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Abstract

Human Immunodeficiency Virus (HIV) infection continues to have major adverse public health 

and clinical consequences despite the effectiveness of combination Antiretroviral Therapy (cART) 

in reducing HIV viral load and improving immune function. As successfully treated individuals 

with HIV infection age, their cognition declines faster than reported for normal aging. This 

phenomenon underlines the importance of improving long-term care, which requires better 

understanding of the impact of HIV on the brain. In this paper, automated identification of patients 

and brain regions affected by HIV infection are modeled as a classification problem, whose 

solution is determined in two steps within our proposed Chained-Regularization framework. The 

first step focuses on selecting the HIV pattern (i.e., the most informative constellation of brain 

region measurements for distinguishing HIV infected subjects from healthy controls) by 

constraining the search for the optimal parameter setting of the classifier via group sparsity (ℓ2,1-

norm). The second step improves classification accuracy by constraining the parameterization with 

respect to the selected measurements and the Euclidean regularization (ℓ2-norm). When applied to 

the cortical and subcortical structural Magnetic Resonance Images (MRI) measurements of 65 

controls and 65 HIV infected individuals, this approach is more accurate in distinguishing the two 

cohorts than more common models. Finally, the brain regions of the identified HIV pattern concur 

with the HIV literature that uses traditional group analysis models.
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1. Introduction

Despite the success of highly active antiretroviral therapy (HAART) and combination 

antiretroviral therapy (cART) in extending longevity of individuals infected with the Human 

Immunodeficiency Virus (HIV), neurocognitive impairments still commonly occur [1, 2, 3]. 

Structural Magnetic Resonance Imaging (MRI) has often been used to determine the neural 

correlates of cognitive and motor deficits in HIV infection, indicating, for example, specific 

relationships between regional brain volume deficits [4, 5], memory compromise [6], and 

accelerated brain aging in HIV infected adults [7]. Neurocognitive and motor impairments in 

HIV infection, however, are similar to those reported in other age-related diagnoses [8]. To 

improve diagnostic specificity of MRI in HIV, this manuscript proposes a novel machine 

learning method and applies it to the morphometric measurements extracted from structural 

MRI scans collected from HIV infected and healthy control (CTRL) participants.

Conventional HIV MRI studies typically test for group differences (with respect to the 

CTRL cohort) by separately analyzing each image measurement for the impact of HIV [4, 9, 

6, 10, 2, 1]. Separate analysis of measurements may lead to contradicting or inconclusive 

findings [11]. By contrast, our proposed analysis is a type of machine learning framework 

that considers all image measurements together to identify the subset of measurements 

(called patterns) specific to HIV and then relates the significance of the pattern to its 

accuracy in distinguishing individuals with HIV from CTRLs. A popular approach for 

identifying patterns uses sparse classifiers [12, 13, 14, 15, 16, 8], which assume that only a 

few measurements are informative for distinguishing cohorts. After identifying a pattern, the 

corresponding measures are often applied to a second (non-sparse) approach, which focuses 

only on improving classification accuracy [17, 18, 19, 20, 21, 22]. This two-step 

regularization procedure assumes that measurements selected by the sparse classifier define 

the unique, optimal pattern for distinguishing the two cohorts [23, 24, 17, 25]. This 

assumption, however, is generally not true because the redundancy in information across 

image measurements allows for multiple solutions [19]. As the two steps are based on 

different classification approaches, the pattern identified by the sparse classifier of the first 

step are generally not optimal for the non-sparse approach of the second step.

Herein, we propose an approach (denoted as Chained-Regularization) that uses the same 

classifier first to identify a pattern and then, using the pattern, to distinguish individuals; 

however, different constraints guide the parameterization of the classifier in each step. Our 

proposed algorithm models the selection of the most informative image measurements in the 

first step by confining parameterization of the classifier through group sparsity (ℓ2,1-norm) 

regularization [26, 8]. Group sparsity extends the concept of the ℓ1-norm [27, 28, 16] of 

identifying a few informative measurements for combining measurements into groups and 

then identifying a small number of groups [27]. The grouping can be used for explicit 

modeling of relationships between measurements [29]. In this work, each measurement from 

the regions of interest (ROIs) is grouped with its counterpart in the other brain hemisphere 

given our assumption that HIV infection affects the brain bilaterally. In the second step of 

Chained-Regularization, the classifier is trained on just the selected individual measurements 

with the search for the optimal parameter setting being constrained via Euclidean (ℓ2-norm) 

regularization. The logic of this approach is that the ℓ2,1 regularization generally improves 

Adeli et al. Page 2

Neuroimage. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the accuracy of classifiers in the presence of a large number of uninformative or redundant 

image measurements (as it is often the case of neuroimaging studies), while the ℓ2 

regularization improves the accuracy of classifiers in the event that all provided image 

measurements are informative [17, 18]. Our chained-regularization scheme, which uses a 

sequential dependency approach to identify a pattern to be applied for determining group 

membership of individuals, is different from chain-regularization [30], a concept used in 

physics to describe group of objects interacting with each other in a chain.

We implement Chained-Regularization within a multiple kernel learning (MKL) framework 

[31, 18]. MKL is based on the assumption that samples (i.e., individual participants) that are 

similar to each other should be assigned to the same cohort (e.g., HIV). Similarity between 

two samples is measured through a pairwise comparison of the corresponding image 

measurements. This comparison is defined by a set of metrics (i.e., linear and nonlinear 

kernel functions), each capturing a unique characteristic across image measurements. The 

MKL algorithm now determines the combination of metrics and image measurements [18] 

that lead to the highest classification accuracy (see Figure 1). It thus omits the simplifying 

assumption of most other classifiers that the discriminating characteristics of all image 

measurements are best captured by a single metric (as in [18, 32, 33, 31, 34]).

In summary, our analysis makes two novel contributions: (1) We propose Chained-

Regularization within the MKL framework, which, in our experiments, is significantly more 

accurate than single-step and other two-step approaches. (2) To the best of our knowledge, 

this is the first study to examine both linear and non-linear supervised learning approaches to 

identify patterns that discriminate HIV infected from healthy control brains.

The rest of the paper is organized as follows: Section 2 introduces the materials (the data 

set), preprocessing, the proposed chained regularization and the experimental setup. 

Appendix A provides additional technical details of the proposed method. Section 3 

compares our approach to other implementations on the HIV data set and reports on its 

identified pattern specific to HIV. Section 4 provides an in depth discussion about the 

findings of the previous section and their relevance with respect to the HIV literature. The 

paper concludes with Section 5.

2. Materials and Methods

2.1. Participant Information

Data used in this study are from 65 HIV infected individuals and 245 CTRL subjects. For 

classification, we match 65 CTRLs to the 65 HIV cohort. Specifically, for each HIV subject, 

one subject is selected from the CTRL cohort, such that they have the same sex and a 

minimal difference in their ages. We refer to the matched samples as ‘matched CTRL 

group’. The remaining 180 CTRL subjects, referred to as Confounding Factors CTRL group 

(CF CTRL group), are used for analysis of the confounding factors and minimizing their 

effects. Table 1 shows the demographic information of participants in all groups, and Figure 

2 plots their age distributions. All 310 participants are tested for HIV, viral load, and CD4 T-
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cell count. HIV infected individuals had a CD4 count > 100cells
μL  and a Karnofsky score > 70 

[35]. Data from these subjects were used in previous studies [10, 4, 9].

2.2. Structural MRI Data Acquisition

Imaging data are acquired from each participant on a 3T General Electric (GE) SIGNA HDx 

system using an 8-channel Array Spatial Sensitivity Encoding Technique (ASSET) coil for 

parallel and accelerated imaging. Furthermore, Inversion Recovery-SPoiled Gradient 

Recalled (IR-SPGR) echo sequence (TR=7.068ms, TI=300ms, TE = 2.208ms, flip 

angle=15°, matrix=256 × 256, slice dimensions=1.2 × 0.9375 × 0.9375mm, 124 slices) are 

collected in the sagittal plane.

2.3. MRI Data Preprocessing and Feature Extraction

Preprocessing of the T1-weighted (T1w) MR images involves noise removal [36], 

computing signal-to-noise ratio (SNR) [37] and correcting field inhomogeneity via N4ITK 

(Version 2.1.0) [38]. Next, the brain mask is segmented by majority voting [39] across maps 

extracted by FSL BET (Version 5.0.6) [40], AFNI 3dSkullStrip (Version 

AFNI_011_12_21_1014) [41], FreeSurfer mri-gcut (Version 5.3.0) [42], and the Robust 

Brain Extraction (ROBEX) method (Version 1.2) [43], applied to bias and non-bias 

corrected T1w images. The refined mask is then used to repeat image inhomogeneity 

correction.

We further apply the cross-sectional approach of FreeSurfer (Version 5.3.0) [44, 45] to the 

skull-stripped T1w MRI of each subject in order to measure the mean curvature 
(MeanCurv), surface area (SurfArea), gray matter volume (GrayVol), and average thickness 
(ThickAvg) of 34 bilateral cortical Regions Of Interest (ROIs) [2 hemispheres × 4 

measurement types × 34 ROIs = 272], the volumes of 8 bilateral sub-cortical ROIs (i.e., 
thalamus, caudate, putamen, pallidum, hippocampus, amygdala, accumbens, cerebellar 

cortex) [2 × 8 = 16], the volumes of 5 subregions of the corpus callosum (posterior, mid-

posterior, central, mid-central and anterior), and the combined volume of all white matter 

hypointensities [5 + 1 = 6]. White matter hypointensities are defined according to Freesurfer 

as voxels inside the white matter with signal intensities lower than a threshold level [46]. 

Finally, volumes of the left and right lateral and third ventricles [2 × 2 = 4] are measured by 

non-rigidly aligning the SRI24 atlas [47] to the T1w MRI of the subject via ANTS (Version: 

2.1.0) [48]. This procedure thus extracts 298 measures from each brain MRI.

For the entire matched data set, each of these 298 brain measures are normalized using their 

z-scores [49]. To avoid using any data for testing the model, the z-scores are parameterized 

by computing the mean and standard deviations of measurements across the CF CTRL 

cohort. Based on this distribution, the z-scores are then computed for each subject of the 

matched CTRL and HIV groups. Furthermore, the segmentations are used to compute the 

supratentorial volume (svol) for each subject. As in [50], svol is used to approximate brain 

size.
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2.4. Confounding Factors

For each of the 298 measures, we compute the Pearson correlation between the 

corresponding z-scores of the 180 subjects of the CF CTRL group and the factors, i.e., age, 

sex, svol, race, and SNR. Some of the measures are significantly correlated with age, sex, 

and svol (p-value < 0.05). For each measurement, a general linear model (GLM) [51] is 

parameterized with respect to corresponding z-scores to omit the effect of the confounding 

factors. Specifically, for each image measure m ∈ {1,…, 298}, the following GLM is fit 

across the subjects i ∈ {1,…, 180} of the CF CTRL group with the corresponding z-score vi
m

as the observation and age ( f i
age), sex ( f i

age), and svol ( f i
svol) as the confounding factors:

vi
m~βm, 0 + βm, 1 f i

age + βm, 2 f i
sex + βm, 3 f i

svol . (1)

After obtaining the optimal regression coefficients (βm, 0, βm, 1, βm, 2, βm, 3) across all 

subjects, the model is applied to the HIV and matched CTRL dataset. Specifically, the 

residual explained by each subject’s individual confounding factors multiplied by the 

regression coefficients is removed from the initial observation, i.e., the residual scores xi
m

defined as

xi
m ≔ vi

m − (βm, 0 + βm, 1 f i
age + βm, 2 f i

sex + βm, 3 f i
svol) . (2)

2.5. Pattern Extraction and Classification

In this section, the proposed Chained-Regularization technique is outlined. For the interested 

reader, Appendix A derives the Chained-Regularization approach in detail. Based on the 

residual scores of the matched data set, the accuracy of the proposed Chained-Regularization 

framework (denoted as ℓ2,1-ℓ2-reg; see also Figure 1) in correctly labeling HIV infected and 

health control subjects is measured via 10-fold (nested) cross-validation (see Figure 4). With 

respect to each (testing) fold, the training of ℓ2,1-ℓ2-reg on the remaining data starts with the 

Selection Step, i.e., extract the informative pattern for classifying samples. The training then 

proceeds with the Reweighing Step, i.e., finding the optimal parameterization of the 

classifier based on that pattern. On the testing fold, we record the labeling of subjects 

according to the trained ℓ2,1-ℓ2-reg. This procedure between training and testing is repeated 

until the labeling across all 10 testing folds are generated. Based on those labelings, we 

compute the Accuracy of prediction (i.e., the percentage of the testing subjects that are 

classified correctly into their respective classes), specificity (SPE), sensitivity (SEN) and 

area under the receiver operating characteristic (ROC) curve (AUC). Note, our MKL-based 

mapping function outputs a continuous value (more details in Appendix A) from which a 

binary class label is derived via thresholding. By changing the threshold, we can create the 

ROC curve and hence calculate the AUCs. In addition, we apply the Fisher’s exact test [52] 

to ensure that implementation is significantly better than chance (p-value < 0.01). The 

remainder of this section provides further details about training of ℓ2,1-ℓ2-reg.
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Inspired by [18, 13], the HIV specific pattern, identified in the Selection Step during 

training, is defined by the optimal ‘weight’ vector specifying a linear multivariate model 

defined by image measurements that correctly label subjects according to the MKL model. 

MKL classifies samples by learning the optimal pairings between kernels and image 

measurements. Finding the optimal pairing is described as a minimization problem with 

respect to a weight vector, sparsity of which specifies the importance of pairings for class 

separation. We use 7 different kernels to build our multiple kernel learning model, including 

3 kernel types [linear, histogram intersection kernel (HIK), and redial basis function kernel 

(RBF)] with different settings of their hyperparameters. These 7 kernels are defined in detail 

in Appendix A. Specific to our implementation, the optimal weight vector minimizes a cost 

function measuring classification accuracy and ‘group-sparsity’ associated with those 

weights. As also shown in Figure 3, group-sparsity is measured by first transforming the 

weight vector into a matrix so that each column represents a group and each group combines 

the weights associated with measurements from the same type and region (regardless of 

hemisphere). ℓ2,1-norm is then applied to the matrix, i.e., the ℓ2-norm is applied to each 

column resulting in the column being reduced to a scalar value and then the ℓ1-norm is 

applied to the vector of those scalar values resulting in the entire matrix being reduced to a 

scalar value. Note, this computation generally penalizes weight vectors that select a larger 

number of groups, i.e., are not sparse on a group level.

The optimal ‘weight’ vector now depends on the weight C of the term measuring 

classification accuracy and the weight λ of the term measuring group sparsity within the 

MKL cost function (refer to Appendix A for more details). As in [13, 53], the search space 

for those two hyperparameters is {10−3, 10−2, 10−1, 1, 101, 102, 103}. To identify the best 

hyperparameter setting, we perform 5-fold inner cross-validation 10 times. Each time, we 

randomly divide the training data into 5 validation folds. For each validation fold, we first 

train our implementation of MKL with respect to a specific hyperparameter setting on the 

remaining training data. For that setting, we then record the accuracy of the implementation 

on the validation fold and the identified pattern, i.e., regional scores associated with non-

zero weights. We repeat this process for each hyperparameter setting and then only keep the 

pattern that is associated with the highest validation accuracy across all parameter settings. 

Repeating this process for the remaining 4 validation folds and 9 more inner-cross 

validations then results in a total of 50 ‘trials’. The Selection Step then defines the HIV 

specific pattern as the set of residual scores that were part of all 50 trial patterns. This multi-

trial selection process is considered more robust than only relying on single run of a sparse 

classifier [18, 23].

The Reweighing Step focuses on improving MKL’s classification accuracy when only 

relying on the residual scores of the HIV specific pattern. As training of the classifier is now 

confined to only informative image measurements, classification accuracy is generally 

improved by replacing the ℓ2,1-norm with the ℓ2-norm in the cost function of the MKL 

implementation. The Reweighing Step then performs parameter exploration of this MKL 

implementation via 5 fold inner cross-validation, i.e., it records the hyperparameter setting 

that leads to the highest average validation accuracy across the 5 inner folds. The training of 

ℓ2,1-ℓ2-reg is completed by training MKL with the selected hyperparameter setting on the 

complete training data. Note, choosing the optimal hyperparameters without including any 
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data from the testing fold yields more reliable and reproducible results [54] than tuning the 

hyperparameters without any inner validation folds.

The group sparsity (in the Selection Step) guarantees ‘bilateral selection’ of each type of 

ROI-specific measurement (i.e., measurements on both left and right hemispheres are 

selected or neither one of them). The Reweighing Step then builds the final classifier relying 

on all selected individual measurements and the ℓ2-norm, which generates non-sparse 

classifiers that generalize well to unseen testing data [17, 55]. For the interested reader, 

Appendix A derives the Chained-Regularization approach in detail. Specifically, we first 

generalize the MKL approach of [13], which was specific to ℓ1-norm regularization, to 

regularizers that are convex and differentiable in ℝ ≥ 0. We then embed that approach into 

the proposed Chained-Regularization framework.

2.6. Alternative Implementations

To motivate the specific implementation of the Chained-Regularization approach, the nested 

cross-validation of Chained-Regularization is repeated with different combinations of 

regularizers, i.e., using ℓ1-norm in the Selection Step and ℓ2-norm in the Reweighing Step 

(denoted by ℓ1-ℓ2-reg), using ℓ2,1-norm in the Selection Step and ℓ1-norm in the Reweighing 

Step (denoted by ℓ2,1-ℓ1-reg), and using ℓ2-norm in both steps (denoted by ℓ2-ℓ2-reg). In 

addition, the comparison includes an implicit model for the grouping of the ROI 

measurements by computing the average value of each group and then using the ℓ1-norm in 

the Selection Step and ℓ2-norm in the Reweighing Step (denoted as Avg ℓ1-ℓ2-reg). To 

demonstrate the advantages of Chained-Regularization, only the MKL approach is cross-

validated, i.e., omitting the Reweighing Step as well as the repeated selection procedure. The 

corresponding Single-Step Regularization approaches are denoted as ℓ1-reg, ℓ2-reg and ℓ2,1-

reg. Note, we omitted certain alternative implementations from the experimental setup to 

keep the comparison concise and informative. For example, one could implement Chained-

Regularization using the ℓ1-norm in both steps. While this implementation produces similar 

accuracy score as ℓ2,1-ℓ1-reg, the approach most likely underestimates the impact of the 

disease on a small number of brain regions; a risk generally associated with sparse classifiers 

based on the ℓ1-norm [56]. Furthermore, note that training a MKL without regularization, 

constraint or a penalty term (in the reweighing step) is not feasible as the underlying 

minimization problem is then underdetermined [18], i.e., results in an unstable classifier.

In addition to variations of Chained-Regularization, the comparison includes conventional 

support vector machine (SVM) classifiers widely used in neuroimaging applications to 

highlight the benefits of Chained-Regularization in the context of MKL. The class of 

alternative SVM classifiers include linear SVM, SparseSVM [57], and sparse feature 

selection [20] followed by a linear SVM (SFS+SVM). In addition, t-test [20], elastic-net 

[24], and the mutual information based feature selector minimum-redundancy maximum-

relevancy (mRMR) [58] are coupled with a linear SVM classifier to further evaluate the 

performance of the proposed feature selection technique.
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For each implementation, the accuracy scores of the previous section are computed. We also 

apply the DeLong test [59] to mark implementations that are significantly worse (p-value < 

0.01) than the proposed ℓ2,1-ℓ1-reg.

3. Results

3.1. Comparison

Classification results of the proposed and alternative methods are summarized in Table 2. 

The proposed Chained-Regularization technique (ℓ2,1-ℓ2-reg) achieves the highest Accuracy 

(82.3%), SEN (0.84), and AUC (0.87). The SPE (0.82) is equivalent to ‘ℓ1-ℓ2-reg’ and ‘Avg 

ℓ1-ℓ2-reg’. All other implementations of the comparison (including ℓ2-ℓ2-reg and ℓ2,1-ℓ1-reg) not 

only received lower scores, but were also significantly worse than the proposed chained ℓ2,1-

ℓ2 regularization. The single step regularizers received higher scores in all four performance 

measures than the conventional approaches with the exception of SFS+SVM. The 

performance scores of SFS+SVM (Accuracy: 0.69%, SPE: 0.69, SEN: 0.70 and AUC: 0.73) 

were higher than those of ℓ2-reg and ℓ2,1-reg but lower than ℓ1-reg (Accuracy: 70.3%, SPE: 

0.70, SEN: 0.70, AUC: 0.73), the single step regularization with the highest Accuracy and 

AUC. Finally, only conventional methods (i.e., t-test+SVM, mRMR+SVM, SparseSVM and 

SVM) produced classification results that were not significantly better than chance.

3.2. The HIV Pattern

For ℓ2,1-ℓ2-reg (the most accurate approach in the comparison), Figure 5 shows the 

frequencies (normalized in the range [1]) of the 298 image measurements selected by the 

Selection Step across the 10 runs of cross-validation on the whole matched data set 

considered for identifying the pattern. This figure shows the measurements with a selection 

frequency of 1 (selected all times), i.e., those that are actually used in the Reweighing Step 

of our method, with colors based on their measurement types. Note, the ordering of 

measurement types is arbitrary. We refer to this set of measurements as the HIV pattern. The 

remaining measurements are displayed in gray regardless of the type of measurement. 

Approximately 39% of all image measurements are selected in all runs. These measures 

define the HIV pattern.

To analyze the significance of each type of measurement (Mean Curvature, Surface Area, 

Gray Matter Volume, Average Thickness, and Subcortical ROI Volumes), we first create a 

baseline for comparison by performing 10-fold cross validation just on the Reweighing Step 

with the scores being confined to the HIV pattern, recording the testing accuracy for each 

fold, and then computing the mean and standard deviation in the accuracy score across all 10 

folds. The results in an accuracy of 87.69% ± 1.69 (mean ± standard deviation), which we 

refer to as ‘All Measurements’ in Table 3. For each measurement type, we then omit the 

corresponding measures from the data, perform 10-fold cross-validation of the Selection 

Step on this subset of data, record the pattern, and repeat the previous cross-validation of the 

Reweighing Step with respect to that pattern.

With respect to using subsets of the measurements, omitting Average Thickness from the 

data resulted in the pattern with the highest mean accuracy score (79.6% ± 1.96). Omitting 
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Mean Curvature, Surface Area, or Volume from the HIV pattern resulted in accuracy scores 

that were significantly lower than those produced by All Measurements (or the HIV pattern). 

The same was true when confining classification to cortical gray matter volumes.

Beyond the type of measurements, Table 4 lists and Figure 6 visualizes the selected cortical 

regions. 35% of all cortical measurements are selected by our method. Furthermore, a total 

of 52% of the subcortical measurements are selected. Figure 7 shows the selected subcortical 

regions (i.e., hippocampus, amygdala, accumbens and cerebellar cortex) along with the 

white matter structures (i.e., corpus callosum posterior and mid-posterior) selected by our 

approach. In addition to these ROIs, hypointensity lesion volumes are also selected. Note, as 

also argued in [8], the coefficients computed by sparse classifiers simply parameterize a 

linear multivariate model (explained in detail in Appendix A), which predicts the class 

labels. Thus, coefficients are informative with respect to feature selection but are not good 

indicators for differentiating the importance among the selected features with respect to 

identifying cohorts.

The comparison of different approaches (see Table 2) revealed that our Chained-

Regularization approach was significantly better than confining analysis to any one single 

step (i.e., ℓ2,1-reg or ℓ2-reg). Our approach was also significantly better than alternative 

implementations of the Chained-Regularization that used the same type of regularizer for 

both steps (i.e., sparse regularizer (ℓ2,1-ℓ1-reg) or Euclidean regularizer (ℓ2-ℓ2-reg)). This 

finding underlines the importance of selecting two regularizers that complement each other 

for our approach, i.e., the first regularizer models the selection of the measurements, while 

the second one reweighs the influence of the selected measurements in order to improve the 

classification accuracy.

Choosing alternative complementary regularizers by replacing the ℓ2,1-norm in the Selection 

Step with other sparse regularizers (while leaving the Reweighing Step unchanged) results in 

non-significantly lower accuracy scores compared with the proposed approach. Unlike other 

implementations of the Chained-Regularization, our proposed ℓ2,1 regularizer was the only 

one that explicitly modeled the bilateral effect of HIV on the brain by grouping 

measurements across hemispheres. This additional modelling constraint simplifies the 

classification task and results in higher performance scores.

With the exception of SFS+SVM (which is also significantly less accurate than our proposed 

method), the worst performing methods are common (two-step) approaches that used 

different methods for feature selection and classification. Such approaches view pattern 

identification and classification as two disconnected machine learning tasks [20, 60, 61]. 

Thus, the optimal pattern identified in the first step is generally not optimal for the classifier 

in the second step, which would explain the low accuracy scores.

All implementations led to SPE, SEN, and AUC values similar to their Accuracy score 

(which is being maximized). This concurrence emerged because our data set is well 

balanced between the two cohorts. The residual scores of the imaging measures further 

minimizes the risk of biasing analysis towards one cohort.
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Note that ℓ2,1-ℓ2-reg iteratively runs several trials of nested cross-validation in the Selection 

Step for reliable selection of the relevant features (i.e., the HIV pattern). However, training 

based on this procedure is computational expensive, the training time is insignificant in 

comparison with the years it took to acquire the data. With the implementations done only 

on a single computing core of a machine with an Intel® Core™ i7-4712HQ CPU @ 2.30 

GHz with 16 Gigabytes of memory, using Matlab R2017a, it took approximately 6 hours to 

train the model and search all possible settings for the hyperparameters and tune them. Note, 

our implementation was not optimized and therefore computation times may be improved. 

Furthermore, the training is done only once, after which the model parameters are saved and 

run on test data. The testing time of ℓ2,1-ℓ2-reg is less than 0.01 second, which is similar to 

the other implementations of this comparison. Note that the increase in the running time of 

our method (compared to single-step methods) is mainly due to the constant number of trials 

that we repeat the method to get a more robust pattern selected, i.e., the increase in the 

running time is not exponential to the number of subjects or measurements. Therefore, the 

method is scalable for larger number of inputs. However, if the number of measurements 

dramatically increases, the approach faces the so-called ‘Small-Sample-Size’ problem, a 

common issue in machine learning [62]. This problem arises when the number available 

samples (N) is far fewer than the number of features (d) extracted from them (i.e., N << d). 

Under these settings, all machine learning and pattern recognition methods fail to identify 

the intrinsic space of the samples.

The HIV pattern identified by the proposed Chained-Regularization technique composes of 

approximately 39% of the 298 measurements that were selected in all 50 training runs (see 

Figure 5). This frequent selection of such a large number of measurements does not 

contradict the sparsity constraint of MKL but rather is due to grouping of measurement and 

the accounting done by the Chained-Regularization approach. Classifiers relying on group 

sparsity (ℓ2,1) tend to select more measurements than those relying solely on sparsity (ℓ1 

[27]). Furthermore, our method marks a measurement as informative if it is selected by 

MKL at least once in connection with one of the 7 kernels (i.e., Linear, HIK, and RBF with 

5 instances of its hyperparamter setting). That those kernel-measurement pairs are actually 

sparsely selected by MKL is shown in Figure 8, which lists each pair separately. By doing 

so, our Chained-Regularization approach avoids underestimating the impact of the disease to 

a small region of the brain as commonly done by sparse classifiers [56].

As indicated by Table 4, combining the four different types of measurements used in our 

analysis is essential for creating a highly accurate HIV pattern. Of all measurement types, 

the Mean Curvature is the most frequent measurement type present in the pattern. However, 

when performing classification without the Mean Curvature (see Table 3), the drop in 

accuracy is less then when omitting Surface Area and Gray Matter Volume scores. The 

opposite is true for the regional gray matter volumes, which are least often selected, but 

whose omission from the pattern results in the largest drop in accuracy. This observation 

acknowledges that the number of times any type of measurement is part of a selected pattern 

does not necessarily indicate how important that type is for characterizing the disease.
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4. Discussion

The measurements composing the HIV pattern identified by the most accurate approach, the 

proposed Chained-Regularization, are in agreement with the literature, which suggests that 

HIV infection is associated with volume deficits in cortical, subcortical, and white matter 

regions [63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. As identified using our automated, machine 

learning method (Table 4), the literature indicates that cortical areas affected in HIV relative 

to healthy controls include frontal, cingulate, sensorimotor, and parietal regions [9, 73, 74, 

75, 76, 77]. For other cortical regions identified herein, reports on the effects of HIV are 

relatively less common: [9] lists temporoparietal regions; [71, 78] include effects of HIV on 

thinning of the temporal cortices; [72] describes effects on insula; [79] lists parahippocampal 

cortex. That our methods identified regions not commonly reported in the HIV literature 

(e.g., Caudalanteriorcingulate, Isthmuscingulate, Lateralorbitalfrontal, Parsopercularis, and 

Frontalpole) may be due to our inclusion of cortical measures such as mean curvature, 

thickness, and surface area, which are not typical metrics used in the HIV literature. Instead, 

the imaging literature usually focuses on the effects of HIV on gray matter volume (see the 

following for exceptions [80, 81, 82]). Indeed, in studies that assess cortical thickness rather 

than cortical volume, HIV effects are evident in areas such as the insula, orbitofrontal, 

temporal, and cingulate cortices [78, 83], similar to the ones identified here.

As also confirmed by our results, white matter is notably affected by HIV infection. Damage 

to myelin sheathes may be reflected in lower than normal white matter volume and greater 

prevalence of white matter hyperintensities [84] (deemed “hypointensities” by FreeSurfer 

[44]). Indeed, examination of brain microstructural integrity using DTI has detected subtle 

HIV-related differences from controls (e.g., lower fractional anisotropy and higher mean 

diffusivity) in myelin and axonal integrity [85, 86, 87, 88, 89, 90], even in normal-appearing 

white matter [91, 92, 93].

Subcortical regions frequently reported in the literature to have significantly smaller 

volumes in HIV subjects relative to healthy controls include hippocampus and basal ganglia 

structures [64, 94, 95, 96, 4]. Regarding the basal ganglia and limbic structures, our results 

specifically identify the accumbens and amygdala, whereas the literature more frequently 

cites the caudate, putamen, and pallidum (e.g., [65, 94, 95, 96]).

Although our approach does not identify the thalamus, a structure as particularly susceptible 

to HIV despite other reports (e.g., [9, 83, 4, 6]), our scheme does note cerebellum as a 

significant contributor to diagnosis differences. This inclusion is consistent with several 

other studies report HIV-related gray matter volume deficits in the cerebellum [68, 69, 97]. 

The functional consequences of HIV effects on the cerebellum have been reported [98]; yet 

the cerebellum is generally underappreciated in the imaging literature as common analysis 

methods are designed with the neocortex in mind and may be suboptimal for the analysis of 

the cerebellum.

One of the main limitations of the proposed study is the large imbalance between the 

number of HIV patients and CTRL subjects. We addressed this issue by matching (and 

hence balancing) a subset of the CTRLs to the HIV group. However, this greatly reduced the 

Adeli et al. Page 11

Neuroimage. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of samples used for extracting the pattern and testing, and thus the power of the 

analysis. To preserve the power of the provided data, expanding Chained-Regularization for 

explicit modeling of the imbalance between the cohorts can be a direction for future work.

5. Conclusion

We presented Chained-Regularization, a two-step-approach to identifying disease-specific 

patterns and performing pattern-based classification that, unlike the state-of the art, uses the 

same classification model for first identifying informative measures and then improving the 

accuracy of the classification based on the selected measures. Our choice of classification 

approach was a generalized version of the MKL method proposed by [13]. In the Selection 

Step, parameterization of MKL was confined by groups sparsity (ℓ2,1-norm) and in the 

Reweighing Step, the parameterization was penalized by the Euclidean (ℓ2-norm) 

regularization. This implementation was more accurate than alternative implementations and 

significantly better than common (two-step) approaches using different methods for feature 

selection and classification.

The Chained-Regularization approach identified a number of brain regions comporting with 

the literature and designated a few novel regions that (to our knowledge) have not been 

previously described in the HIV literature. These regions would benefit from further 

investigation as an improved understanding of the diseases remains critical for advancing the 

long-term care for the large number of HIV infected patients, who (even with suppressed 

viral loads) can suffer from cognitive disorders associated with HIV. Our current 

contribution in improving this understanding is in providing an automated, impartial 

approach for identifying key brain regions implicated in HIV infection.
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Appendix A. Multiple Kernel Learning for Feature Selection and 

Classification

Table A.5:

Notations: Note that throughout this paper, we refer to matrices with bold capital letters 

(e.g., A), vectors with small bold letters (e.g., a), and scalars or functions with all non-bold 

letters. a j
i  is the scalar in row i and column j of A, while ai the ith row and aj the jth column 

of A.

Notation Description

N Number of training samples

d Dimensionality of the feature vectors
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Notation Description

d′ The dimensionality of the selected features set

X ∈ ℝd × N Feature matrix of all samples

y ∈ ℝ1 × N The class labels for each of the samples

X′ ∈ ℝd′ × N The new reduced feature matrix, after feature selection

k(x, xn) Subkernel function between the two samples x and xn

α Weights vector learned to aggregate subkernels into a kernel

k(x, xn, α) Aggregate kernel of the two samples x and xn, using weights α

∥a∥1
The ℓ1 norm of vector a (i.e., ∥ a ∥1 = ∑i ∣ ai ∣)

∥a∥2 The ℓ2 norm of vector a (i.e., ∥ a ∥2 = (∑iai
2)

1
2

)

∥A∥2,1 The ℓ2,1 norm of the matrix A (i.e., ∥ A ∥2, 1 ≔ ∑ j (∑i ∣ a j
i ∣2)

1
2

)

ℝ ≥ 0 The set of non-negative real numbers

The MKL of [13, 18] classifies samples by learning the optimal pairings between kernels 

and image measurements. Finding the optimal paring is described as a minimization 

problem with respect to a weight vector (denoted α), sparsity of which specifies the 

importance of pairings for class separation. To make the minimization problem tractable, the 

search for the optimal weight vector is constrained by a regularization term ℛ(α). The 

minimization problem is furthermore characterized by a prediction function f (x, α) that 

maps the image measurements x of a sample to a label or cohort (i.e., y). The max-margin 

term ∥ f ( . , . ) ∥ℋ
2  (or ∥ f ∥ℋ

2  for short) then measures the distance between the ‘support 

vectors’ of the classes (i.e., HIV and CTRL) as defined by f(·, ·) (see [53, 99] for detailed 

definition and see Table A.5 for the notations). Introducing the loss function L(y, f(x, α)) for 

measuring the difference between the predicted and actual label of a sample, the final term 

of the minimization problem computes that difference across all training samples, i.e., 

ℒ(y, X, f , α) ≔ ∑m = 1
N L(ym, f (xm, α)). Thus, the regularized MKL approach is completely 

defined by

min
f ∈ ℋ, α

1
2 ∥ f ∥ℋ

2 + C ⋅ ℒ(y, X, f , α) + λℛ(α),

s . t . α ≥ 0,
(A.1)

where C and λ are trade-off hyperparameters, the constraint α ≥ 0 is needed to efficiently 

solve the minimization problem (similar to [13, 18]), and ℋ is a Reproducing Kernel Hilbert 

Space (RKHS) [100]. Note that α ≥ 0 guarantees that the search for the optimal parameters 

is done in the space of non-negative values, in which we can define flexible (convex and 

smooth) regularization functions. The regularizers ℓ2,1 and ℓ1 are only smooth in the domain 

of non-negative values [18, 27]. For more details, refer to Section Appendix A.1.
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In the above objective, function f is expressed in terms of the aggregated kernel function k(·, 

·, α), the weight wn of a training samples ‘n’ in the decision process, and bias parameter b 
[101, 53]1:

f (X, α) ≔ Σ
n = 1

N
wn ⋅ yn ⋅ k(Xn, X, α) + b . (A.2)

As shown in Figure A.9 (and [13]), the aggregated kernel function k(·,·, α) applies a set of 

subkernels {k1 (·, ·),…, kκ(·, ·)} to each single residual score and then computes a weighted 

average across all subkernels and residual scores with the weight defined by α, i.e.,

k(X, Xn, α) ≔ Σ
q = 1

k
Σ

i = 1

d
α(i − 1) ⋅ k + qkq(xi, xn

i ) . (A.3)

An efficient solution to Eq. (A.1) requires the subkernels to be positive semidefinite (PSD), 

which is a common constraint for kernel methods [101]. Note, that any linear combination 

(with non-negative coefficients) of PSD subkernels also results in PSD kernel (as in Eq. (A.

3)). For our specific application, we choose three types of subkernels. The first one is a 

Linear (LIN) kernel, which is one of the simplest and most widely used kernels in machine 

learning:

kLIN(X, Xn) ≔ X⊺ ⋅ Xn . (A.4)

As an alternative to the linear kernel, k(·, ·, ·) also includes the histogram intersection kernel 

(HIK) [102], a non-linear kernel popular for non-negative features. This kernel is applied to 

the absolute values of the residuals in X (as in Eq. (2)), i.e.,

kHIK(X, Xn) ≔ Σ
i = 1

d
min( ∣ xi ∣ , ∣ xn

i ∣ ) . (A.5)

Finally, the implementation includes several instances of the Radial Basis Function (RBF) or 

the Gaussian kernel [103], a popular, non-linear kernel that depends on the kernel 

hyperparameter σ:

1Then, for this specific application, RKHS is defined as (note that | means ‘such that’)

ℋ ≔ f ( ⋅ , ⋅ ) ∣ f ( ⋅ , ⋅ ) ≔ Σ
n = 1

N
wnynk(Xn, ⋅ , ⋅ ) + bwithw ∈ ℝNandb ∈ ℝ .
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kRBF(X, Xn) ≔ exp
∥ X − Xn ∥2

2

2σ2 . (A.6)

This kernel can be built by different values of its hyperparameter, σ. We build several 

instances of the RBF subkernel with respect to σ ∈ {10−2, 10−1, 1, 10, 102}. Doing so avoids 

hyperparameter tuning for this kernel, as MKL solves Eq. (A.1) with respect to α to select 

the pairs of subkernels and residual scores that best fit the data.

Assuming that ℛ(α) (which is explicitly defined later) is convex and differentiable for non-

negative input values (i.e., α ≥ 0), the solution to Eq. (A.1) can be efficiently determined via 

Optimize-RMKL(·) (see Algorithm 1). Inspired by [13], “Optimize-RMKL(·)”, iteratively 

solves the equation based on Block Coordinate Descent [104], i.e., by alternating between 

optimizing for f and α until convergence. When optimizing for f (with α being fixed), Eq. 

(A.1) reduces to a SVM that can be solved

Algorithm 1.

“Regularized multiple kernel learning” (RMKL), as in Eq. (A.1).

Optimize-RMKL (y, X, ℛ( . ), C, λ)

Input: Training features X, labels y, the regularization function ℛ( . ), and hyperparamters C and λ.

1: t ←, α0 = 1

2: repeat

3:  ft+1 ← SVMSolver(yk(.,., αt)).

4:  αt+1 ← Solve (A.1) by using f* = ft+1 and regularization ℛ( . ), using PGD.

5:  αt+1 ← max(0, α), t ← t + 1.

6:  ℳ ∣ 1
2 ∥ f t ∥ℋ

2 + Cℒ(y, X, f t, αt) + λℛ(αt) ∣.

7: until 
∥ αt − 1 − αt ∥2

( ∥ αt − 1 ∥2 × ∥ αt ∥2)
< 10−3

, or ℳ < 10−6
, or t > 100

Output: f*, αt.

with standard approaches (e.g., LIBSVM [105]). To determine the optimal feature-kernel 

weights α (with f being fixed), projected gradient decent (PDG) [106] is applied to Eq. (A.

1).

Appendix A.1. Chained ℓ2,1,-ℓ2 Regularization

Given the training data as well as the search space {10−3, 10−2, 10−1, 1, 101, 102, 103} for 

both hyperparameters λ and C of Optimize-RMKL(·), our Chained-Regularization approach 

(called Chained-Reg; see also Algorithm 2) now makes use of Optimize-RMKL(·) in the 

Selection Step and the Reweighing Step. In the Selection Step, the regularizer ℛ( ⋅ ) of Eq. 

(A.1) is defined by group sparsity (i.e., ℓ2,1 norm) so that Optimize-RMKL(·) identifies the 

kernel-measurement pairs that best distinguish the two cohorts. To explicitly define ℛ( ⋅ ), 
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we introduce the group matrix 𝒢(α), in which each column represents a group according to 

bilateral dependencies of ROI measurements and the entries of the rows are the elements of 

α corresponding to those measurements. Then, the first step of the Chained-Regularization 

defines ℛ( ⋅ ) as

ℛ2, 1(α1) = ∥ 𝒢(α1) ∥2, 1 . (A.7)

As mentioned, for the selection process to be reliable, we compute a distribution over the 

selected features by repeatedly solving Eq. (A.1) and then select residual scores based on 

that distribution. Specifically, the training data is split into 5 (inner)

Figure A.9: 
An illustration of computing the kernel for each pair of samples (x and xn), similar to what is 

presented in Eq. (A.3). The final kernel is computed by a weighted aggregation of κ 
different kernels applied on each single feature.

folds based on random sampling. For each fold, the approach records the set of selected 

kernel-feature pairs associated with the most accurate (hyperparameter) setting of Optimize-

RMKL(·). The accuracy of a setting is determined by parameterizing Optimize-RMKL(·) 

accordingly, training the approach on the remaining training data, and applying the resulting 
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implementation to the inner fold. The entire process of splitting the training data and 

recording the set of selected kernel-feature pairs is repeated 9 more times to produce a total 

of 50 sets. The features selected in all trials then define the ‘selected measurement matrix’ 

X’. Note, this conservative threshold minimizes the chance to introduce another 

hyperparameter that requires tuning. However, one can implement other selection criteria if 

required by the application.

Given the selected measurements, the Reweighing Step of the Chained-Regularization again 

applies Optimize-RMKL(·) to solve Eq. (A.1), but now with respect to X’ and the regularizer 

defined by the Euclidean norm, i.e.,

ℛ2(α2) = ∥ α2 ∥2 . (A.8)

To find the most accurate reweighing α2 of the selected measurements, 5-fold (inner) cross-

validation coupled with hyperparameter exploration is performed. The accuracy of each 

hyperparameter setting is computed by first recording the classification results on the fold 

not used for training Optimize-RMKL(·) and then averaging those results across all folds. 

With respect to the most accurate setting of Optimize-RMKL(·), Chained-Regularization 

returns the kernel function f and corresponding weight vector α2 to define the classifier for 

the testing data.

We end the description of Chained-Regularization by noting that the proposed approach is 

not specific to the two norms discussed here. As mentioned, Optimize-RMKL(·) only 

requires that the chosen norms are convex and differentiable in ℝ ≥ 0
d × k, which, for example, ℓ1 

and ℓ2,1 norms are.
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Algorithm 2

Chained ℓ2,1-ℓ2 regularization for joint feature selection & classification.
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Figure 1: 
Training of the Chained-Regularization approach: The first step (top, denoted as Selection 
Step) selects the image measurements informative for distinguishing HIV from controls, 

while the second step (bottom, denoted as Reweighing Step) focuses on improving the 

accuracy by reweighing the selected measures for classifying the samples. Note, both steps 

are based on the same classifier but differ in regularizing (or constraining) its 

parameterization.
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Figure 2: 
Age distribution of the participants: HIV (left), Matched CTRL (middle), and CF CTRL 
(right).
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Figure 3: 
Illustration of feature grouping for group sparsity. (a) Regular sparsity (ℓ1-norm) operates on 

a vector that concatenates the measurements from the left and right hemispheres. (b) Group 

sparsity operates on the matrix formed by putting the features from the same ROIs of the left 

and right hemispheres in its columns.
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Figure 4: 
Illustration of the nested cross-validation strategy used in Chained-Regularization (ℓ2,1-ℓ2-

reg). On the ith training iteration, the Selection Step selects the most informative 

measurements(i.e., the pattern) using ℓ2,1-regularization, and then the Reweighing Step uses 

that pattern to build the classifier with ℓ2-regularization. In the second step, inner cross-

validation is used to choose the model hyperparameters. Next, the built classifier is used to 

calculate the accuracy scores on the corresponding testing fold (say Acci). The average 

accuracy for all folds is then reported (i.e., Acc = 1
10 ∑i = 1

10 Acci).
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Figure 5: 
Frequencies of selection for each of the 298 features. Colors encode measurement types. The 

measurements in gray are those ignored in the Reweighing step.
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Figure 6: 
cortical ROIs selected by our proposed approach. (b-e) show the selected ROIs for each 

measurement type separately, while (a) visualizes the union of the four types.
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Figure 7: 
Subcortical ROIs and white matter structures selected by our method.
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Figure 8: 
Frequencies of selection for each of the measurement-subkernel pair. Note that 298 brain 

measurements are used, together with 7 different subkernels resulting in 2098 total pairs.
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Table 1:

Demographic information (‘svol’ = supratentorial volume).

Total
sex

Age (years) svol(×106)
F M

HIV 65 20 45 51.81 ± 8.44 1.26 ± 0.12

Matched CTRL 65 20 45 51.76 ± 8.44 1.26 ± 0.13

CF CTRL 180 102 78 43.36 ± 18.92 1.26 ± 0.13
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Table 2:

Classification results of different approaches summarized by Accuracy, specificity (SPE), sensitivity (SEN) 

and area under the ROC curve (AUC). The best score in each category is in bold. Methods are marked with †, 

if they were significantly worse than the proposed approach (p < 0.01 according to Delong’s Test [59]). 

Methods marked with ‡ are significantly better than chance (p < 0.01 according to the Fisher exact test [52]).

Method Accuracy (%) SPE SEN AUC

Proposed ℓ2,1-ℓ2-reg‡ 82.3 0.82 0.84 0.87

Chained (Baseline)

ℓ1-ℓ2-reg‡ 81.9 0.82 0.79 0.86

Avg ℓ1-ℓ2-reg‡ 79.7 0.82 0.77 0.85

ℓ2-ℓ2-reg†‡ 73.1 0.74 0.73 0.76

ℓ2,1ℓ1-reg†‡ 72.5 0.72 0.73 0.76

Single Step Regularization

ℓ1-reg†‡ 70.3 0.70 0.70 0.75

ℓ2,1-reg†‡ 69.7 0.70 0.68 0.73

ℓ2-reg†‡ 68.7 0.64 0.70 0.71

Conventional Methods

SFS [20]+SVM†‡ 69.9 0.69 0.70 0.73

elastic-net [24]+SVM†‡ 65.1 0.64 0.64 0.69

t-test [20]+SVM† 59.1 0.61 0.56 0.65

mRMR [58]+SVM† 59.6 0.56 0.61 0.64

SparseSVM [57]† 57.9 0.55 0.60 0.64

SVM† 56.7 0.57 0.56 0.60
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Table 3:

The mean±standard of the classification Accuracy and area under the ROC curve (AUC) of the proposed 

method with different subsets of the 298 measurements. Entries marked with f are significantly worse (p < 

0.01; Delong’s Test) compared to ‘All Measurements’.

Method Accuracy (%) AUC

All Measurements 87.7 ± 1.69 0.87 ± 0.03

No Average Thickness 79.6 ± 1.96 0.78 ± 0.07

No Mean Curvature† 77.2 ± 1.92 0.84 ± 0.05

No Surface Area† 73.9 ± 1.77 0.79 ± 0.03

No Gray Matter Volume† 66.8 ± 1.49 0.74 ± 0.06

Only Cortical Measurements† 69.2 ± 2.10 0.75 ± 0.02
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Table 4:

Cortical surface ROIs and their measurement types selected by our method.

ROI GrayVol MeanCurv ThickAvg SurfArea

Bankssts ✓ ✓

Caudalanteriorcingulate ✓ ✓ ✓

Caudalmiddlefrontal ✓ ✓ ✓

Cuneus

Entorhinal ✓

Fusiform ✓ ✓ ✓

Inferiorparietal ✓

Inferiortemporal ✓

Isthmuscingulate ✓ ✓ ✓

Lateraloccipital ✓

Lateralorbitofrontal ✓ ✓

Lingual

Medialorbitofrontal

Middletemporal ✓ ✓

Parahippocampal ✓ ✓ ✓

Paracentral ✓ ✓ ✓ ✓

Parsopercularis ✓ ✓

Parsorbitalis ✓

Parstriangularis ✓

Pericalcarine ✓ ✓

Postcentral ✓

Posteriorcingulate ✓ ✓ ✓

Precentral ✓ ✓ ✓

Precuneus ✓ ✓

Rostralanteriorcingulate ✓ ✓

Rostralmiddlefrontal ✓ ✓ ✓

Superiorfrontal ✓ ✓

Superiorparietal ✓ ✓ ✓

Superiortemporal ✓

Supramarginal

Frontalpole ✓

Temporalpole ✓

Transversetemporal ✓ ✓ ✓

Insula ✓ ✓ ✓
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