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Abstract

This work presents a novel approach using a deep neural network for finding linkage/association 

between multimodal brain imaging data, such as structural MRI (sMRI) and functional MRI 

(fMRI). Motivated by the machine translation domain, we consider two different imaging views of 

the same brain like two different languages conveying some common facts that enables finding 

linkages between two modalities. The proposed translation based fusion model contains a 

computing layer that learns “alignments” (or links) between dynamic connectivity features from 

fMRI data and static gray matter patterns from sMRI data. The approach is evaluated on a multi-

site dataset consisting of eye-closed resting state imaging data collected from 298 subjects (age- 

and gender matched 154 healthy controls and 144 patients with schizophrenia). We used dynamic 

functional connectivity (dFNC) states as the functional features and ICA-based sources from gray 

matter densities as the structural features. The dFNC states characterized by weakly correlated 

intrinsic connectivity networks (ICNs) were found to have stronger association with putamen and 

insular gray matter pattern, while the dFNC states of profuse strongly correlated ICNs exhibited 
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stronger links with the gray matter pattern in precuneus, posterior cingulate cortex (PCC), and 

temporal cortex. Further investigation with the estimated link strength (or alignment score) showed 

significant group differences between healthy controls and patients with schizophrenia in several 

key regions including temporal lobe, and linked these to connectivity states showing less 

occupancy in healthy controls. Moreover, this novel approach revealed significant correlation 

between a cognitive score (attention/vigilance) and the function/structure alignment score that was 

not detected when data modalities were considered separately.
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1. Introduction

Multiple types of brain data from the same individual using various imaging techniques, 

such as structural MRI (sMRI), functional MRI (fMRI), EEG, and MEG have created 

enormous opportunities to investigate the structure and function of the brain as well as its 

disorders in a more comprehensive manner. A combination of two or more types of data for 

joint analysis is called multimodal fusion. Despite challenges to consider when combining 

data, research in multimodal fusion is rapidly growing due to its added value for basic, 

clinical, and cognitive neuroscience. Each imaging technique essentially provides a different 

view of brain structure or function. For example, BOLD fMRI measures the hemodynamic 

response related to the neural activity in the brain dynamically; sMRI provides information 

about the tissue type of the brain [gray matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF)]. Diffusion MRI (dMRI) likewise can provide information on structural 

connectivity among brain networks. A general motivation for multimodal fusion is to take 

advantages of cross-modal information, thereby potentially revealing important variations 

that may only partially be detected by a single modality. More importantly, data fusion 

approaches can help avoid incorrect conclusions resulting from unimodal methods and help 

compensate for imperfect imaging studies (Calhoun and Sui, 2016).

The use of multimodal data fusion is especially useful in finding relationship of brain 

pathologies in psychosis as substantial pathophyisological questions can only be answered 

from cross-modal information (Schultz et al., 2012). Among different brain disorders, 

schizophrenia is the most widely studied psychosis and has served as a test bed for various 

fusion approaches (Sui et al., 2012b). Nowadays, schizophrenia, which is characterized by 

lack of integration between thought, emotion, and behavior, is considered to be a brain-based 

disease due to increasing evidence that both structural and functional brain alteration are 

found in the patients (Fusar-Poli et al., 2011). To further resolve complex neuropathological 

puzzle of schizophrenia, multimodal imaging represents a promising strategy in psychosis 

research. Although approaches to study data fusion are rapidly growing, the number of 

studies is still limited and further efforts are needed to consolidate findings so far, and to 

extend the scope of other pathophysiological features contributing to schizophrenia. To this 

end, we developed a novel machine learning approach for investigating neuronal 
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mechanisms that may underlie structure-function alterations in the patients with 

schizophrenia.

With regard to the different approaches for brain imaging data fusion, a number of 

psychosis-related fusion studies have been published. A widely adopted method is spatial 
overlap that qualitatively describes the pattern of brain alterations from different modalities 

indicating information of brain pathologies (Skudlarski et al., 2010; Camchong et al., 2011; 

Jacobson et al., 2010). A central assumption in this approach, motivated from systems 

neuroscience, is that the structure of the brain can predict and/or is related to functional 

connectivity. For example, Salgado-Pineda et al. found aberrant spatial overlaps in the 

schizophrenic patients regarding both parameters (GM volume decrease and neuronal 

hypoactivation) in three regions, including thalamus, anterior cingulate cortex, and inferior 

parietal in an attentional processing cognitive task (Salgado-Pineda et al., 2004).

Recently, data-driven approaches that are more informative and fuse the full data sets from 

different MRI modalities are receiving much attention as they make fewer assumptions 

about specific relationship among data sets (Michael et al., 2011; Calhoun et al., 2006; Sui et 

al., 2012a; Calhoun and Adali, 2009). These methods typically extract features from each 

imaging type and search for variations in structure-function links in the feature space which 

simplifies the fusion strategy but enables one to study the full joint information among 

modalities. Fusion in such a feature space has been used to identify indirect or direct 

associations to be inferred on putative structure-function relationships (Schultz et al., 2012).

Motivated by the merits of data-driven fusion approaches and the recent development of 

deep neural network based machine learning methods (Hinton et al., 2006; Bengio, 2009; 

Arel et al., 2010), we leverage both by bringing them into the multimodal fusion framework 

for brain imaging research. A limitation with most of the existing multimodal fusion 

methods is that they capture only linear relationship between different modalities (Calhoun 

et al., 2006; Correa et al., 2008), while the different types of data do likely interact 

nonlinearly and this information has the potential to provide rich information. Recent work 

on deep learning for unimodal brain imaging has shown that deep belief networks (DBNs) 

can uncover potential hidden relationship and thus facilitate discovery (Plis et al., 2014; 

Brosch et al., 2013; Kim et al., 2015). We hypothesize that gray matter variations might 

interact with the brain functional dynamics in an intricate way, and such relationships are 

buried in the data. In this work, we, therefore, utilize the ability of high level representation 

of deep models for potential discovery of brain structure-function links. We also expect that 

the estimated link strength (learned from data) would possibly show group differences 

between healthy controls and patients, thereby presenting a new framework for multimodal 

fusion in the psychosis research.

The proposed novel multimodal fusion approach extends the idea of machine translation (in 

natural language processing) for finding links between brain structure and function. Our 

view point is that sMRI and fMRI are different views/measurements of the same brain, and 

we take an analogy that different languages convey common concepts or facts in different 

ways. The key ingredient of this novel approach is an “attention” (not to be confused with 

the cognitive term attention) module that learns an alignment between features of two 
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different modalities similar to the deep machine translation model (Bahdanau et al., 2014). 

In our context, alignments are associations/links between time varying fMRI and static 

sMRI features. Unlike the case in (Bahdanau et al., 2014) where the input and output are 

ordered sequences, one of the imaging modailities (sMRI) gives us an unordered set of 

features. Therefore, we modify the model’s attention mechanism to investigate brain 

structure-functional relationships. We also examine the learned alignments for group 

differences between healthy controls (HCs) and patients with SZ, as well as their 

relationships with cognitive scores, thereby exhibiting potential advantages of the proposed 

method.

Our method advances existing methods in two distinct ways. First, to our best knowledge, 

this is the first study on deep multimodal learning in neuroimaging. Second, existing 

multimodal approaches consider functional aspect of imaging data in a static manner, while 

functional dynamics may convey important neuronal mechanisms of psychosis (Damaraju et 

al., 2014). In contrast, our fusion approach combines sMRI features and dynamic functional 

connectivity features to find variations across presumably hidden associations between brain 

structure and function.

2. Materials and Methods

We first briefly describe about data collection and preprocessing, and then the translation-

based fusion model is explained in this section.

2.1. Participants

In this work, we perform analysis on two modalities of data, T1-weighted structural images 

and T2*-weighted functional images. The resting state fMRI data were collected from 154 

healthy controls (110 males, 44 females; mean age 37) and 144 schizophrenic patients (110 

males, 34 females; mean age 38) during eye closed condition at seven different scanning 

sites. A total of 162 volumes of echo planar imaging BOLD fMRI data were collected with a 

TR of 2 s on 3T scanners. For the same subjects, T1-weighted structural images were 

collected as well. Full details on the participants and data collection can be found in (Keator 

et al., 2016) and a summary of demographics are provided in (Damaraju et al., 2014).

2.2. Data collection

MR images were collected on a 3-Tesla Siemens Trio scanner at six sites and on a 3T 

General Electric Discovery MR750 scanner at one site. High-resolution T1-weighted 

structural images were acquired with a turbo-flash sequence (TE = 2.94 ms, TR = 2.3 s, flip 

angle = 9°, number of excitations = 1, slice thickness = 1.2 mm, field of view = 256 mm, 

resolution = 256 × 256) resulting in 0.86 × 0.86 × 1.2 mm3 voxels. T2*-weighted functional 

images were acquired using a gradient-echo EPI sequence (TR/TE 2s/30ms, flip angle 77 

degrees, 32 slices collected sequentially from superior to inferior, 3.4 × 3.4 × 4 mm3 with 1 

mm gap, 162 frames, 5:38 min). Participants were instructed to keep their eyes closed during 

the scan.
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2.3. Data preprocessing

Structural data: T1-weighted images were normalized to MNI space, resliced to 2 × 2 × 2 

mm, and segmented into gray, white, and CSF images using the unified segmentation 

methods of SPM5 (Ashburner and Friston, 2005). Data quality was checked by correlations 

against the segmented templates; if the subject’s segmented gray matter data did not 

correlate at 0.9 or higher with the template across all voxels, it was removed from 

consideration. Gray matter segmentations were finally smoothed by a Gaussian filter of 10 

mm Full Width Half Maximum (FWHM). We analyzed gray matter density (GMD) with 

independent component analysis (ICA) to extract features as relationships among GMD 

regions, which is called source-based morphometry (SBM) (Xu et al., 2009). The ICA was 

performed using the group ICA of fMRI (GIFT) toolbox1 and 50 components were 

estimated. After analyzing stability of the components and visual inspection, 23 components 

were selected, and hereafter they are referred to as structural components.

Functional data: We used resting state fMRI data and performed rigid body motion 

correction using the INRIAlign (Freire and Mangin, 2001) toolbox in SPM to correct for 

subject head motion followed by slice-timing correction to account for timing differences in 

slice acquisition. Then the fMRI data were despiked using AFNI’s 3dDespike algorithm to 

mitigate the impact of outliers. The fMRI data were subsequently warped to a Montreal 

Neurological Institute (MNI) template and resampled to 3 mm3 isotropic voxels. Instead of 

Gaussian smoothing, we smoothed the data to 6 mm full width at half maximum (FWHM) 

using AFNI’s BlurToFWHM algorithm which performs smoothing by a conservative finite 

difference approximation to the diffusion equation. This approach has been shown to reduce 

scanner specific variability in smoothness providing “smoothness equivalence” to data 

across sites (Friedman et al., 2008). Each voxel time course was variance normalized prior to 

performing group independent component analysis. These processed data were then 

decomposed into components using spatial group independent component analysis (GICA) 

implemented in the GIFT toolbox (Calhoun et al., 2001). Each component can be regarded 

as temporally coherent intrinsic connectivity networks (ICN), and 47 such networks were 

selected as in (Damaraju et al., 2014). For feature representation, pairwise correlation 

between ICN time courses were computed yielding a correlation matrix of size 47 × 47. In 

order to capture dynamics, correlation was estimated using a sliding window approach with 

a window size of 22 TR (44 s) in steps of 1 TR (2 s) [see Damaraju et al. (2014) for details]. 

We refer to this windowed correlation matrix as dynamic functional network connectivity 

(dFNC). However, in order to reduce the total time steps for our translation model, we took 

average of every 4 consecutive correlation matrices. Finally, a discrete sequence of dFNC 

states were obtained using k-means clustering algorithm on the dFNC matrices, with a 

setting of k = 5 using the elbow criterion.

2.4. Translation-based multimodal fusion model

Machine translation models that produce sentences in one language from another are 

common in the natural language processing discipline. Essentially, different languages 

convey common concept or fact in different ways with their own constructs. We can consider 

1http://http://mialab.mrn.org/software/gift/
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sMRI and fMRI as two different views of the same brain, and take an approach from the 

machine translation discipline to deal with multimodal neuroimaging data.

A recently proposed neural machine translation model has shown state-of-the-art 

performance with its novel attention mechanism (Bahdanau et al., 2014). The main feature 

of the attention module is to learn alignment between phrases of two different languages for 

improving translation performance. We exploit this idea of attention mechanism to learn 

alignment (linkage) between dFNC states and brain structural components. However, unlike 

the sequence to sequence matching in the language translation, input in our case is an 

unordered set of sMRI component loadings and output are temporally ordered dFNC states. 

To tackle this problem, we propose a simple modification in the attention network in our 

translation model. Figure 1 depicts the different parts of our translation model in the context 

of neuroimaging. The model stacks several neural-network layers (six layers in total) which 

we describe below.

As shown in Fig. 1, two main parts of our translation-based fusion model are: (1) sequence 

predictor and (2) attention network. The input-output setting of the model is as follows. 

Input is an unordered set of structural component loadings of a subject, x = {x1,…, xj,… xJ}, 

and the output is a temporally ordered dFNC state sequence, y = {y1,…, yi,…yT}, of the 

same subject estimated from the preprocessing step described in Section 2.3. The central 

theme of the model is that information for predicting a sequence y from the corresponding 

loading coefficients x may spread through out the structural components, which can be 

selectively retrieved as the sequence predictor predicts a dFNC state at each time step. This 

is achieved by training both sequence predictor and attention network jointly from the 

multimodal data. Further details of the model are described below.

Sequence predictor—The sequence predictor is a probabilistic model that predicts one 

dFNC state of a sequence at each time step, where we define each conditional probability as

p(yi ∣ y1, …, yi − 1, x) = h(si, ci), (1)

where si is the current hidden state of a unidirectional recurrent layer and ci (more details 

will be provided shortly) is the current selective focus over structural components, referred 

to as context hereafter. A few points about the probability model of Eq. (1) are noteworthy. 

First, it embodies a fusion implicitly as the probability is conditioned on previous output 

history (from one modality) and the input (from the other modality). Second, the time index 

i indicates dynamic property of one of data modalities. Finally, right hand side of Eq. (1) 

captures the aspect of deep learning, i.e., the predictor works with latent representations of 

input and output as opposed to the direct input-output, which are learned from the data.

We realize Eq. (1) by a feedforward neural network (NN) [a single hidden layer with 

softmax output] stacking it on a recurrent layer. At each time point, the recurrent layer 

computes the current hidden state si which is a function of past state, previous output from 

the feedforward NN, and the current context, i.e.,
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si = g(si − 1, yi − 1, ci) .

The recurrent layer helps finding a learnable smooth trajectory in a latent representational 

space. We use gated recurrent units (GRUs) in the recurrent layer as they work well for 

sequence representation (Chung et al., 2014). Each output dFNC state yi indicates one of the 

centroids of five clusters (see Section 2.3). Since the centroids are 47 × 47 matrices lying in 

rather a low dimensional subspace, we reduce the dimension into 4, i.e., yi ∈ R4, using 

principal component analysis (PCA). The remaining term, current context ci, is described in 

the next subsection.

Attention network—For our study, attention network is the most important part as it 

enables learning association(s) between functional dynamics and structural features. Just 

before the sequence predictor predicts i-th dFNC state, the attention network first computes 

an alignment score (indicating strength of association) as to how well the structural 

component xj matches with dFNC state yi. This score is based on recurrent state si–1 and 

evaluated for all structural components, i.e., for j = 1, 2,…, J, in each time step i. We use a 

feedforward neural network (NN) with a single hidden layer for the attention module as 

described below.

ei = V⊺ tanh Wssi − 1 + Wx
⊺x (2)

αij =
exp(eij)

∑ j = 1
J exp(eij)

, for j = 1, 2, …, J (3)

Here V, Ws and Wx are the parameters of a feedforward NN, and ei is a vector of length J 

containing unnormalized alignments. Then the normalized alignments are computed 

according to Eq. (3) to provide a probabilistic interpretation. The attention network 

modulates the structural components with its learned alignments and computes a context 

vector ci at i-th time step as

ci = αi•x (4)

where ● indicates element wise multiplication. In other words, the context vector serves as 

the currently focused structural components with their soft alignments. In effect, each 

alignment αij reflects the importance of structural component xj with respect to previous 

hidden state si–1 in deciding next state si and generating dFNC state yi by the sequence 

predictor.
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Our interest with the translation-based fusion model described above is to examine brain 

structure-function relationship in terms of the alignments, αij, for i-th dFNC state and j-th 

structural components. Note that these alignments are learned from the data, thus taking 

representational advantage of deep learning (Bengio, 2009). Since similar models have been 

proved to be able to find meaningful associations in machine translation (e.g., alignment 

between phrases of two languages (Bahdanau et al., 2014)) and image caption generation 

(e.g., association between phrases in text and regions in image (Xu et al., 2015)), we rely on 

our method for finding associations between fMRI and sMRI features faithfully.

Both the sequence predictor and attention network are trained jointly using a gradient based 

optimization algorithm called rmsprop (Tieleman and Hinton, 2012) with respect to a 

negative log-likelihood based cost function,

−log(p(y ∣ x)) − λ∑αij
2 .

In order to avoid the overfitting problem, we use L2 regularization on alignments and a 50% 

dropout (Srivastava et al., 2014) in the hidden layers of feedforward NNs (see Fig. 1). No 

dropout was adopted in the recurrent layer and inputs.

There are some architectural choices and hyper parameters for our model shown in Fig. 1. 

Based on the lowest negative log-likelihood on a hold out subset of data over several 

configurations, we selected number of the hidden neurons in both feedforward NNs as 50, 

the number of recurrent units in the recurrent layer as 50; and set the learning rate and the 

coefficient of L2 norm as 0.01 and 0.5, respectively. The model with this configuration was 

trained using a gradient descent algorithm (Tieleman and Hinton, 2012) over entire data, and 

then the alignments were extracted from the model. We took 100 runs with different random 

neural-network weight initializations of the model, and the alignments were averaged over 

100 runs for subsequent analysis.

3. Results

Here, we present our results in terms of learned alignments between dFNC states and ICA-

based structural components. The dFNC states and structural components were computed 

following the processing of fMRI and sMRI data, respectively, as described in Section 2.3. 

In effect, the dFNC states capture dynamics of fMRI in terms of changes in functional 

connectivity among various gray matter areas of brain, while the structural components 

represent patterns of GMD covariation among subjects. Consequently, the alignments 

learned by our model give an account of possible associations between different states of 

functional connectivity and brain GMD patterns.

The dFNC states and structural components

Following previous study (Damaraju et al., 2014) on dFNC, a total of 47 ICNs were 

identified with GICA and arranged into groups based on their anatomical and presumed 

functional properties. As shown in Fig. 2(A), the ICNs were grouped into subcortical (SC), 

auditory (AUD), visual (VIS), somatomotor (SM), cognitive control (CC), default-mode 
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network (DMN), and cerebellar (CB) networks covering majority of subcortical and cortical 

gray matter. The time courses associated with 47 ICNs were windowed first and then 

functional connectivity was measured as temporal correlation among ICNs within the 

window. We clustered the resulting dFNC correlation matrices for all subjects using k-means 

algorithm with the elbow criterion and obtained five clusters as shown in Fig. 2(B). Each 

subject, therefore, stays in one of the five transient states at any given time point. All the 

states exhibits modular organization in the functional connectivity patterns within sensory 

systems and default mode regions, which is consistent with prior literature (Allen et al., 

2012). There are also noticeable differences among the transient states. For example, States 

1 and 2 are sparsely connected, i.e., the most ICNs have weaker correlation among them 

indicating less synchronicity across majority of subcortical and cortical gray matter areas. 

State 2, however, differs from State 1 in terms of higher positive correlation among regions 

of DMN and more negative correlation between DMN and other cortical regions. States 3, 4, 

and 5 show relatively high to moderate correlations/anticorrelation among many ICNs. In 

particular, we can see very strong positive correlation among the ICNs of various sensory 

and motor systems in these three states. The ICNs within the DMN of State 4 have higher 

positive correlation, while the state exhibits strong anticorrelation between DMN and 

sensory ICNs. State 3 characterizes a unique aspect of functional connectivity pattern 

comprising increased subcortical connectivity, very strong anticorrelation between 

subcortical and sensory/motor systems, and a breakdown of default-mode connectivity 

which might be related to a transient state of drowsiness (Allen et al., 2012).

According to Allen et al. (2012), dFNC states depicts connectivity patterns that are quasi-

stable, i.e., they reoccur over time and are present in numerous subjects. Left panel of Fig. 

3(A) displays an example of how each subject dwells and make transition between states 

over time. It should be mentioned that a single subject may or may not dwell all of the five 

subjects during his/her entire scan time. Moreover, some states were transitioned to more by 

the HC group, while some others were more dwelled by the patients. To summarize dFNC 

states over HC and patient group, the state occupancy rates are shown in the right panel of 

Fig. 3(A) in terms of average dwelling time per subject. It can be observed that patients with 

SZ spent more time than the HCs in states 1 and 2, wherein most ICNs exhibited weaker 

functional connectivity. On the other hand, HCs made more transitions than patients in states 

3, 4, and 5 that represented high to moderate correlations among many of the ICNs.

Features from other modality, i.e., structural MRI, were computed from gray matter densities 

(GMD) using ICA decomposition into sources and their associated weights (loading 

coefficients) in the subjects. The sources represent maximally independent spatial 

components (maps). Each component captures gray matter covariation within a source, but 

independent of other sources. This type of analysis is also known as source based 

morphometry (SBM) (Xu et al., 2009). A total of 23 structural components were selected 

with SBM analysis. Some of the components are shown in the left panel of Fig. 3(B) (all of 

23 components are mentioned and shown in the next section). We used a set of 23 loading 

coefficient values for each subject as sMRI feature values in our translation model. The right 

panel of Fig. 3(B) displays a box-plot of loading coefficients between two groups, HCs and 

patients with SZ, showing that some components have higher mean values in their weights 

for the HCs and some components have lower than the patients.
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The sMRI features (loading coefficients) and fMRI features (dFNC state sequence) 

described above are set as the input and output of our translation model (see Fig. 1), 

respectively, with a goal that the attention module would learn alignments (strength of 

associations) between sMRI and fMRI features. The alignment results are described in the 

next section.

Alignments between dFNC states and structural components

To illustrate how the attention network selectively finds associations between dFNC states 

and structural components, the learned alignment scores (as described in (Eq. 4)) are 

depicted in Fig. 4 by overlaying transparency masks over the structural components. The 

higher the alignment score the higher the transparency. Alignments in the left top panel are 

averaged over states 1 and 2 where patients with SZ made more transitions, while the left 

bottom panel shows an average over states 3, 4, and 5, wherein HCs were more engaged. 

Note that the alignments were first averaged over all subjects, and then were summarized for 

the states. A distinction can be observed between the associations of dFNC patterns and 

structural components. For example, precuneus, posterior cingulate cortex (PCC), and 

several temporal gyri were more strongly associated with the dFNC states (3,4, and 5) 

consisting of many strongly correlated ICNs, compared to the states (1 and 2) having mostly 

weakly correlated ICNs. On the contrary, the strengths of association with insula (and part of 

temporal gyri) and putamen were found to be higher for the dFNC states 1 and 2. Another 

distinction can be seen in the right panel of Fig. 4 which depicts that alignments are more 

uniformly spread out for the dFNC states 3,4, and 5 than those of states 1 and 2 across. 

Alignment scores for individual states are shown in Fig. 3. In effect, each dFNC state has 

alignment scores across all 23 structural components and they sum to 1.00 [Eq. (3)]. If equal 

focus or attention was given to every structural component, the alignment score would be 

1/23 = 0.043. Besides, the alignment scores vary across subjects for each dFNC state - 

structural component pair. Therefore, we show the mean alignments (thresholded at 0.056) 

across all subjects including HC and SZ in Fig. 5(A). States 1 and 2 where ICNs were 

sparsely connected had some similarity in their alignments, for example, both showed 

stronger associations with putamen and insula. On the other hand, state 3, 4, and 5 showed 

their associations with some of the structural components in the saliency and default mode 

networks [precuneus, PCC, and anterior cingulate cortex (ACC)], and in temporal cortex, in 

addition to the insula. In other words, the alignments for states 3,4, and 5 were more spread 

out than those for states 1 and 2, in addition to their regional differences across the brain.

The group differences in alignments are shown in Fig. 5(B) and Fig. 6. It should be 

mentioned here that no discriminating information of HC and SZ was given during the 

training of the model. To measure the significance, Kolomogorov-Smirnov tests were 

performed and the p-values are provided in each plot of Fig. 5(B). Mean alignments of states 

1 and 2 with putamen were significantly higher for the patients with SZ. Healthy controls 

showed more alignments than SZ in case of states 3 and 5 with middle temporal gyri which 

is involved in various cognitive tasks. States 2, 3, and 5 also showed higher associations with 

precuneus and PCC for the healthy controls. Interestingly, most of the states exhibited 

significantly higher alignments with insula for the patients with SZ.
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Relationships between alignments and meta-data

We examined the learned alignment scores to study their group-wise relationship with a 

cognitive score (attention/vigilance). This domain score was taken from (van Erp et al., 

2015), which was based on the d-prime across blocks continuous performance test (CPT) z-

scores (Vermeiren and Cleeremans, 2012). It measures how well a respondent discriminates 

between non-targets from targets. Figure 7 shows a linear regression fit between attention 

and vigilance score and alignments along with the p-values of significance test. Also shown 

are the relationships when each of the structural and functional features were considered 

individually. The alignments of state 3 with middle temporal gyri revealed a strong positive 

correlation for the HC group, and those of state 5 with ACC showed a strong negative 

correlation for the patients with SZ. No such relationship, however, could be found when 

individual modality of data were examined. This clearly shows a benefit of taking 

multimodal approach because individual modality might capture only partial views.

4. Discussion

This study has proposed a novel method of multimodal fusion for neuroimaging data with a 

particular goal of finding association between brain structure and functional dynamics. The 

key idea is that to some extent information about dynamic fMRI features are spread over 

gray matter structural patterns, which can be selectively extracted using state-of-the-art 

machine learning techniques. To this end, we leverage the recent advancement of attention 

mechanism in deep learning to find (possibly nonlinear) alignments/associations between 

brain structure and function.

The dFNC patterns capture changing functional connectivity as the time proceeds. An 

analysis on the patterns by k-means clustering resulted in two major types of patterns. 

Among five clusters (states), states 1 and 2 account for weaker connectivity within majority 

of ICNs and demonstrates no strong connectivity between subgroups (SC, AUD, VIS, SM, 

CC, DM, and CB). These are also the states wherein the patients with SZ made significantly 

more transitions than the HCs, suggesting a dysconnectivity in the SZ (Damaraju et al., 

2014). Our translation-based multimodal fusion approach adds more information revealing 

possible linkage of these states (1 and 2) with some of the brain structures. In particular, 

these states have stronger associations with insula and putamen. Insula has been shown to 

have strong connection with aberrant activities in default mode and central executive 

networks in schizophrenic patients (Manoliu et al., 2014). It also shows more of gray matter 

volume loss in practically any other brain region in the patients with SZ. Parts of it along to 

circuits are concerned with distinguishing between stimuli coming from inside and outside 

the body, which gives it an obvious potential role in schizophrenia. Our findings of stronger 

associations between states 1(2) and insula are consistent with this finding as the states were 

significantly dwelled by the patients with SZ. On the other hand, states 3, 4, and 5 speaks for 

high to moderate correlations among the several ICNs, including regions in AUD, VIS, and 

SM. Interestingly, the HCs made more transitions in these states. With regard to their 

associations with the brain structures, significantly more alignments are revealed with the 

GMDs in precuneus, PCC, and temporal cortex. Furthermore, comparing alignment 

distributions across structural components, states 3, 4, and 5 seem to be more evenly spread 
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out than the states 1 and 2. This is expected because many ICNs showed stronger functional 

connectivity in states 3, 4, and 5. These distinctive new findings suggest potential advantages 

of our novel multimodal approach in the psychosis research.

Besides finding associations between brain structure and functional dynamics, we examined 

learned alignments for their possible relationships to cognitive scores (van Erp et al., 2015). 

A strong positive correlation between attention and vigilance score and alignment of state 3 

with middle temporal gyri, for the HCs, was revealed only when multimodal fusion was 

adopted. Neither of unimodal features indicated such relationship. Likewise, a strong 

negative correlation for the patients with SZ was found between their cognitive scores and 

alignments of state 5 with ACC, while unimodal features failed to provide such information. 

The positive correlation in the HCs and negative correlation in the patients suggest distinct 

structural-functional mechanisms, thereby demonstrate an interplay between deficits and 

dysfunction in the patients. The observed relationships are consistent and extends previous 

reports on structural-functional abnormalities in patients with SZ. Using a data-driven 

multimodal fusion approach, Michael (Michael et al., 2011) showed significantly differing 

structure-function association in the ACC and temporal regions. Koch et al. (Koch et al., 

2013) investigate white matter connectivity and cortical thickness for aberrant structure-

function association in the schizophrenic patients. Their study suggests a complex disruption 

of gray and white matter integrity within cingulo-temporal network which is hypothesized to 

have a major psychopathological relevance in schizophrenia.

The method proposed in this paper employs advanced machine learning technique in the 

multimodal fusion framework. It is highly suitable when one of (or both) the modalities has 

(have) dynamics in its (their) features. A limitation of our present study is that we worked 

with somewhat distilled data for the functional dynamics (i.e., dFNC states). However, in 

principle, the deep learning approach has a potential for learning dynamic features from the 

fMRI data, and thus can offer a favorable framework for multimodal fusion in the brain 

imaging research. We plan to explore this in future work.
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Figure 1: 
A translation model for learning alignment between functional dFNC states and structural 

components. The attention network module is a feed forward network (input: 23, hidden: 50, 

output: 23) with a 50% dropout (Srivastava et al., 2014) in the hidden layer. The sequence 

predictor module has a recurrent layer (consisting of 50 gated recurrent units) and a 

feedforward network (input: {50+23 = 73}, hidden: 50, output: 5) with a 50% dropout in the 

hidden layer. The recurrent layer uses the dFNC correlation matrix as an embedding in the 

real vector space for the dFNC states.
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Figure 2: 
(A) Intrinsic connectivity networks (a total of 47) arranged into groups: subcortial (SC), 

auditory (AUD), visual (VIS), somatomotor (SM), cognition control (CC), default mode 

(DM), and cerebellar (CB). An associated number in each group indicates the number of 

ICNs included the group. (B) The dFNC states as the centroids resulting from cluster 

analysis of dFNC correlation matrices. States 1 and 2 have low correlation among 47 ICNs, 

while 3, 4, and 5 have high to moderate correlation.
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Figure 3: 
sMRI and dynamic fMRI features used as input and output of the translation model. (A) 

Dynamic functional connectivity (dFNC) features as dFNC state sequence. Left panel shows 

examples of time sequences of dFNC states transitioned by each subject. Right panel shows 

group-average dwell time per subject for each of the five transient states. (B) Loading 

coefficients as sMRI features (left panel: each subject has a set of 23 values for the 

corresponding loading coefficients and right panel: box-plot of loading coefficients between 

HCs and patients with SZ.
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Figure 4: 
Left panel: alignment scores between dFNC states and structural components depicted as 

over-layed transparency masks. The higher the alignment score higher the transparency. Top 

diagram shows alignments averaged over dFNC states 1 and 2 (wherein patients with SZ 

made more transitions). Bottom diagram presents alignments averaged over dFNC states 3, 

4, and 5 (wherein the HCs made more transitions). Right panel: Same alignment scores (of 

left panel) shown as stacked plots. In each stack, alignment scores sum to 1.0 over 23 

structural components (colors are provided to match each structural component in both of 

the stacks as a visual aid. From bottom to top: caudate, thalamus, putamen, orbitofrontal, 

medial frontal, middle frontal, inferior frontal, SMA, superior parietal, right post central, 

cuneus and visual, middle occipital, calcarine, middle temporal and occipital, precuneus and 

posterior cingulate cortex, anterior cingulate cortex, upper cerebellum, lower cerebellum, 

right inferior temporal, left inferior temporal, middle temporal, superior temporal, and insula 

and temporal, respectively.
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Figure 5: 
Alignments learned by the translation-based fusion model. (A) Mean alignments across all 

subjects (both HC and SZ) thresholded at 0.057. (B) Group differences in alignments. The 

significances (FDR corrected) of Kolmogorov-Smirnov tests are provided as asterisks 

(‘****’: p < 10−4; ‘***’: p < 10−3); ‘**’: p < 10−2; ‘*’: p < 0.05; and ‘ns’: p > 0.05.
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Figure 6: 
Group differences in learned alignments between fMRI and SMRI features. A red 

connection indicates higher mean for patients, black denotes higher mean for HCs. 

Significance of group differences are displayed as width of connections; the higher the 

significance, the wider the connecting lines between dFNC sates and structural components.
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Figure 7: 
Linear regression fit for attention and vigilance score with alignments [top panel: alignments 

of state 3 with middle temporal gyri and bottom panel: alignments of state 5 with ACC]. 

Each plot is annotated with the significance level (p-value). Relationships with individual 

modality, structure and dFNC, are also shown in the left two plots of top and bottom panels.
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