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Abstract

This work evaluates the accuracy and precision of the Diffusion parameter EStImation with Gibbs 

and NoisE Removal (DESIGNER) pipeline, developed to identify and minimize common sources 

of methodological variability including: thermal noise, Gibbs ringing artifacts, Rician bias, EPI 

and eddy current induced spatial distortions, and motion-related artifacts. Following this 

processing pipeline, iterative parameter estimation techniques were used to derive diffusion 

parameters of interest based on the diffusion tensor and kurtosis tensor. We evaluated accuracy 

using a software phantom based on 36 diffusion datasets from the Human Connectome project and 

tested the precision by analyzing data from 30 healthy volunteers scanned three times within one 

week. Preprocessing with both DESIGNER or a standard pipeline based on smoothing (instead of 

noise removal) improved parameter precision by up to a factor of 2 compared to preprocessing 

with motion correction alone. When evaluating accuracy, we report average decreases in bias 

(deviation from simulated parameters) over all included regions for fractional anisotropy, mean 

diffusivity, mean kurtosis, and axonal water fraction of 9.7%, 8.7%, 4.2%, and 7.6% using 

DESIGNER compared to the standard pipeline, demonstrating that preprocessing with 

DESIGNER improves accuracy compared to other processing methods.
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1. INTRODUCTION

Diffusion MRI (dMRI) is a technique to non-invasively visualize the structure of 

microstructural tissue properties (Beaulieu, 2002; Jones, 2010; Le Bihan et al., 1986). A 

common drawback to dMRI, despite its use in clinical applications in brain (Moseley et al., 

1990; Warach et al., 1995) and body (Haider et al., 2007; Kiselev, 2017; Koh and Collins, 

2007), is the sparse signal relative to noise or artifacts. There is a need for robust dMRI 

processing pipelines to provide clinicians and researchers with confidence in diffusion 

outcome measurements. Such a pipeline should adequately identify and correct for thermal 

noise and for the various imaging artifacts typically present in dMRI, as described here in 

more detail.

Human dMRI data collected on clinical scanners suffers from low SNR typically due to a 

combination of strong diffusion gradients and long echo times (TE=60–120ms). The low 

SNR limits the precision and, albeit less intuitive, the accuracy of diffusion parameter 

estimators (Aja-Fernandez et al., 2008; Veraart et al., 2011). Improved precision with the 

same hardware can only be achieved by lengthening the scan time, which is often clinically 

infeasible since precision increases slowly, as a square root of scan time. Otherwise, 

increasing SNR can be achieved by lowering the spatial resolution, which results in loss of 

anatomical detail; by shortening the echo time, which is often not possible due to hardware 

limitations; or by smoothing, which inherently decreases the effective resolution due to 

partial volume effects. Furthermore, since the noise level couples with the expected signal 

due to the generally non-Gaussian nature of the MRI noise in magnitude MR images 

(Gudbjartsson and Patz, 1995), one needs to employ an accurate noise model either in the 

parameter estimation framework (Sijbers and den Dekker, 2004) (e.g., maximum likelihood 

estimators), or correct the signal (e.g., using the method of moments), prior to any parameter 

fitting (Aja-Fernandez et al., 2008; Koay and Basser, 2006).

In addition to limited SNR, human dMRI data may also suffer from a plethora of particular 

artifacts that stem from various sources. Long scan times intensify motion-based and 

physiological artifacts (Le Bihan et al., 2006), strong gradients can cause eddy current 

artifacts (Andersson and Skare, 2002; Andersson and Sotiropoulos, 2016) and these 

gradients coupled with magnetic field inhomogeneity and EPI read-out lead to geometric 

distortions (Andersson et al., 2003). In addition, radio frequency pulse inhomogeneity can 

lead to spatial signal bias (Smith et al., 2004) and insufficient spatial sampling can cause 

Gibbs ringing (Barker G, 2001; Tournier et al., 2011; Veraart et al., 2016a). Gibbs ringing 

artifacts are of particular relevance in dMRI. They are produced when high-contrast 

boundaries are sampled with an insufficient spatial sampling frequency. This artifact has 

been identified as the source of inaccuracies in the parameterization of the dMRI data, 

including negative radial diffusivity or kurtosis values (Perrone et al., 2015; Veraart et al., 

2016a), often referred to as the so-called “black voxels” in kurtosis maps (Kellner et al., 

2016; Perrone et al., 2015; Veraart et al., 2016a).

To address the need of a processing pipeline that amends the low SNR and artifacts 

mentioned above, we developed the DESIGNER pipeline to restore the quality and integrity 

of dMRI data while preserving spatial resolution (Ades-Aron, 2016). The main DESIGNER 
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steps are: (i) MP-PCA denoising (Veraart et al., 2016c) based on identifying Marchenko-

Pastur distribution of noise-only principal components. This approach improves SNR (by 

factor of 2–4) without longer scan time or reduced spatial resolution. (ii) Rician bias 

correction based on the estimated noise level (Veraart et al., 2016b). (iii) Gibbs correction 

based on shifting the zero-crossings of the sinc function in k-space (Kellner et al., 2016). (iv) 

Corrections for EPI distortions, motion, and field inhomogeneity (Smith et al., 2004). (v) 

Parameter estimation. In this work, this pipeline combines preprocessing and analyses steps 

in a specific order, and then, as an example, estimates diffusion signal’s cumulants (diffusion 

and kurtosis tensors), as well as White Matter Tract Integrity (WMTI) metrics (Fieremans et 

al., 2011) for quantification of the axonal water fraction (AWF). However, this approach is 

compatible with parameter estimation for any signal representation and/or biophysical model 

of choice as the last step.

DESIGNER is currently available online in a fully integrated open-source framework 

implemented in both MatLab (The MathWorks, Inc.) and Python and can be found at: 

www.github.com/NYU-DiffusionMRI/Diffusion-Kurtosis-Imaging.

The outline of this work is as follows. We first characterize the nature of thermal noise and a 

number of specific artifacts relevant to dMRI. Next, we show how each component of 

DESIGNER is tailored to either remove noise, or model and correct artifacts. Finally, we 

demonstrate the robustness of the pipeline in terms of accuracy relative to an unbiased high-

SNR reference dataset and parameter precision in human data.

The accuracy and precision of the DESIGNER pipeline were evaluated using simulated and 

test-retest dMRI datasets. Accuracy was evaluated by synthesizing a reference dMRI signal 

based on averaging the dMRI signals from 36 subjects randomly taken from the Human 

Connectome Project data set. Precision was evaluated in terms of the scan-rescan 

reproducibility of diffusion metrics in normal human volunteers. We report that the 

DESIGNER pipeline demonstrated higher accuracy and stability over the standard dMRI 

analysis approaches as compared to a typical processing pipeline with or without smoothing.

2. METHODS

2.1. DESIGNER pipeline

The flowchart shown in Figure 1 describes the order of operations of DESIGNER and 

compares it to a typical processing pipeline used in dMRI. The most distinct feature of the 

designer pipeline is the specificity in image quality improvement, including thermal noise 

reduction and Gibbs ringing correction. We will show that such targeted approaches 

outperform more brute force techniques, e.g. spatial smoothing, which are adopted by 

several dMRI analysis pipelines (Cui et al., 2013; Tabesh et al., 2011).

Our basic metric of the efficacy of denoising and Gibbs ringing removal is the power 

spectrum, E(k) = |ϵ(k)|2/A, of normalized residuals ϵ(x) = (Spost (x) − Spre (x))/σ within a 

slice, where S is the original signal, Spost is the post correction signal, Spre is the pre 

correction signal, and σ is standard deviation of noise, ϵ(k) = ∫ d2x ϵ(x) e−ikx, and A is the 

slice area (the number of voxels). We study this power spectrum as a function of the radial k 
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= |k| within a slice, after angular-averaging over the shell-like bins. For the perfectly 

spatially-uncorrelated residuals, the power spectrum normalized in this way is a unit line 

E(k) = 1 for all k. We apply this metric to each step and show results for MPPCA and Gibbs 

correction steps.

We now describe each pipeline step in detail.

2.1.1. Denoising using MP-PCA—Data is first processed using our recently 

introduced MP-PCA technique for noise estimation and reduction (Veraart et al., 2016b; 

Veraart et al., 2016c). This technique is enabled by exploiting data redundancy in the PCA 

domain using properties of the eigenspectrum of random covariance matrices. It is important 

that the denoising step is the first stage of the pipeline as it relies on noise being uncorrelated 

both spatially and among the successive acquisitions (in the dMRI case, in the q-space). 

Performing this step after processing steps that use interpolation to reconstruct images 

would result in correlated noise and failure of the basic assumptions underlying the random 

matrix theory-based approach to PCA denoising. MP-PCA removes only thermal noise 

without compromising anatomical features, requires about 1 minute processing time for the 

whole brain, and provided an accurate estimate of the noise level that is needed for Rician 

bias correction in a later stage. MP-PCA software has been implemented in MatLab (https://

www.nitrc.org/projects/mppca/) and as a C++ library function, as part of the open-source 

MRtrix package (Tournier et al., 2012).

Here, we evaluate the performance of MP-PCA in terms of accuracy and precision, whereby 

we also investigate the effect of spatial redundancy by selecting different kernel windows 

and varying SNR-levels, as described below.

2.1.2. Gibbs Ringing Artifact Correction—The MR image is reconstructed from 

finite sampling of the signal following the inverse Fourier transform. High-contrast 

boundaries such as the border between CSF and gray/white matter may produce an image 

artifact in the form of Gibbs rings due to insufficient sampling of the high frequency 

information. Diffusion parameters are significantly affected by Gibbs ringing, both 

qualitatively (Barker G, 2001; Perrone et al., 2015) and quantitatively, as our recent 

analytical calculations show (Veraart et al., 2016a). Consequently, correction techniques like 

Gegenbauer reconstruction (Amartur and Haacke, 1991) or extrapolation methods (Amartur 

et al., 1991; Archibald and Gelb, 2002) aim at recovering missing frequencies based on the 

analytical information available. We apply an alternative approach where the truncation in k-

space can be modeled as a convolution with a sinc-function in image space. Hence, the 

severity of the artifacts depends on how this sinc-function is sampled. The method 

implemented here re-interpolates the image based on local subvoxel shifts to sample the 

ringing pattern at the zero-crossings of the oscillating sinc-function (Kellner et al., 2016). 

This sinc-function is found by computing the total variation in the neighborhood of each 

voxel in each orthogonal direction in an image defined on a square lattice and computing the 

shift in voxel position which minimizes the oscillation. The final voxel value is found by 

interpolating the shifted image based on the original image grid. This way, the artifact can be 

effectively and robustly removed with a minimal amount of filtering.
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2.1.3. Rician Bias Correction—The noise in dMRI images is governed by a Rician or 

non-central χ distribution that creates a positive bias in low SNR (especially SNR < 2) 

images (Gudbjartsson and Patz, 1995). This bias may affect the fitting of a diffusion model 

at high b data (e.g., b ≳ 2000 s/mm2) (Gudbjartsson and Patz, 1995). We use MP-PCA 

denoising to estimate an unbiased standard deviation σ of the noise at each voxel (Veraart et 

al., 2016b) from low b (typically, up to b = 1000 s/mm2) data, and use the analytical 

paradigm described by (Koay and Basser, 2006) to estimate the expected value of true signal 

voxel intensity η:

η2 = M 2 + (ξ(θ) − 2)σ2

where M is the measured magnitude signal intensity, and ξ(θ) is a correction factor with 

θ ≡ η
θ ≡ SNR (Koay and Basser, 2006). At SNR>2, ξ(θ ) goes to 1 and we make use of the 

approximation: η = M 2 − σ2 to calculate the correct signal intensity.

2.1.4. EPI + Eddy Current and Motion Correction—Strong and rapidly switching 

diffusion gradient fields cause scaling and shear effects in the phase-encoding direction, as 

well as image translations that vary with slice position. To account for geometric distortions, 

eddy currents, and motion artifacts, FSL’s TOPUP (Andersson et al., 2003) and single target 

eddy (Andersson and Sotiropoulos, 2016) are used to model slice dependent geometric 

shearing, and correct for motion differences by registering to a high SNR b = 0 image 

respectively. DESIGNER improves the accuracy of EPI and eddy current correction by 

preceding this correction with MP-PCA denoising. Here, we evaluate the extent of accuracy 

improvement in motion correction using two motion correction tools – eddy and TORTOISE 

(C. Pierpaoli, 2010). The DWI phantom fully described in the next section was used to 

evaluate the improvement in accuracy in motion correction that results from MPPCA 

denoising. We generated 6 random sinusoids to add continuous rotation and translation to 

the phantom, we then added noise at SNR=15 and denoised with MPPCA. Motion 

correction was performed on the noiseless phantom, noisy phantom, and denoised phantom. 

The mutual information was computed between each volume of the original phantom and 

each corresponding volume of the three test datasets.

2.1.5. B1 Bias Field Correction—The signal intensity of MR image data can be 

spatially biased due to radiofrequency (RF) field inhomogeneities caused by high-density 

receiver coils. This is often referred to as a B1 bias field. This variability in signal through 

tissue of the same type can affect the tensor fitting to diffusion data. In particular, in the case 

of multiple b-shell acquisitions spread over different scan series, the inhomogeneity 

spectrum can vary and propagate major artifacts to model parameters. For each DWI series, 

we estimate the bias field based on the mean b = 0 image and apply the field correction to all 

related volumes. This correction is performed using the FAST (Smith et al., 2004; Zhang et 

al., 2001) tool in FSL.

2.1.6. Outlier Detection—The two types of outlier correction implemented here include 

the eddy signal dropout (“repol”) tool (Andersson et al., 2016), as well iterative parameter 
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estimation during tensor estimation. least-squares regression models assume that signal 

variability is due to thermal noise rather than artifacts such as ghosting or chemical shifts. 

While signal variability produced by thermal noise is approximately Gaussian distributed 

with SNR > 2, variability produced by artifacts, in general, cannot be modeled. Due to the 

likely presence of outliers in dMRI data, it is important to use an estimator that is not 

sensitive to artifacts. The method of outlier detection and rejection (Collier et al., 2015) 

employs iteratively reweighted linear least-squares (IRWLLS) regression to identify 

potential outliers, whereby the residuals of the fit determine the weighting applied to the 

next iteration, ensuring that outlying directions with larger residuals will receive 

correspondingly lower weights during the estimation of the tensor (Collier et al., 2015).

The steps described here outline the major components of DESIGNER. After the completion 

of these steps, a model can be fit to signal using a diffusion parameter estimator. Placing 

positivity constraints on diffusion or kurtosis parameters is a reasonable assumption for most 

biological applications of dMRI, however the disadvantage is that such constraints inevitably 

bias the estimated values. In the classical approach, these constraints are required. With 

DESIGNER, we typically obtain fairly stable and unbiased results even without constraints. 

In addition, constrained nonlinear fitting is often time consuming, especially as compared 

with linear fitting for DTI and DKI, and is prone to fitting outlier data points to boundary 

condition values.

The DESIGNER pipeline provides the advantage of targeting noise and artifacts as separate 

entities, increasing both accuracy and precision of estimated parameters. We will now 

describe our methods for evaluating accuracy and precision.

2.2. Accuracy

2.2.1. Diffusion brain software phantom used to assess accuracy—We 

measured the accuracy of DESIGNER by creating a diffusion brain phantom using data 

from the Human Connectome Project (Van Essen et al., 2013). 36 dMRI images with voxel 

size 1.25x1.25x1.25mm3, acquired in a matrix of 145x174x145 were used to create an 

artificial dMRI brain phantom. These datasets were corrected for EPI and motion artifacts on 

an individual basis prior to phantom construction.

We first computed the nonlinear warp from a b = 0 image of each dataset to the b = 0 image 

of a single HCP subject using Elastix (Klein et al., 2010). 6th order spherical harmonic 

representations were then computed for b = 1000, 2000, and 3000 s/mm2 shells of each 

dataset and then transformed to a common space by applying the warp computed based on b 
= 0 images. Spherical harmonics were rotated based on the Jacobian of each warp field in 

order to keep them correctly aligned after nonlinear transformation. Finally, transformed 

spherical harmonics for each shell were averaged and projected in 30 unique directions 

generated by finding the lowest Coulomb energy for 30 repelling charges on a sphere (Jones 

et al., 1999). This procedure allowed us to generate a new set of dMRI images with the same 

resolution but much higher SNR by averaging over both subjects and over diffusion 

directions. High SNR benchmark parametric maps of FA, MD, MK, and AWF were 

computed for the HCP phantom based on an unconstrained linear least-squares fit.
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2.2.2. Evaluating accuracy of DESIGNER on the software phantom—The above 

software phantom was used as a reference by which to benchmark the efficacy of different 

steps of DESIGNER. By adding noise with known variance to a ground truth anatomical 

image, we can directly measure the value and SNR improvement gained after the 

implementation of each correction routine. Ideally this phantom would have no noise or 

artifacts that could potentially bias results; however, with 36 HCP datasets, we were able to 

produce a phantom with at most 1/6 the noise of the individual HCP images and SNR > 100.

Gibbs artifacts were added to the phantom through convolution of the diffusion signal with a 

sinc-function that has the same frequency as that caused by image truncation in k-space and 

then down-sampled by a factor of two. 50 realizations of noise at an SNR of 15 were also 

added to all shells (b = 0, 1000, 2000, 3000 s/mm2) of the phantom dMRI images to 

simulate thermal noise in 50 independent acquisitions. For all 50 noise realizations of the 

phantom, images were processed (see Figure 1) by using (A) standard pipeline and (B) 

DESIGNER and then compared to the high SNR reference values. In addition, we also 

varied the SNR level from 5 to 50 by injecting Rician noise at varying a into each volume 

and tested the effect of the window kernel for performing MP-PCA in the posterior limb of 

the internal capsule (PLIC) by either a) choosing a window of randomly sampled voxels 

through the whole brain, or b) choosing a window of voxels that belong exclusively to the 

single anatomic region of interest.

Furthermore, an ROI analysis was performed to test the accuracy of DESIGNER compared 

to standard pipelines in different white matter regions. For this analysis, the JHU (Hua et al., 

2008) white matter atlas was used to delineate different regions. ROI values over the HCP 

phantom will be compared to the voxel-wise average of 50 noise realizations after 

processing with both DESIGNER and the standard pipeline.

2.3. Precision

2.3.1. Dataset used to assess to precision—We tested the precision of DESIGNER 

pipeline by collecting data in N = 30 subjects (22/8 males/females, average age 25.8±6.4 

range 18–41 years) who were imaged with MRI three times within a 5-day period. All 

subjects provided informed consent prior to participation. The study was reviewed and 

approved by the 59th Medical Wing, USAF, Institutional Review Board. Commencing seven 

days prior to the first MRI and continuing throughout the study duration all subjects were 

alcohol free, drug/medication free, and tobacco free. To minimize diurnal physiological 

fluctuations, the daily time of repeat scans within the same subject was consistent for all 

three scans.

The human dMRI was performed on a 3T Trio (Siemens, Erlangen Germany) and consisted 

of 12 shells of b-values (b = 250, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 

2500 s/mm2; bipolar gradient duration δ = 47 ms, gradient separation Δ = 54 ms), and 

GRAPPA=2 acceleration. Thirty-two isotropically distributed diffusion-weighted directions 

were collected per shell, in addition to a total of sixteen b = 0 images. The imaging data 

were collected using a single-shot, echo-planar, single refocusing spin-echo, diffusion-

weighted sequence with a spatial resolution of 1.7x1.7x4.6 mm and seven slices prescribed 
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in sagittal orientation to sample the midsagittal band of the corpus callosum. The sequence 

control parameters were TE/TR=120/1500 ms with the FOV=200 mm.

2.3.2. Evaluating precision of DESIGNER—Test-retest reproducibility data was used 

to estimate the precision of the parameter measurements. This dataset pays specific attention 

to the corpus callosum, which is a white matter tract that has been well studied in diffusion 

literature. The chosen orientation allowed us to get a clear sample of the genu and splenium 

of the corpus callosum without needing to worry about confounders like partial volume 

effects. Due to the unusual acquisition of this dataset, the original reproducibility data was 

down sampled in q-space to b = 500, 1500, and 2500 s/mm2 with 30 directions per shell in 

order to better represent a typical clinical DKI scanning protocol, although with thick slices 

to help compensate for long TE and short TR. This data has an SNR of 12–15 at b=0 in 

brain tissue, comparable to some clinical diffusion protocols. Images were processed (see 

Figure 1) using both (i) the standard pipeline with a smoothing kernel of 1.25 x the voxel 

size and constrained tensor fitting, and (ii) DESIGNER.

Parametric maps including FA, MD, MK, and AWF (Fieremans et al., 2011) were computed 

using an unconstrained fit prior to alignment to the JHU-ICBM-FA-1mm template (Hua et 

al., 2008) and are used to illustrate the precision of the two pipelines. Technically, AWF 

derivation from kurtosis tensor was designed only for highly-aligned WM tracts. As applied 

to the whole brain, it loses its meaning as water fraction inside axons; here, we use this 

metric merely for the demonstration purpose of model parameter estimation. Not 

surprisingly, its performance improves, roughly, similarly to that of kurtosis tensor 

components. The metric used to assess precision is the coefficient of variability: σn/μn where 

σn is the standard deviation in the nth parameter over the three time points, and μn is its mean 

over the three time points. CoV can be favorably biased in the case where there are very few 

samples (Sokal and Rohlf, 1981), in order to compensate for the small number of test-retest 

datasets, we compute the unbiased CoV = 1 − 1
4t σt /μt where t is the sample size.

We registered the three datasets in each subject to the first time-point using the within-

subject FA images using a six-degree of freedom rigid body registration using FSL-FLIRT 

(Smith et al., 2004) software. A nonlinear warp was computed from the FA of each subject 

to the JHU-ICBM-FA-1mm template (Hua et al., 2008) and applied to the parametric maps. 

σn/μn were compared at each voxel of the brain in order to generate variability maps and 

show which areas in demonstrate comparatively higher precision. For this analysis, the JHU 

(Hua et al., 2008) white matter atlas was used to delineate different regions in the corpus 

callosum and FSL-FAST was used to select total CSF, GM, and WM regions in template 

space. Mean and standard deviation of σn/μn were measured voxel-wise, over ROIs in the 

corpus callosum, and over total tissue type ROIs in order to summarize the precision of each 

pipeline.
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3 RESULTS

3.1. Effects of Individual Processing Steps

3.1.1. Denoising using MP-PCA—Figure 3a shows an example axial slice taken from 

the HCP phantom (with added noise as described in Sec. 2.3.2) through the human brain at b 
= 1000 s/mm2, where the image has been denoised using MP-PCA and using spatial 

smoothing using a Gaussian kernel (FWHM = 1.25 x 1 voxel for each axis). We found that 

smoothing partially removes anatomic signal while MP-PCA removes only signal related to 

thermal noise, which can be seen in the residual maps below. Power spectra of residuals 

(PSR) normalized to noise variance (Fig. 2) for MPPCA show a constant energy equal to 

unity for all k meaning that mostly noise is being removed (independently at each k space 

frequency), however smoothing removes high frequency components of the image giving 

very large energy spectrum values. It is qualitatively evident that MP-PCA outcomes are less 

blurred as compared to smoothed images. Residual maps show that the smoothed dataset has 

lower tissue specificity; the presence of anatomy in residuals of Fig. 3a implies blurring of 

signal at these locations. It is more difficult to distinguish separate anatomy in the smoothed 

dataset compared to the denoised dataset because of partial volume effects introduced by the 

smoothing operation.

We also compared the noise reduction due to MP-PCA to noise reduction due to fitting a 

model to the same data. A fit of an exact physical model by maximizing the likelihood of the 

a priori known data distribution, e.g. Rician, provides the best possible “denoising” and 

noise bias correction automatically. Figure 4a (left) shows that the distribution of MD values 

from a set of 1000 voxels randomly selected over the entire brain are the same with and 

without MP-PCA applied to the data (without introducing any imaging artifacts). 

Conversely, ROI homogeneity (Fig. 4a, right) allows MP-PCA to sometimes remove more 

noise than even an ideal model fitting would enable. (In an extreme case of all ROI voxels 

having the same ground truth parameters, there would be a single informative principal 

component for the whole ROI, irrespective of the model complexity, and the remaining 

components carry only the noise, which MP-PCA removes.)

We similarly found that MP-PCA denoising of an anatomically coherent region will 

minimize the variability in diffusivities irrespective of underlying SNR. We found that the 

number of significant principal components increases from 2 to 6 as phantom SNR increases 

from 5 to 50 (Figure 4b). We also confirmed that the normalized variance of mean 

diffusivity estimated from the HCP phantom depends linearly on the added noise variance 

σ2 (i.e., 1/SNR2), in agreement with the Central limit theorem:σD
2 = σD, 0

2 + ασ2. The slope α 

is greatest (2.67) for diffusivity estimated without any denoising, equivalent to independent 

voxel-wise model fit (as discussed above). Any improvement in precision (reduction in α) 

will be associated with the spatial redundancy. Smoothing captures this redundancy within 

the local Gaussian kernel, hence its α is notably lower (0.61); however, denoising with MP-

PCA reduces α even further to 0.14, by maximizing the spatial redundancy effect.

In addition, we found that by varying the SNR it is possible to isolate biological variability 

inherent to tissue in the HCP dataset in the PLIC from the variability that comes from added 
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noise. From the intercept value σD, 0
2  (extrapolating σD

2  to σ = 0), we found that in the ideal 

(noise free) phantom data, there is 4.47% relative variability of mean diffusivity in this 

region. Interestingly, we found 4.7% variability in the same phantom region in MD derived 

from the original phantom, meaning that the phantom is very close to the ideal noise free 

scenario.

3.1.2. Gibbs Artifact Correction—PSR for Gibbs correction (Fig. 2) increases along 

with k, meaning that the correction has an effect primarily in high contrast regions. 

Residuals depicted in Figure 3b (brain images also from HCP phantom) demonstrate the 

effect of Gibbs artifact correction. Ideal residuals should show only periodic lines (period = 

2 voxels) emanating from the boundaries between tissue types. Even though both the Gibbs 

correction used here and smoothing effectively remove artifacts, smoothing additionally 

removes relevant anatomic detail. This is particularly evident in the splenium of the corpus 

callosum, where ringing originating from the white matter-ventricle boundary causes an 

overestimation of white-matter intensities that are not smoothed away. Power spectra of 

residuals in Figure 2 show that minimal additional signal was removed in addition to the 

high frequency ringing artifacts.

3.1.3. Rician Bias Correction—Power spectrum results for Rician correction exist 

only at low k, which makes sense since the Rician bias correction shifts intensities of the 

entire DWI downwards by σ. The effects of Rician bias correction on the HCP phantom and 

the relevant residual map through the corpus callosum in a b = 2000 s/mm2 image are shown 

in Figure 3c. This correction is most visible as a bias in raw tissue intensity, as illustrated by 

the histogram of b = 2000 s/mm2 intensities in the posterior limb of the internal capsule and 

the negative shift in signal after bias correction.

3.1.4. EPI + Eddy Current and Motion Correction—PSR values for eddy current 

and motion correction have a very high amplitude at low frequencies because the operation 

is performed on the entire image rather than in specific regions. We find increased accuracy 

of motion correction (particularly at low SNR) using TORTOISE (C. Pierpaoli, 2010) and 

FSL-eddy (Smith et al., 2004) after data has been denoised. In Supplementary Figure 1 we 

plot of the mutual information between the HCP phantom and the same phantom after 

adding rotation, translation, and Rician distributed noise. We performed motion correction 

and MPPCA denoising on the phantom to measure the dependence of motion correction on 

image SNR. It is visible from Supplementary Figure 1 that denoising increases the accuracy 

of motion correction at low b-values (SNR=2.7) by a factor of 2.

3.1.5. Outlier Detection and Correction—Figure 5 shows a b = 1000 s/mm2 image 

containing a ghosting artifact, voxels that were shown to have large residuals during the fit, 

and a parametric map in which the effect of the artifact has been diminished. The bottom 

row shows the results of a fit routine using constrained linear least squares (CLLS) 

regression and how artifacts can potentially corrupt parametric maps if unaccounted. 

Designer and IRWLLS cleanly removes the ghosting artifact depicted in Fig. 4.

Ades-Aron et al. Page 10

Neuroimage. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2. Comparison of DESIGNER with Standard Pipelines

3.2.1. Accuracy—We found that DESIGNER provides the most accurate results, 

particularly in high contrast regions where there exists greater potential for partial volume 

effects, indicating that processing techniques that include smoothing decrease the overall 

contrast of diffusion parameters, which may bias the results of statistical analyses.

Figure 6 shows that smoothing tends to bias parametric maps based on histograms of signal 

over white matter, gray matter, and CSF in the HCP phantom. Parameters derived after 

processing with DESIGNER hold true to the ground truth signal distribution, and smoothing 

causes changes in the distribution shape due to partial volume effects. DESIGNER keeps 

extremely close to the same mean and median values as the ground truth, while other 

pipelines have large discrepancies. We also show the distribution of parameter values after 

minimal preprocessing with only EPI and eddy current correction to demonstrate that 

processing the signal prior to tensor fitting removes the bias caused by thermal fluctuations.

Diffusion parameters show decreased contrast when smoothed compared to DESIGNER. 

Figure 7 shows the decrease in contrast present in FA, MD, MK, and AWF in actual 

subjects, rather than in the simulated brain phantom. In the zoomed box shown in the figure, 

the difference in MK is particularly evident.

Results of an ROI analysis based on JHU-ICBM regions (Hua et al., 2008) indicate that on 

average, DESIGNER provides more accurate values than the pipeline that uses smoothing. A 

two-tailed t-test, comparing the mean value of DESIGNER and standard pipeline to that of 

the ground truth gave corresponding results. FA showed statistical difference from reference 

data in 0/48 and 42/48 regions with on average 3.36% and 12.84% relative difference from 

the reference for DESIGNER and standard pipeline, respectively. MD showed statistical 

difference from reference in 3/48 and 46/48 regions with average 1.56% and 10.22% relative 

difference from the reference for DESIGNER and standard pipeline, respectively. MK 

showed statistical difference from reference data in 10/48 and 35/48 regions with on average 

1.42% and 5.57% relative difference from the reference for DESIGNER and standard 

pipeline, respectively. Finally, AWF showed statistical difference from reference data in 9/48 

and 43/48 regions with on average 1.65% and 9.22% relative difference from the reference 

for DESIGNER and standard pipeline, respectively. These data are tabulated in 

supplementary material, and Figure 8 provides boxplots that show the differences between 

groups for FA, MD, MK, and AWF.

3.2.2. Precision—The inherent variability of each pipeline is indicated in Figure 9 by 

voxel-wise mean σn/μn maps over all 30 subjects in standard space. When no post-

processing is applied to raw data, there is up to 40% variability between the three scans, and 

σFA/μFA was 22% for the standard pipeline with smoothing, and 20% for DESIGNER. This 

means that DESIGNER achieves at least as good reproducibility as smoothing with FWHM 

= 1.25 x 1 voxel, albeit without the loss of anatomical detail, and without parameter biases 

due to partial volume. We also found that variability in data processed with only EPI and 

motion correction can be greater than that of DESIGNER by up to a factor of 2. Table 1 

shows mean and standard deviation CoV values in gray matter, white matter, and CSF for 

each diffusion parameter.
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An ROI analysis over local white matter regions found that the CoV varies depending on the 

white matter regions analyzed. The corpus callosum was found to show the least variability 

compared to other white matter regions for FA, MD, and AWF, while MK showed greater 

variability due to the influence of outliers. We found that DESIGNER showed the lowest 

CoV (fa 0.020 ± 0.057) in the genu compared to smoothing (md 0.021 ± 0.057) and no post-

processing md (0.027 ± 0.072) and these results are representative of the whole corpus 

callosum.

It is expected that a certain degree of smoothing can achieve reduction in the noise that 

matches that of the MP-PCA denoising. At the same level of precision, the advantage of 

using DESIGNER is an improved accuracy, as shown in Section 3.2.1.

4 DISCUSSION

The accuracy and precision analyses demonstrate that using DESIGNER to process 

diffusion images improves the quality of diffusion parameters compared to existing dMRI 

analysis approaches. DESIGNER maximizes the accuracy of diffusion metrics by modeling 

and correcting for several artifacts common in diffusion data collected with clinical 

scanners. When comparing HCP phantom parameters processed using DESIGNER and 

standard pipelines, we found that DESIGNER helps retain SNR and image contrast 

comparable to that of the reference values and that spatial smoothing lead to lower contrast. 

The distribution of FA, MD, MK, and AWF values were most similar to reference values and 

suffered from fewer outliers (particularly in MK) following DESIGNER processing. 

Smoothing led to systematic underestimation of FA and overestimation of MD values due to 

induced partial voluming with gray matter or CSF. Finally, we found in an ROI analysis that 

even in small white matter regions DESIGNER holds to the same distribution and ground-

truth values, while the standard pipeline sees many significant differences. We also observed 

that pipeline accuracy depends on spatial location in the brain. We used a voxel wise, FWE 

corrected one-sample t-test to assess differences between the parameters obtained from the 

noisy versions of the phantom processed with each of the pipelines. We found that pure 

white matter regions are more accurate independent of pipeline choice, however DESIGNER 

does the best job preserving parameter accuracy in regions with ambiguous tissue types. 

These results are shown in Supplementary Figure 3.

DESIGNER maximizes the precision and reliability of DTI, DKI and white matter 

microstructural modeling parameters by reducing the effect of random noise on parametric 

maps. We observed that the use of the standard pipeline based on smoothing with 1.25 x 

voxel size FWHM lead to higher variability and/or lower precision than that of DESIGNER, 

whereas smoothing with greater than the proposed FWHM had lower variability but also 

lower anatomic specificity. We also found that variability tends to vary depending on spatial 

location in brain tissue and on the diffusion parameter in question. The white matter tends to 

have the most stable CoV values compared to other regions, likely due to spatially varying 

physiological noise and how tissue is distributed in the brain. In addition to physiological 

noise, the number of outliers created during tensor estimation and the degree of smoothing 

affect the magnitude of CoV values, which is one reason why FA (due to eigenvalue 

repulsion) and MK (low radial diffusivity outlier effects) tend to have higher CoV values. 
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While increasing the amount of smoothing may in principle increase the precision of results 

without limit, it also results in misleading statistical outcomes. Therefore, any pipeline 

should be evaluated both with respect to accuracy and precision.

We also show here that the benefits of spatial redundancy depend on the window kernel for 

MP-PCA denoising. When the underlying data matrix includes different tissue types, such 

that the underlying tissue parameters within the data matrix are sufficiently different, the 

lack of spatial redundancy might lower the benefit of the denoising step if the diffusion and 

noise model are known a priori. Indeed, to take this idea to a logical extreme by applying 

MP-PCA to a random set of voxels (Fig. 4a left), we see very similar variability between 

MP-PCA and tensor fitting alone. This is because at b-values in the range of 1000–3000 

s/mm2, the cumulant expansion (DTI, DKI) provides adequate representation of the signal’s 

functional form, whereas spatial redundancy is cancelled by the random voxel selection. 

Alternatively, when denoising is applied on a coherent set of voxels from a local ROI (e.g., 

PLIC in Fig. 4a right), we see a very strongly decreased variance in the distribution of MD, 

indicating that we have removed notably more thermal noise than what would have been 

possible through voxel-wise DTI or DKI tensor fitting alone, with or without MP-PCA 

applied prior to that. The subsequent steps of DESIGNER applied after MP-PCA denoising 

benefit greatly from this boost to image SNR (see supplementary Figure 1: increased 

accuracy in motion correction after MPPCA denoising). Future work might focus on 

adaptive denoising kernels to fully exploit spatial redundancy, thereby enabling consistently 

improved precision of parameter estimators such as the maximum likelihood estimator.

In addition to improved accuracy and precision, DESIGNER also improves ther performance 

of individual artifact correction techniques. In particular, the estimation of motion or 

distortion parameters is very challenging in case of low SNR and prone to local minima, and 

residual image misalignments or artifacts will lower the accuracy and precision of diffusion 

parameter estimators. As shown in supplementary Figure 1, preceding motion correction 

with the denoising step provides for more stable correction and therefore likely benefits all 

subsequent processing steps.

DESIGNER is not necessarily tied to diffusion tensor or diffusion kurtosis imaging. We 

reasonably expect that the reduction of noise and artifacts in DWI datasets will also increase 

the accuracy and precision of any kind of biophysical model parameter estimation (e.g. 

based on the recently introduced rotational invariants (Novikov et al., 2018b) as well as 

estimating parameters of popular signal representations, e.g. based on spherical harmonics, 

and subsequently the accuracy of fiber tractography results as well. In the future, we intend 

to show that this pipeline is capable of reducing the amount of spurious fibers generated 

during tractography.

One limitation of this study is that even though DESIGNER reduces the amount of image 

smoothing, it is not fully smoothing-free, especially due to steps involving image 

interpolation which include Gibbs correction and eddy current correction. While it is 

impossible to avoid all sources of partial volume effects in signal processing, we believe we 

may have come as close as practically possible. We expect that the DESIGNER pipeline will 

help bridge the gap between diffusion microstructural imaging and clinical practice, by 
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improving robustness, reproducibility, accuracy and precision, as well as by enabling 

separation of acquisition/modeling and biological variability (Novikov et al., 2018a). One of 

the fundamental reasons for the development of DESIGNER is to enable the further clinical 

feasibility of diffusion imaging in general, and DESIGNER accomplishes this is by boosting 

confidence in statistical analyses through corresponding confidence in parameter accuracy.

DESIGNER is currently available online and can be found at: www.github.com/NYU-

DiffusionMRI/Diffusion-Kurtosis-Imaging/designer (https://www.nitrc.org/projects/mppca/). 

The current implementation is dependent on MRtrix preprocessing toolbox (Tournier et al., 

2012) (v. 3.0, www.mrtrix.org) and FMRIB’s diffusion toolbox (Andersson and 

Sotiropoulos, 2016) (eddy, FSL v. 5.0.10, www.fmrib.ox.ac.uk/fsl), as well as tensor 

estimation software (Veraart et al., 2013).

5 CONCLUSIONS

DESIGNER enables the robust estimation of parametric diffusion maps with improved 

accuracy and without compromising precision compared to standard processing routines 

based on spatial smoothing. The specific pre-processing steps used in DESIGNER (MP-

PCA denoising, Gibbs artifact correction, Rician bias correction, EPI + eddy current and 

motion correction, IRWLLS fitting) alleviate the need for smoothing. Our results suggest 

that diffusion parameter estimation benefits most from noise and artifact specific processing 

techniques, and that further effort should be spent in analyzing specific sources of noise and 

artifacts in MRI and accounting for them individually, rather than by one-size-fits-all 

smoothing which potentially damages datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEGEMENTS

The authors would like to thank Dr. Jesper Andersson and Dr. Steve Smith for their helpful discussion and 
correspondence during the production of thus work. We would also like to thank Dr. Carlo Pierpaoli and the 
TORTOISE team for their invaluable help. Research support was also provided by the Human Brain Mapping 
Project, which is jointly funded by NIMH and NIDA (P20 MH/DA52176), by General Clinical Research Core 
(HSC19940074H).

REFERENCES

Ades-Aron B, Veraart J, Kellner E, Lui YW, Novikov DS, Fieremans E, 2016 Diffusion parameter 
EStImation with Gibbs and NoisE Removal (DESIGNER) ISMRM, Singapore.

Aja-Fernandez S, Alberola-Lopez C, Westin CF, 2008 Noise and signal estimation in magnitude MRI 
and Rician distributed images: a LMMSE approach. IEEE Trans Image Process 17, 1383–1398. 
[PubMed: 18632347] 

Amartur S, Haacke EM, 1991 Modified iterative model based on data extrapolation method to reduce 
Gibbs ringing. Journal of Magnetic Resonance Imaging 1, 307–317. [PubMed: 1802144] 

Amartur S, Liang ZP, Boada F, Haacke EM, 1991 Phase-constrained data extrapolation method for 
reduction of truncation artifacts. Journal of Magnetic Resonance Imaging 1, 721–724. [PubMed: 
1823178] 

Ades-Aron et al. Page 14

Neuroimage. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.github.com/NYU-DiffusionMRI/Diffusion-Kurtosis-Imaging/designer
http://www.github.com/NYU-DiffusionMRI/Diffusion-Kurtosis-Imaging/designer
https://www.nitrc.org/projects/mppca/
http://www.mrtrix.org/
http://www.fmrib.ox.ac.uk/fsl


Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN, 2016 Incorporating outlier detection and 
replacement into a non-parametric framework for movement and distortion correction of diffusion 
MR images. Neuroimage 141, 556–572. [PubMed: 27393418] 

Andersson JLR, Skare S, 2002 A model-based method for retrospective correction of geometric 
distortions in diffusion-weighted EPI. Neuroimage 16, 177–199. [PubMed: 11969328] 

Andersson JLR, Skare S, Ashburner J, 2003 How to correct susceptibility distortions in spin-echo 
echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 870–888. [PubMed: 
14568458] 

Andersson JLR, Sotiropoulos SN, 2016 An integrated approach to correction for off-resonance effects 
and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078. [PubMed: 
26481672] 

Archibald R, Gelb A, 2002 A method to reduce the Gibbs ringing artifact in MRI scans while keeping 
tissue boundary integrity. IEEE Trans Med Imaging 21, 305–319. [PubMed: 12022619] 

Barker G PG, Wheeler-Kingshott C, 2001 Gibbs ringing and negative ADC values. In Proceedings of 
the 9th meeting of the International Society for Magnetic Resonance in Medicine, Glasgow (UK), 
p. pp 1546.

Beaulieu C, 2002 The basis of anisotropic water diffusion in the nervous system - a technical review. 
NMR in Biomedicine 15, 435–455. [PubMed: 12489094] 

Pierpaoli C, Irfanoglu LW,MO, Barnett A, Basser P, Chang L-C, Koay C, Pajevic S, Rohde G, Sarlls J, 
and Wu M, 2010 TORTOISE: an integrated software package for processing of diffusion MRI data 
ISMRM, Stockholm, Sweden.

Collier Q, Veraart J, Jeurissen B, den Dekker AJ, Sijbers J, 2015 Iterative reweighted linear least 
squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters. 
Magnetic Resonance in Medicine 73, 2174–2184. [PubMed: 24986440] 

Cui ZX, Zhong SY, Xu PF, He Y, Gong GL, 2013 PANDA: a pipeline toolbox for analyzing brain 
diffusion images. Frontiers in Human Neuroscience 7.

Fieremans E, Jensen JH, Helpern JA, 2011 White matter characterization with diffusional kurtosis 
imaging. Neuroimage 58, 177–188. [PubMed: 21699989] 

Gudbjartsson H, Patz S, 1995 The Rician Distribution of Noisy Mri Data. Magnetic Resonance in 
Medicine 34, 910–914. [PubMed: 8598820] 

Haider MA, van der Kwast TH, Tanguay J, Evans AJ, Hashmi AT, Lockwood G, Trachtenberg J, 2007 
Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. American 
Journal of Roentgenology 189, 323–328. [PubMed: 17646457] 

Hua K, Zhang JY, Wakana S, Jiang HY, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PCM, Mori 
S, 2008 Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-
specific quantification. Neuroimage 39, 336–347. [PubMed: 17931890] 

Jones DK, 2010 Diffusion MRI : theory, methods, and application Oxford University Press, Oxford ; 
New York.

Jones DK, Horsfield MA, Simmons A, 1999 Optimal strategies for measuring diffusion in anisotropic 
systems by magnetic resonance imaging. Magnetic Resonance in Medicine 42, 515–525. 
[PubMed: 10467296] 

Kellner E, Dhital B, Kiselev VG, Reisert M, 2016 Gibbs-Ringing Artifact Removal Based on Local 
Subvoxel-Shifts. Magnetic Resonance in Medicine 76, 1574–1581. [PubMed: 26745823] 

Kiselev VG, 2017 Fundamentals of diffusion MRI physics. NMR in Biomedicine 30.

Klein S, Staring M, Murphy K, Viergever MA, Pluim JP, 2010 elastix: a toolbox for intensity-based 
medical image registration. IEEE Trans Med Imaging 29, 196–205. [PubMed: 19923044] 

Koay CG, Basser PJ, 2006 Analytically exact correction scheme for signal extraction from noisy 
magnitude MR signals. Journal of Magnetic Resonance 179, 317–322. [PubMed: 16488635] 

Koh DM, Collins DJ, 2007 Diffusion-weighted MRI in the body: Applications and challenges in 
oncology. American Journal of Roentgenology 188, 1622–1635. [PubMed: 17515386] 

Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M, 1986 MR imaging of 
intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. 
Radiology 161, 401–407. [PubMed: 3763909] 

Ades-Aron et al. Page 15

Neuroimage. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Le Bihan D, Poupon C, Amadon A, Lethimonnier F, 2006 Artifacts and pitfalls in diffusion MRI. 
Journal of Magnetic Resonance Imaging 24, 478–488. [PubMed: 16897692] 

Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, 
Weinstein PR, 1990 Early detection of regional cerebral ischemia in cats: Comparison of diffusion- 
and T2-weighted MRI and spectroscopy. Magnetic Resonance in Medicine 14, 330–346. 
[PubMed: 2345513] 

Novikov DS, Kiselev VG, Jespersen SN, 2018a On modeling. Magnetic Resonance in Medicine 79, 
3172–3193. [PubMed: 29493816] 

Novikov DS, Veraart J, Jelescu IO, Fieremans E, 2018b Rotationally-invariant mapping of scalar and 
orientational metrics of neuronal microstructure with diffusion MRI. Neuroimage 174, 518–538. 
[PubMed: 29544816] 

Perrone D, Aelterman J, Pizurica A, Jeurissen B, Philips W, Leemans A, 2015 The effect of Gibbs 
ringing artifacts on measures derived from diffusion MRI. Neuroimage 120, 441–455. [PubMed: 
26142273] 

Sijbers J, den Dekker AJ, 2004 Maximum likelihood estimation of signal amplitude and noise variance 
from MR data. Magnetic Resonance in Medicine 51, 586–594. [PubMed: 15004801] 

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, 
De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang YY, De Stefano N, 
Brady JM, Matthews PM, 2004 Advances in functional and structural MR image analysis and 
implementation as FSL. Neuroimage 23, S208–S219. [PubMed: 15501092] 

Sokal RR, Rohlf FJ, 1981 Biometry : the principles and practice of statistics in biological research, 2d 
ed. Freeman WH, San Francisco.

Tabesh A, Jensen JH, Ardekani BA, Helpern JA, 2011 Estimation of tensors and tensor-derived 
measures in diffusional kurtosis imaging. Magnetic Resonance in Medicine 65, 823–836. 
[PubMed: 21337412] 

Tournier JD, Calamante F, Connelly A, 2012 MRtrix: Diffusion tractography in crossing fiber regions. 
International Journal of Imaging Systems and Technology 22, 53–66.

Tournier JD, Mori S, Leemans A, 2011 Diffusion tensor imaging and beyond. Magnetic Resonance in 
Medicine 65, 1532–1556. [PubMed: 21469191] 

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Consortium, W.U.-M.H., 
2013 The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79. [PubMed: 
23684880] 

Veraart J, Fieremans E, Jelescu IO, Knoll F, Novikov DS, 2016a Gibbs Ringing in Diffusion MRI. 
Magnetic Resonance in Medicine 76, 301–314. [PubMed: 26257388] 

Veraart J, Fieremans E, Novikov DS, 2016b Diffusion MRI noise mapping using random matrix 
theory. Magnetic Resonance in Medicine 76, 1582–1593. [PubMed: 26599599] 

Veraart J, Novikov DS, Christiaens D, Ades-Aron B, Sijbers J, Fieremans E, 2016c Denoising of 
diffusion MRI using random matrix theory. Neuroimage 142, 384–396.

Veraart J, Rajan J, Peeters RR, Leemans A, Sunaert S, Sijbers J, 2013 Comprehensive framework for 
accurate diffusion MRI parameter estimation. Magnetic Resonance in Medicine 70, 972–984. 
[PubMed: 23132517] 

Veraart J, Van Hecke W, Sijbers J, 2011 Constrained Maximum Likelihood Estimation of the Diffusion 
Kurtosis Tensor Using a Rician Noise Model. Magnetic Resonance in Medicine 66, 678–686. 
[PubMed: 21416503] 

Warach S, Gaa J, Siewert B, 1995 Acute Human Stroke Studied by Whole-Brain Echo-Planar 
Diffusion-Weighted Magnetic-Resonance-Imaging (Vol 37, Pg 231, 1995). Annals of Neurology 
37, 688–690.

Zhang YY, Brady M, Smith S, 2001 Segmentation of brain MR images through a hidden Markov 
random field model and the expectation-maximization algorithm. Ieee Transactions on Medical 
Imaging 20, 45–57. [PubMed: 11293691] 

Ades-Aron et al. Page 16

Neuroimage. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Overview of processing pipelines for dMRI: commonly used (left) and DESIGNER (right). 

The main difference is that smoothing has been replaced with MP-PCA denoising (by 

exploiting the redundancy of signal in the dMRI datset), followed by Gibbs artifact 

correction, and Rician bias correction. These steps (in this order) improve performance of 

the downstream artifact correction methods such as EPI/eddy distortion and motion 

corrections, and in our DKI example, can be followed by an unconstrained WLLS DKI fit 

due to an improved quality of the fit input.
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Figure 2: 
Energy spectrum of residuals for b = 1000 s/mm2 human data that was Processed with 

DESIGNER. Residual maps were normalized by σ to give unitless energy values, therefore 

an energy of one implies that only noise with a standard deviation of σ was removed from 

the original image.
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Figure 3: 
Effects of DESIGNER steps on HCP phantom. A) Effects of MP-PCA denoising (first row) 

versus smoothing (second row) on a b = 1000 s/mm2 image. Residuals show that MP-PCA 

remove only noise while smoothing removes additional signal. B) Effect of the Gibbs 

artifact correction on a b = 0 image with Gibbs artifacts evident in in the splenium of the 

corpus callosum before and after artifact correction, smoothing removes extra anatomy in 

addition to artifacts. C) Effect of the Rician bias correction on a b = 2000 s/mm2 image and 

Ades-Aron et al. Page 19

Neuroimage. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the distribution of signal in the posterior limb of the internal capsule before and after 

correction.
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Figure 4: 
A) The distribution of MD deviation from the ground truth in an ROI of randomly 

distributed voxels over the entire brain when denoising is applied prior to fitting and when 

no denoising is applied, compared to the distribution of MD in an ROI of the PLIC. This 

example illustrates that a correct signal model/representation works as well as denoising 

(i.e., in the perfect model case denoising should not yield extra benefit if the fitting is 

unbiased and no imaging artifacts are introduced). B) Variability of Diffusivity scales 

linearly with noise variance (PLIC of HCP phantom). The residual variance extrapolated to 

zero noise level provides an estimate for the inherent biological variability.
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Figure 5: 
IRWLLS detection of outlier voxels due to a chemical shift in an example b = 1000 s/mm2 

image. These voxels are reweighted during fitting to produce the corrected parametric maps.
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Figure 6: 
Bias inherent to each pipeline and comparison to the ground truth. These images are based 

on ROIs of total white matter, gray matter, and CSF of the HCP brain phantom. Histograms 

are of FA, MD, MK, and AWF from left to right respectively. The distribution of parameters 

processed with DESIGNER hold more closely to that of the ground truth compared to 

processing using smoothing or no denoising methods.
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Figure 7: 
Example, real-subject dataset - difference in contrast for FA, MD, MK, and AWF for 

DESIGNER, a standard pipeline (eddy current, motion correction, and smoothing), the 

original pipeline with (eddy current and motion correction), and the difference between 

DESIGNER and original processing.
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Figure 8: 
Boxplots that show FA, MD, MK, and AWF values in 23 ROIs from the JHU White Matter 

atlas. ROIs over the left and right hemispheres have been averaged since there are very few 

differences across hemispheres that pertain to this analysis. Boxplots for HCP phantom data 

come from an ROI of the original phantom after averaging 50 noise realizations, boxplots of 

DESIGNER and standard pipelines represent the ROI after preprocessing and averaging over 

noise realizations.
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Figure 9: 
Comparison of mean σn/μn over all 30 subjects for three cases: From left to right, the images 

show within subject variability when no processing is applied, when DESIGNER is applied, 

and when the standard processing pipeline with smoothing (1.25xVS) is applied. The 

coefficient of variation is lowest in parametric maps processed with DESIGNER compared 

to processing with both topup+eddy and with smoothing.
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Table 1:

Mean and standard deviation σn/μn values for FA, MD, MK, and AWF over all CSF, white matter, and gray 

matter, over all sets of subjects. We compare the coefficient of variation in white matter in 4 cases – no 

smoothing, smoothing at a FWHM of 1.2 x voxel size, smoothing at 1.25 x voxel size, and DESIGNER.

fa md mk awf

Designer

CSF 0.193 ± 0.165 0.101 ± 0.185 0.097 ± 0.186 0.080 ± 0.147

WM 0.203 ± 0.143 0.114 ± 0.175 0.100 ± 0.176 0.084 ± 0.108

GM 0.202 ± 0.142 0.113 ± 0.172 0.100 ± 0.172 0.084 ± 0.106

1.25 X VS

CSF 0.207 ± 0.175 0.141 ± 0.209 0.094 ± 0.193 0.079 ± 0.163

WM 0.218 ± 0.163 0.167 ± 0.208 0.094 ± 0.181 0.083 ± 0.142

GM 0.217 ± 0.160 0.168 ± 0.203 0.093 ± 0.177 0.082 ± 0.137

0 X VS

CSF 0.262 ± 0.174 0.164 ± 0.207 0.147 ± 0.231 0.105 ± 0.156

WM 0.271 ± 0.158 0.188 ± 0.206 0.141 ± 0.218 0.107 ± 0.132

GM 0.271 ± 0.157 0.189 ± 0.201 0.137 ± 0.214 0.107 ± 0.128
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