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Abstract

Recent advances in dry electrodes technology have facilitated the recording of EEG in situations 

not previously possible, thanks to the relatively swift electrode preparation and avoidance of 

applying gel to subject’s hair. However, to become a true alternative, these systems should be 

compared to state-of-the-art wet EEG systems commonly used in clinical or research applications. 

In our study, we conducted a systematic comparison of electrodes application speed, subject 

comfort, and most critically electrophysiological signal quality between the conventional and 

wired Biosemi EEG system using wet active electrodes and the compact and wireless F1 EEG 

system consisting of dry passive electrodes. All subjects (n = 27) participated in two recording 

sessions on separate days, one with the wet EEG system and one with the dry EEG system, in 

which the session order was counterbalanced across subjects. In each session, we recorded their 

EEG during separate rest periods with eyes open and closed followed by two versions of a serial 

visual presentation target detection task. Each task component allows for a neural measure 

reflecting different characteristics of the data, including spectral power in canonical low frequency 

bands, event-related potential components (specifically, the P3b), and single trial classification 

based on machine learning. The performance across the two systems was similar in most 

measures, including the P3b amplitude and topography, as well as low frequency (theta, alpha, and 

beta) spectral power at rest. Both EEG systems performed well above chance in the classification 

analysis, with a marginal advantage of the wet system over the dry. Critically, all aforementioned 
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electrophysiological metrics showed significant positive correlations (r = 0.54–0.89) between the 

two EEG systems. This multitude of measures provides a comprehensive comparison that captures 

different aspects of EEG data, including temporal precision, frequency domain as well as 

multivariate patterns of activity. Taken together, our results indicate that the dry EEG system used 

in this experiment can effectively record electrophysiological measures commonly used across the 

research and clinical contexts with comparable quality to the conventional wet EEG system.
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1. Introduction

Among mainstream neuroimaging methods, electroencephalography (EEG) has the benefits 

of temporal precision, affordability and ease of maintenance, all of which are crucial factors 

for both research and clinical purposes. Recent technological advances in EEG recording 

systems as well as signal processing have opened up opportunities for novel applications. In 

particular, the development of miniaturized, wireless head-mounted EEG systems has vastly 

improved the portability of EEG systems (Burton, 2015; Debener et al., 2012). Concurrently, 

the development of dry electrodes decreased electrode application time by removing the 

need for conductive gel or paste application, allowing users to record EEG in situations that 

are impractical for wired and wet electrode systems. Wet EEG systems involve application 

of a conductive gel or paste to bridge the gap between the scalp and the electrode and to 

reduce electrode impedance, which requires both time and expertise, as well as means 

(usually water) for removing gel residues from the subject’s head (Teplan, 2002). In 

contrast, dry electrodes are applied directly to the skin, do not require any gel or paste, are 

easy to attach to the head, and do not require trained technicians. The benefits of this new 

technology underscore the importance of establishing whether the performance of these 

systems is comparable to state-of-the-art EEG systems using wet EEG electrodes, which are 

commonly used in laboratories. Here, we aim to compare the signal quality of a wireless and 

dry EEG system consisting of 31 electrodes with a commonly used wired and wet EEG 

system with 64 electrodes.

Recent developments in EEG technology have focused on wireless systems that still employ 

wet sensors, requiring conductive gel application (De Vos et al., 2014a, 2014b; Debener et 

al., 2015, 2012; Lotte et al., 2009; Wang et al., 2011). Some wireless systems consist of 

electrodes attached to a conventional EEG cap (De Vos et al., 2014a, 2014b; Debener et al., 

2012), while others consist of screen-printed electrodes arranged in a C-shaped sticker fitted 

around the participants’ ears for minimal exposure and maximal comfort (Debener et al., 

2015). These studies have established the signal quality of wireless wet EEG systems using 

BCI tasks (Lotte et al., 2009; Wang et al., 2011), as well as in an auditory oddball paradigm 

while participants were walking or sitting in an indoor and outdoor environment (De Vos et 

al., 2014b; Debener et al., 2015, 2012). Although the walking condition was associated with 

reduced classification accuracy than the sitting condition, both conditions were above 
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chance in differentiating targets from non-targets (De Vos et al., 2014b). This suggests that 

although movement artifacts reduce signal quality, wireless wet EEG systems still show 

satisfactory classification performance.

In parallel, the appeal of dry electrodes has initiated considerable development of this 

technology in recent years. Several of the commercially available dry EEG systems used 

sensors comprised of metal pins (Guger et al., 2012; Käthner et al., 2017; Lo et al., 2016; 

Pinho et al., 2017; Toyama et al., 2012). Other materials, including silicon (Taheri et al., 

1996; Yu et al., 2014) and foam (Lin et al., 2011) based sensors, have been proposed and are 

reported in recent reviews of EEG systems using dry electrodes (Liao et al., 2012; Lopez-

Gordo et al., 2014). We compared and contrasted several features of the F1 dry EEG system 

used in our study and previously tested dry EEG systems: the number of electrodes (F1: up 

to 33), sizes of the headsets (F1: two available sizes), the number of metal pins per electrode 

(F1: two contact pins per electrode), the wireless feature of the system (F1: wireless), as well 

as the weight of the amplifier and battery (F1: 165 g). These similarities and differences are 

outlined in detail in the Supplementary Information. Although variability exists among 

currently available dry EEG electrodes, they all share the advantage of ease of electrode 

application by avoiding extensive preparation and cleaning of electrodes, overcoming a 

major limitation of wet electrodes.

Given these recent advancements in EEG technology, several studies have directly compared 

the signal quality between wet and dry EEG systems (Fiedler et al., 2015; Käthner et al., 

2017; Liao et al., 2012; Lin et al., 2008; Oliveira et al., 2016; Taheri et al., 1994). Three 

groups reported high comparability in the EEG signal between the two systems (Liao et al., 

2012; Lin et al., 2008; Taheri et al., 1994); however, these pioneering studies only recorded 

from a small number of electrodes placed on the forehead (Liao et al., 2012; Lin et al., 2008) 

or from one electrode placed on the scalp (Taheri et al., 1994). Similar results were reported 

for subjects who completed a brain computer interface (BCI) task with eight wet or dry 

electrodes (Käthner et al., 2017). Other recent studies used a high density dry EEG system 

covering the entire head (Fiedler et al., 2015; Oliveira et al., 2016). Using a within-subject 

design, one group compared resting EEG power and visual evoked potentials (VEP) in 

seated subjects with 128 wet and 97 dry passive electrodes (Fiedler et al., 2015). There were 

no significant differences between the two systems in power spectral densities across all 

tested EEG bands during rest, except for the lower frequencies between 4 and 6 Hz, in which 

the dry system showed higher power relative to the wet system. The global field power time 

courses of VEP also showed no differences between systems, but minor differences emerged 

in the topographic maps of two VEP components (Fiedler et al., 2015). Another study 

reported results from a subset of 12 active electrodes, and compared subjects performing a 

target detection task while sitting and walking with both EEG systems (Oliveira et al., 2016). 

Although their wet and dry systems had similar signal-to-noise ratios while subjects were 

seated, the dry system showed inferior performance in other metrics, including more rejected 

channels, higher inter-trial variance in the P3 ERP component and a failure to reliably record 

while subjects were walking (Oliveira et al., 2016). Together, these results suggest that dry 

electrodes show comparable performance to wet electrodes in stationary environments, but 

they do not perform well in motion due to the increased impedance level.
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The present study provides a systematic comparison in data quality and electrophysiological 

measures between a state-of-the-art and wired wet EEG system (hereafter referred to as the 

wet EEG system; ActiveTwo from Biosemi, the Netherlands) with 64 electrodes, and a 

compact and wireless dry EEG system (hereafter referred to as the dry EEG system; F1 from 

Nielsen Tele Medical, U.S.A.) with 31 electrodes based on a 10–20 system. For each 

subject, we recorded the EEG with each system on separate days during rest periods with 

eyes open and eyes closed, followed by two versions of a rapid serial visual presentation 

(RSVP) target detection task. Each part of the experiment allows for a neural measure 

reflecting different characteristics of the data. Specifically, resting EEG data yields spectral 

power measures without contamination by external task demands. One version of the RSVP 

task (2 Hz presentation rate) was designed to elicit a clear P3b ERP component. 

Classification analysis on the other version of the RSVP task (6 Hz presentation rate) 

examines multivariate patterns in the data to categorize target vs. non-targets during rapid 

target detection. Taken together, this multitude of measures provides a thorough comparison 

of the performance of the two systems.

2. Methods

2.1. Subjects

A total of 30 individuals (9 females and 21 males; M = 19.8 years, S.D. = 13.4) participated 

in the study. One subject showed noisy data throughout the entire experiment for both wet 

and dry systems, whereas another subject had noisy data during rest for the dry EEG system. 

A third subject’s blinks could not be completely removed using ICA for both EEG systems. 

These three subjects were excluded from analysis. The remaining subjects (n = 27) had 

normal or corrected-to-normal vision and had no neurological problems. They provided 

written informed consent, and were paid for their participation. The study was approved by 

the Institutional Review Board at the University of California, Berkeley.

2.2. Task paradigm and stimuli

Subjects performed two versions of a rapid serial visual presentation (RSVP) tasks, adopted 

from Fuhrman-Alpert and colleagues (2014). In both tasks, stimuli were grayscale images 

(360 × 360 pixels, 5.9° × 5.9° of visual angle at a distance of 106 cm), consisting of 145 

exemplars from each of the following five categories: cars, planes, painted eggs, watches and 

faces. The images were preprocessed to have the same mean luminance and contrast, and 

were presented at the center of a CRT monitor. Stimulus presentation was controlled by 

Eprime 2.0 (Psychology Software Tools, Inc., USA).

Both tasks required subjects to silently count the occurrence of images from the target 

category, which ensured subjects maintained attention to the presented images without 

introducing motor confounds associated with target images only. Half the subjects were 

assigned cars as target images, whereas the other half were assigned planes. In each task, 

11.1% of the images were targets that were randomly dispersed throughout the task. The 

number of images presented within each block ranged between 120 and 180 images, so as to 

avoid excessive working memory load due to counting increasingly large numbers. At the 

end of each block, subjects reported the number of targets that appeared, after which they 
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restarted the count. Subjects rested in between blocks upon request. Since the number of 

counted targets could be higher or lower than the actual number, target detection accuracy 

was computed as follows: 1-abs (reported target number - actual target number)/actual target 

number.

2.2.1. Slow task—In the slow version of the task (i.e. 2 Hz presentation rate), each 

image was presented for a randomly jittered duration between 450 and 550 ms, with no 

inter-stimulus interval. Each non-target image was presented twice and each target image 

was presented once, thereby yielding 11.1% of target images across all presented stimuli. 

The task consisted of 1305 trials, 420 of which were presented during practice and 885 

during the recorded session, and lasted approximately 12 min.

2.2.2. Fast task—In the fast version of the task (i.e. 6 Hz presentation rate), each image 

was shown for 160 ms, with no inter-trial interval. Each non-target image was presented 

with 10 repetitions and each target image with 5 repetitions, thereby yielding a target 

probability of 11.1%. The task consisted of 6525 trials, with 420 presented during practice 

and 6105 presented during the recorded session, and lasted approximately 30 min.

2.3. Experimental procedure

EEG recording took place over two consecutive days for all subjects except for one, whose 

testing took place three days apart due to a scheduling conflict. For half of the subjects, the 

wet electrodes were used on Day 1 of testing and the dry electrodes were used on Day 2 of 

testing. The order was reversed for the other half of the subjects. On each day, subjects were 

seated in a dimly lit and sound attenuated room, where we recorded five minutes of rest with 

eyes open and five minutes with eyes closed, followed by the fast task and the slow task. The 

recording of rest and the two tasks lasted approximately 50–55 min.

For each session, we recorded the amount of time it took to mount the electrodes on the cap, 

as well as the cleaning of electrodes. At the end of each session, we asked subjects to rate 

the comfort level on a Likert scale ranging from 1 (not comfortable at all) to 6 (extremely 

comfortable) during electrode preparation and throughout recording, as well as agility 

throughout the entire experiment on a Likert scale ranging from 1 (not able to move at all) to 

6 (extremely agile).

2.4. EEG data acquisition and preprocessing

2.4.1. Wet electrodes data acquisition—EEG was recorded continuously from 64 

active, pre-amplified Ag/ AgCl electrodes mounted on a cap according to the extended 10–

20 layout using the Biosemi ActiveTwo system (Biosemi, Netherland; https://

www.biosemi.com/activetwo_full_specs.htm). The amplifier of this system is DC coupled. 

The electrodes are mounted within plastic holders on the cap, which are filled with 

electrolyte gel. Vertical and horizontal eye movements were recorded from electrodes above 

and below the right eye, and two electrodes placed at the right and left outer canthi. Data 

was amplified and digitized at 512 Hz. An online, low-pass, anti-aliasing filter was applied 

with a fifth-order sinc response.
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2.4.2. Dry electrodes data acquisition—EEG was recorded continuously from 33 

passive silver electrodes mounted on a cap according to the extended 10–20 layout using the 

F1 1.0 EEG system (Nielsen, USA; http://sites.nielsen.com/telemedical/assets/pdfs/

spec_sheet_1st_batch.pdf). The amplifier of this system is DC coupled. The electrodes are 

spring-operated to maximize comfort (as shown in Fig. 1). At the F5 and F6 locations, scalp 

electrodes were substituted for external electrodes connected via an extension cable placed 

at the right and left outer canthus to measure horizontal eye movements. Vertical eye 

movements were recorded from Fp2, an electrode located above the right eye. We lowered 

electrode impedances to below 10 MOhms prior to onset of the experiment by moving the 

electrodes in a circular motion and sweeping hair away from underneath the electrodes to 

facilitate better contact between the scalp and the electrode. EEG data was communicated 

via wires embedded within the headset from each electrode to a battery-powered module 

(128 g), which was mounted to the headset above electrode Cz. The module contained the 

amplifier, wireless transmission board, battery, and hard drive. Data was amplified and 

digitized at 512 Hz, and subsequently transmitted to a recording computer via an exclusive 

WiFi connection. An online, low-pass, anti-aliasing filter was applied with a third-order sinc 

response. The slight disparity in the order of the sinc filter results in minimal differences 

between systems in the amplitude of the recorded signal mostly at higher frequencies. A 

detailed description of the different sinc filter responses for the two systems, and their 

impact on the amplitude of the recorded signal are illustrated in Fig. S3, Table S1 and the 

Supplementary Information. Fig. 1 presents photos of the dry EEG electrodes and Fig. S1 

presents the electrode montage for both the Biosemi wet EEG and F1 dry EEG systems.

2.4.3. EEG data preprocessing—The preprocessing steps were identical for the two 

systems. For both, EEG data was bandpass filtered between 1 Hz and 50 Hz, and referenced 

offline to the average of the two mastoid electrodes. Ocular and muscle artifacts were 

corrected for using independent component analysis. Data decomposition was performed 

using the fastICA toolbox in EEGLAB, and artifactual components were manually detected 

based on component time course, topography and power spectral density. Electrodes with 

excessively noisy signals were interpolated from neighboring electrodes using spherical 

spline interpolation (Perrin et al., 1989). For both rest recordings, data were segmented into 

non-overlapping 2000 ms epochs. For the slow task, continuous EEG data were segmented 

into 1500 ms epochs, beginning at 500 ms prior to stimulus onset. Each trial was visually 

inspected for remaining artifacts, and was discarded if artifacts were present. Target and 

non-target trials were then averaged separately for each subject for statistical comparisons. 

For the fast task, continuous data were marked for artifacts, and then segmented into 1000 

ms epochs beginning at 100 ms prior to stimulus onset. Any trials containing these marked 

artifacts for more than 200 ms within the epoch were discarded. EEG data pre-processing 

and analysis were performed using EEGLAB (Delorme and Makeig, 2004), FieldTrip 

(Oostenveld et al., 2011), and custom Matlab scripts (Mathworks, Natick, MA, USA).

2.5. EEG data quantification

2.5.1. Rest—Continuous data were segmented into non-overlapping two second epochs. 

For each epoch, spectral decomposition was conducted using fast Fourier transforms using a 

Hanning window for frequencies between 1 and 50 Hz at 1 Hz steps. Subsequently, a log 
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transform was applied. Each participant’s power spectrum was then averaged across all 

clean epochs for each electrode, and the mean absolute power was computed for each of the 

following frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), low beta (14–

24 Hz), high beta (24–30 Hz), and gamma (30–50 Hz). In order to compare between 

systems, we only analyzed the subset of electrodes in the wet system that matched the 

location of electrodes in the dry system (as highlighted in Fig. S1).

2.5.2. Slow task—For event-related potentials (ERP) analysis, EEG signals were band 

pass filtered at 1–20 Hz, and target and non-target trials were averaged separately within 

subjects. All ERPs were quantified by the mean amplitude measure relative to a –200 to 0 

ms pre-stimulus baseline. The P2 mean amplitude was measured over frontal sites (F1, Fz, 

F2) and averaged across a post-stimulus time window of 200–300 ms, whereas the P3b mean 

amplitude was measured over parietal sites (P1, Pz, P2) and averaged across a post-stimulus 

time window of 400–600 ms. The average number of trials included in the ERP analyses 

was similar for the wet (targets:X = 82, S.D. = 15; non-targets: X = 656, S.D. = 119) and the 

dry (targets: X = 84, S.D. = 11; non-targets: X = 675, S.D. = 79) EEG systems.

2.5.3. Fast task—We conducted classification analyses to examine whether the 

algorithm described below can detect whether a given trial is a target or non-target. The 

input data involved all channels from the dry EEG system and a subset of electrodes from 

the wet EEG system that matched the location of electrodes in the dry system. EEG signals 

were first bandpass filtered at 1–20 Hz. The classification analyses were based on the 

spatially weighted Fisher Linear Discriminant – Principal Component Analysis algorithm 

developed by Fuhrman-Alpert and colleagues (Fuhrmann Alpert et al., 2014). A random 

90% of the trials were used for training and the remaining 10% were used for testing. This 

procedure was repeated 100 times. We computed several metrics to evaluate the performance 

of the classification analyses: hit rate (percentage of target trials that were correctly 

classified as targets), false alarm rate (percentage of non-target trials that were correctly 

classified as non-targets), and area under the curve (AUC) values associated with the 

receiver operating characteristic (ROC) curve.

2.6. Statistical analyses

2.6.1. Data quality—The number of electrodes and epochs removed due to poor data 

quality were compared between the wet and dry systems. We also compared the amount of 

time dedicated to electrodes preparation and cleaning, as well as the participant’s reported 

comfort and agility level, between the two systems. The electrode cleaning time 

measurements were recorded for a subset of subjects (n = 14). All comparisons were 

examined using the Wilcoxon signed ranks test, the non-parametric version of the paired 

samples t-tests.

2.6.2. Rest

Eyes Open and Eyes Closed.—To examine differences between systems in the 

magnitude of spectral power, we performed separate Wilcoxon rank-sum tests for each of 

the six frequency bands, using Bonferroni correction to account for multiple comparisons. 

We assessed the within-subject reliability of EEG power at rest between the wet and dry 
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systems by conducting separate Spearman correlations at each frequency band for eyes open 

and eyes closed. To do this, we identified the five electrodes where activity was maximal per 

frequency band within each system, and selected electrodes that showed overlap between the 

two systems. We then correlated the mean power across these electrodes between the two 

systems across subjects separately for each frequency band.

2.6.3. Slow task—For ERP measures, separate Wilcoxon rank-sum tests were performed 

to examine differences between systems in the amplitude of the P2 and P3b ERP 

components, both in terms of the target-evoked activity and the difference between targets 

and non-targets. In order to assess within-subject reliability, we also ran separate Spearman 

correlation tests for each ERP component between the wet and dry EEG systems.

2.6.4. Fast task—We compared the classification performance between systems by 

implementing the Wilcoxon rank sum test for all three metrics (hits, false alarms and AUC). 

For each metric, we also computed separate Spearman correlations between each subject’s 

classification performance on the wet and dry EEG systems. All statistical analyses were 

performed using SPSS (IBM, Armonk, NY, USA).

3. Results

3.1. Data quality

To examine the quality of data acquisition, we compared the number of faulty electrodes and 

bad epochs. The number of faulty electrodes that needed to be interpolated was higher for 

the dry (X = 5.26, SD = 2.16) relative to the wet EEG system (X = 2.00, SD = 1.30; Z = 

5.25, p < .001). Faulty electrodes appear to be driven by muscle tension in the fronto-

temporal area over the temporalis muscle, where the headset or cap is securely tightened 

around the subject’s head. A closer examination of the location of the interpolated electrodes 

confirms this observation, with 42% of the faulty electrodes located in the fronto-temporal 

area (i.e. F7, F8, T7, T8) in the dry system, and 43% of electrodes in the wet system. Fig. S2 

illustrates the spatial distribution of the number of bad electrodes across subjects for each 

system separately. There was no difference in the proportion of discarded trials (as described 

in the Methods section) between the dry (X = 0.15, SD = 0.08) and wet (X = 0.13, SD = 

0.07) EEG systems (Z = 0.83, p = .41).

3.2. Subjective experience and duration of electrodes setup and cleanup

Fig. 2 shows measures of subjective experience, electrode preparation and cleaning time for 

the wet and dry systems. Total electrode preparation time and cleaning times were longer for 

the wet system relative to the dry system (preparation: Z = 3.59, p < .001; cleaning: Z = 

2.54, p = .01). Given there were twice as many electrodes in the wet versus dry system, we 

also divided the two metrics by the number of electrodes to obtain the average time per 

electrode. Preparation time and cleaning time per electrode did not differ between systems 

(preparation: Z = 1.73, p = .084; cleaning: Z = 1.73, p = .085). Conclusions derived from 

this comparison need to take the following points into consideration. The experimenters 

were more experienced with electrode preparation, especially with respect to 

troubleshooting noisy signals, with the wet EEG system. Moreover, experimenters had to 
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lower the impedance levels of the dry electrodes, a procedure that was not necessary for the 

wet EEG system as it employs active (pre-amplified) electrodes that are less sensitive to high 

impedance.

Subjects rated higher agility with the dry system relative to the wet system (Z = 3.37, p < .

001). The comfort level during electrodes preparation (Z = 0.58, p = .56) and recording 

session (Z = 1.74, p = .08) was comparable between the two systems. A closer look at the 

comfort level for both EEG systems indicates that the rating was higher during electrode 

preparation compared to during recording. To further explore this change in comfort level 

over time, we asked twenty additional subjects to wear either the dry electrodes headset or 

the wet electrodes cap (n = 10 each) for two hours. At 15 min interval, subjects rated the 

comfort level on the same Likert scale as the original set of subjects, ranging from 1 (not 

comfortable at all) to 6 (extremely comfortable). We observed that the average comfort level 

rating steadily declined over the course of the two-hour session for both systems. Based on 

the rating during the first and last 15 min of the session, we quantified the decline by 

computing the slope, which was steeper for the dry system (slope: —0.13) than for the wet 

system (slope: —0.04). The mean comfort ratings across subjects for both systems at each 

15 min interval across the two hours are presented in Fig. 2.

3.3. EEG at rest: eyes open and eyes closed

Fig. 3 illustrates the power spectrum across all electrodes, the topography of each frequency 

band, as well as the correlation between systems for rest with eyes opened and eyes closed. 

As observed in Fig. 3a, the power spectrum density averaged across all electrodes was 

comparable between the systems across the entire frequency range shown. Subsequent 

statistical analyses focused on a subset of overlapping electrodes that showed maximal 

power in both the wet and dry EEG systems chosen separately for each band (as described in 

Methods). The mean power for each system, as well as the Z and p values and Cohen’s d 
comparing the two systems for each frequency band and for both resting state conditions are 

reported in Table 1. For resting state with eyes open, delta and theta power were higher in 

the wet system relative to the dry system; however, only the difference in delta power 

survived Bonferroni correction. No other frequency bands showed differences between 

systems. For resting state with eyes closed, theta power was higher in the wet compared to 

the dry system, but this difference did not survive Bonferroni correction. Spectral power in 

the other frequency bands did not differ between systems. The power differences observed in 

the lower frequencies cannot be attributed to differences in signal-to-noise ratio (SNR), as 

the SNR did not differ between systems across any of the frequency ranges (p = .07–0.74). A 

detailed description of SNR calculations and results is reported in the Supplementary 

Information. For both eyes open and eyes closed, the mean absolute power of theta, alpha, 

and low beta positively correlated between the wet and dry EEG systems across subjects (r > 

0.54, p < .005), with the strongest correlation in the alpha band. High beta power also 

significantly correlated across the two systems for rest with eyes closed (r = 0.62, p < .001).

3.4. Slow target detection task

Mean accuracy of target counting was high for both systems (wet: X = 97.9%; dry: X = 

97.2%), indicating subjects were paying attention to the images and performing the task. 
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Fig. 4 presents the ERP waveforms at all channels, selected channels relevant for the ERPs, 

as well as the correlation in ERP amplitudes between the two systems. ERP data analyses 

focused on the P2 and P3b mean amplitude measures. We statistically compared the 

difference values (i.e. targets minus non-targets) between the two systems, as well as the 

target condition itself. Both P2 and P3b amplitudes were larger for targets compared with 

non-targets for both the wet system (P2: Z = 4.32, p < .001, Cohen’s d = 1.38; P3: Z = 4.16, 

p < .001, Cohen’s d = 1.53) and the dry system (P2: Z = 4.49, p < .001, Cohen’s d = 1.07; 

P3: Z = 4.54, p < .001, Cohen’s d = 1.80). For the P2, the target – nontarget difference score 

was higher in the wet system relative to the dry system (wet: 3.34 μV, dry: 2.26 μV; Z = 

2.45, p = .01, Cohen’s d = 0.47). This was driven by a larger response to the targets, as 

shown in the higher mean amplitude in the wet system compared with the dry system (wet: 

4.84 μV, dry: 3.51 μV; Z = 3.10, p = .002, Cohen’s d = 0.46). In contrast, the P3b amplitude 

was similar across the two systems in the difference scores (wet: 2.03 μV, dry: 1.79 μV; Z = 

0.91, p = .36, Cohen’s d = 0.17) and in the target condition (wet: 1.50 μV, dry: 1.46 μV; Z = 

0.29, p = .77, Cohen’s d = 0.02). For both P2 and P3 mean amplitudes, there was a positive 

correlation across subjects between the wet and dry EEG systems as plotted in Fig. 4 (r > 

0.64, p < .001).

3.5. Fast target detection task

Mean accuracy was high for both systems (wet: X = 96.6%; dry: X = 98.9%), indicating 

subjects were paying attention to the images and could detect the targets well despite the fast 

presentation. Classification analyses yielded three metrics of performance, including AUC, 

hit rate, and false alarm rate. Fig. 5 shows the ROC curves for each individual subject, and 

the mean values of the three performance metrics for each system, as well as the correlation 

between the two systems across subjects in each of the metrics. Both EEG systems 

performed well above chance. There was a trend for the wet system to perform slightly 

better across all performance metrics (Z = 1.42–1.90, p = .06–0.16), but only the false alarm 

rate differed significantly (Z = 2.02, p = .04). Importantly, performance of the wet and dry 

EEG systems correlated well for all metrics (r > 0.57, p < .005).

4. Discussion

In the current study, we present a comprehensive comparison of the signal quality between a 

compact and wireless dry EEG system (F1, Nielsen) and a conventional laboratory-based 

wet EEG system (Active-Two, Biosemi). The performance correlated well between the two 

systems for all metrics, including P2 and P3b amplitude, spectral power at rest (with the 

exception of delta and gamma bands), as well as single trial classification results. This 

combination of measures captures different aspects of EEG data, including event-related 

potentials, low frequency power, and multivariate patterns of activity. Taken together, the 

results indicate that the F1 dry EEG system effectively detects electrophysiological measures 

commonly used across research and clinical contexts.

Low frequency power from 4 to 50 Hz at rest was similar across the two systems, with the 

exception that delta power was marginally reduced in the dry EEG system. Moreover, EEG 

power for each frequency band correlated within subjects between the two systems for theta, 
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alpha and low and high beta. For these frequency bands, scalp topographies were similar 

across the two EEG systems, with a slightly more posterior distribution for the dry system. 

EEG recorded during rest reflects ongoing processes in the absence of an external task. In 

applied contexts, resting EEG power has reliably differentiated healthy individuals from 

clinical and neurological populations, such as Alzheimer’s disease (Babiloni et al., 2013) 

and depression (Thibodeau et al., 2006). Our results established the robustness of low 

frequency spectral power measures (i.e. theta, alpha and beta) during rest in the dry EEG 

system, and given the utility of these measures support its potential applications in a variety 

of research and clinical contexts.

The P2 and P3b amplitudes correlated within subjects between the two systems, indicating 

high test-retest reliability on different EEG systems tested on two separate days. These 

correlations are comparable to the test-retest reliability of the target P3b in previous studies 

that tested subjects within one experimental session on the same system in different 

environments (r = 0.85, Debener et al., 2012; r > 0.70, Oliveira et al., 2016) and different 

systems in the same environment (r > 0.77, De Vos et al., 2014b). Our results expand on 

these findings and indicate that test-retest reliability in the target P3b response is maintained 

even when testing on separate days using two different systems. Within the research realm, 

the P3b has been shown to reflect attentional resource allocation, working memory, target 

detection, as well as processing capacity (for reviews, see Kok, 2001; Linden, 2005; Polich, 

2007). In clinical and medical environments, the P3b has been employed as an 

endophenotype of psychiatric disorders including schizophrenia (Turetsky et al., 2007) and 

alcoholism (Porjesz et al., 2005), as well as an early marker of neurological disorders, 

including Alzheimer’s disease (Polich, 1990). Given the widespread applications of the P3b, 

and the potential benefits of using dry electrodes, the dry EEG system can facilitate testing 

of large numbers of research subjects in more natural environments, as well as testing of 

patients in their homes or the doctor’s offices as long as they remain stationary.

Performance of the classification analyses was satisfactory in both the wet and dry EEG 

systems, suggesting the dry system can be used for examining not only univariate but also 

multivariate electrophysiological measures. Both systems performed well above chance in 

categorizing the data into targets and non-targets. This is especially remarkable given that 

the categorization was very demanding, both in terms of the cognitive effort required by 

subjects to perform well in the RSVP task (with six images presented per second), as well as 

the signal processing requirements to classify data from a fast RSVP task with highly 

overlapping responses. This type of multivariate single trial analyses nicely complements the 

advantages of the wireless dry EEG system, and can be applied to address a diverse range of 

questions. For instance, mind wandering is a ubiquitous phenomenon in which one’s 

attention is internally oriented while performing another externally oriented task 

(Smallwood and Schooler, 2006), and a state that occupies up to half of our waking hours 

(Killingsworth and Gilbert, 2010). While numerous EEG studies have examined mind 

wandering in the laboratory (Baird et al., 2012; Bra-boszcz and Delorme, 2011; Kam and 

Handy, 2013), none have been able to study participants in their natural environment due to 

the constraints of the wired wet EEG system. Using the wireless dry EEG system opens the 

way for classification of the subjects’ state (i.e. mind wandering or not) in more natural 

situations, although the sensitivity of dry systems to head movements, which was not 
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addressed here, limits the range of situations that can be studied. In addition to addressing 

basic scientific questions, the dry EEG system also has important implications in applied 

contexts. For instance, many professionals, such as pilots and power plant operators, are 

required to monitor their environment for sustained periods of time (Gouraud et al., 2017). 

While it is human nature to slip into an attentional lapse from time to time, the consequences 

can be grave in these positions. Real time classification of these professionals’ 

electrophysiological signals using the dry EEG system in their workplace may allow them to 

detect when their attention is lapsing, and to subsequently initiate efforts to reorient their 

attention back to their job. Taken together, the wireless dry EEG system combined with 

single trial classification analyses has the potential to address research questions in both the 

laboratory and applied contexts.

Although most of the EEG metrics we considered in our comparisons showed similar results 

across the two systems, there are some exceptions that deserve consideration. For example, 

delta and gamma power at rest did not correlate well between the systems. In the delta band, 

not only was there a lack of correlation, but delta power was higher in the wet system. 

Importantly, the signal-to-noise ratio (SNR) was comparable between the two systems across 

all frequency ranges, therefore, SNR cannot account for power differences between systems. 

Given that movement artifacts usually appear in the low frequencies, and dry systems are 

generally more sensitive to movement artifacts, we would have expected to see higher delta 

power in the low frequencies. However, we observed higher delta power in the wet system 

instead. The reason for this difference between systems is unclear. Although the P2 response 

was larger over the frontal region in the wet compared to the dry system, the target P3b 

response was similar across systems. Single trial classification performance in the fast target 

detection task was marginally better with the wet EEG system, but classification was well 

above chance for both systems. These results converge on slightly better performance in the 

wet EEG system, which may be attributable to this system’s use of wet and actively 

amplified electrodes.

Differences in hardware and user experience between the two systems are also noteworthy. 

Although electrode placement of both systems are in accordance to the 10–20 or 10–10 

system, rendering them applicable for clinical contexts, the number of channels for the dry 

EEG system (n = 31) is half of that for the wet EEG system (n = 64). Aside from hardware 

differences, the user and researcher experience are also important factors to consider. The 

average preparation time per electrode was slightly higher for the dry system in this study. 

This may be surprising considering that no gel had to be applied in the case of the dry 

system. The combination of two factors likely prolonged the electrodes preparation with the 

dry system. First, experimenters were relatively inexperienced with the dry electrodes 

compared to the wet electrodes, especially with respect to troubleshooting noisy signals. 

Moreover, experimenters had to lower the impedance levels of the dry electrodes; in 

comparison, the active, pre-amplified, electrodes of the Biosemi wet system do not require 

this care in reducing impedances across electrodes. Having worked with wet and dry EEG 

systems, both experimenters preferred to work with the dry EEG system due to the ease of 

electrode preparation and clean up. The user’s reported agility was superior for the dry EEG 

system, but the comfort level during set up and recording did not differ between the two 

systems. Notably, comfort level steadily declined over the course of two hours, with a 
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steeper decline in the dry electrodes. Future studies are needed to determine whether this 

observed pattern in comfort level applies to recording sessions beyond two hours as in the 

current experiment.

It is important to note our comparisons are specific to the F1 dry EEG system used in this 

study. While several studies have directly compared other wet and dry EEG systems, they 

typically involve fewer electrodes (Guger et al., 2012; Käthner et al., 2017; Liao et al., 2012; 

Lin et al., 2008; Lo et al., 2016), with the exception of two studies that recorded from high 

density EEG electrodes (Fiedler et al., 2015; Oliveira et al., 2016). The F1 dry EEG system 

records from 31 electrodes placed in accordance to the 10–20 system. In addition, previous 

studies primarily reported ERP measures (Fiedler et al., 2015; Liao et al., 2012; Lin et al., 

2008), and low frequency power (Fiedler et al., 2015; Oliveira et al., 2016). In addition to 

these measures, we also showed the dry system performed well in classification analyses, 

which is one of the main measures used in the brain-computer interface context, for 

example, for locked-in patients. To what extent these classification results apply to other dry 

EEG systems remain to be tested.

Taken together, the F1 dry EEG system shows comparable user experience and data quality 

in most metrics in a laboratory environment in which subjects are seated. In general, dry 

electrode systems share the advantage of ease of electrode application by avoiding extensive 

preparation and cleaning of electrodes. This advantage has important potential applications. 

In the clinical context, this benefit is especially crucial for testing certain populations, such 

as psychiatric and neurological patients as well as children, who are generally less tolerant 

of gel application. For instance, severely aphasic or locked-in patients benefit from brain 

computer interfaces (BCIs) to communicate with others (Birbaumer et al., 1999). BCIs that 

use the wired EEG systems typically restrict patients to locations such as hospitals or clinics, 

where the system needs to be set up. The minimal technique required for electrodes 

preparation is particularly beneficial in these situations in which patients require chronic 

EEG monitoring, as it allows their family members to apply the electrodes in the patients’ 

home without the need of a trained EEG technician (Käthner et al., 2017). This finding 

underscores the potential application of the dry electrodes technology in other clinical 

populations in a less controlled environment. One population to potentially benefit from this 

technology involves individuals at risk for epilepsy. The current practice often requires these 

patients’ electrophysiological activity to be monitored for 24 h using an EEG system in the 

hospital to identify the epileptic source prior to surgical treatment. The similar signal quality 

between dry and wet EEG systems in stationary environments highlight the prospect of 

using the dry electrodes technology for presurgical monitoring for seizures in a patient’s 

home as long as patients stay in a stationary position.

In conclusion, we demonstrated that the signal quality of a wireless dry EEG system is 

comparable with that of a conventional wet EEG system in a controlled laboratory 

environment. These results provide support for dry EEG systems as a technology with novel 

research and clinical applications.
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Fig. 1. 
Dry electrodes of the F1 system. There are two versions of the electrodes in which the metal 

pins vary in length, in order to accommodate different hair types. The electrodes are spring 

loaded such that the two pins are adjustable in length as they push through the subject’s hair 

and come into contact with the scalp. The black casing of the electrodes magnetically 

attaches to the headset.
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Fig. 2. 
Comparison of qualitative metrics between systems. A) In the top panel, participants’ 

reported level of comfort during preparation and during recording (on a Likert scale ranging 

from 1 = not comfortable at all to 6 = extremely comfortable) are illustrated separately for 

the dry and wet EEG systems. Agility was also rated on a Likert scale (ranging from 1 = not 

agile at all to 6 = very agile) for each system. In the bottom panel, the mean comfort ratings 

across a new set of subjects for each system are illustrated across the two hours of testing, 

during which subjects were seated at a desk and allowed to do whatever they choose to focus 
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their attention on. Shaded area reflects standard errors. At each 15 min interval, subjects (n = 

10 per system) rated how comfortable they felt with the head set on. B) The average setup 

and cleanup time per electrode are reported for the two systems separately.
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Fig. 3. 
Resting EEG power spectrum and topography. A) The power spectrum density averaged 

across all electrodes for the dry EEG system and the corresponding electrodes for the wet 

EEG system are shown separately for rest with eyes open and closed. B) For rest with eyes 

open, separate scatterplots of individual subjects’ mean absolute log power for delta, theta, 

alpha, low beta, high beta, and gamma for the wet and dry EEG systems are plotted. 

Spearman correlations are reported for each scatterplot (gray solid line = regression line; 

gray dotted line = identity line). Topographic plots are also plotted separately for each 
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frequency band and EEG system. C) The same scatterplot and scalp topography are plotted 

for rest with eyes closed. Topographic plots were normalized within system.
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Fig. 4. 
ERP waveform and topography. A) ERP waveforms time locked to targets and non-targets at 

all channels. B) P2 shown at Fz and P3b shown at Pz are presented separately for the wet 

and dry EEG systems, along with their corresponding scalp topography. Topographic plots 

were normalized within systems and conditions. C) The scatterplot of each subject’s P3b 

mean amplitude for the wet and dry EEG systems are presented (gray solid line = regression 

line; gray dotted line = identity line), with their associated Spearman correlation values.
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Fig. 5. 
Classification performance. A) The ROC curve for each individual subject is shown 

separately for the wet and dry EEG systems. B) Bar plots of the mean performance on area 

under the curve (AUC), hit rate, and false alarm rate are shown separately for the dry (light 

blue) and wet (dark blue) EEG systems. C) The scatterplots of each subject’s performance 

on each of the three metrics for the two EEG systems and their corresponding Spearman 

correlations are presented (gray solid line = regression line; gray dotted line = identity line).
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Table 1

Descriptive and statistical values for resting state EEG power. The mean log power for the wet and dry system, 

as well as the Z and p values and Cohen’s d for each frequency band comparing the two systems are reported 

for resting state with eyes open and closed.

Wet Dry Z P Cohen’s d

Eyes Open Delta 0.233 0.114 2.79 .005* 0.70

Theta −0.056 −0.158 2.50 .012 0.51

Alpha −0.275 −0.312 1.01 .313 0.13

Low Beta −0.877 −0.906 0.41 .683 0.11

High Beta −1.164 −1.159 0.31 .755 0.02

Gamma −1.524 −1.575 1.11 .269 0.22

Eyes Closed Delta 0.320 0.267 1.59 .113 0.29

Theta 0.069 0.013 2.21 .027 0.32

Alpha −0.126 −0.153 0.51 .614 0.10

Low Beta −0.764 −0.797 1.27 .203 0.14

High Beta −1.078 −1.088 0.60 .548 0.04

Gamma −1.559 −1.567 0.34 .737 0.03

*
Note: indicates significance after Bonferroni correction.
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