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Abstract

A joint and integrated analysis of multi-site diffusion MRI (dMRI) datasets can dramatically 

increase the statistical power of neuroimaging studies and enable comparative studies pertaining to 

several brain disorders. However, dMRI data sets acquired on multiple scanners cannot be naively 

pooled for joint analysis due to scanner specific nonlinear effects as well as differences in 

acquisition parameters. Consequently, for joint analysis, the dMRI data has to be harmonized, 

which involves removing scanner-specific differences from the raw dMRI signal. In this work, we 

propose a dMRI harmonization method that is capable of removing scanner-specific effects, while 

accounting for minor differences in acquisition parameters such as b-value, spatial resolution and 

number of gradient directions. We validate our algorithm on dMRI data acquired from two sites: 

Philadelphia Neuro-developmental Cohort (PNC) with 800 healthy adolescents (ages 8–22 years) 

and Brigham and Women’s Hospital (BWH) with 70 healthy subjects (ages 14–54 years). In 

particular, we show that gender and age-related maturation differences in different age groups are 

preserved after harmonization, as measured using effect sizes (small, medium and large), 

irrespective of the test sample size. Since we use matched control subjects from different scanners 

to estimate scanner-specific effects, our goal in this work is also to determine the minimum 

number of well-matched subjects needed from each site to achieve best harmonization results. Our 

results indicate that at-least 16 to 18 well-matched healthy controls from each site are needed to 

reliably capture scanner related differences. The proposed method can thus be used for 

retrospective harmonization of raw dMRI data across sites despite differences in acquisition 

parameters, while preserving inter-subject anatomical variability.
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1. Introduction

The sensitivity of diffusion MRI to microscopic molecular motion forms the foundation to 

study the neural architecture of the brain. However, these measurements are affected by 

different hardware specifications (magnetic field strength, number of receiver coils etc.), and 

different acquisition parameters (echo time, diffusion time, gradient strength, voxel size, 

number of gradient directions etc.) (Helmer et al., 2016). Therefore, the data acquired by 

each scanner is substantially different even for the same subject. In fact, even if the same 

subject is scanned with the same hardware from the same manufacturer, diffusion signal can 

still be different (Vollmar et al., 2010). This is due to differences in magnetic field 

inhomogeneities, sensitivity of receiver coils, the number of receiver coils used, vendor-

specific MRI reconstruction algorithms and differences in acquisition parameters. 

Consequently, dMRI data must be harmonized prior to joint analysis.

Several methods have characterized both intra-scanner and inter-scanner variability in 

structural and dMRI data (Landman et al., 2011, 2007). Based on their study in Walker et al. 

(2013), the authors recommend the use of physical phantoms to monitor and quickly detect 

any scanner-related changes in ongoing neuroimaging studies. While the use of physical 

phantoms is necessary, they are inadequate in capturing the regional and tissue specific 

scanner differences. Further, it is non-trivial to use the scanner differences observed in 

physical phantoms to correct human in-vivo data, due to the complexities of biological 

tissue.

Existing techniques on data pooling or harmonization are based on using diffusion tensor 

imaging (DTI) derived metrics (Salimi-Khorshidi et al., 2009; Jahanshad et al., 2013; 

Kochunov et al., 2014; Forsyth et al., 2014; Venkatraman et al., 2015; Jenkins et al., 2016; 

Pohl et al., 2016; Fortin et al., 2017). For instance, Salimi-Khorshidi et al. (2009); Jahanshad 

et al. (2013); Kochunov et al. (2014); Palacios et al. (2016); Kelly et al. (2017) use meta-

analysis approach which involves combining z-scores of a given diffusion measure (e.g. 

fractional anisotropy (FA)) from all sites to determine group differences. However, the 

subject population at each site may not be sufficient to capture the variance of the entire 

population, a critical requirement to ensure proper pooling and analysis of the z-scores 

(which depends on the variance and not just the population mean). Further, z-scores may not 

be the best statistic to use if the distribution of the diffusion measure in the population is not 

Gaussian (normal). On the other hand, Forsyth et al. (2014); Venkatraman et al. (2015); 

Fortin et al. (2017) use statistical covariates to regress out the differences between sites in 

DTI measures such as FA, mean diffusivity (MD) or cortical thickness. Of particular note is 

the work of Pohl et al. (2016), where the authors use information from 3 traveling subjects to 

obtain a linear correction factor for scanner related effects in FA (a different correction 

factor for each ROI analyzed). This method however has limitations when using large ROIs 

(such as the corticospinal tract), as the scanner-related effects are not only non-linear but 

also regionally varying (see (Mirzaalian et al., 2016) and Fig. 2). Thus, due to the regional 

variability of the diffusion signal, using a single regressor for large ROIs can lead to 

erroneous results in the aggregated data (Mirzaalian et al., 2016; Fortin et al., 2017). Further, 

it is also well known that the differences in the signal-to-noise ratio (SNR) of the 
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acquisitions at each site might add to variability in the estimated dMRI parameters such as 

FA (Farrell et al., 2007).

All of the methods mentioned above have to correct for scanner-specific effects in each 

diffusion measure of interest separately, i.e., a linear correction factor for each diffusion 

measure, thus making the harmonization procedure entirely model-specific (e.g. single 

tensor). Recently, Fortin et al. (2017) have proposed a powerful and fast statistical data 

pooling tool that uses ComBat (a batch-effect correction tool used in genomics) for 

retrospective data harmonization. This method estimates an additive and a multiplicative 

site-effect coefficient at each voxel, thus accounting for regional scanner differences. 

ComBat works on the finalized parameter maps, and in practice can be applied to any 

parameter map (e.g. FA, MD, mean kurtosis, etc). Despite this, their optimization procedure 

assumes that the site-effect parameters follow a particular parametric prior distribution 

(Gaussian and Inverse-gamma), which might not generalize to all scenarios or measures 

derived from other models (e.g., multi-compartment models). Besides, it is not clear how the 

nonlinearities in the signal due site-effect propagate through the preprocessing techniques as 

well as the model fitting procedures.

1.1. Contributions of this work

In our earlier works (Mirzaalian et al., 2016, 2017), we had proposed a model-free dMRI 

harmonization method which can be used to harmonize the “raw dMRI signal” (and not just 

a particular dMRI measure of interest) across sites. However, that work exclusively focused 

on harmonizing dMRI data across sites but with similar acquisition parameters. Thus, the 

method worked only when the spatial resolution and b-values were the same across sites. 

Additionally, the earlier method did not have an extensive validation on a large dataset.

In this work, we further build on our existing framework and propose a model free 

harmonization method that learns an efficient mapping across scanners despite differences in 

scanner parameters. We extensively validate our algorithm on dMRI data acquired from two 

different sites with different acquisition parameters. We use two independent data sets of 

different sizes (BWH: 70 subjects and PNC: 800 subjects) to demonstrate that our 

harmonization method is not affected by the sample size as opposed to existing approaches 

that require an accurate estimate of the variance of the underlying population in their model 

(e.g. meta-analysis methods). To this end, we compute effect sizes between groups separated 

by age and sex. Specifically, we show that the effect sizes, whether small, medium or large, 

are preserved by our harmonization procedure in both small (e.g. BWH) and large (e.g. 

PNC) data sets. Such validation experiments are necessary to robustly demonstrate the 

generalizability of any harmonization procedure for use with clinical research dMRI studies.

Using two different experiments, we demonstrate that at-least 16 to 18 well-matched 

controls from each site are needed to obtain robust harmonization results. We also compare 

our technique with the ComBat statistical data pooling technique (Fortin et al., 2017), and 

demonstrate its limitations. Further, we also discuss the limitations of the proposed 

technique in the limitations section.
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2. Methods

2.1. Data collection and preprocessing

2.1.1. Neurodevelopmental cohort (PNC)—We used dMRI data from 884 healthy 

participants from the publically available NIH repository: Philadelphia Neurodevelopmental 

Cohort (PNC) study (Satterthwaite et al., 2014, 2016). The dMRI data was acquired on a 

Siemens TIM Trio whole-body scanner, using a 32 channel head coil and a twice-refocused 

spin-echo (TRSE) single-shot EPI sequence with the following parameters: TR = 8100ms 
and TE = 82ms, b-value of 1000s/mm2, 7 b = 0 images. DMRI data was acquired with 64 

diffusion-weighted directions divided into two independent sets, each with 32 diffusion-

weighted directions. The images were acquired at 1.875 × 1.875 × 2 mm3 spatial resolution.

2.1.2. Brigham and Women’s hospital (BWH)—DMRI images from healthy 

volunteers were acquired on a whole body General Electric MRI scanner (GE Medical 

Systems, Milwaukee) at Brigham and Women’s Hospital as part of a larger NIH funded 

study. A high resolution diffusion acquisition with the following parameters was used: twice 

refocused, TR = 17s, TE = 80ms, 1.67 × 1.67 × 1.7mm3 spatial resolution, 51 gradient 

directions with b = 900s/mm2 and eight additional b = 0 images.

2.1.3. Oxford—All participants underwent whole-brain diffusion-weighted scanning 

using a 1.5 T Sonata MRI scanner. Diffusion-weighted images were obtained using echo-

planar imaging (SE-EPI, TR = 8500ms, TE = 89ms, 60 axial slices, isotropic spatial 

resolution 2.5 × 2.5 × 2.5mm3) with 60 isotropically distributed orientations for the 

diffusion-sensitizing gradients at a b-value of 1000s/mm2 and five b = 0 images.

Table 1 summarizes the demographic information for each of these sites. We applied axis 

alignment, centering and eddy current correction to each acquisition separately using the 

Psychiatry Neuroimaging Laboratory (PNL) pipeline: https://github.com/pnlbwh/pnlutil. We 

used the brain extraction tool (BET) to generate the brain masks (Smith, 2002; Jenkinson et 

al., 2005). The two dMRI acquisitions in the PNC data were combined by registering their 

respective baselines using affine transformation (Advanced Normalization Tools (ANTs) 

(Avants et al., 2011)). Then, the transformation was applied to each diffusion weighted 

volume and the gradient vectors were rotated using the rotation matrix estimated from the 

affine transformation. After merging the acquisitions, we performed an automated quality 

check of all 884 PNC data sets as follows: We fit the dMRI signal at each voxel using 

spherical harmonic basis functions (up to 8th order) (Descoteaux et al., 2007). Next, the 

average signal residual for each subject (over the entire brain) was calculated. This produced 

two clusters, one affected by motion and signal drops (bad cases) and another for good 

quality cases. We removed the cases with highest average residual, categorized as bad 

quality cases (84 participants in total). The threshold to determine the bad cases was 

manually chosen to maximize the separation between the clusters (see Fig. 1).

BWH and Oxford subjects were also processed using the same PNL pipeline. Since the 

sample size for each site was small, it was manually inspected for any signal dropouts or 

artifacts (as part of a separate study) and all subjects who did not pass our quality control 

procedure were not included in this study. A total of 70 subjects from BWH and 32 subjects 
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from Oxford were included in this study after quality control analysis. See Table 1 for 

demographics of all sites.

2.2. Group matching of training subjects across sites

Initially, we selected 20 right-handed (10F + 10M) subjects from each site (detailed analysis 

related to the training subjects size is explained in Section 2.4). The subjects were matched 

across sites for age and IQ to the best possible extent using unpaired t-test to minimize the 

statistical biological differences across sites. See Table 3 for demographics of training data. 

These training subjects were then used to learn the scanner-specific differences between 

sites. Details about the harmonization procedure is explained in the subsequent sections (see 

Table 2).

2.3. Steps for voxel-wise harmonization

The overall outline of the proposed method is depicted in a flowchart in Fig. 2. Briefly, we 

first project the signal from both sites to a common canonical space of b-values and spatial 

resolution. Next, a set of matched controls are used to learn a non-linear mapping (in the 

dMRI signal domain) that captures scanner-specific differences between the sites (see Fig. 

2(a)). This mapping is then used to update the dMRI signal for each subject at the target site 

(see Fig. 2(b)), i.e., we harmonize the remaining set of subjects from the target site. Each 

step in this process is explained in detail in the following subsections.

2.3.1. B-value mapping and resampling—Due to differences in the b-values 

between sites, we first match the b-values for both the sites. Using evidence from existing 

works (Jensen et al., 2005; Steven et al., 2014), we note that stronger b-values become 

increasingly sensitive to shorter molecular distances and the diffusion-weighted signal decay 

deviates from the monoexponential decay predicted by the Gaussian DTI model after a b-

value of (b > 1500s/mm2). That is, the diffusion-weighted signal attenuation log(S(b)/S0) 

approximately follows a linear decay up to b = 1500s/mm2. We utilize this observation to 

adjust for differences in b-values (for 500 < b < 1500) between the two sites. Specifically, 

we estimate the signal for one of the sites at a common harmonized b-value using a linear 

scaling of the signal in the log-domain. Mathematically, the diffusion signal at a new b-value 

can be estimated using: S = S0exp −bharmD , where S is the diffusion signal, S0 is the 

baseline and D = −1
b log S

S0
 is the diffusion coefficient, and b is the original b-value. bharm is 

the new b-value of the harmonized data, which is a parameter of choice and we set it to 1000 

for all subjects and for both sites in this work (see Table 1, bottom row). For harmonizing b-

values greater than 1500 s/mm2, one could use any of the compressed sensing methods 

described in (Rathi et al., 2014; Ning et al., 2015b, 2017; Fick et al., 2016, 2015a).

Next, we upsample each diffusion weighted (DW) volume using a 7th-order B-spline 

interpolation. Our use of 7th-order b-spline interpolation is based on extensive comparison 

of several interpolation techniques using ultra high-resolution dMRI data sets by Dyrby et al. 

(2014). In their work, the authors recommend the use of 7th-order b-spline interpolation, 

since the interpolated dMRI signal is similar to a very high resolution dMRI acquisition 

from a scanner. Further, they also showed that straight and curved crossing tracts smaller 
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than or equal to the original voxel size showed improvement in the geometrical 

representation of white-matter tracts with reduced partial-volume-effect. In this study, the 

harmonized data is resampled to 1.5mm3 isotropic spatial resolution, which is a parameter of 

choice. Next, we use a recently proposed unringing method (Kellner et al., 2015) to remove 

Gibbs ringing artifacts from each diffusion weighted volume.

2.3.2. Rotation invariant spherical harmonics features—We represent the dMRI 

signal S in a basis of spherical harmonics (SH): S ≈ ∑l∑mClmYlm where Ylm are the 

spherical harmonic basis functions of order l and degree m with coefficients given by Clm. 

From this SH representation, several rotation invariant spherical harmonic (RISH) features at 

each voxel can be computed as follows (Mirzaalian et al., 2015):

ℱ = C0
2, C2

2, … C8
2 where : Cl

2
= ∑

m = 1

2l + 1
Clm

2 (1)

These RISH features can be appropriately scaled to modify the dMRI signal without 

changing the principal diffusion directions of the fibers (Mirzaalian et al., 2016). Thus, our 

goal is to estimate a voxel-wise linear mapping of the RISH features between the reference 

and target sites using matched healthy controls, which can then be used to harmonize the rest 

of subjects in the target site. We note that this mapping is linear in the SH domain, but non-

linear in the dMRI signal domain.

2.3.3. Multi-variate template construction using training subjects—Using 

target scanner RISH features as input, our goal is to learn a voxel-wise linear mapping 

between the target scanner and the reference scanner. To achieve this, first, the RISH 

features in the training set are used to create a multi-modal RISH feature template 

(antsMultiVariateTemplateConstruction (Avants et al., 2010)). Once the template space is 

constructed separately for each shell (in case of multiple b-value data), we define the 

expected value of the voxel-wise RISH features as the sample mean 

𝔼l
s x′ ≈ ∑t = 1

Ns Cl
s x′; i /Ns over the number of training subjects Ns, where s is the target site 

or reference site, x’ is the voxel location in the template space and i is the subject number. 

Next, we compute voxel-wise linear (scaling only) maps between RISH features of target 

site (tar) and reference site (ref) data in the template space using:

𝒢 x′; re f , tar =
𝔼l

re f x′
𝔼l

tar x′ + ε
(2)

where l is the order of the RISH feature and ε is a small non-zero constant. Fig. 3 shows five 

mean templates of RISH features for l = {0, 2, 4, 6, 8} from left to right for PNC (top row) 

and BWH (middle row) sites. Note that, each RISH feature captures different frequencies of 

the dMRI signal. For instance, RISH feature for l = 0 captures isotropic components of the 

diffusion signal, while l = 2 is similar to FA and l ≥ 4 captures higher order frequencies. 
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Consequently, RISH feature for each l represents different microstructural tissue properties 

of the dMRI signal, which can be modified to harmonize the dMRI data from different sites 

without changing the underlying fiber orientations and hence the fiber connectivity of the 

subjects. Note the sharp differences in the RISH feature maps between the two sites, 

indicating regional and tissue specific non-linear differences between the sites. Fig. 3 also 

shows the scale maps learned for each RISH feature from the training subjects at both sites. 

As expected, the difference between sites is region and tissue specific.

2.3.4. Harmonization—We apply the linear map (for each RISH feature separately) 

learned from the training data set to all new subjects in the target site by non-rigid spatial 

transformation of the linear maps to the native subject space. The non-rigid transformation is 

obtained by registering the RISH features of each subject to the template space. The inverse 

of this transformation is applied to the estimated inter-site linear map. The harmonized 

dMRI signal is then calculated by scaling the SH coefficients of the signal at each voxel in 

the subject space as follows:

Clm x = 𝒢l x Clm x (3)

where 𝒢l x  is the scale map in the subject space and Clm x  the scaled SH coefficients. The 

final diffusion signal is then computed using:

S x = ∑
l

∑
m

Clm x Y lm (4)

2.4. Training set size

In this section we investigate the effect of the size of training subjects on the estimated inter-

site RISH feature map. We begin by selecting a matched set of subjects at both sites (PNC 

and BWH) varying in size from 2 to 25 (consecutive even numbers). For each training set 

size, we iteratively generated a bootstrap sample and checked whether the subjects matched 

between the sites using an unpaired t-test. Unmatched samples were discarded until we 

obtained 100 matched bootstrap samples. The subjects were matched across sites for age, 

gender and IQ.

To further verify our method, we also used an independent site (Oxford) with 32 healthy 

young adolescent subjects that were matched with the PNC dataset (See Fig. 4(b)). The 

same experiment was repeated, where an inter-site mapping was learnt with 100 bootstrap 

samples (well-matched subjects as described earlier).

To demonstrate the effect of training data size, in Fig. 4, we plot the number of training 

subjects versus the estimated whole brain mean and standard deviation (std) of the scale 

map. Our goal is to determine the minimum number of training subjects after which the 

mean and standard deviation of the scale maps do not change significantly, i.e. adding more 

subjects to the training data does not affect the scale maps. In Fig. 4(a) we show the mean 
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and standard deviation curves for RISH features for order 0, 2 and 4 (order 6 and 8 behave 

very similar to order 4), for the PNC-BWH sites. We observe that the curves become almost 

stable after a training size of 16, which implies that at-least 16 well matched subjects at each 

site are needed to learn a robust mapping between sites for dMRI data harmonization. 

Further, we also observe that the average difference of the mean and std between training 

size of 18 and 20 is ≤ 0.01.

Similarly, for the PNC-Oxford sites (Fig. 4(b)), the change in the estimated scale maps for 

all the RISH features hardly changes once at-least 16 matched subjects from each site are 

used. Consequently, in the rest of this work, we set our training data set size to 20 which can 

provide robust learning of scanner differences between sites.

To provide a more region-specific view, in Fig. 5, we depict the differences between the 

scale maps (PNC-BWH) with a training size of 20 (as “gold standard”) and some 

representative training data sets of size 2, 12, 16 and 18 for each RISH feature (L0, L2 and 

L4). Even though we observe large differences between the data sets with 20 subjects and 2 

subjects, we see that the voxel-wise differences significantly decrease and the difference 

maps become more similar after a training size of 16. A gray-scale image of the same figure 

is included in the Appendix.

3. Experiments and results

3.1. Experimental setup

In this section, we describe experiments to evaluate the performance of the proposed 

algorithm. First, to show that the harmonization works equally well irrespective of the 

choice of the reference site, we will evaluate the performance of our method using two 

experiments. In the first experiment, we choose BWH as the reference site and PNC as the 

target site, whereas in the second experiment we use PNC as the reference site and BWH as 

the target site. Another aim of these experiments is also to demonstrate the robustness of the 

proposed technique to preserve group differences despite the size of the test data sets. For 

example, we evaluate age-related group differences in the PNC data which has a large 

number of subjects, as well as the BWH site which has a small sample size.

We use dMRI-derived measures of FA, MD and generalized-FA (GFA), which are typically 

used in neuroimaging studies to understand the effect of harmonization. These measures 

were also chosen as they are known to change with age in a nonlinear fashion (Yeatman et 

al., 2014; Lebel et al., 2008) and show different maturational pattern between males and 

females (Gur et al., 1999; Asato et al., 2010). Hence, our experiments consisted of 

evaluating the effect sizes between three/two groups (separated by age or sex) before and 

after harmonization. To investigate performance of the harmonization in different regions of 

the brain that are known to mature at different speeds and are sex dependent, we used the 

Illinois Institute of Technology (IIT) Human Brain Atlas (Varentsova et al., 2014; Zhang and 

Arfanakis, 2018). We used 16 different white matter bundles1 from this atlas to evaluate the 

performance of our method. We set a threshold to 0.2 for all subjects to clearly define the 

regions-of-interest (ROIs) in the IIT probabilistic atlas. Mean FA, MD and GFA were 

Cetin Karayumak et al. Page 8

Neuroimage. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computed in each region for all subjects before and after harmonization to use in the 

upcoming experiments.

In Section 3.2.1, we test the learning (mapping) capabilities and performance of our 

algorithm on 20 training subjects selected from each site. In Section 3.2.2, we show how the 

aging and gender effects are preserved after harmonization in a large number of test subjects. 

In Section 3.2.3, we demonstrate that the proposed harmonization procedure preserves fiber 

orientation by comparing fiber bundle tracing results before and after harmonization.

3.2. Results

3.2.1. Evaluation on training subjects—In Fig. 6, we show the mean FA (a, b), mean 

MD (c, d) and mean GFA (e, f) values in the reference site (red), the target site (green) and 

the harmonized results (blue) for each of the major white matter bundles (from the IIT atlas) 

on the training data. In (a, c, e), respectively, we depict the results for FA, MD and GFA with 

PNC as the reference site and BWH as the target site. In (b, d, f), the experiment is repeated 

with BWH as the reference site and PNC as the target site. We also observe that the site 

differences are not uniform but vary in a highly nonlinear fashion across the brain and for all 

measures. We note that the site differences appear to be more for MD as compared to FA and 

GFA, which was also reported in (Vollmar et al., 2010).

To statistically analyze each diffusion measure before and after harmonization, the 

parametric paired t-test was applied to all major bundles between two sites: (i) reference site 

and target site (before harmonization); (ii) reference site and harmonized site (after 

harmonization). See Table 5 for the statistics of PNC as the target site and see Table 6 for the 

statistics of BWH as the target site. We observe a significant difference between the two 

sites for all measures (p < 1e − 4 for all bundles and measures) before harmonization. After 

harmonization, the statistical difference between controls from both sites is removed for all 

bundles and measures.

3.2.2. Effect size comparison in test subjects—Once a mapping between the sites 

is estimated from the 20 training subjects (per site), it is applied to the rest of the data set 

from the target site (i.e., data from all subjects of the target site are updated or harmonized). 

Any harmonization technique should preserve the inter-subject biological variability and 

group differences at each site, while only removing scanner related effects. This can be 

tested by ensuring that the effect sizes between groups is maintained before and after 

harmonization. White matter maturation (as measured by FA) with age has been well-

documented in the literature (Lebel et al., 2008), along with the differential trajectory of this 

maturation between males and females (Gur et al., 1999). We use this as a test-bed to 

demonstrate that the effect sizes between groups before and after harmonization is 

maintained. Specifically, we calculate the effect sizes between groups categorized by age 

and sex as described in Table 4.

1Abbreviations: forceps major (Fmajor), forceps minor (Fminor), fornix (Fornix), cingulum (cingulate gyrus portion) (Lcing and 
Rcing for left and right hemispheres respectively), cingulum (hippocampal portion) (Lcing2 and Rcing2), corticospinal tract (Lcst and 
Rcst), inferior fronto-occipital fasciculus (Lifo and Rifo), inferior longitudinal fasciculus (Lilf and Rilf), superior longitudinal 
fasciculus (Lslf and Rslf), uncinate fasciculus (Lunc and Runc).
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In our first experiment, we calculate the group differences between males and females in FA 

for each of the three age groups (i.e., matched for age). Our goal is to test if the effect sizes 

observed in the original test data are preserved after harmonization to a target site. In our 

second experiment, we calculate the effect sizes due to age before and after harmonization. 

For both of the experiments, we set: (1) BWH as the reference site and PNC as the target site 

(see Figure Appendix B.2(a) to see the maturation curves in PNC data); (2) PNC as the 

reference site and BWH as the target site (see Figure Appendix B.3(a) to see the maturation 

curves in BWH data).

3.2.2.1. Sex differences (effect sizes) before and after harmonization.: We compute the 

effect sizes using Cohen’s d between females and males matched for age for each of the 

three age groups from Table 4. Mathematically, Cohen’s d can be written as: d =
M f i − Mmi

Spooled

where M is the mean FA of the ith group, f represents females, m represents males. Spooled is 

given by Spooled =
n f i − 1 S f i

2 + nmi − 1 Smi
2

n f i + nmi − 2  where n is the number of subjects and Smi, Sfi 

are the standard deviations for the male and female groups respectively.

3.2.2.1.1. BWH reference site.: In Fig. 7(a), we show plots for white matter bundles 

before and after harmonization. Here BWH is the reference site and PNC is the target site. 

As can be seen, the effect sizes between the sexes before and after harmonization are almost 

the same for all age groups, that is, if the effect sizes are small before harmonization, they 

stay small after harmonization as well. Similar observations can be made for medium and 

large effect sizes. We however note that, in general, the effect sizes after harmonization are 

slightly lower than the original, potentially because of some smoothing effects that occur 

due to interpolation. Nevertheless, these differences are minor and do not change the 

outcome of statistical analysis.

In Table 1, we provide quantitative values for the effect sizes between groups for BWH as 

the reference site and PNC as the target site for each major bundle before and after 

harmonization. We also report the absolute differences (Δ) between the effect sizes before 

and after harmonization. Also reported are results when the effect sizes are grouped into 

small (d~0.2), medium (d~0.5), large (d~0.8), very large (d~1.1) and extremely large (d~1.4) 

effect sizes. We report the average absolute differences in the effect sizes in each group 

(Table 7-cyan rows). As can be seen, the effect sizes are preserved after harmonization (i.e., 

absolute differences in effect sizes before and after harmonization are always close to the 

original with the average difference being 0.0132).

3.2.2.1.2. PNC reference site.: We also perform a similar analysis for PNC as the 

reference site and BWH as the target site. At the BWH site, the number of female subjects is 

very small. Despite this small sample size, the harmonization algorithm preserves the 

maturation trends very accurately (i.e., trends are very similar to that before harmonization), 

demonstrating the robustness of the proposed method. However, as seen in Fig. 7(b), (and 

Figure Appendix B.3), small sample sizes can provide misleading (and potentially 

inaccurate) results as has been shown by several works in the literature. Here, we show these 
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results only to demonstrate that the inter-subject biological variability is preserved by our 

harmonization algorithm despite the small sample size (test samples) used. We note that no 

other inferences about sexual dimorphisms can be made from these results from the BWH 

site.

In Table C1, we provide quantitative values for the effect sizes for BWH samples before and 

after harmonization, and their absolute differences for each major bundle. Due to smaller 

data size of the females and a totally different age range of females and males in each group, 

unlike the previous experiment, we also observe medium, large, very large and extremely 

large effect sizes prior to harmonization which are preserved after harmonization (Δ is 

always < 0.2). Grouping the fiber bundles based on their effect sizes, we once again observe 

that the effect sizes are preserved after harmonization (Table 7-gray rows), i.e., effect sizes 

that were small, medium, or large stay small, medium and large respectively after 

harmonization.

3.2.2.2. Age related effect sizes before and after harmonization.: In this experiment, 

our aim is to show that the effect sizes due to aging are preserved after harmonization. For 

this purpose, we compute the effect sizes (Cohen’s d) between the first and the third age 

group from Table 4 for both males and females separately. Cohen’s d is calculated in a 

similar fashion as above.

3.2.2.2.1. BWH reference site.: In this case, BWH is the reference site and all data 

analysis before and after harmonization is done on the PNC site. Since FA increases in 

young adolescent subjects during maturation (Lebel et al., 2008), it is natural to observe 

mostly large and positive effect sizes due to aging. Besides, the effect sizes are highly 

sensitive to gender (see Fig. 8). As can be seen, the effect sizes stay almost the same after 

harmonization in all experiments. In Table C3, we report the effect sizes of the first and the 

third age group before and after harmonization and their absolute differences Δ for males 

and females separately. Group differences as measured by effect sizes, which are 

significantly different before harmonization for all bundles, still stay significantly different 

after harmonization (Δ is always < 0.2). Additionally, the grouped effect size results stay 

similar after harmonization (Table 8-cyan rows).

In this regard, we would also like to point the results of age-dependent maturation curves in 

the PNC data set. As can be seen in Figure B2, the maturation curves are accurately 

preserved by the harmonization algorithm. When PNC data is the target site (i.e., PNC data 

is updated for harmonization), we see a robust trend in maturation of different white matter 

bundles consistent with those reported in the literature (Paus et al., 2001; Paus, 2010).

3.2.2.2.2. PNC reference site.: We also perform a similar analysis for PNC as the 

reference site and BWH as the target site (i.e., BWH data was harmonized and analyzed 

before and after harmonization). Due to small sample size and differences in age-ranges, the 

maturation curves and the effect sizes do not match with those from the much larger PNC 

data set. However, to clarify once more, our aim is only to validate the harmonization 

performance regardless of the underlying trends in the data. As can be seen, the 

harmonization procedure preserves the trends as well as the effect sizes. In Table C4, we 
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report the effect sizes and Δ for the BWH site before and after harmonization for males and 

females respectively. The effect sizes are preserved after harmonization for all white matter 

bundles (see also Fig. 9) and for each group (Table 8-gray rows).

3.2.3. Tractography analysis—In order to ensure that our harmonization method 

(which involves modifying the dMRI signal) does not in any way to change the fiber 

orientations, we performed whole brain tractography using a multitensor unscented Kalman 

filter (UKF) method (Malcolm et al., 2010; Reddy and Rathi, 2016). The same parameters 

were used to generate whole brain tracts from the original and harmonized dMRI data. Next, 

the White Matter Query Language was utilized (WMQL) (Wassermann et al., 2016) to 

extract specific anatomical white matter bundles from the whole brain tracts. Fig. 10 depicts 

WMQL results for corticospinal tract (CST) and the inferior occipital-frontal fibers (IOFF) 

before (blue) and after (pink) harmonization. After extracting the tracts from a subject before 

and after harmonization, the Bhattacharyya overlap distance (B) was used to quantify the 

overlap between the tracts (Rathi et al., 2013):

B = 1
3 ∫ Ph x P x dx + ∫ Ph y P y dy + ∫ Ph z P z dz (5)

where P(.) represents the ground truth spatial probability distribution of the fiber bundle, 

Ph(.) is the spatial probability distribution of the tracts from the harmonized data and 

x, y, z ∈ ℝ3 are the fiber coordinates. B is 1 for a perfect match between two fiber bundles 

and 0 for no overlap at all. We observed very high overlap greater than 0.93 for all fiber 

bundles indicating that fiber orientation is well preserved by the harmonization algorithm.

3.3. Comparison of our method with ComBat data pooling technique

To validate the performance of our harmonization algorithm, we compare our method with 

the recently proposed ComBat statistical harmonization tool2 using both PNC and BWH 

(870 subjects in total). We include age and gender as biological covariates for all results. In 

the first experiment, we choose PNC as the reference site and BWH as the target site (Fig. 

11 (a: for males, c: for females)), whereas in the second experiment we use BWH as the 

reference site and PNC as the target site (Fig. 11 (b: for males, d: for females)). We 

investigate the maturational pattern of WM ROIs using FA as described in section 3.2.2.2. 

Our aim is to see if the effect sizes due to aging are preserved after harmonization. In each 

subfigure, we plot Δ- the effect size difference before and after harmonization on the top and 

the maturation curves of a few representative tracts on the bottom. As can be seen, for both 

harmonization methods Δ is always < 0.2, however, the proposed method outperforms 

ComBat in many WM regions (see effect sizes in Fig. 11(c)). We also notice that ComBat 

has slightly higher error as measured by Δ (~ 0.23) for PNC males in the Lslf region apart 

from the fact that several maturational curves do not retain the same shape after 

harmonization (see curves for BWH: Females - Lilf, or BWH: Males: Rilf). For the majority 

of the tracts, we observe that our harmonization method performs better than ComBat.

2https://github.com/Jfortin1/ComBatHarmonization.
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4. Discussion

We believe that accurate harmonization of dMRI data is of utmost importance to allow for a 

large-scale data-driven way to understand brain disorders. In this paper, we presented a 

harmonization method to retrospectively remove scanner-specific differences from the raw 

dMRI signal across various sites, even if acquired with different acquisition parameters. The 

harmonization procedure requires a well-matched set of controls across sites to learn the 

mapping between sites.

Acquisition parameters, magnetic field inhomogeneities, coil sensitivity, and other scanner 

related effects can cause non-linear changes in the signal in different tissue types. To remove 

these site effects, we first mapped the b-values from each site to a canonical b-value of 

1000s/mm2 and resampled the data to 1.53 mm3 (Section 2.3.1). Later, we utilized RISH 

features that are able to capture different frequency components of the diffusion signal to 

learn the inter-site differences (Section 2.3.2). In Fig. 3, we showed that the scanner related 

differences are substantially different for sub-cortical gray, versus the neighboring white 

matter region or the distant cortical gray matter regions. Further, these differences can be 

captured selectively by the different frequency bands of the SH basis (i.e., in different RISH 

features).

We note that, the methodology proposed here harmonizes the raw dMRI signal in a model-

independent manner. Further, dMRI data harmonization has to be done only once. Thus, any 

subsequent analysis will necessarily be consistent, unlike methods (such as ComBat) that 

work with model-specific measures such as FA, which are obtained at the last stage of the 

processing pipeline. Note that, it is not clear how nonlinear scanner effects affect the 

downstream processing and model fitting of dMRI data. Consequently, we recommend that 

dMRI data be harmonized at the earliest possible processing stage. In the interest of open-

science, we will make the code publicly available soon.

Using several experiments, in this paper, we evaluated our method’s performance on two 

independent sites: PNC with 800 healthy controls and BWH with 70 healthy controls. Our 

results lead us to conclude the following: (i) At-least 16 to 18 well matched healthy controls 

from each site are required to learn a robust mapping that can capture only site-related 

differences. (ii) Irrespective of the effect size (small, medium or large), the proposed 

harmonization procedure preserved the effect sizes after harmonization. (iii) The 

harmonization procedure also ensured that the fiber orientation directions were left 

unchanged, which is important for brain connectivity analysis.

5. Limitations

Despite its ability to harmonize clinical dMRI data, the proposed method nevertheless has 

certain limitations. First, the b-value matching procedure described herein works only in the 

lower b-value regime (500 < b < 1500). Beyond this range, a non-linear technique such as 

the one in Rathi et al. (2014) would have to be used for adjusting the b-values across sites. 

Note that, this limitation is not specific to our technique, and is also a limitation of other 

techniques such as ComBat. Interpolation to normalize the spatial resolution might result in 
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some smoothing of the data, which is potentially the reason for the slight differences in 

effect sizes seen in our experiments. Similar smoothing effects can also be expected in the 

case of ComBat (which requires matching of spatial resolution). Due to scanner drift during 

the length of a longer neuroimaging study, it is necessary to use control subjects spread 

during the entire duration of the study. In this case, ComBat has an advantage as it does not 

need matched control subjects. However, for proper use of ComBat, nonlinearities due to 

age and sex differences have to be accurately modeled to capture effects of demographic and 

other variables (which may not be known accurately if the sample size is small). We also 

note that, signal-to-noise ratio of the raw dMRI data from each site may also play a role in 

our ability to accurately harmonize multi-site data. While the robustness of the 

harmonization technique for a range of SNR values was demonstrated using simulation data 

in Mirzaalian et al. (2016), yet this needs to be tested using in-vivo data.

Despite these limitations, we believe that the proposed method is the only technique 

currently available that can directly harmonize the raw dMRI signal. None of the previous 

approaches including ComBat can reconstruct the raw harmonized signal, which is essential 

for consistent microstructural, tractography and connectivity studies.
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Appendix A

Figure A.1. 
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Grayscale figure of Fig. 5: Voxel-wise scale map differences between RISH feature scale 

map (L0, L2 and L4) estimated with a training size of 20 (as “gold standard”) and some 

representative training data size of 2, 12, 16 and 18 shown in each column respectively.

Appendix B.: Age-related trends in FA, before and after harmonization

Figure B.2. 
Reference Site: BWH, before and after harmonization female (blue) and male (orange) age 

vs FA curves of PNC for each major white matter bundle.1
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Figure B.3. 
Reference Site: PNC, before and after harmonization female (blue) and male (orange) age vs 

FA curves of BWH for each major white matter bundle.
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Appendix C.: Effect sizes before and after harmonization for BWH as the 

reference site and PNC as the target site

C.1. Analysis of sex differences

Table C.1

Target site: PNC. Sexual dimorphism effect sizes effect sizes before and after harmonization 

for each major bundle. Absolute differences (Δ) between before and after harmonization 

effect sizes are observed to be < 0.2 in all cases.

WM ROIs Age 8–12 Age 13–17 Age 18–22

Before After Δ Before After Δ Before After Δ

Lifo 0.079 0.072 0.007 0.028 0.010 0.018 −0.157 −0.162 0.005

Rifo 0.093 0.084 0.009 0.033 0.014 0.019 −0.224 −0.212 0.012

Lcing 0.063 0.059 0.004 0.074 0.061 0.013 −0.027 −0.040 0.013

Rcing 0.063 0.051 0.012 0.085 0.068 0.017 0.006 0.018 0.012

Fmajor 0.073 0.062 0.011 0.032 0.015 0.017 −0.053 −0.077 0.024

Fminor 0.069 0.067 0.002 0.049 0.031 0.018 −0.165 −0.178 0.013

Lilf 0.074 0.067 0.007 −0.002 −0.019 0.017 0.100 0.094 0.006

Rilf 0.081 0.075 0.006 0.002 −0.015 0.017 −0.084 −0.095 0.011

Lslf 0.095 0.085 0.010 0.050 0.027 0.023 −0.125 −0.143 0.018

Rslf 0.066 0.063 0.003 0.083 0.047 0.036 −0.119 −0.147 0.028

Lunc 0.106 0.124 0.018 −0.019 −0.028 0.009 −0.090 −0.100 0.010

Runc 0.131 0.101 0.030 −0.012 −0.020 0.008 −0.107 −0.121 0.014

Lcing2 0.028 0.020 0.008 0.026 0.008 0.018 −0.062 −0.082 0.020

Rcing2 0.053 0.046 0.007 0.047 0.025 0.022 −0.106 −0.121 0.015

Lcst 0.012 0.011 0.001 0.019 0.007 0.012 −0.143 −0.163 0.020

Rcst −0.001 0.002 0.003 0.057 0.036 0.021 −0.127 −0.144 0.017

Table C.2

Target site: BWH. Sexual dimorphism effect sizes before and after harmonization for each 

major bundle. Absolute differences (Δ) between before and after harmonization effect sizes 

are observed to be < 0.2 in all cases.

WM ROIs Age 8–12 Age 13–17 Age 18–22

Before After Δ Before After Δ Before After Δ

Lifo −1.089 −0.995 0.094 0.172 0.315 0.143 0.455 0.546 0.091

Rifo −1.125 −0.968 0.157 0.629 0.749 0.120 0.388 0.394 0.006

Lcing −1.431 −1.260 0.171 0.234 0.426 0.192 0.450 0.404 0.046

Rcing −0.736 −0.655 0.081 −0.560 −0.429 0.131 0.281 0.278 0.003

Fmajor −0.288 −0.281 0.007 0.645 0.625 0.020 0.224 0.214 0.010

Fminor −1.851 −1.878 0.027 0.853 0.993 0.140 0.413 0.384 0.029

Lilf −1.818 −1.622 0.196 0.497 0.694 0.197 0.717 0.774 0.057

Rilf −1.104 −0.915 0.189 0.780 0.868 0.088 0.619 0.557 0.062
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WM ROIs Age 8–12 Age 13–17 Age 18–22

Before After Δ Before After Δ Before After Δ

Lslf −0.814 −0.738 0.076 0.055 0.237 0.182 0.203 0.315 0.112

Rslf −1.018 −0.915 0.103 0.195 0.392 0.197 0.338 0.386 0.048

Lunc −1.675 −1.599 0.076 −0.059 0.115 0.174 −0.008 0.070 0.078

Runc −1.714 −1.524 0.190 0.178 0.142 0.036 0.232 0.217 0.015

Lcing2 −1.462 −1.294 0.168 −0.027 0.037 0.064 0.364 0.393 0.029

Rcing2 −2.073 −1.896 0.177 0.100 0.141 0.041 −0.051 −0.164 0.113

Lcst −0.199 −0.059 0.140 0.703 0.842 0.139 −0.058 0.082 0.140

Rcst −0.962 −0.781 0.181 0.784 0.979 0.195 −0.124 −0.080 0.044

Appendix C.2. Analysis of aging

Table C.3

Target site: PNC. Age related effect sizes before and after harmonization for each major 

bundle. Absolute differences (Δ) between before and after harmonization effect sizes are 

observed to be < 0.2 in all cases.

WM ROIs Males Females

Before After Δ Before After Δ

Lifo 0.938 0.891 0.046 0.574 0.588 0.014

Rifo 0.749 0.693 0.056 0.407 0.459 0.052

Lcing 1.459 1.345 0.114 0.929 0.870 0.059

Rcing 1.349 1.245 0.104 1.021 0.942 0.079

Fmajor 0.508 0.491 0.017 0.447 0.486 0.039

Fminor 1.162 1.114 0.048 0.694 0.353 0.341

Lilf 0.703 0.570 0.133 0.575 0.610 0.035

Rilf 0.526 0.425 0.101 0.391 0.434 0.043

Lslf 0.785 0.722 0.064 0.825 0.764 0.061

Lunc 0.918 0.868 0.050 0.288 0.248 0.040

Runc 0.818 0.763 0.054 0.188 0.153 0.035

Lcing2 0.351 0.229 0.122 0.532 0.595 0.063

Rcing2 0.468 0.387 0.080 0.541 0.419 0.122

Lcst 0.566 0.467 0.099 0.329 0.400 0.071

Rcst 0.625 0.526 0.099 0.428 0.333 0.095
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Table C.4

Target site: BWH. Age related effect sizes before and after harmonization for each major 

bundle. Absolute differences (Δ) between before and after harmonization effect sizes are 

observed to be < 0.2 in all cases.

WM ROIs Males Females

Before After Δ Before After Δ

Lifo −1.389 −1.443 0.054 0.096 0.036 0.060

Rifo −1.195 −1.143 0.052 0.219 0.135 0.084

Lcing −0.861 −0.769 0.092 1.174 1.084 0.090

Rcing −0.372 −0.332 0.040 0.800 0.750 0.050

Fmajor −0.719 −0.672 0.047 −0.280 −0.241 0.039

Fminor −1.606 −1.580 0.026 0.326 0.312 0.014

Lilf −1.714 −1.661 0.053 0.739 0.595 0.144

Rilf −1.333 −1.170 0.163 0.336 0.246 0.090

Lslf −0.801 −0.812 0.011 0.180 0.234 0.054

Rslf −1.050 −0.872 0.178 0.258 0.381 0.123

Lunc −1.391 −1.408 0.017 0.039 0.035 0.004

Runc −1.244 −1.216 0.028 0.378 0.266 0.112

Lcing2 −0.783 −0.772 0.011 1.019 0.926 0.093

Rcing2 −0.838 −0.789 0.049 1.047 0.903 0.144

Lcst −0.567 −0.509 0.058 −0.352 −0.351 0.001

Rcst −0.852 −0.685 0.167 0.052 0.054 0.002
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Fig. 1. 
PNC data automated quality control analysis results: The average signal residual for each 

subject (over the entire brain) was calculated and this generated two clusters: for bad quality 

(orange) and for good quality (blue) cases. The threshold (yellow) to separate good and bad 

clusters was chosen in a heuristic manner.

Cetin Karayumak et al. Page 24

Neuroimage. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Steps of multi-variate RISH feature template construction and dMRI data harmonization.
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Fig. 3. 
RISH Features for SH orders of l = {0, 2, 4, 6, 8} are depicted in each sub-figure from left to 

right for PNC site (top row) and BWH site (middle row). Scale maps for each RISH feature 

show the between-site mapping obtained between controls from two sites (bottom row).
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Fig. 4. 
Training size of subjects from (a) PNC and BWH sites (2–24 subjects) and (b) PNC and 

Oxford (2–32 subjects) plotted as a function of mean (pink) and standard deviation (std) 

(orange) of scale maps for RISH features of L0 (top-left), L2 (top-right) and L4 (bottom) to 

decide how many training subjects are needed to learn the scanner differences across sites. 

We see that at-least 16 subjects are needed for training in both the datasets.
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Fig. 5. 
Voxel-wise scale map differences between RISH feature scale map (L0, L2 and L4) 

estimated with a training size of 20 (as “gold standard”) and some representative training 

data size of 2, 12, 16 and 18 shown in each column respectively. The grayscale figure is also 

provided in the appendix: Figure A1.
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Fig. 6. 
Comparison of diffusion measures (FA, MD and GFA) across sites: red: reference site, 

green: target site, and blue: after harmonization of target to reference. Left column: PNC is 

selected as reference site and BWH is selected as target site. Right column: BWH is selected 

as reference site and PNC is selected as target site. In both scenarios, large statistical 

differences are observed prior to harmonization which are removed after harmonization.
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Fig. 7. 
The effect sizes (Cohen’s d) between the sexes for all age groups before and after 

harmonization. Note that the effect sizes are maintained by the harmonization procedure.
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Fig. 8. 
Results for age-related differences between groups with BWH as the reference site and PNC 

as the target site. The effect sizes (Cohen’s d) between the first and the last group (see Table 

4 for the age distribution of the groups) are shown for each gender separately (before 

harmonization (purple) and after harmonization (gray)).
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Fig. 9. 
Results for age-related differences between groups with PNC as the reference site and BWH 

as the target site. The effect sizes (Cohen’s d) between the first and the last group (see Table 

4 for the age distribution of the groups) are shown for each gender separately (before 

harmonization (orange) and after harmonization (gray)).
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Fig. 10. 
Significant (> 93%) overlap is seen in CST and IOFF fiber bundles before and after 

harmonization. Blue: before harmonization; Pink: after harmonization.
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Fig. 11. 
Comparison of our harmonization method with the ComBat data pooling technique: Δ is the 

absolute differences of the effect sizes before and after harmonization for each method. Also 

shown are maturational curves before and after harmonization using each of the methods. As 

can be seen, ComBat fails to accurately preserve the maturational curves in Rilf and Lifo, 

whereas those are preserved using the proposed technique.
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Table 2

Demographics of training subjects at PNC and BWH sites.

Dataset # Sub Age Gender IQ Handedness

PNC 25 15–23 years 11 F 110.75 ± 6.30 25 R

(20.78 ± 2.54) 14M

BWH 25 14–25 years 11 F 110.23 ± 6.27 25 R

(21.37 ± 2.96) 14M
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Table 3

Demographics of training subjects at PNC and Oxford sites.

Dataset # Sub Age Gender IQ Handedness

PNC 32 14–19 years 16 F 108.21 ± 11.58 32 R

(15.53 ± 1.27) 16M

Oxford 32 14–19 years 16 F 107.08 ± 12.86 32 R

(15.62 ± 1.32) 16M
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Table 4

Three age groups in BWH and PNC data for females and males separately.

Gender Group BWH PNC

Female 1st 14–22 years (n = 8) 8–12 years (n = 97)

2nd 23–33 years (n = 9) 13–17 years (n = 186)

3rd 38–48 years (n = 5) 18–22 years (n = 127)

Male 1st 14–24 years (n = 25) 8–12 years (n = 90)

2nd 24–38 years (n = 7) 13–17 years (n = 183)

3rd 42–54 years (n = 16) 18–22 years (n = 107)

Abbreviations: Dataset: PNC - Philadelphia Neurodevelopmental Cohort; BWH - Brigham and Women’s Hospital; F: females; M: males.
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