed atlas, as shown in 

Table 3. These tracts consisted of a total of 510 clusters (312 deep white matter clusters and 

198 superficial clusters), accounting for 63.75% of all clusters in the fiber clustering atlas (K 
= 800). In addition, any possible false positive tracts from tractography errors were 

identified. For example, there were fiber clusters connecting the cerebellum and cortex in the 

same hemisphere, which are expected to cross the hemispheres (Schmahmann, 1996); there 

were partially traced corpus callosum tracts without connecting inter-hemispheric cortex 

(Makris et al., 1999). 18.75% of all clusters were considered to belong to the false positive 

category. The remaining 17.5% of clusters were annotated as unclassified.

Each annotated anatomical tract, as well as the potential false positive tracts, were organized 

in a 3D Slicer scene file (in medical reality modeling language (MRML), an XML format). 

The MRML file allows visualization of the whole anatomical tract and each individual 

cluster within the tract in 3D Slicer (O’Donnell et al., 2017). All MRML files are provided 

in the proposed anatomically curated atlas6.

2.4. Application of fiber clustering atlas to new subjects

In this section, we introduce how to apply the obtained fiber clustering atlas along with the 

curated anatomical annotations to perform subject-specific whole brain white matter 

parcellation and anatomical tract identification for a new subject. We note that the whole 

brain white matter parcellation and the anatomical tract identification are computed using 

the subject’s tractography data only, without requiring any cortical or subcortical 

segmentations.

2.4.1. Subject-specific whole brain white matter parcellation—Whole brain 

white matter parcellation of a new subject was conducted by performing a fiber clustering on 

the subject’s tractography according to the fiber clustering atlas, which is briefly introduced 

as follows. First, an entropy-based tractography registration to the atlas tractography was 

computed to align the new tractography to the atlas space (O’Donnell et al., 2012). Then, 

subject-specific fiber clusters were detected using spectral embedding of the registered 

tractography, followed by assignment of each fiber to the closest cluster (O’Donnell and 

Westin, 2007). Outlier fibers were removed if their fiber affinity regarding the atlas cluster 

was over 2 standard deviations from the cluster’s mean fiber affinity (as applied in 

(O’Donnell et al., 2017; Zhang et al., 2018a)). As a result, the new subject’s tractography 

was divided into multiple fiber clusters, where each cluster corresponded to a certain atlas 

fiber cluster, as illustrated in Figure 1(c).

6Please see the video S2 included in the supplementary material for a visualization of each anatomical tract.
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2.4.2. Subject-specific anatomical tract identification—Anatomical tract 

identification of the new subject was conducted by finding the subject-specific clusters that 

corresponded to the annotated atlas clusters, as shown in Figure 1(d).

2.5. Evaluation measurements

All subjects’ whole brain tractography was parcellated using the proposed white matter 

atlas. Then, we applied the following measurements to quantitatively evaluate the white 

matter parcellation performance.

2.5.1. White matter parcellation generalization—White matter parcellation 

generalization (WMPG) was used to measure the percent of fiber clusters that could be 

successfully detected in an individual subject. Specifically, given a fiber clustering atlas 

consisting of a total of K fiber clusters, we calculated the number of clusters (NC) with at 

least 20 fibers in a subject s, and computed the WMPG as:

WMPG(s) = NC(s)
K (1)

Here, we chose a threshold of 20 fibers for the WMPG computation. Many works that study 

the white matter connections have defined a threshold on the number of fibers to decide 

whether a white matter connection exists or not. For example, Brown et al. considered that 

two brain regions were connected if there were at least 3 fibers between them (Brown et al., 

2011). In another study, thresholds from 1 to 15 fibers were optimal for different brain white 

matter network metrics (Drakesmith et al., 2015). In our study, we chose a relatively high 

threshold of 20 that is more strict to decide if a fiber cluster was successfully detected. A 

high WMPG value indicates a high generalization of the atlas to this subject.

2.5.2. Inter-subject parcellation variability—Inter-subject parcellation variability 

(ISPV) was used to evaluate if there were similar numbers of fibers in a corresponding fiber 

cluster across multiple subjects. For a fiber cluster c, we computed the number of fibers (NF) 

of this cluster for each subject, and calculated the coefficient of variation (CV) of NF across 

the subjects to measure the ISPV, as:

ISPV(c) = CV(c) = Std(NF(c))
Mean(NF(c)) (2)

where Std(NF) and Mean(NF) are the standard deviation and the mean of NF across all of 

the subjects. Equation 2 is the coefficient of variation of the number of fibers of a cluster 

across different subjects, where a low value represents a low parcellation variability and thus 

a high consistency across the subjects. This measure has been applied in recent studies to 

measure white matter parcellation consistency (Roberts et al., 2017; Zhang et al., 2017b).

2.5.3. Tract anatomical profile coherence—Tract anatomical profile coherence 

(TAPC) was used to investigate if the fibers within a cluster commonly passed through the 
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same brain anatomical regions (i.e. Freesurfer regions). To do this, we measured the overlap 

between each subject-specific fiber’s set of intersected Freesurfer regions (i.e. TAP of the 

fiber) and its atlas cluster’s TAP (see Section 2.3.1 for definition and Appendix C for more 

details, including a figure illustrating TAPC computation). The Dice score (Dice, 1945) has 

been widely used to evaluate the overlap between two sets (i.e. 2 A ∩ B
A + B  for sets A and B) in 

tractography-based studies (Pecheva et al., 2017; Cousineau et al., 2017). Specifically, for 

each fiber f in a subject-specific cluster c, a Dice overlap score with the corresponding atlas 

cluster’s TAP (TAPatlas(c)) was computed, and the mean Dice score across all fibers was 

used to measure the TAPC of c, as:

T APC(c) =
∑ f = 1

NF(c) Dice(T AP( f ), T APatlas(c))
NF(c) (3)

where NF is the total number of fibers in the subject-specific cluster c. Equation 3 is the 

mean of the Dice overlap scores across all fibers within a subject-specific cluster, where a 

high value suggests a high anatomical coherence of the cluster.

3. Experiments and results

3.1. Coarse-to-fine scale whole brain white matter parcellations

We first performed experiments on the two HCP datasets (HCP-atlas and HCP-test) to 

investigate whole brain white matter parcellation at different scales. Specifically, we 

generated multiple fiber clustering atlases at different scales (k = 200 to 4000) using the 

HCP-atlas subjects (Section 2.2). Given the atlas at a certain scale, each subject from the two 

datasets was clustered accordingly to obtain subject-specific fiber clusters for a whole brain 

white matter parcellation (Section 2.4.1). The previously introduced quantitative 

measurements were then computed to evaluate the white matter parcellation generalization 

(WMPG), the inter-subject parcellation variability (ISPV) and the tract anatomical profile 

coherence (TAPC) (Section 2.5) for each scale atlas. We note that the two HCP datasets 

were analyzed separately for a goal of evaluations on the population used for the atlas 

generation and a separated testing population.

Figure 3a shows the parcellation generalization results, where the bar charts give the mean 

percentages of the successfully detected clusters across all subjects in each HCP dataset. 

While there were slight decreases in the fine scale parcellations (e.g. K > 2000), very high 

percentage values were obtained in both datasets across the multiple atlases, indicating that 

almost all clusters (over 98.7% across the multiple parcellation scales) could be successfully 

detected.

Figure 3b gives the results of the inter-subject variability evaluation. For each cluster, the CV 

of the number of fibers was computed across all subjects in each dataset. Then, the mean of 

the CV values across all clusters was reported for each parcellation scale, as shown by the 

bar charts in Figure 3b. A low CV value indicates a low variability hence a high consistency. 

The mean CV values increased from coarse to fine scale parcellations, while the changes 
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tended to be less obvious at finer scales (e.g. K ≥ 2000) compared to the coarse scale 

parcellations (e.g. K ≥ 800). Overall, across the multiple atlases under study, the mean CV 

values were lower than 0.64, with an averaged mean CV value of 0.53 in the two datasets.

Figure 3c displays the tract anatomical profile coherence results. For each subject-specific 

cluster per dataset, a Dice score was computed by comparing each fiber in this cluster to the 

corresponding atlas cluster in terms of the tract anatomical profile (Section 2.5.3). The 

averaged Dice score across all subjects in each dataset was computed for each individual 

cluster. Then, the mean of the averaged Dice across all clusters was reported as shown by the 

bar charts in Figure 3c. A high Dice score represents a high coherence between the subject 

cluster and the corresponding atlas cluster. The mean averaged Dice score increased 

dramatically before k = 800, followed by slight changes until k = 2000, and then tended to 

be stable after k = 2000. In general, a high Dice overlap score of around 0.8 was obtained 

across the multiple atlases under study.

Based on the above experiments, we chose K = 800 for a coarse-scale parcellation atlas and 

K = 2000 for a fine-scale parcellation atlas. These two atlases were used to evaluate subject-

specific whole brain white matter parcellation in the multiple testing datasets (i.e. dHCP, 

ABIDE-II, CNP, PPMI and BTP), as described in the next section.

3.2. Whole brain white matter parcellations of the testing subjects

Here we describe experimental results from applications of the two selected fiber clustering 

atlases (k = 800 and 2000) to the testing subjects across different ages, genders and disease 

conditions (see Section 2.1.1 for demographics) for subject-specific whole brain white 

matter parcellations. Tables 4, 5 and 6 give the white matter parcellation generalization 

(WMPG), the inter-subject parcellation variability (ISPV) and the tract anatomical profile 

coherence (TAPC) evaluation results. For each population per parcellation scale, the 

WMPG, ISPV and TAPC values in the tables were calculated in the same way as in the 

above section, showing the mean percentages of the successfully detected clusters, the mean 

of the CV of number of fibers across all clusters, and the mean of the averaged Dice overlap 

scores across all clusters, respectively. For comparison, the corresponding values computed 

from the two HCP datasets were listed in the first two rows in each table. We note that the 

TAPC evaluation (Table 6) was not performed on the dHCP and BTP datasets due to the 

unavailability of Freesurfer segmentations in these two datasets.

Across the multiple testing datasets, high parcellation generalization results were obtained in 

the ABIDE-II, CNP and PPMI datasets (over 94% for the coarse scale and over 87% for the 

fine scale), shown in Table 4. For dHCP and BTP, although the subjects in these two datasets 

had largely different neuroanatomy to the atlas population, due to neurodevelopment and the 

presence of brain tumors, over 90% of the clusters were successfully detected for a coarse 

scale parcellation and over 76% were detected for a fine scale parcellation.

For the inter-subject variability results shown in Table 5, low CV values of the number of 

fibers (thus high inter-subject consistency) were obtained for the two adult testing datasets 

(i.e. CNP and PPMI). For the neonates and the children (i.e. dHCP and ABIDE-II), higher 

CV values were obtained compared to the adult subjects, suggesting higher inter-subject 
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variabilities. These were potentially because of the rapid brain development during the 

perinatal period and childhood. In addition, higher inter-subject variabilities could also be 

observed in the brain tumor patients (BTP), due to the effects of the patient-specific tumors.

Table 6 shows the tract anatomical profile coherence results. For the four testing datasets 

with available Freesurfer segmentations, similar averaged tract profile Dice overlap scores 

(around 0.75) were obtained. These values were similar to the ones from the two HCP 

datasets, suggesting that the obtained subject-specific clusters were highly coherent in terms 

of passing though common Freesurfer regions. For the dHCP and BTP datasets, their profile 

coherence measurements were not able to be computed due to the unavailability of 

Freesurfer segmentation.

Regarding the differences between the two parcellation scales, we could in general find that 

the coarse scale parcellation (K = 800) tended to have better parcellation generalization and 

inter-subject variability performances but slightly lower tract profile coherence results.

3.3. Anatomically curated white matter atlas for anatomical fiber tract identification

In this section, we show the results from applying the anatomically curated white matter 

atlas (K = 800) (Section 2.3) for anatomical tract identification, in the following two 

experiments.

3.3.1. Population-based anatomical tract visualization—We first performed an 

experiment to show a tract visualization from a population perspective for each dataset under 

study. The goal was to test if the proposed atlas could in general be applied for successful 

identification of common white matter structures, while allowing to capture the anatomical 

variabilities, across the different cohorts. To do this, given an anatomical tract annotated in 

the atlas, we combined the corresponding subject-specific tracts of all subjects in each 

dataset. Fibers from each combined tract were randomly downsampled for visualizations.

Figure 4 gives the population-based tract visualizations of several selected example tracts for 

each dataset. We first showed the tract visualizations of the two HCP cohorts that had 

matched ages and genders, scanned with the same diffusion imaging acquisitions. Visual 

comparisons showed highly similar population-based tracts between the two cohorts. Then, 

we gave the tract visualizations for the dHCP, the ABIDE-II, the CNP and the PPMI datasets 

that were composed of subjects from 1 day to 82 years old across multiple disease 

conditions as well as healthy controls. While each tract could be successfully identified to 

represent a common white matter structure, we could also observe anatomical variabilities 

across the different cohorts. For example, the AF tract of the neonate subjects (i.e. dHCP) 

had fewer fibers in the anterior section when compared to the adult subjects. Last, we also 

gave the population-tract visualizations of the BTP dataset. In general, we identified 

population-based tracts that were visually comparable to the other datasets. However, while 

subject-specific tumors were located in different regions, observable deformations due to 

brain tumor mass effect could be seen in certain regions. For example, half of 26 brain tumor 

patients under study had tumors and/or edema in the left hemisphere touching and affecting 

the left CST. Therefore, in Figure 4 (the CST tract in the last row), we could see observable 

deformations of this tract in the BTP dataset.
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To assess the anatomical validity of the fiber tracts annotated in the atlas, we visualized the 

brain regions through which the fiber tracts pass. This was conducted by computing a voxel-

based tract heatmap based on the 100 HCP-atlas subjects, where the value of each voxel in 

the heatmap represented the number of subjects that had fibers passing through the voxel. 

Figure 5a shows the tract heatmaps from three example tracts, overlaid on the population 

mean T1 image from all HCP-100 subjects (Section 2.2). Three example tracts including AF, 

CST and CC2 are displayed. We also provide the tract visualization for one individual HCP-

atlas subject, with the tracts overlaid on the subject’s T1 image, as shown in Figure 5b. In 

general, our identified tracts corresponded well to the known anatomy of the white matter 

pathways. The AF tract included the C-shaped fibers connecting the temporal, parietal, and 

frontal lobes (Catani and Mesulam, 2008). The CST passed through the midbrain, the 

posterior limb of the internal capsule, and then connected to primary motor, primary 

somatosensory, and dorsal premotor cortices, plus the supplementary motor area (Seo and 

Jang, 2013). The CC2 tract passed through the genu of the corpus callosum and connected to 

the bilateral frontal lobes (Makris et al., 1999).

3.3.2. Subject-specific tract identification—Next, we show tract identification 

results from individual subjects using the proposed anatomically curated white matter atlas. 

(See the supplementary material for the visualization of the tracts obtained using two 

additional tractography methods for these individual subjects.) For comparison, we 

performed a WMQL-based tract identification, which relied on a Freesurfer brain 

segmentation (as described in Section 2.3.1). Quantitative and visual comparisons were 

conducted, as follows.

For a quantitative comparison, we computed the white matter parcellation generalization 

(WMPG), the inter-subject parcellation variability (ISPV) and the tract anatomical profile 

coherence (TAPC) given the tracts identified in the two methods, as shown in Table 7. We 

first demonstrated the comparisons on the 45 deep white tracts (DT-45 tracts as listed in 

Table 7) which had available WMQL definitions (Section 2.3.1). For the parcellation 

generalization result, both methods showed good tract identification result by detecting over 

99% of the tracts in all subjects in the HCP-atlas, the HCP-test, the dHCP, the ABIDE-II, the 

CNP and the PPMI datasets. In the dHCP and the BTP datasets, the WMQL method could 

not work because of the unavailability of Freesurfer segmentations. However, our proposed 

method detected 99.56% of tracts in the dHCP dataset and over 95% in the BTP dataset. For 

inter-subject variability, our method obtained a lower mean CV of number of fibers 

compared to WMQL, suggesting a higher inter-subject consistency obtained using the 

proposed method. For tract profile coherence, while our method did not rely on any 

Freesurfer information of the testing subjects, we still obtained similar (relatively lower) 

averaged tract profile Dice scores to the WMQL method.

In addition to the above 45 tracts, in Table 7 we also listed the parcellation generalization, 

the inter-subject variability and the tract profile coherence results from the tracts that were 

identified using our method but not defined in WMQL. These included the 13 deep white 

matter tracts (DT-13 tracts as listed in Table 7) including the cerebellar tracts and the corona 

radiata (excluding the CST) tracts, and the 198 superficial fiber tracts (ST-198 tracts as listed 

in Table 7). In general, the performance on the 13 deep white matter structures (DT-13) was 
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similar to the above 45 deep white matter tracts (DT-45), and the performance on the 

superficial tracts was high, but slightly lower than the deep white matter tracts.

For visual comparison, we showed several example tracts from individuals for each dataset, 

as displayed in Figure 6. We selected multiple example individuals from the datasets under 

study, with the purpose of including subjects across different the age ranges, the genders and 

the disease conditions. For our method, we also provided visualizations of two example 

tracts that were not defined in WMQL. In general, the two methods obtained comparable 

visualization of the identified tracts. However, specific differences could be observed. For 

example, our method was able to exclude some apparent outlier fibers (e.g. in SLF II and 

CC4).

4. Discussion

In this paper, we proposed an anatomically curated fiber clustering white matter atlas to 

enable whole brain white matter parcellation and anatomical tract identification consistently 

across multiple populations. We first showed that the data-driven fiber clustering method 

allowed for consistent whole brain white matter parcellation across subjects at coarse to fine 

scales from K = 200 to 4000 (Figure 3). We selected two reasonable fiber clustering atlases 

for coarse scale (K = 800) and fine scale (K=2000) whole brain white matter parcellations. 

We chose the coarse scale parcellation (K = 800) to create the anatomically curated white 

matter atlas for tract identification. The uncurated data-driven parcellation (K = 2000) is 

made available for applications that can benefit from a finer scale parcellation. We proposed 

a novel fiber cluster anatomical annotation method that leveraged population-based brain 

anatomical information and expert neuroanatomical assessment. Given the chosen whole 

brain parcellation scale into 800 fiber clusters, most clusters were annotated (82.5 % of all 

clusters), including both known white matter anatomy tracts (63.75% of all clusters) and 

potential false positive tracts (18.75% of all clusters). A relatively large number (256) of 

white matter structures were annotated in the proposed atlas, including fiber tracts from the 

entire brain. Most previous neuroscientific investigations have been limited to a small set of 

major fiber pathways (Mori et al., 2009; Varentsova et al., 2014; Pecheva et al., 2017), 

lacking a comprehensive coverage of the entire brain (including cerebellum, brainstem and 

superficial tracts).

The selection of the two fiber clustering atlases corresponded well to findings in previous 

works. Optimal white matter subdivision depends on the desired application (such as 

visualization, which can benefit from fewer clusters, or quantitative measurement, which can 

benefit from finer subdivisions thus more clusters). In one of our previous fiber-clustering-

based studies, we empirically determined a value (K = 800) that could separate white matter 

structures considered to be anatomically different for an anatomical tract visualization task 

(O’Donnell et al., 2017). In another study, we also applied this value to perform between-

population statistical analysis (Zhang et al., 2018b). On the other hand, our other research 

work suggested that parcellation of the whole brain white matter into a large number of fiber 

clusters (K from 2000 to 2800) tended to increase the performance in a machine-learning-

based classification task (Zhang et al., 2018a), and could be beneficial in modeling whole 

brain structural connectivity (Zhang et al., 2017a).
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We demonstrated successful applications of the anatomically curated white matter atlas for 

subject-specific anatomical tract identification. Over 99% anatomical tracts annotated in the 

atlas could be successfully identified in all testing datasets (Table 7). In the BTP dataset 

consisting of 26 brain tumor patients, there were 15 patients having at least one missing 

tract, resulting in a small percent of missing tracts (2.9%) from a total of 1924 (26×(58+16)) 

tracts. For example, one patient had a tumor and edema across the left temporal, insular, 

parietal and occipital lobes, where the tractography method tracked few fibers. Therefore, 

tracts such as striato-occipital (SO), thalamo-occipital (TO) and superficial tracts between 

the occipital and temporal lobes (Sup-OT) were not detected in this patient.

While enabling consistent white matter tract parcellation across the multiple testing datasets, 

the proposed atlas also allowed for capturing population-specific brain anatomical 

characteristics related to neurodevelopment. For example, in our population-based tract 

visualization results (Figure 4), the identified arcuate fasciculus (AF) tracts in the neonate 

subjects had fewer fibers in the anterior segment when compared to the adult subjects, which 

corresponds to the anatomical knowledge that neonates have incomplete development of the 

AF tract (Tak et al., 2016). In a second example of population-specific characteristics related 

to neurodevelopment, we found higher inter-subject parcellation variabilities on the dHCP 

(neonates) and ABIDE-II (children) datasets compared to the CNP and PPMI datasets 

(adults) (Tables 5 and 7). This could be explained by the fact that compared to adults whose 

brains are relatively mature, the brain develops rapidly during the perinatal period and 

childhood, leading to a larger inter-subject brain anatomical variability.

We showed the proposed white matter atlas’s high performance to parcellate white matter 

tracts across populations despite the heterogeneity of the diffusion MRI data. Our testing 

data was independently acquired using different scanning protocols (such as b-values, spatial 

resolution and number of gradient directions) and processed in different manners. These 

factors could affect the tractography results and thus influence the parcellation 

generalizations between different datasets. However, despite any potential effects from the 

heterogeneity of the diffusion MRI data, we showed excellent parcellation generalization 

performance across the multiple testing datasets, with over 95.7% of the 800 fiber clusters 

(Table 4), and nearly 100% of the annotated anatomical fiber tracts (Table 7), successfully 

identified across all 584 testing subjects. There were still some remaining differences across 

populations that may relate to the dataset heterogeneity. For example, in our quantitative 

comparison results in terms of parcellating the whole brain white matter into fiber clusters 

(Table 4), we could see that relatively lower generalization performances were obtained on 

the multiple testing datasets compared to the two HCP datasets. Another example potentially 

related to data heterogeneity was that, from the subject-specific tract visualization results 

(Figure 6), we could observe that the CNP subjects had very few fibers in the yellow and 

orange clusters of the corticospinal tract. This could indicate that tracking through crossing 

fiber regions was more challenging using diffusion MRI data from the CNP dataset.

Comparisons to a WMQL-based tract identification method showed several benefits of the 

proposed method, as follows. First, our method used only tractography data for subject-

specific tract identification, without relying on the success of cortical or subcortical 

segmentations. Therefore, our method could be in general applied to individuals with large 
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brain anatomical variations. For example, we showed successful tract identification in 

neonate subjects whose brain anatomy is well-known to be different from that of adult 

subjects (Shi et al., 2011; Makropoulos et al., 2017a), and in brain tumor patients who had 

distorted white matter structures due to the mass effect of the brain tumor (O’Donnell et al., 

2017). We note that a Freesurfer segmentation could not in general be conducted in these 

cohorts, and thus a WMQL-based tract identification failed. Second, a lower inter-subject 

variability in terms of the number of fibers in the tracts was obtained in our method 

compared to WMQL (Table 7). The WMQL method depended on how the fibers intersected 

with the segmented Freesurfer regions, and thus was sensitive to whether the fibers’ 

endpoints touched target segmented regions (mostly gray matter regions). However, the 

proposed method was based on a fiber clustering pipeline that used the full length of the 

fiber trajectory. This could enable a more robust tract identification by incorporating fibers 

whose endpoints did not quite reach gray matter regions, e.g. near the cortex where a low 

diffusion anisotropy was present. Third, our proposed method could better reject apparent 

outlier fibers compared to the WMQL (e.g. the CC4 tract in Figure 6). This was due to the 

inclusion of an outlier removal process when performing the fiber clustering (Section 2.4.1). 

The groupwise fiber trajectory-based computation could naturally enable the rejection of the 

fibers that were improbable (trajectory-dissimilar) in the cluster.

The proposed atlas-based white matter parcellation method aimed to address the known 

issue of false positive tracts. In this study, we applied a multi-fiber tractography method to 

increase the sensitivity in tracking crossing fibers (Baumgartner et al., 2012; Chen et al., 

2015, 2016; Liao et al., 2017). The high sensitivity has been suggested to be important to 

reduce false negatives, but at the expense of increased false positives (Maier-Hein et al., 

2016; Thomas et al., 2014). Therefore, the applied highly sensitive UKF fiber tracking 

method may introduce more false positive or anatomically incorrect errors compared to a 

standard single-fiber diffusion tensor fiber tracking method. In our method, we included two 

solutions to remove any possible false positive fibers. First, as discussed above, we included 

an outlier removal process to reject improbable fibers within a cluster. While this process 

could ameliorate the false positive fibers to a certain extent, it could not remove tractography 

errors that were present in all subjects while being inconsistent with expected anatomy. For 

instance, we found fiber clusters connecting the cortex and cerebellum in the same 

hemisphere in the atlas fiber clustering results. To handle such tractography errors, during 

the expert judgment, we annotated in the atlas potential false positive clusters such as the 

intra-hemispheric cerebellum tracts and partially traced corpus callosum tracts. This can 

enable the exclusion of such clusters in downstream processing and visualization.

Potential future directions and limitations of the current work are as follows. First, because 

fiber clusters were formed based on fiber geometric properties only, fibers at boundary 

regions between different anatomical white matter structures could be grouped into one 

cluster. In our proposed atlas, we assigned such a cluster to an anatomical tract that the 

cluster’s fibers primarily belonged to. This could result in a tract containing several inter-

tract fibers. For example, the CST is considered to include the ascending fibers that pass 

through the middle third of the cerebral peduncle (Haines, 2004), but our atlas tended to be 

over-inclusive by including descending fibers that pass through the region posterior to the 

middle third of cerebral peduncle. It is well known issue in tractography that it cannot 
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distinguish such directional fibers (Maier-Hein et al., 2017). As a result, our fiber clustering 

method grouped them together because their fiber geometric trajectories were very similar. 

A possible solution is to include additional brain anatomy information (e.g. the Freesurfer 

segmentation) when forming the fiber clusters, as applied in many fiber clustering works 

(Xia et al., 2005; Li et al., 2010; Tunç et al., 2013; Wang et al., 2013; Ros et al., 2013; Siless 

et al., 2018). However, this would largely complicate the application to individuals where 

such additional information was not available, e.g. neonates and brain tumor patients. 

Second, the aim of this study was to demonstrate the applications of the proposed atlas for 

whole brain white matter parcellation and anatomical tract identification. While we focused 

on demonstrating successful applications across the different cohorts, we did not perform 

any statistical analyses for within- or between-cohort studies. The proposed method, in 

conjunction with approaches to harmonize diffusion MRI measurements across scanners 

(Mirzaalian et al., 2016; Zhang et al., 2016), can enable such studies to compare white 

matter tracts across the lifespan. Third, for the atlas generation, we applied the UKF 

tractography method that has shown advantages (e.g. tracking through crossing fiber regions 

and edema) in our multiple studies (Baumgartner et al., 2012; Chen et al., 2015, 2016; Liao 

et al., 2017). However, in recent years, many new tractography methods (such as global 

(Christiaens et al., 2015) and multi-tissue (Jeurissen et al., 2014) fiber tracking methods) 

have been proposed, which potentially could be used to generate improved atlases. In an 

initial experiment, we have shown successful applications of the atlas to tractography data 

computed using different fiber tracking methods, including diffusion tensor tractography and 

constrained spherical deconvolution tractography (see the supplementary material). 

Although these tractography data vary quite significantly given different fiber tracking 

models and different parameters such as fiber angle and step size, as well as the output 

number of fibers, we showed that our overall pipeline including the data-driven fiber 

clustering and the anatomically curated atlas in general allowed for identification of 

anatomical tracts that were visually plausible. An interesting future work could include 

comparing the differences of white matter structures identified from different tractography 

methods. Fourth, to demonstrate the anatomical validity of the proposed atlas, we showed 

that our identified tracts corresponded well to the known anatomy of the white matter 

pathways in the brain in several example well-established deep brain white matter tracts 

(Figure 5). As for the superficial fiber tracts, which include fibers near the cortex (Oishi et 

al., 2008; Guevara et al., 2017), we showed good performance in detecting them consistently 

across multiple populations (Table 7). Over 93% of the superficial fiber clusters were 

identified in all subjects across all datasets, and over 98% in many datasets, suggesting that 

it is feasible to identify and study a large number of superficial connections. The superficial 

white matter structures in the brain are not as well studied as the deep brain white matter 

structures due to their small size, high structural complexity, and high inter-subject 

variability (Oishi et al., 2008; Guevara et al., 2017). A future study could provide a more 

comprehensive anatomical validation about the annotated superficial tracts in the atlas. Fifth, 

future white matter atlas creation work could leverage approaches for reducing image 

distortion in the brainstem in HCP data (Irfanoglu et al., 2015; Tang et al., 2018). Finally, in 

the current atlas, we have provided rough categories for the superficial fibers (according to 

the different brain lobes the fibers connect) and the cerebellar fibers (e.g. the cortico-ponto-

cerebellar tract and the intracerebellar tract). In addition, 17.5% of the clusters have not been 
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categorized. Investigation into sub-categories of these structures, to provide additional detail 

to the annotations in the atlas, would be an interesting future work.

5. Conclusion

In this paper, we have presented an anatomically curated fiber clustering white matter atlas 

to enable white matter tract parcellation. Experimental results show successful application of 

the proposed atlas for consistent whole brain white matter parcellation and anatomical tract 

identification of subjects across the full lifespan and across multiple MRI acquisition 

protocols.
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Appendix A.: Data preprocessing and UKF tractography

For the two HCP datasets, we used the already processed diffusion MRI data (following the 

processing pipeline in (Glasser et al., 2013)). We extracted the b = 3000 shell of 90 gradient 

directions and all b = 0 scans for each subject, as applied in our previous studies (O’Donnell 

et al., 2017; Zhang et al., 2017b,a). Angular resolution is better and more accurate at high b-

values such as 3000 (Descoteaux et al., 2007; Ning et al., 2015), and this single shell was 

chosen for reasonable computation time and memory use when performing tractography. 

The Freesurfer segmentation results were directly used.

For the dHCP datasets, we used the already processed diffusion MRI data (following the 

processing pipeline in (Makropoulos et al., 2017b)). Unlike the adult HCP dataset (where 

only high b = 3000 shell was used), we kept all the gradient directions based on our visual 

inspection that a high b shell tended to be very noisy in the dHCP dataset. Due to difficulties 

in the translation of conventional adult methods for image processing to neonatal cohorts, 

the Freesurfer brain segmentation could not be computed for the dHCP dataset 

(Makropoulos et al., 2017b).

For the ABIDE-II, the CNP and the PPMI datasets, we pre-processed the provided raw 

imaging data using the following steps. DWIConvert7 was first applied to convert the 

original data format (DICOM or NIFTI) to NRRD. Eddy current-induced distortion 

correction and motion correction were conducted using the Functional Magnetic Resonance 

Imaging of the Brain (FMRIB) Software Library tool (Jenkinson et al., 2012). To further 

correct for distortions caused by magnetic field inhomogeneity (which leads to intensity loss 

and voxel shifts), an EPI distortion correction was performed with reference to the T2-

7https://github.com/BRAINSia/BRAINSTools
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weighted image using the Advanced Normalization Tools (ANTS) (Avants et al., 2009). 

Because T2-weighted images were not available in all of these datasets (no T2 images were 

provided in the ABIDE-II and the CNP datasets, and in the PPMI dataset not all subjects had 

T2 images), we generated a synthetic T2-weighted image from a T1-weighted image for 

each subject (T1 images were available for in all datasets) using the T1 to T2 conversion 

toolbox8. For each subject, a nonlinear registration (registration was restricted to the phase 

encoding direction) was computed from the b0 image to the synthetic T2-weighted image to 

make an EPI corrective warp. Then, the warp was applied to each diffusion image. A semi-

automated quality control (using in-house developed Matlab scripts) was conducted on all 

diffusion images. Individuals that had diffusion images with any apparent signal drops were 

excluded from the analyses. For the remaining subjects, all gradient directions were retained 

for analysis. We also performed a Freesurfer segmentation for each subject in these three 

datasets. Each individual’s Freesurfer segmentation was transformed from T1 space into 

diffusion corrected (b0) space via nonlinear registration using ANTS.

For the BTP dataset, we followed processing steps tuned specifically for brain tumor patient 

data, as reported in (O’Donnell et al., 2017). Diffusion images were corrected for motion 

and eddy current distortions using DTIPrep (Oguz et al., 2014). Images from all gradient 

directions were retained based on visual inspection of several patient datasets with an in-

house tool indicating no gradients should be removed. Thus, all 30 gradient directions were 

retained for analysis. Our attempts using the FreeSurfer software on the patient data failed to 

output a final brain segmentation on most subjects due to the influence of the tumors. 

Therefore, we did not include any Freesurfer results for the BTP dataset.

After obtaining the pre-processed DWI data, we applied the same UKF parameters for all 

subjects under study, as follows. Tractography was seeded in all voxels within the brain 

mask where fractional anisotropy (FA) was greater than 0.1. Tracking stopped where the FA 

value fell below 0.08 or the normalized mean signal (the sum of the normalized signal across 

all gradient directions) fell below 0.06. The normalized average signal measure was 

employed to robustly distinguish between white/gray matter and cerebrospinal fluid (CSF) 

regions. These seeding and stopping thresholds were set slightly below the default values to 

enable higher sensitivity for fiber tracking, in particular for the subjects (such as neonates, 

children and brain tumor patients) that might have low white matter anisotropy. Fibers that 

were longer than 40 mm were retained to avoid any bias towards implausible short fibers 

(Guevara et al., 2012; Jin et al., 2014; Lefranc et al., 2016).

Appendix B.: Fiber clustering atlas generation

Here, we provide a brief introduction of the pipeline for the fiber clustering atlas generation. 

The pipeline begins with computing an unbiased groupwise whole brain tractography 

registration to simultaneously align all subjects’ tractography into a common space (i.e. atlas 

space) (O’Donnell et al., 2012). The method performs an entropy-based registration in a 

multiscale manner based on the pairwise fiber trajectory distances (the popular mean closest 

point distance is used (Moberts et al., 2005; O’Donnell and Westin, 2007)) across all 

8https://github.com/pnlbwh/T1toT2conversion
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subjects. The registration method has been applied in multiple studies that have shown the 

success of the method in enabling consistent white matter parcellation across subjects 

(O’Donnell et al., 2017; Zhang et al., 2017a,b, 2018a,b; Gong et al., 2018; Sydnor et al., 

2018; Wu et al., 2018). Next, spectral embedding is used to compute a high-dimensional 

fiber clustering atlas (O’Donnell and Westin, 2007) to divide the whole brain tractography 

into K clusters (K is a user-given parameter to define parcellation scale), as follows. The 

spectral embedding creates a space that robustly represents each fiber according to its 

affinity to all other fibers across subjects. The fiber affinity is computed by converting 

pairwise fiber geometric distances (same as used in the tractography registration) using a 

Gaussian-like kernel with sigma of 60 mm, representing fiber similarity according the white 

matter anatomy. Nystrom sampling (Fowlkes et al., 2004) is used to reduce the computations 

considering the large number of fiber pairs across subjects. Bilateral clustering, 

simultaneously segmenting fibers in both hemispheres to improve parcellation robustness 

(O’Donnell and Westin, 2007), is applied to obtain the K fiber clusters.

Appendix C.: Tract anatomical profile (TAP) and TAP coherence (TAPC)

The tract anatomical profile (TAP) of an atlas cluster (TAPatlas(c)) was defined as the set of 

brain regions most highly intersected by the cluster (the set of brain regions through which 

the cluster passed consistently) across the 100 HCP-atlas subjects, as illustrated in Figure 

Appendix C.1(a). To describe the possibility of a segmented region r belonging to the tract 

profile of an atlas cluster c, we computed a population-based percentage of r given c, i.e. P 
(r|c), as follows. First, we identified the fibers that passed through the region r in the cluster 

c in each HCP-atlas subject. Then, we calculated the percentage of these identified fibers 

over the total number of fibers in c across the 100 subjects, yielding P (r|c).

A percentage threshold Th was then used to determine if r belonged to the TAP of c, i.e. P (r|
c) ≥ Th. The goal of the threshold is to identify a TAP that represents the population 

characteristics of the cluster. A too-high Th value would include too few regions into the 

TAP, while a too-low Th value would be overinclusive. To investigate the effect of Th, we 

applied the tract anatomical profile coherence (TAPC) measurement (defined in Section 

2.5.3) given the TAPs obtained under different Th values (30% to 80%). The TAPC 

measurement evaluated if the fibers within a cluster commonly passed through the same 

brain regions (according to the TAP of the cluster). It was measured by computing the Dice 

overlap score (see Section 2.5.3 for details) between the brain regions though which each 

fiber passed and those in the cluster’s TAP, where a high value indicated fibers within the 

cluster were highly coherent. Here, given a cluster c, we calculated a Dice score for each 

HCP-atlas subject and computed an average Dice score across the 100 subjects. Then, the 

mean of the averaged Dice scores was reported across all clusters.
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Figure Appendix C.1: 
(a) Overview of the computation of the TAPatlas of one atlas cluster c. This process used the 

full clustered tractography data (approximately 1 million fibers per subject) from the 100 

HCP-atlas subjects (Section 2.1.1). For each Freesurfer segmented region, the percentage of 

fibers in c that intersect this region (across the 100 subjects) is computed. A high percentage 

value indicates that a Freesurfer segmented region is highly intersected by the cluster across 

all subjects. Then, a threshold (see Figure Appendix C.2) is applied to this percentage to 

determine the set of most highly intersected regions, i.e. the TAP of the atlas cluster 

(TAPatlas(c)). As an example, the sample atlas cluster has a TAP containing five Freesurfer 

regions (as listed in the figure). (b) Illustration of the computation of TAPC (TAP coherence) 

for a subject-specific cluster. For each fiber f within the cluster, the set of Freesurfer regions 

through which the fiber passes is measured. This gives the TAP of the fiber (TAP(f)). Then, a 

Dice score between the fiber’s TAP (TAP(f)) and the atlas cluster’s TAP (TAPatlas) is 
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computed. For example, the sample fiber (red) has a Dice score of 0.73. Then, the TAPC is 

calculated as the mean Dice score across all fibers in the subject-specific cluster.

Figure Appendix C.2: 
Threshold determination for defining tract anatomical profile. Th = 40% generated the 

highest Dice scores across the different settings under different parcellation scales.

Figure Appendix C.2 shows the mean averaged Dice scores under different Th values given 

multiple parcellation scales. The value Th = 40% generated the highest Dice scores across 

the different settings. Therefore, in our study, we chose the threshold of 40% when 

determining the TAP of the clusters in the atlas.

The TAP coherence was measured for a subject-specific cluster by computing the mean of 

the Dice overlap score between each subject-specific fiber’s TAP (TAP(f)) and the atlas 

cluster’s TAP (TAPatlas(c)), as illustrated in Figure Appendix C.1 (b).
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Figure 1: 
Method overview. Sub-figure (a) shows the data-driven fiber clustering atlas generation 

process. Given the input tractography (a.1) from the 100 atlas subjects, a groupwise whole 

brain tractography registration for simultaneous joint alignment of tractography across all 

subjects (fibers from different subjects colored differently) is conducted (a.2). Spectral 

clustering is performed to generate the fiber clustering atlas (each cluster has a unique color 

as shown in a.3). Three example individual fiber clusters are displayed. Sub-figure (b) 

displays the corticospinal tract (CST) in the atlas, as curated by an expert neuroanatomist. 

Several example clusters belonging to the CST are displayed (b.1), where each cluster 

represents a specific subdivision of the whole CST (b.2). Sub-figure (c) demonstrates whole 

brain white matter tract parcellation for a new subject. The new subject’s tractography (c.1) 

is first registered to the atlas tractography (colored in pink in c.2). Fiber clustering of the 

aligned tractography is then conducted according to the fiber clustering atlas for whole brain 
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white matter tract parcellation (c.3). Sub-figure (d) illustrates the subject-specific anatomical 

tract identification. Identification of the CST (d.2) in the new subject is conducted by finding 

the corresponding subject-specific clusters (d.1) to those annotated as the CST in the atlas.
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Figure 2: 
Overview of the fiber cluster anatomical annotation method, including two initial annotation 

computation steps, followed by expert judgment. Sub-figure (a) shows the initial cluster 

annotation using White Matter Query Language (WMQL) that provides anatomical 

definitions of fiber tracts based on their intersected Freesurfer regions. The corticospinal 

tract (CST) is selected for illustration. Any fiber clusters that have fibers meeting the 

WMQL CST definition (a.1) are initially identified to belong to CST. Two example clusters 

(a.2) are displayed. Sub-figure (b) shows the initial cluster annotation using tract anatomical 

profile (TAP) that is defined as a set of Freesurfer regions through which a cluster passed. 

The TAP of the example yellow cluster contains six Freesurfer regions (b.1). TAP-based 

initial annotation for the cerebellar tract is used for illustration. Any fiber clusters that have 

TAP containing the cerebral-cortex or cerebral-white-matter Freesurfer regions are initially 

identified to belong to the cerebellar tract. Two example clusters are displayed (b.2). After 
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the initial cluster annotation using the above two steps, expert judgment is performed for a 

final cluster annotation, as illustrated in sub-figure (c). For the two potentially CST clusters 

(c.1 and c.2), the yellow cluster is accepted; however, the green cluster is rejected because 

most of its fibers do not touch the precentral or postcentral gyri, and a corrected annotation 

of the corona-radiata-frontal (CR-F) tract is provided. For the two clusters potentially 

belonging to the cerebellar tract (c.3 and c.4), the yellow cluster is accepted and an 

annotation of a sub-category, i.e. the cortico-ponto-cerebellar (CPC) tract, is provided; 

however, the green cluster is rejected because the white matter connections between the 

cerebellum and the cortex should cross the hemispheres, and thus this cluster is categorized 

as a false positive tract.
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Figure 3: 
Quantitative evaluations for whole brain white matter parcellations at different scales (k = 

200 to 4000) using the two HCP datasets. At each parcellation scale, WMPG (a), ISPV (b) 

and TAPC (c) were computed, as described in Section 2.5. WMPG was used to measure if 

all fiber clusters could be generally detected in the population. ISPV was computed to 

measure if the number of fibers in the corresponding clusters were similar. TAPC was used 

to measure if fibers within a cluster commonly passed through the same Freesurfer regions.

Zhang et al. Page 36

Neuroimage. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Population-based visualizations for several example fiber tracts. For each tract, individual 

fiber clusters are displayed in different colors. For AF, SLF II, UF, TF and CPC, a left view 

is displayed; for IoFF, a superior view is displayed; for CC4, CST and Sup-P, a anterior view 

is displayed.
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Figure 5: 
(a) Voxel-based tract heatmaps of three example fiber tracts based on the 100 HCP-atlas 

subjects. The value of a voxel in the heatmaps represents the number of subjects that have 

fibers passing through the voxel. The background image is the population mean T1 image 

from all HCP-100 subjects (Section 2.2). (b) The corresponding tracts from one individual 

HCP-atlas subject, overlaid on the subject’s T1 image.
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Figure 6: 
Visualizations of example subject-specific fiber tracts identified using the proposed method 

(left) and the WMQL method (right). For the CPC and Sup-P tracts, only results from our 

method are displayed because there were not corresponding definitions in WMQL. 

Individuals from the multiple datasets under study were selected as follows. For each of the 

HCP-atlas and the HCP-test datasets, an adult who had a population mean age (29 years) 

was selected. For the dHCP dataset, the youngest (1 day) and the oldest (27 days) neonates 

were selected. For the ABIDE-II dataset, the youngest AUT (5.1 years) and healthy control 

(5.9 years) were selected. For the CNP dataset, four 29-year-old adults (same as the 

population mean age of the HCP-atlas subjects), respectively, from the ADHD, BP, SZ and 

healthy groups were selected. For the PPMI dataset, two individuals who had the highest 

ages in the PD and healthy groups (82 and 80 years, respectively) were selected. For the 

BTP dataset, tracts from two patients (36 and 66 years old) were selected. The tumor (green) 

and surrounding edema (gray) are visualized for each patient.
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Table 1:

Summary of existing white matter atlases to describe the current state of the art. For each study, the number of 

tracts that are defined, the population used to create the atlas, the test population to perform subject-specific 

parcellation and if the atlas is publicly available are reported. We note that bilateral structures were considered 

as two separated tracts (e.g. left and right arcuate fasciculus tracts (AF)) when calculating the number of tracts.

Study Tracts Atlas population Parcellation test population Publicly available

Voxel-based white matter atlases

Hua et al. (2008) 20 deep WM tracts 28 healthy (29±7.9Y, 11F/
17M) 1 multiple sclerosis patient (32Y, M) Yes

†

Hagler et al. 
(2009) 23 deep WM tracts

21 healthy (21–52Y, 11F/
10M) & 21 temporal lobe 
epilepsy patients (21—54Y)

Same as the atlas population No

Bazin et al. 
(2011) 39 deep WM tracts Not given 21 healthy (22–61Y, 10F/11M) Yes*

de Schotten et al. 
(2011) 30 deep WM tracts 40 healthy (18–22Y, 20F/

20M)
1 hemiplegia patient (68Y, F) & 1 
chronic neglect patient (61Y, M) Yes

‡

Yendiki et al. 
(2011) 18 deep WM tracts

33 healthy (42±10Y, 14F/
19M) & 34 schizophrenia 
patients (37±10Y, 9F/25M)

Same as the atlas population Yes
§

Suarez et al. 
(2012) 11 deep WM tracts 20 healthy (17.8±1.1Y, 10F/

10M) Same as the atlas population No

Ros et al. (2013) 16 deep WM tracts 15 healthy (randomly selected 
from the test population)

46 healthy (24F, 29±8.66Y; 22M, 
29±9.99Y) No

Van Baarsen et 
al. (2016) 6 cerebellar tracts 90 healthy (22–35Y) Not applicable Yes

∥

Akazawa et al. 
(2016) 24 deep WM tracts 11 term-born neonates 

(within 3 days of life, 7F/4M)
19 term-born and 30 preterm-born 
babies No

Tang et al. 
(2018) 23 brainstem tracts 20 healthy (10F/10M) Not applicable Yes

††

Tract-based white matter atlases

Maddah et al. 
(2005) Not given 1 healthy 4 healthy No

O’Donnell and 
Westin (2007) 19 deep WM tracts 10 subjects 5 subjects No

Ziyan et al. 
(2009) 5 deep WM tracts 15 healthy (young) Same as the atlas population No

Guevara et al. 
(2012)

36 deep WM tracts, plus 94 
superficial fiber parcels 12 healthy (adults) 20 healthy (adults) Yes**

Jin et al. (2014) 17 deep WM tracts 5 healthy (randomly selected 
from the test population) 198 healthy (23.2±2.1Y) No

Tunç et al. 
(2014) 11 deep WM tracts 4 healthy (31.25±4.2Y, M) 2 healthy (31.25±4.2 Y, M) No

Yoo et al. (2015) 14 deep WM tracts 12 healthy (21±40Y, 12M) Same as the atlas population No

Labra et al. 
(2017) 26 deep WM tracts 4 healthy Not given Yes

‡‡

Guevara et al. 
(2017)

100 superficial fiber 
parcels

79 healthy (23.6±5.2Y, 32F/
47M) 26 subjects Yes

‡‡

Román et al. 
(2017) 93 superficial fiber parcels 74 healthy (23.6±5.2Y, 31F/

43M) 78 subjects Yes
‡‡

Yeh et al. (2018) 66 deep WM tracts, plus 
set of U-fibers

842 healthy (22–36Y, 470F/
372M) Not applicable Yes

§§
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Study Tracts Atlas population Parcellation test population Publicly available

O’Donnell et al. 
(2017) 10 deep WM tracts 10 healthy (adult) 18 brain tumor patients (28—70Y) No

Proposed

58 deep WM tracts, plus 
198 superficial fiber 
parcels organized into 16 
categories. Also includes 
potential false positive 
fibers, plus a whole brain 
WM parcellation into 800 
parcels

100 healthy (22–36Y, 54F/
46M)

584 subjects with multiple health 
conditions (1D—72Y, 253F/331M) Yes

∥∥

†
http://lbam.med.jhmi.edu;

*
https://www.nitrc.org/projects/dots;

‡
https://www.natbrainlab.co.uk/atlas-maps;

§
https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula;

∥
https://www.nitrc.org/projects/cer_wm_atlas/;

††
https://www.nitrc.org/projects/brainstem_atlas;

**
http://brainvisa.info/web/index.html;

‡‡
http://neurospin.github.io/pyconnectomist;

§§
http://brain.labsolver.org;

∥∥
https://dmri.slicer.org/atlases.
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Table 2:

Demographics, dMRI acquisition, and the availability of Freesurfer segmentation of the datasets under study.

Dataset # Sub Age Gender Health/Disease dMRI data Freesurfer

HCP-atlas 100 22 to 36 years
(29.1±3.7)

54 F
46 M 100 healthy

b=3000 s/mm2

108 directions
TE/TR=89/5520 ms
resolution=1.25 mm3

Yes

HCP-test 100 22 to 35 years
(29.0±3.5)

54 F
46 M 100 healthy

b=3000 s/mm2

108 directions
TE/TR=89/5520 ms
resolution=1.25 mm3

Yes

dHCP 40 1 to 27 days
(6.30±7.47)

15 F
25 M 40 healthy

b=400/1000/2600 s/mm2

300 directions
TE/TR=90/3800 ms
resolution=1.5 mm3

No

ABIDE-II 70 5 to 17 years
(12.0±3.1)

6F
64 M

49 AUT
21 healthy

b=1000 s/mm2

64 directions
TE/TR=78/5200 ms
resolution=3 mm3

Yes

CNP 204 21 to 50 years
(33.3±9.3)

112 F
153 M

41 ADHD
49 BD
50 SZ
125 healthy

b=1000 s/mm2

64 directions
TE/TR=93/9000 ms
resolution=2 mm3

Yes

PPMI 144 51 to 82 years
(63.7±7.3)

51 F
93 M

102 PD
42 healthy

b=1000 s/mm2

64 directions
TE/TR=88/7600 ms
resolution=2 mm3

Yes

BTP 26 23 to 72 years
(49.4±14.9)

15 F
11 M 26 brain tumor patients

b=2000 s/mm2

31 directions
TE/TR=98/12700 ms
resolution=2.3 mm3

No

 Total subjects = 684 (100 subjects for atlas generation and 584 subjects for testing)

Abbreviations: Dataset: HCP - Human Connectome Project; dHCP - Developing Human Connectome Project; ABIDE-II - Autism Brain Imaging 
Data Exchange II; CNP - Consortium for Neuropsychiatric Phenomics; PPMI - Parkinson’s Progression Markers Initiative; BTP - Brain Tumor 
Patient. Gender: F - female; M - Male. Disease: AUT - autism; ADHD - attention-deficit/hyperactivity disorder; BP - bipolar disorder; SZ - 
schizoprenia; PD - Parkinson’s disease.
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Table 3:

Anatomical tracts annotated in the proposed white matter atlas. Except for the 7 corpus callosum (CC) tracts 

and the middle cerebellar peduncle (MCP) tract that cross the hemispheres (C), others are hemispheric (LR). 

Overall, there are 58 deep white matter fiber tracts from the association, cerebellar, commissural and 

projection tracts, and 16 superficial tract categories according to the brain lobes.

Tract category (tract #) Tract name

Association tracts (24)

arcuate fasciculus (AF) – LR

cingulum bundle (CB) – LR

external capsule (EC) – LR

extreme capsule (EmC) – LR

inferior longitudinal fasciculus (ILF) – LR

inferior occipito-frontal fasciculus (IoFF) – LR

middle longitudinal fasciculus (MdLF) – LR

posterior limb of internal capsule (PLIC) – LR

superior longitudinal fasciculus I (SLF I) – LR

superior longitudinal fasciculus II (SLF II) – LR

superior longitudinal fasciculus II (SLF III) – LR

uncinate fasciculus (UF) – LR

Cerebellar tracts (9)

cortico-ponto-cerebellar (CPC) – LR

inferior cerebellar peduncle (ICP) – LR

intracerebellar input and Purkinje tract (Intra-CBLM-I&P) – LR

intracerebellar parallel tract (Intra-CBLM-PaT) – LR

middle cerebellar peduncle (MCP) – C

Commissural tracts (7)

corpus callosum 1 (CC 1) – C

corpus callosum 1 (CC 1) – C

corpus callosum 2 (CC 2) – C

corpus callosum 3 (CC 3) – C

corpus callosum 4 (CC 4) – C

corpus callosum 5 (CC 5) – C

corpus callosum 6 (CC 6) – C

corpus callosum 7 (CC 7) – C

Projection tracts (18)

corticospinal tract (CST) – LR

corona-radiata-frontal (CR-F) (excluding the CST) – LR

corona-radiata-parietal (CR-P) (excluding the CST) – LR

striato-frontal (SF) – LR

striato-occipital (SO) – LR

striato-parietal (SP) – LR

thalamo-frontal (TF) – LR

thalamo-occipital (TO) – LR

thalamo-parietal (TP) – LR
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Tract category (tract #) Tract name

Superficial tracts (16)

superficial-frontal (Sup-F) – LR

superficial-frontal-parietal (Sup-FP) – LR

superficial-occipital (Sup-O) – LR

superficial-occipital-temporal (Sup-OT) – LR

superficial-parietal (Sup-P) – LR

superficial-parietal-occipital (Sup-PO) – LR

superficial-parietal-temporal (Sup-PT) – LR

superficial-temporal (Sup-T) – LR
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Table 4:

White matter parcellation generalization evaluations on the testing datasets. For comparison, results from the 

two HCP datasets are listed.

Dataset K = 800 K = 2000

HCP-atlas 99.906 ± 0.159 99.350 ± 0.531

HCP-test 99.759 ± 0.367 98.717 ± 1.025

dHCP 90.706 ± 5.482 76.196 ± 8.517

ABIDE-II-AUT 94.513 ± 2.222 87.177 ± 3.521

ABIDE-II-HC 95.685 ± 1.335 87.448 ± 2.487

CNP-ADHD 96.598 ± 1.756 90.735 ± 2.787

CNP-BP 96.786 ± 1.544 90.676 ± 2.313

CNP-SZ 96.306 ± 1.567 90.089 ± 2.553

CNP-HC 95.974 ± 1.368 89.593 ± 2.286

PPMI-PD 97.106 ± 1.235 91.148 ± 2.546

PPMI-HC 96.903 ± 1.264 90.330 ± 2.545

BTP 92.567 ± 6.010 81.427 ± 9.060
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Table 5:

Inter-subject parcellation variability evaluations on the testing datasets. For com parison, results from the two 

HCP datasets are listed.

Dataset K = 800 K = 2000

HCP-atlas 0.439 ± 0.136 0.550 ± 0.165

HCP-test 0.463 ± 0.150 0.578 ± 0.182

dHCP 0.844 ± 0.333 1.014 ± 0.350

ABIDE-II-AUT 0.713 ± 0.317 0.878 ± 0.344

ABIDE-II-HC 0.703 ± 0.314 0.848 ± 0.339

CNP-ADHD 0.588 ± 0.223 0.721 ± 0.252

CNP-BP 0.587 ± 0.240 0.719 ± 0.262

CNP-SZ 0.608 ± 0.256 0.746 ± 0.287

CNP-HC 0.605 ± 0.240 0.746 ± 0.266

PPMI-PD 0.601 ± 0.206 0.751 ± 0.246

PPMI-HC 0.611 ± 0.222 0.757 ± 0.256

BTP 0.800 ± 0.274 0.946 ± 0.301
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Table 6:

Tract anatomical profile coherence evaluations on the testing datasets. For comparison, results from the two 

HCP datasets are listed. Due to the unavailability of the Freesurfer segmentations of the subjects in the dHCP 

and BTP datasets, their profile coherence measurements were not able to be computed.

Dataset K = 800 K = 2000

HCP-atlas 0.785 ± 0.088 0.802 ± 0.082

HCP-test 0.782 ± 0.088 0.800 ± 0.083

dHCP – –

ABIDE-II-AUT 0.748 ± 0.094 0.763 ± 0.092

ABIDE-II-HC 0.755 ± 0.094 0.772 ± 0.092

CNP-ADHD 0.759 ± 0.095 0.777 ± 0.090

CNP-BP 0.760 ± 0.095 0.777 ± 0.091

CNP-SZ 0.757 ± 0.094 0.775 ± 0.090

CNP-HC 0.756 ± 0.095 0.774 ± 0.091

PPMI-PD 0.761 ± 0.094 0.777 ± 0.092

PPMI-HC 0.760 ± 0.095 0.776 ± 0.093

BTP – –
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Table 7:

Quantitative comparisons of the tract identification results using the proposed method and the WMQL method, 

in terms of the white matter parcellation generalization (WMPG), the inter-subject parcellation variability 

(ISPV) and the tract anatomical profile coherence (TAPC). A high WMPG value indicates a high 

generalization of the atlas to subjects in each dataset; a low ISPV value represents a low parcellation 

variability and thus a high consistency across the subjects in each dataset; a high TAPC value suggests a high 

anatomical coherence of the fibers in each cluster. The comparisons were performed on all annotated 

hemispheric and commissural tracts, which were divided into three groups: 1) the 45 deep white tracts that 

both methods were able to identify (DT-45), 2) the 13 deep white tracts that were defined in our method but 

not in the WMQL method (DT-13), and 3) the 198 short and medium range superficial fiber tracts (ST-198) 

that were defined in our method.

Proposed WMQL

Tracts WMPG ISPV TAPC WMPG ISPV TAPC

HCP-atlas DT-45 100.0 ± 0.0 0.264 ± 0.075 0.668 ± 0.075 100.0 ± 0.0 0.353 ± 0.117 0.696 ± 0.076

DT-13 100.0 ± 0.0 0.368 ± 0.108 0.779 ± 0.102 –- – –

ST-198 99.96 ± 0.14 0.488 ± 0.110 0.783 ± 0.062 – – –

HCP-test DT-45 100.0 ± 0.0 0.280 ± 0.079 0.666 ± 0.075 100.0 ± 0.0 0.389 ± 0.172 0.697 ± 0.075

DT-13 100.0 ± 0.0 0.356 ± 0.091 0.776 ± 0.104 – – –

ST-198 99.85 ± 0.45 0.513 ± 0.119 0.781 ± 0.061 – – –

dHCP DT-45 99.56 ± 1.03 0.533 ± 0.186 – – – –

DT-13 97.71 ± 7.55 0.625 ± 0.295 – – – –

ST-198 93.08 ± 7.55 0.919 ± 0.264 – – – –

ABIDE-II-AUT DT-45 99.95 ± 0.32 0.424 ± 0.156 0.639 ± 0.076 99.59 ± 0.87 0.532 ± 0.202 0.657 ± 0.079

DT-13 99.49 ± 2.64 0.540 ± 0.231 0.726 ± 0.114 – – –

ST-198 92.28 ± 4.48 0.845 ± 0.312 0.747 ± 0.067 – – –

ABIDE-II-HC DT-45 100.0 ± 0.0 0.374 ± 0.168 0.644 ± 0.076 99.89 ± 0.48 0.457 ± 0.183 0.660 ± 0.082

DT-13 100.0 ± 0.0 0.529 ± 0.199 0.727 ± 0.114 – – –

ST-198 94.25 ± 2.60 0.853 ± 0.349 0.756 ± 0.069 – – –

CNP-ADHD DT-45 100.0 ± 0.0 0.365 ± 0.127 0.629 ± 0.073 99.03 ± 1.31 0.492 ± 0.196 0.650 ± 0.088

DT-13 100.0 ± 0.0 0.454 ± 0.141 0.745 ± 0.108 – – –

ST-198 98.33 ± 1.95 0.634 ± 0.208 0.758 ± 0.062 – – –

CNP-BP DT-45 100.0 ± 0.0 0.378 ± 0.141 0.631 ± 0.075 99.05 ± 1.83 0.498 ± 0.190 0.651 ± 0.090

DT-13 99.78 ± 1.35 0.468 ± 0.147 0.743 ± 0.111 – – –

ST-198 98.78 ± 1.46 0.623 ± 0.195 0.758 ± 0.063 – – –

CNP-SZ DT-45 100.0 ± 0.0 0.377 ± 0.140 0.631 ± 0.072 99.52 ± 1.10 0.479 ± 0.178 0.651 ± 0.088

DT-13 99.91 ± 0.88 0.477 ± 0.102 0.743 ± 0.112 – – –

ST-198 98.33 ± 1.73 0.640 ± 0.205 0.756 ± 0.062 – – –

CNP-HC DT-45 100.0 ± 0.0 0.371 ± 0.126 0.626 ± 0.072 99.67 ± 1.02 0.488 ± 0.179 0.647 ± 0.089

DT-13 100.0 ± 0.0 0.462 ± 0.109 0.741 ± 0.104 – – –

ST-198 98.55 ± 1.12 0.630 ± 0.185 0.754 ± 0.063 – – –
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Proposed WMQL

Tracts WMPG ISPV TAPC WMPG ISPV TAPC

PPMI-PD DT-45 100.0 ± 0.0 0.400 ± 0.126 0.641 ± 0.073 99.45 ± 1.04 0.501 ± 0.152 0.652 ± 0.088

DT-13 100.0 ± 0.0 0.543 ± 0.134 0.723 ± 0.092 – – –

ST-198 98.53 ± 1.39 0.656 ± 0.202 0.762 ± 0.063 – – –

PPMI-HC DT-45 100.0 ± 0.0 0.423 ± 0.136 0.639 ± 0.072 99.03 ± 1.41 0.509 ± 0.140 0.652 ± 0.090

DT-13 100.0 ± 0.0 0.524 ± 0.132 0.730 ± 0.089 – – –

ST-198 98.48 ± 2.59 0.622 ± 0.171 0.762 ± 0.062 – – –

BTP DT-45 95.30 ± 5.46 0.531 ± 0.126 – – – –

DT-13 96.15 ± 7.54 0.573 ± 0.104 – – – –

ST-198 93.28 ± 7.75 0.857 ± 0.220 – – – –
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