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A two-compartment model of diffusion in white matter, which accounts for intra- and extra-

axonal spaces, is associated with two plausible mathematical scenarios: either the intra-axonal 

axial diffusivity Da,‖ is higher than the extra-axonal De,‖ (Branch 1), or the opposite, i.e. Da,‖ < 

De,‖ (Branch 2). This duality calls for an independent validation of compartment axial 

diffusivities, to determine which of the two cases holds. The aim of the present study was to 

use an intracerebroventricular injection of a gadolinium-based contrast agent to selectively 

reduce the extracellular water signal in the rat brain, and compare diffusion metrics in the genu 

of the corpus callosum before and after gadolinium infusion. The diffusion metrics considered 

were diffusion and kurtosis tensor metrics, as well as compartment-specific estimates of the 

WMTI-Watson two-compartment model. A strong decrease in genu T1 and T2 relaxation times 

post-Gd was observed (p < 0.001), as well as an increase of 48% in radial kurtosis (p < 0.05), 

which implies that the relative fraction of extracellular water signal was selectively decreased. 

This was further supported by a significant increase in intra-axonal water fraction as estimated 

from the two-compartment model, for both branches (p < 0.01 for Branch 1, p < 0.05 for Branch 

2). However, pre-Gd estimates of axon dispersion in Branch 1 agreed better with literature than 

those of Branch 2. Furthermore,  comparison of post-Gd changes in diffusivity and dispersion 

between data and simulations further supported Branch 1 as the biologically plausible solution, 

i.e. Da,‖ > De,‖. This result is fully consistent with other recent measurements of compartment 

axial diffusivities that used entirely different approaches, such as diffusion tensor encoding.  
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1. Introduction 

The diffusion MRI signal is sensitive to the 

micron-scale displacement of water molecules 

in tissue and can thus provide valuable 

information about the underlying 

microstructure. However, because water is 

ubiquitous, modeling is required to infer 

compartment-specific diffusion metrics. 

Modeling involves assuming a simplified 

geometry of the tissue under consideration and 

fitting the analytical expression of the diffusion 
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signal in such an environment to the measured 

data.  

Since the aim of biophysical models is to 

provide a more specific characterization of 

microstructure than signal representation 

approaches such as diffusion tensor imaging 

(DTI) [1] and diffusion kurtosis imaging (DKI) 

[2], biophysical modeling has drawn great 

attention and research efforts in the past years 

[3-11]. 

However, modeling also implies making 

simplifying assumptions which, if incorrect, can 
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heavily bias the estimation and impact the 

interpretation of the result [12-14]. For example, 

white matter, which is the subject of the current 

study, is typically described by two or three 

compartments (Figure 1): the intra-axonal 

space is modeled as a collection of infinitely 

long cylinders with a given orientation 

distribution function, the extra-axonal space is 

assumed to behave as a Gaussian anisotropic 

medium, and the cerebrospinal fluid (CSF) 

contribution – if accounted for – is modeled as a 

Gaussian isotropic compartment with fixed free 

diffusivity Diso = 3 μm2/ms in vivo. The 

parameter estimation for the apparently 

“simple” two-compartment model has been 

shown to present two substantial issues: there 

are two distinct mathematical and biologically-

plausible solutions to the system, and each 

solution is surrounded by a gentle-sloped 

optimization landscape, whereby noise can 

displace the minimum by a significant amount 

from the ground truth [15, 16]. In qualitative 

terms, the two solutions of the two-compartment 

model can be described as one where Da,‖ < De,‖ 

and axon dispersion is limited (i.e. 𝑐2 ≡

〈(cos 𝜓)2〉 is close to 1), and another where Da,‖ > 

De,‖  and axon dispersion is more pronounced.  

The unveiled degeneracy calls for an 

independent validation of compartment axial 

diffusivities, to establish which of the two 

solutions mimics better the biological reality. 

This task is arguably more challenging than 

validating axonal water fractions or even 

orientation dispersion, because alternative 

methods to NMR for measuring the self-

diffusion coefficient of water are not available, 

and NMR-based water measurements include 

signals from all compartments. 

Notwithstanding, numerous efforts have been 

undertaken towards achieving compartment-

specific diffusivity measurements. Methods for 

achieving compartment-selectivity were 

initially designed to explain the dramatic 

decrease in mean diffusivity (MD) during stroke 

[17-19]. Recently, the focus of such research has 

shifted precisely towards finding the correct 

solution to the two-compartment white matter 

model [20-25].  

In this work, we build on the idea initially 

explored by Silva et al. to suppress the 

extracellular signal by injecting a gadolinium 

(Gd)-based contrast agent in the lateral 

ventricles of the rat brain and thus measure 

diffusion weighted signals that stem mostly 

from the intracellular space [19]. In a diffusion 

experiment, the amount of MR signal stemming 

from a given compartment C is weighted not 

only by the physical amount of water VC in that 

compartment, but also by the compartment T2, 

i.e. 𝑆𝐶 ∝ 𝑉𝐶 ∙ 𝑒
−

TE

𝑇2,𝐶. The extra-cellular 

gadolinium is thus expected to preferentially 

shorten the T2 of the extra-cellular compartment 

Figure 1. Schematic diagram of a typical 
three-compartment white matter model. 
Neurite sub-bundles have a given 
orientation distribution of angles ψ about 
the main bundle axis (vertical axis in the 
figure). The local diffusivities within each 
sub-bundle are denoted as Da,‖ for the 
intra-axonal compartment (Da,⊥=0), and 
De,‖ and De,⊥ for the extra-axonal 
compartment. f is the fraction of intra-
axonal water. The CSF compartment can 
also be accounted for as a third 
compartment, with relative water fraction 
fiso and diffusivity Diso = 3 μm2/ms in vivo. 
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(though the T2 of the intra-cellular space will 

likely also be somewhat reduced) and thereby 

decrease the contribution of the extra-cellular 

space to the overall measured signal. In their 

work, Silva et al. performed measurements in a 

subcortical area in the rat gray matter using a 

maximum of three orthogonal directions to 

estimate the trace of the diffusion tensor. They 

reported no significant change in mean 

diffusivity after extracellular signal suppression 

with gadolinium and concluded that intra- and 

extra-cellular diffusivities were similar. Here, 

we focus on the rat corpus callosum, and 

estimate changes in diffusivity and kurtosis in 

the axial and radial directions (relatively to the 

main fiber orientation) separately. Furthermore, 

we estimate specific changes in the metrics of a 

WMTI-Watson two-compartment model of 

diffusion [20]. The goal of this work was to 

determine whether the changes resulting from 

the attenuation of the extracellular signal are 

compatible with the Da,‖ > De,‖ or Da,‖ < De,‖ 

scenario. 

2. Methods 

2.1.Animal preparation 

This study was approved by the Service for 

Veterinary Affairs of the canton of Vaud. Nine 

adult Sprague-Dawley rats (270 ± 13 g, 6 males) 

underwent two MRI sessions, two days apart. 

The first session was dedicated to baseline 

measurements of diffusion and relaxometry 

(“pre-Gd”) and the second session, consisting in 

the same measurements, started one hour after 

an intracerebroventricular perfusion of 

gadolinium (“post-Gd”). Rats were sacrificed at 

the end of the post-Gd MRI session. 

2.2.Intracerebroventricular perfusion 

The methods were similar to those described by 

[18, 19]. The rat was anesthetized with 

isoflurane (4% for induction and 2% for 

maintenance) and positioned in a stereotaxic 

frame (Kopf Model 900). The head was shaved 

and the skull was exposed with a midline 

incision. Two holes were burred into the skull 

using a dental drill (~1.5 mm Ø), giving access 

to the two lateral ventricles (stereotaxic 

coordinates: ±1.4 mm lateral, 0.9 mm posterior 

and 3.5 mm deep relative to the bregma). A 

volume of 20 uL (10 uL per ventricle) of 0.25 M 

gadobutrol (Gadovist, Bayer Schering Pharma) 

was perfused continuously over two hours (rate: 

5 uL/hour in each ventricle) using Hamilton 

syringes, a double-syringe pump (TSE System) 

and in-house catheters with 30G needles. At the 

end of the perfusion, the catheters were removed 

and the skin was sutured with silk sutures 3/0. 

The rat was given one hour to recover from 

surgery before starting the MRI acquisitions – 

isoflurane anesthesia was maintained 

throughout. 

2.3.MRI acquisition 

The protocol was the same for both scanning 

sessions, with the exception of relaxometry 

parameters that were adjusted to accommodate 

different ranges of T1 and T2 values pre- and 

post-Gd (Table 1). The anesthetized rat was 

transferred and fixed in a homemade MRI cradle 

equipped with a fixation system (bite bar and ear 

bars). Anesthesia was maintained at 1.5 – 2% 

isoflurane in an air-oxygen mixture (50% 

oxygen / 50% medical air) throughout the 

experiment, to ensure a breathing rate of around 

60 bpm, which was continuously monitored 

using a respiration pillow placed under the 

animal’s thorax. Body temperature was also 

continuously monitored using a rectal 

thermometer and maintained around (38 ± 0.5) 

ºC using a warm water circulation system. 

All MRI experiments were performed on a 14-T 

Varian system (Abingdon, UK) equipped with 

400 mT/m gradients. An in-house built 

quadrature surface coil was used for 

transmission and reception.   
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Sagittal gradient-echo images were acquired to 

assess the success of the perfusion and the extent 

of gadolinium transport throughout the brain 

(TE/TR = 4/100 ms ; matrix: 128 x 128 ; 0.18 x 

0.18 mm2 in-plane resolution; 7 0.8-mm slices; 

flip angle: 20°). 

Shimming was first performed in a voxel 

encompassing the genu of the corpus callosum 

(1.5 x 2 x 2 mm3), using FASTMAP and 

FASTESTMAP [26, 27]. The water linewidth 

was 14 ± 2 Hz in the pre-Gd sessions, while in 

the post-Gd sessions it varied around 41 ± 13 Hz 

at the time of relaxometry measurements (1.5 

hours after perfusion). A smaller voxel fitted to 

the genu (1 x 1.5 x 1.5 mm3) was used for single-

voxel T1 and T2 relaxometry using a STEAM 

sequence. T1 was measured for two different 

echo times (TE = 2.8 ms and TE = 30 ms), the 

longer echo aiming to achieve extracellular 

water signal suppression in the post-Gd session, 

similar to the long echo time in the diffusion 

acquisition (see below). All sequence 

parameters are collected in Table 1. 

For imaging, the field homogeneity was 

adjusted in a 5 x 6 x 10 mm3 region of interest 

encompassing the corpus callosum. The water 

linewidth was 27 ± 3 Hz in the pre-Gd sessions, 

and 70 ± 18 Hz in the post-Gd session, at the 

time of the diffusion data acquisition (3 hours 

after gadolinium perfusion). Diffusion data (4 

b=0; b=1 and b=2 ms/μm2 with 20 directions 

each) were acquired using an in-house semi-

adiabatic spin-echo EPI sequence [28] with 

following parameters: TE/TR = 48/2000 ms, 

matrix: 128x64, FOV: 23x17 mm2, 4 shots, 5 

sagittal 0.8-mm slices, δ/Δ = 4/20 ms, NR = 6, 

TA = 47 min. 

 

2.4.Data processing and analysis 

Water spectra were quantified using the 

AMARES tool in jMRUI [29] and resulting 

signals were fit to the monoexponential decay 

(for T2) and recovery (for T1) models in Matlab. 

Diffusion images – amounting to 44 q-space 

points x 6 repetitions – were first denoised using 

random matrix theory [30] before averaging 

over repetitions. The noisemap was further used 

for Rician bias correction 𝑆𝑓 = √|𝑆𝑖
2 − 𝜎2| (σ: 

noise level, Si: denoised signal, Sf: corrected 

signal) [31], prior to fitting the diffusion and 

kurtosis tensors using a weighted linear least 

squares algorithm [32]. A mask for the genu was 

manually drawn on the mid-sagittal slice (where 

the orientations of the axons within the bundle 

are likely to be most coherent) and mean values 

for typical DKI metrics (fractional anisotropy, 

mean/axial/radial diffusivities and kurtoses) 

were extracted in this ROI, for each rat and each 

session (pre- and post-Gd). 

The WMTI-Watson two-compartment model 

was used to estimate compartment-specific 

metrics pre- and post-Gd [20]. This model 

assumes a Watson distribution of axon 

orientations, whereby the ODF is fully 

 Pre-Gd Post-Gd 

 
T1  

short TE 

T1  

long TE 
T2 

T1  

short TE 

T1  

long TE 
T2 

TR (ms) 15,000 7,000 

TE (ms) 2.8 30 2.8 – 150 (18 values) 2.8 30 2.8 – 120 (14 values) 

TI (ms) 
10 – 10,000 (19 

values) 
- 6 – 6,000 (19 values) - 

NA 8 

Table 1. STEAM sequence parameters for the measurement of T1 and T2 relaxation times in the genu. 
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characterized by a single parameter. Model 

parameters f, Da,‖, De,‖, De,┴ and 〈(cos 𝜓)2〉 ≡ 𝑐2 

can be expressed analytically as a function of 

main tensor metrics (axial and radial 

diffusivities, axial and radial kurtosis), as 

derived in [16, 20]. The equations are 

reproduced as Supplementary Data S1. This 

model has two possible solutions [15, 16, 20], 

both of which were reported.  

Paired t-tests were used to compare pre- and 

post-Gd relaxation times and diffusion metrics 

in the genu. 

Finally, the angle between the principle 

eigenvector of the diffusion tensor and the B0 

field was calculated in order to provide an 

assessment of the influence of Gd-driven 

susceptibility gradients on diffusion estimates. 

2.5.Simulations 

Median pre-Gd estimates of the WMTI-Watson 

model were used as ground truths for simulating 

diffusion signals in Matlab [20]. The post-Gd 

ground truth was identical to the pre-Gd with the 

exception of an increased intra-axonal water 

fraction, consistent with experimental estimates. 

The simulations matched the experiment in 

terms of diffusion protocol, SNR and Rician 

noise. The denoising procedure applied to the 

data resulted in a noise reduction of 

√𝑃(1 𝑀⁄ + 1 𝑁⁄ ) (with P: number of 

significant components in the Marchenko-

Pastur distribution, M: number of diffusion 

measurements and N: number of voxels in 

sliding window) [30] which was accounted for 

in the simulations. One thousand noise 

realizations were generated in each case. 

Simulated signals were processed identically to 

the experimental signals in terms of tensor 

estimation and WMTI-Watson model 

estimation. In the experimental data, values are 

averaged over the genu ROI in each animal 

before statistical analysis. To reproduce the 

reduction in noise resulting from this ROI 

averaging, simulation results were bundled in 

groups of 20 and averaged, yielding 50 

simulated “genu ROI” estimates. 

The simulations were designed to capture the 

effects of an increase in intra-axonal fraction on 

all the model parameters, given realistic ground 

truths (for both Branch 1 and Branch 2) and 

noise levels. The comparison of trends between 

experiments and simulations can give further 

insight into the effects of post-Gd susceptibility 

gradients, which are present in the data but not 

in simulations, and also evaluate which of the 

two branches is realistic.  

3. Results 

3.1.Gadolinium perfusion 

To assess the efficacy of Gd administration, 

gradient-echo images were acquired, which 

demonstrated accumulation of gadolinium in 

both lateral ventricles, while the concentration 

levels in the genu remained low enough to 

preserve image quality (Figure 2), also in the 

diffusion-weighted spin-echo EPI images 

(Supplementary Figure 1). The delays 

between icv perfusion, relaxometry and 

Figure 2. Contiguous sagittal gradient echo images, showing contrast agent accumulation in both lateral ventricles (blue 
arrows) yet acceptable image quality around the genu of the corpus callosum (yellow arrow). The path of the catheters 
is illustrated by the dotted blue lines: the surgical procedure is not expected to damage the genu and to allow gadolinium 
to enter the intra-axonal space. 
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diffusion acquisitions were similar for all rats, 

and T2 and diffusion measurements were 

performed within 66 ± 23 min of each other. 

The T1 and T2 relaxation times in the genu were 

significantly shortened post- vs pre-Gd ( and 

Figure 3), which confirmed the accumulation of 

contrast agent. The variability in relaxation time 

measurements was much larger post-Gd – 

depending on the efficacy of each individual 

perfusion. The T1 was significantly longer for 

the long vs the short TE acquisition, both pre- 

and post-Gd.  

3.2.Diffusion and kurtosis tensors 

Of the extracted tensor parameters, the only 

statistically significant difference between pre- 

and post-Gd conditions was the increase in 

radial kurtosis (RK) by 48% (p < 0.05) (Figure 

4). 

Given the very high reproducibility of T2 

measurements between rats in the pre-Gd 

condition, the measured post-Gd T2 was used as 

a proxy for Gd concentration in the extra-

cellular space, to assess direct correlations 

between contrast agent accumulation and tensor 

metrics. Linear correlations between T2 and 

diffusion metrics were significant only for RK 

(Pearson’s ρ = -0.66; p < 0.01) and mean 

kurtosis (MK) (Pearson’s ρ = -0.59; p < 0.05) 

 T1 (short TE) (ms) T1 (long TE) (ms) T2 (ms) 

Pre-Gd 1938 ± 29 2073 ± 48 24.6 ± 0.4 

Post-Gd 306 ± 63 430 ± 99 14.1 ± 2.7 

Figure 3. T1 (left) and T2 (right) relaxation times measured in the genu, before and after gadolinium perfusion. Relaxation 
times were significantly shortened by the presence of gadolinium in the extracellular space. The T1 was significantly 
longer in the long-TE (30 ms) vs short-TE (2.8 ms) measurement. Pre-Gd, the difference can be attributed to suppression 
of myelin water with the longer TE; post-Gd, we hypothesize the long TE suppressed the extracellular contribution. It is 
noteworthy that, in the long TE measurement, the post-Gd T1 was nonetheless much shorter than the pre-Gd T1, 
indicating exchange between compartments and imperfect compartment selectivity. Red line: median; Box edges: 25th 
and 75th percentiles; Whiskers: extreme datapoints. ***: p < 0.001. 

Table 2. T1 and T2 relaxation times measured in the genu, before and after gadolinium perfusion. 
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(Supplementary Figure 2), which is consistent 

with previous group differences. 

3.3.Diffusion tensor vs B0 orientation 

The corpus callosum fibers run left-right and the 

expected angle between the fibers’ main 

orientation and the magnetic field B0 is 90°. This 

angle is fairly immune to most common sources 

of experimental variability in rat head 

positioning, which would be rotations about the 

x-axis (chin tilt due to variations in bite-piece 

positioning) or z-axis (“ear-to-shoulder” tilt due 

to misaligned ear bars).  

In the pre-Gd session, the principal orientation 

of the diffusion tensors in the genu formed an 

angle largely comprised between 84° and 104° 

with the main field (Figure 5). The mode of the 

Figure 5. Distribution of angles between the 
principle direction of the diffusion tensor 
and the main field B0, across all genu voxels 
in all rats. The post-Gd distribution (orange) 
is broader than the pre-Gd one (blue), most 
likely due to susceptibility gradients 
produced by gadolinium. 

Figure 4. Diffusion tensor (A) and kurtosis tensor (B) metrics in the genu, before and after gadolinium perfusion. The 
radial kurtosis increased significantly post-Gd, which was consistent with an increased intra-axonal relative signal 
fraction. None of the diffusion metrics were significantly altered by the perfusion. Red line: median; box edges: 25th and 
75th percentiles; whiskers: extreme datapoints; red cross: outliers; black circle: mean. *: p < 0.05. FA = fractional 
anisotropy; MD/AD/RD = mean/axial/radial diffusivity (in μm2/ms); MK/AK/RK = mean/axial/radial kurtosis. 
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distribution was 94° and the median angle was 

(93 ± 4)° across rats, which could point to a 

slight but systematic misalignment of our 

stereotaxic system with the main field. In the 

post-Gd session, the distribution of angles was 

broader, with most orientations comprised 

between 76° and 112°, and a median angle of 

(96 ± 7)° across rats. This is consistent with 

previous reports of unaccounted gradients 

affecting the measured main orientation of the 

diffusion tensor [33]. 

No anterior-posterior trend from genu to 

splenium was discernible (see. Supplementary 

Figure 1 for an example); furthermore in this 

work we focused exclusively on the genu. 

3.4.WMTI-Watson model 

Pre-Gd, the two branches of the WMTI-Watson 

model differed in the same ways as previously 

reported: one solution (Branch 1) was associated 

with Da,‖ > De,‖; the other solution (Branch 2) 

was characterized by Da,‖ < De,‖, and lower intra-

axonal water fraction and dispersion (i.e. higher 

c2) than Branch 1 (Figure 6). It should be noted 

only solutions within physically acceptable 

boundaries were retained, i.e. 𝑓 ∈

[0, 1], 𝐷𝑎,∥, 𝐷𝑒,∥, 𝐷𝑒,⊥ ∈ [0, 4] μm2 ms⁄ , 𝑐2 ∈

[
1

3
, 1]. Since Da,‖ estimates were close to 3 

μm2/ms in Solution 1, the upper bound on 

diffusivities was chosen to be 4 μm2/ms to avoid 

a truncation bias. The percentage of voxels in 

the genu that exhibited a solution within the 

defined bounds was (65±17)% for Branch 1 and 

(80±10)% for Branch 2. The gadolinium 

perfusion translated into a significant increase in 

intra-axonal water fraction for both branches: 

Branch 1: median fpre/post = 0.43/0.52, p = 0.004; 

Branch 2: median fpre/post = 0.35/0.43, p = 0.027, 

which was consistent with the intended effect of 

the procedure. Branch 2 also displayed a 

significant increase in Da,‖ post-Gd (p = 0.048). 

Figure 6. WMTI-Watson metrics in the genu, before and after gadolinium perfusion. The model showed increased intra-
axonal water fraction post-Gd, for both sets of solutions. Branch 2 (bottom row) was associated with an increased intra-
axonal diffusivity also. Red line: median; box edges: 25th and 75th percentiles; whiskers: extreme datapoints; red cross: 
outliers; black circle: mean. *: p < 0.05, **: p < 0.01. f = intra-axonal water fraction; Da,‖  = intra-axonal diffusivity De,‖ / 
De,┴ = extra-axonal axial/radial diffusivity; and 𝑐2 ≡  〈(𝑐𝑜𝑠 𝜓)2〉. All diffusivities in μm2/ms. 
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3.5.Simulations 

The median values of model parameters 

estimated pre-Gd were used as ground truths for 

pre-Gd signal simulation. Branch 1 ground truth 

was thus: f = 0.43, Da,‖= 3.0, De,‖ = 0.78, De,┴ = 

0.65 and c2 = 0.84. Branch 2 ground truth was: f 

= 0.35, Da,‖ = 0.63, De,‖ = 2.5, De,┴ = 0.62 and c2 

= 0.95. The post-Gd change was simulated as an 

increase in f from 0.43 to 0.52 (Branch 1), or 

from 0.35 to 0.43 (Branch 2), with all other 

model parameters unchanged. The SNR 

measured in the genu at b = 0 was 16 ± 2 pre-Gd 

and 17 ± 4 post-Gd, and was boosted to 37 by 

the denoising procedure, which was the value 

used in the simulations. 

The simulations of both branches reproduced 

experimental estimates well (see Figure 7 vs 

Figure 6). However, the simulations predicted 

parameter changes associated with a post-Gd 

increase in intra-axonal water fraction only, 

while the data were the result of all gadolinium-

related effects (including susceptibility 

gradients).  

Regarding tensor metrics, simulations also 

confirmed that an increase in intra-axonal 

fraction translated into an increase in radial 

kurtosis (Supplementary Figure 3). However, 

the resulting increase in AD (in the case of 

Branch 1) and decrease in AD (in the case of 

Branch 2) were larger than the noise and should 

have been detectable experimentally. Aside 

from biological variability, which the 

simulations do not account for, these results 

further point to the fact that gadolinium-induced 

susceptibility gradients have an important 

Figure 7. Simulations of WMTI-Watson model parameter estimates, assuming the post-Gd condition translated into an 
increased intra-axonal water fraction f. The noise free estimates (black circles) highlight the potential intrinsic bias in 
parameter estimation relative to the known ground truth (red crosses). The boxplots illustrate 50 estimates obtained 
using 1000 simulations with SNR = 37 and further averaging over 20 measurements to mimic ROI averaging. Simulations 
of both branches reproduced experimental data well (see Figure 6).  
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impact on the diffusion tensor estimates, and 

should be included in the interpretation of the 

results. 

For Branch 1, Da,‖ was systematically 

underestimated and De,‖ overestimated (Figure 

7, top row, noise free values), with excellent 

accuracy for all other parameters. The Da,‖ 

underestimation was more pronounced for 

lower intra-axonal fraction (Pre-Gd 

configuration). Noise further led to an 

underestimation of f, and a slight over-

estimation of Da,‖ and De,‖ (relative to the noise 

free value). The precision for all parameters was 

very good (≤ 6%). The two parameters where 

the post-Gd trends differed between data and 

simulation were Da,‖ and c2. Simulations 

predicted an increase in Da,‖ (related to improved 

accuracy when the intra-axonal fraction was 

larger) while the experimental Da,‖ was mildly 

reduced post-Gd. This suggests that gadolinium 

background gradients caused an 

underestimation of Da,‖. The experimental 

orientation dispersion appeared somewhat 

increased (i.e. lower c2) post-Gd, though the 

change was non-significant; this trend was not 

predicted by an increase in f in the simulations. 

Thus gadolinium background gradients could 

contribute to an apparent higher intra-voxel 

orientation dispersion, similarly to the broader 

distribution of diffusion tensor main 

orientations relative to B0.  

For Branch 2, c2 was systematically 

underestimated and Da,‖  overestimated (Figure 

7, bottom row, noise free values). The c2 

underestimation was more pronounced for a 

higher intra-axonal fraction f (post-Gd 

configuration). Noise further produced an 

underestimation of f and slight underestimation 

of Da,‖  (balancing the bias and making the noisy 

Da,‖  estimates more accurate than the noise free 

ones). The precision for all parameters was ≤ 

9%. The two parameters where the post-Gd 

trends differed between data and simulation 

were, as for Branch 1, Da,‖  and c2.  An 

experimental increase in Da,‖  was measured, 

which suggested that gadolinium background 

gradients would cause on overestimation of Da,‖. 

No change in c2 was measured while 

simulations predicted a decrease; thus 

gadolinium background gradients would 

contribute to increase c2 (i.e. lower the apparent 

orientation dispersion). 

4. Discussion 

This study used Gd accumulation in the extra-

cellular space of corpus callosum to vary the 

intra-axonal contribution to the total signal and 

evaluate the ensuing impact on a large number 

of diffusion parameters: main diffusion and 

kurtosis tensor metrics, but also compartment-

specific parameters of a two-compartment 

model of diffusion. The goal of the study was to 

determine, using this gadolinium challenge, 

which of the two possible solutions of the two-

compartment model (referred to as Branch 1: 

Da,‖ > De,‖ and Branch 2: Da,‖ < De,‖)  is the 

biologically-relevant one. Results support the 

hypothesis that Da,‖ > De,‖, as detailed below. 

First, the dramatic shortening in T2 and T1 

relaxation times confirmed that gadolinium 

accumulated in the extracellular space of the 

genu. The measured T1 was significantly longer 

for TE = 30 ms vs TE = 2.8 ms, both pre- and 

post-Gd. In the pre-Gd experiment, this can 

potentially be attributed to myelin water signal 

present at TE = 2.8 ms and suppressed at TE = 

30 ms. In the post-Gd experiment, the variability 

was much larger – depending on the efficiency 

of each individual perfusion – but we 

hypothesize the short-TE measurement of T1 

still had contributions from all compartments, 

while at long TE the predominant contribution 

was from intracellular T1. Silva et al. reported a 

similar result for post-Gd T1 measurements [19]. 

The post-Gd long-TE T1 estimate – which 
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presumably reflects intracellular T1 – was 

significantly shorter than the pre-Gd estimate. 

While it has been argued that intracellular T1 

could be significantly shorter than extracellular 

T1 [19], it is also possible that water exchange 

between the two compartments, combined with 

inversion times of up to 6 seconds in the post-

Gd experiments, precluded compartment 

selectivity in this measurement, as recently 

discussed [34].  

The significant increase in radial kurtosis post-

Gd is consistent with a selective attenuation of 

the extracellular signal fraction, as shown in 

simulations (Supplementary Figure 3). 

However, susceptibility gradients have also 

been reported to produce an overestimation of 

radial kurtosis in fibers perpendicular to B0 

(such as corpus callosum) relative to fibers 

parallel to B0 [35], whereby the experimental 

increase in RK is likely a combination of both 

effects. This is further supported by the strong 

correlation between T2 and RK.  

The WMTI-Watson two-compartment model of 

diffusion revealed an increase in intra-axonal 

water fraction (as aimed by the gadolinium 

infusion) for both branches. However, we argue 

that Branch 1 (Da,‖ > De,‖) is the biologically 

relevant one. This conclusion is based on both 

the compatibility of pre-Gd estimates with 

previous measurements of rat corpus callosum, 

and the evolution of model parameters 

following gadolinium infusion compared to 

simulations and expected effects of 

susceptibility gradients on intra-axonal 

diffusivity.  

Regarding pre-Gd values, the orientation 

dispersion estimated in Branch 1 (c2 = 0.84, i.e. 

24°) is closer to previous estimates of 34° for the 

dispersion in the corpus callosum of the rat [36] 

than the estimation provided by Branch 2 (c2 = 

0.95, i.e. 13°). Furthermore, simulations showed 

that the c2 estimate was both accurate and 

precise in Branch 1, while c2 was 

underestimated in Branch 2. This means that the 

experimental c2 estimate in Branch 2, which was 

already rather on the high end, could potentially 

be an underestimation: thus Branch 2 would be 

associated with nearly perfectly aligned axons, 

which is unrealistic. It should however also be 

noted that, for Branch 1, the Da,‖ estimate was 

rather high (3.0 μm2/ms) and simulations further 

showed Da,‖ to be underestimated in Branch 1, 

bringing the “true” Da,‖ to values higher than 3 

μm2/ms. High intra-axonal diffusivity estimates 

could be caused by an unaccounted CSF 

compartment and an optimal body temperature 

of 38°C in the rat. Most recent estimates using 

alternative methods agree on Da,‖ ≈ 2.3 – 2.5 

μm2/ms, as will be discussed in more detail later 

on [21, 22, 37, 38]. 

The experimental change in model parameters 

following gadolinium infusion also favors the 

Da,‖ > De,‖ scenario. In Branch 1, a significant 

increase in f is measured post-Gd (p < 0.01) 

while all other parameters are only slightly 

altered (below statistical significance). 

Simulations revealed that an increased intra-

axonal water fraction should lead to an increase 

in Da,‖ for this particular ground truth and 

acquisition protocol. Experimentally, no 

significant change in Da,‖ was measured, with a 

slight trend towards reduced values. The major 

difference between experiment and simulations 

lies in the impact of Gd-induced susceptibility 

gradients, which are not accounted for in 

simulations and are expected to underestimate 

the diffusivity, as will be discussed shortly. 

Thus the increase in Da,‖ expected from model 

bias was balanced by a post-Gd underestimation 

of Da,‖ due to susceptibility gradients. Similarly 

for orientation dispersion, simulations predicted 

an increased intra-axonal fraction would not 

affect the c2 estimate, which was highly accurate 

and precise. Experimentally, no significant 

change in c2 was measured, with a slight trend 

towards reduced values (i.e. higher dispersion). 
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This trend could also be consistent with 

susceptibility gradients impacting orientation 

estimates at the intra-voxel level, in a similar 

way to the estimate at the whole-voxel level (see 

Figure 5 for estimated angles between diffusion 

tensor and B0 field) [33]. Moving on to Branch 

2, significant but weaker (p < 0.05) increases in 

both f and Da,‖ were measured experimentally. 

Simulations of increased intra-axonal fraction 

predicted no change in Da,‖; thus the increase 

measured experimentally could be attributed to 

susceptibility gradients causing an 

overestimation of Da,‖. This is opposite to the 

expected effect of such gradients on 

diffusivities. Furthermore, simulations 

predicted that an increase in intra-axonal 

fraction would cause a decrease in the c2 

estimation (bias), while no change in c2 was 

measured experimentally. Thus, background 

gradients would have caused a lower apparent 

orientation dispersion (higher c2), which is also 

contrary to expected effects. 

Coming back on the influence of background 

gradients on diffusivity estimates, [39] have 

shown that, while individual isochromats may 

display overestimated or underestimated 

diffusivity depending on whether the 

background gradient is parallel or antiparallel to 

the diffusion-sensitizing gradients, isochromats 

with reduced diffusivity have a larger signal 

than those with increased diffusivity and thus 

more weighting in the overall signal. In the 

context of background gradients following a 

Gaussian-like distribution with zero mean, this 

results in an underestimation of the overall 

diffusion coefficient. Water inside the axons is 

expected to experience gradients from all 

directions – at least in the radial plane, and due 

to dispersion likely also with some axial 

component – and thus see its apparent 

diffusivity reduced. The underestimation of the 

diffusion coefficient in the presence of 

background gradients has been reported in other 

studies as well: magnetic field gradients induced 

by microvasculature on the diffusion 

measurement of tissue (intra/extra cellular) 

water, for example [40]. Fahrrer and colleagues 

recently studied “parallel fiber” phantoms of 

Dyneema fibers bathing in an aqueous solution 

with variable concentrations of magnesium 

chloride (to vary the susceptibility difference 

between the Dyneema and the surrounding 

medium). When the medium was plain water 

(which made for a large susceptibility difference 

with the Dyneema), both the axial and radial 

diffusivities were gradually and substantially 

underestimated with varying fiber orientations 

(from 0 to 90°) relative to the main field. The 

authors also put forward imperfect fiber 

alignment resulting in axial components of the 

background gradients as an explanation for the 

underestimation of AD. Therefore, in the 

context of the experiments presented in this 

work, gadolinium-based susceptibility gradients 

are expected to produce an underestimation of 

the intra-axonal diffusivity in the post-Gd 

experiments. This effect, which constitutes the 

main difference between our experiments and 

simulations, can only explain trends observed 

for Branch 1, and not Branch 2.  

Background gradients introduced by 

gadolinium are thus a confounding effect for the 

interpretation of results. While their qualitative 

impact on the data can be predicted (i.e. an 

underestimation of diffusivity), the current work 

does not provide quantification for this effect. 

One way to reduce the impact of these gradients 

on the diffusion coefficient estimation would be 

to use bipolar gradients for diffusion encoding 

[41, 42]. However, the longer TE associated 

with this type of sequence would pose 

sensitivity problems at 14 T: the TE in this study 

(48 ms) – while requiring a four-shot segmented 

EPI read-out – was already long compared to the 

estimated T2 of 25 ms pre-Gd and 14 ms post-

Gd. Simulations accounting for the effect of 
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these gradients would rely on several ad hoc 

assumptions which can dramatically impact 

their reliability. In particular, the effective 

concentration of gadolinium in the extra-cellular 

space is not known, and its estimation relies on 

the native T2 and post-Gd T2 of the extra-cellular 

compartment, as well as on the relaxivity in 

brain tissue of gadobutrol at 14 Tesla, all of 

which would be somewhat speculative. 

We note that the increase in intra-axonal water 

fraction achieved with the gadolinium infusion 

– as estimated from the WMTI-Watson model – 

was only moderate. While water exchange 

across the axonal membrane would attenuate 

any difference between pre- and post-Gd 

measurements (by effectively restoring the 

signal fraction between intra- and extra-axonal 

compartments), permeability is expected to be 

negligible for myelinated axons over a diffusion 

time of 20 ms [43]. The low permeability 

assumption is also supported by the significant 

increase in RK post-Gd. On the other hand, T2 

reduction in the intra-axonal space due – again 

– to susceptibility gradients is expected to occur 

and result in a less pronounced intra-axonal 

water selection. Furthermore, in the absence of 

exchange, T1 is expected to be shortened in the 

extra-cellular space only, which would also 

work against extra-cellular signal suppression 

by increasing the steady-state signal available in 

that compartment (TR = 2 s, native T1 = 1.9 s, 

post-Gd T1 = 0.3 s). 

In addition to dispersion, axonal undulation is 

also known to impact diffusion measurements 

[44]. However, undulation is in fact 

predominant in extracranial white matter – to 

allow for mechanical stretching and 

compression – and the brain white matter tracts 

only display fascicular undulation, with 

wavelengths at least on the order of the voxel 

size in this study (e.g. 800 μm slice thickness) 

[45]. On these length scales, modeling 

undulation is equivalent to modeling intra-voxel 

orientation dispersion.  

The results presented here are in agreement with 

several recent reports that used different 

approaches to address the same question 

regarding compartment axial diffusivities. 

Using isotropic diffusion weighting, it has been 

shown that isotropic kurtosis was negligible in 

most brain regions, including white matter 

tracts, whereby the compartment traces were 

similar [21, 24]. Given that Tr 𝐷̂𝑎 = 𝐷𝑎,∥ while 

Tr 𝐷̂𝑒 = 𝐷𝑒,∥ + 2𝐷𝑒,⊥, it follows that Da,‖ > De,‖. 

Selective suppression of extra-axonal water can 

in principle be achieved by exploiting Da,⊥=0 

and applying a very strong gradient 

orthogonally to the main bundle direction. A 

double diffusion encoding (DDE) sequence, 

using suppression along one orthogonal 

direction, was used in the rat spinal cord, and 

results suggested Da,‖ ≈ De,‖ [23]. A planar filter 

was recently used to perform a more efficient 

suppression along all orthogonal directions, 

yielding an axonal diffusivity estimate Da,‖ = 2.0 

μm2/ms in the human white matter, in the 

infinite time limit [22]. Intra-axonal water 

selectivity achieved by ultra-high diffusion 

attenuation (up to 10 ms/μm2) also led to an 

estimated interval of [1.9, 2.2] μm2/ms for Da,‖ 

[37]. A different approach has been to examine 

the time-dependence of compartment-specific 

diffusivities in a Watson-WMTI model, which 

has also shown that functional forms are 

physically acceptable only for the set of 

solutions corresponding to Da,‖ > De,‖ [20]. The 

latter work has been performed in fixed rat 

spinal cord, which suggests the inequality 

between compartment diffusivities holds both in 

vivo and ex vivo. Most recently, the fiber ball 

white matter modeling method has also output 

Da,‖ values of 2.2 – 2.5 μm2/ms [38]. 

The current study further showed that the trace 

of the diffusion tensor (or, equivalently, the 

mean diffusivity) in the corpus callosum did not 
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change after gadolinium perfusion, which is 

similar to findings in gray matter using 

gadolinium-based [19] and fluorine-based [18] 

contrast agents. The similarity in compartment 

traces has been shown to be a distinctive feature 

of most brain regions with the exception of the 

thalamus [24], and can prove very useful for 

constraining model fitting, as already 

implemented by [46]. 

We therefore conclude that it is possible to 

constrain the two-compartment model of 

diffusion in white matter to solutions 

characterized by Da,‖ ≥ De,‖ or similarity of 

compartment traces. However, validation of 

parameter values in various pathologies remains 

to be performed [12], as they could differ 

substantially from the healthy brain. 

5. Conclusion 

In this work, we used an intracerebroventricular 

injection of a gadolinium-based contrast agent 

to attenuate the extracellular signal in the rat 

brain, and compared diffusion, kurtosis, and 

WMTI-Watson model metrics in the genu of the 

corpus callosum before and after gadolinium 

infusion. The significant increase in radial 

kurtosis post-Gd suggested the relative fraction 

of extracellular water signal was indeed 

decreased by the procedure. This was further 

supported by a significant increase in intra-

axonal water fraction as estimated from the two-

compartment model, for both branches. 

However, pre-Gd estimates of axon dispersion 

in Branch 1 agreed better with literature than 

those of Branch 2. Furthermore, comparison of 

post-Gd changes in diffusivity and dispersion 

between data and simulations further supported 

Branch 1 as the biologically plausible solution, 

i.e. Da,‖ > De,‖.  This result is fully consistent with 

other recent measurements of compartment 

axial diffusivities that used entirely different 

approaches.  
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Supplementary Figures 

Supplementary Figure 1: Pre- and post-Gd b = 0 images of the mid-sagittal slice (left), 

matching color-coded FA maps (middle) (Red: L-R, Green: H-F, Blue: A-P), and angle between 

tensor principle direction and main magnetic field (right). The white arrows indicate the genu 

of the corpus callosum. Distortions due to the surgery and the accumulation of gadolinium can 

be seen on the post-Gd image, but the genu of the corpus callosum was not visibly affected. 

The angle between the diffusion tensor and the B0 field was around 90°, as expected.  

Supplementary Figure 2: Scatter plots of diffusion and kurtosis metrics vs T2 in the genu. 

Blue: pre-Gd, red: post-Gd. T2 is used as a proxy for gadolinium concentration in the post-Gd 

measurements. Radial kurtosis correlated significantly with T2, (Pearson’s ρ = -0.66; p < 

0.01), but not axial kurtosis nor any diffusivity (black lines). 



18 
 

 

Supplementary Figure 3: Simulated diffusion and kurtosis tensor metrics assuming a WMTI-

Watson model ground truth based on Branch 1 (left) or Branch 2 (right) (see Section 3.5 for 

ground truth values). In the case of Branch 1, an increase in the intra-axonal water fraction 

resulted in an increased FA, AD and RK, and a decreased RD. In the case of Branch 2, an 

increase in the intra-axonal water fraction resulted in a decrease in all diffusivities and increase 

in all kurtoses, and a decreased RD. For both branches though, only the increase in RK was 

significant experimentally. This result highlights the involvement of susceptibility gradients in 

the post-Gd measurement and the necessity to use compartment modeling to better understand 

their effect on intra-axonal water.  
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Supplementary Data 1: 

The Watson distribution is characterized by a concentration parameter κ, from which one can 

directly derive 〈(cos 𝜓)2〉 ≡ 𝑐2: 

𝐹(𝑥) =  
√𝜋

2
𝑒−𝑥2

erfi(𝑥) (1) 

𝑐2 =
1

2√𝜅𝐹(√𝜅)
−

1

2𝜅
 (2) 

 

Perfectly aligned axons correspond to 𝜅 = ∞ and c2 = 1, while isotropically-distributed axons 

correspond to 𝜅 = 0 and c2 = 1/3. 

The 2nd and 4th order spherical harmonics expansion coefficients of this axially-symmetric ODF 

can be expressed as [20]: 

𝑝2 =
3𝑐2 − 1
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 (3) 

𝑝4 = 𝑐2 (
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16𝜅
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The Legendre expansion coefficients of the diffusion and kurtosis tensors D and W can be 

directly related to the model parameters f, Da,‖, De,‖, De,┴ and κ [16, 20]: 
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1

3
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Now relating the latter to main tensor metrics: 

AD =  𝐷0 + 𝐷2 (10) 
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𝐷2
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where AD = axial diffusivity, RD = radial diffusivity, AK = axial excess kurtosis, RK = radial excess 

kurtosis. 


