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Abstract 

The dorsal anterior cingulate cortex (dACC) is crucial for motivation, reward- and error-guided 

decision-making, yet its excitatory and inhibitory mechanisms remain poorly explored in 

humans. In particular, the balance between excitation and inhibition (E/I), demonstrated to play 

a role in animal studies, is difficult to measure in behaving humans. Here, we used magnetic-

resonance-spectroscopy (1H-MRS) to examine these mechanisms during reinforcement learning 

with three different conditions: high cognitive load (uncertainty); probabilistic discrimination 

learning; and a control null-condition. Subjects learned to prefer the gain option in the 

discrimination phase and had no preference in the other conditions. We found increased GABA 

levels during the uncertainty condition, suggesting recruitment of inhibitory systems during 

high cognitive load when trying to learn. Further, higher GABA levels during the null (baseline) 

condition correlated with improved discrimination learning. Finally, excitatory and inhibitory 

levels were correlated during high cognitive load. The result suggests that availability of dACC 

inhibitory resources enables successful learning. Our approach establishes a novel way to 

examine the contribution of the balance between excitation and inhibition to learning and 

motivation in behaving humans.  
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Introduction 

Studies in animals have highlighted the importance of excitation and inhibition for 

reinforcement learning[1-3]. The balance between them (E/I balance) is critical and maintained  

under most conditions, yet the exact ratio is highly dynamic[4, 5], and variations support 

information processing and learning[4, 6]. Although it is much harder to assess excitation and 

inhibition in humans, the main contributors: Glutamate and GABA, can be accurately and 

reliably measured through Proton Magnetic Resonance Spectroscopy (1H-MRS) [7-9]. Indeed, 

MRS-observed neurotransmitter levels reflect task-related activity with studies demonstrating 

sensitivity to baseline [10-15] and rapidly-modulating levels [16-18]. Most studies measured 

concentrations during rest and correlated it with later/previous behavior[13-15, 19-21], yet some 

even measured during behavior[17, 18, 22]. A few studies have correlated baseline (rest) levels 

with subsequent/prior learning metrics[11, 12, 23], and one has even examined changes during 

motor learning[16]. However, none have quantified neurotransmitter modulations during active 

reinforcement-learning. 

Error-based learning involves the dorsal-anterior-cingulate-cortex (dACC), which mediates 

motivation, cognition and action[24-28]. The dACC plays a crucial role in reward-guided 

decision making, as it promotes action-outcome associations and monitors goal-directed 

behaviors [27, 29]. In particular, dACC activation is modulated by requirements for cognitive 

control [30-32], and is involved in monitoring choice outcome in uncertain environments [33-

35], as well as biases decisions that require high mental effort [36-38]. However, the 

contribution of excitation-inhibition mechanisms to these functions in the human ACC remains 

poorly understood.  

We used 1H-MRS during reinforcement learning in humans, and measured modulations in 

dACC levels of GABA and Glx while participants engaged in a learning task that compared 

three factors: full uncertainty (high-cognitive-load); probabilistic discrimination learning, and an 

active Null condition. We hypothesized that levels of neurotransmitters during the high-

cognitive-load, and potentially during active-Null conditions, would predict and enable 

successful discrimination learning.  
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Results 

A two-alternative forced choice task was conducted using a block design paradigm while 

subjects (n=31) laid in an MRI scanner (Fig.1A). During each trial, subjects heard two pure-

frequency tones, each to a different ear, in pseudorandom order. Following a visual go-signal 

comprised of two arrows, the subjects chose a tone by pressing right or left button. The outcome 

was one of three: a monetary gain (+2), a loss (-2), or neutral feedback (0). There were three 

experimental blocks: (1) the Null condition where the subjects received neutral (0) outcome, 

independent of their choice; (2) the uncertainty condition, 50/50 probability for loss/gain, 

independent of the participant's choice; and (3) the probabilistic discrimination condition, in 

which one of the tones was paired with a monetary gain in 80% of the trials and monetary loss 

in 20%, and vice versa for the other tone. All the subjects underwent a rest scan before the 

experimental blocks. Additionally some subjects (n= 18) also underwent a rest scan after the 

experimental blocks. 

Learning occurs under probabilistic discrimination, but not under uncertainty or Null 

Over the course of the discrimination block, subjects gradually increased their preference to the 

tone that was associated with higher gain (‘better-option’), such that by the end of this block, 

the mean selection probability exceeded 70% (Fig.1B,C). In comparison, no preference to either 

one of the options was observed during the other two conditions, in which the subjects 

presented a stable mean probability of 0.5 ± 0.04 (uncertainty condition) and 0.48± 0.03 (null 

condition) to select each option (Fig.1B,C). This was the case for both groups of subjects, when 

the uncertainty condition was first (Fig.1B-left, Fig.1C-top, n=20), and when the Null condition 

was first (Fig.1B-right, Fig.1C-bottom, n=11). 

The preference to the better-option in the discrimination condition was also reflected by the 

averaged selection probability during two epochs, namely, the first and last 10 trials of the block 

(Fig. 1D). A difference in selection probability between conditions was observed (p<0.00001, F 

(2, 60) = 18.3, two way repeated measures ANOVA; mean selection probability of the first and 

second epochs: 0.5, 0.48 and 0.65, in uncertainty, null and discrimination conditions, 

respectively), arising from a significant preference to the better-option in the discrimination 

condition when compared to the uncertainty and null conditions (p<0.001 and p<0.00001 

respectively, post hoc Tukey-Kramer). Additionally, we also observed a difference between the 

first and second epochs (p<0.001, F (1, 30) = 19.2, two way repeated measures ANOVA) that 

originated from a preference to the better-option in the second epoch (p<0.001, post hoc Tukey-

Kramer). An interaction between these effects was observed (p<0.0001, F (2, 60) = 12.2, two 

way repeated measures ANOVA), deriving from the increased preference to the higher gain 
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tone in the second epoch of the discrimination condition compared to its first epoch (p<0.00001, 

post hoc Tukey-Kramer). Examination of the performance in the second epoch revealed a 

preference to the high-gain-tone in the discrimination condition compared to the null and 

uncertainty conditions (both p<0.00001 post hoc Tukey-Kramer). However, there was no 

difference in the average selection probability between the conditions in the first epochs of the 

blocks (p>0.05, post hoc Tukey-Kramer).  

We conclude that subjects learned the task in the probabilistic discrimination condition, behaved 

at chance level in the Null condition (no outcomes), and also behaved at chance level under 

uncertainty (when rewards and punishments occur, but there is no reliable information to learn, 

leading to a high-cognitive-load). 

 

 

Figure 1. Experimental design and behavioral results  A. In each trial, subjects were exposed to two pure tones that were played 

out in succession to different ears. The response cue, presented by two gray opposing arrows, instructed to choose between the tones 

(left or right button press). Following selection, the arrow corresponding to the chosen laterality was blackened, and the outcome 

screen indicated monetary gain, loss or neutral outcome (+2,-2 or 0). B. Behavior of single two subjects (rows), in the order of 

exposure to each of the 3 conditions (rows, top to bottom). The scanning session consisted of three scanning blocks , each attributed 

to one behavioral condition : 50/50 probability to lose or gain 2₪ (“uncertainty condition”), 00/00 probability with consistent 0₪ 

reward (“Null condition”), and 80/20 probability to lose or gain 2₪ (“discrimination condition”). Blue, red and green represent gain, 

loss and zero reward respectively. Taller stems represent selection of one tone, while shorter stems represent selection of the other 

tone (1 and 0.5 in the y axis respectively). The black line is the probability to choose the tone designated as the gain-tone in the 

80/20 condition, averaged over a 10-trial moving window.  C. Tone selection probability during the uncertainty and discrimination 

conditions, presented separately for the two ordering of conditions (mean +/- shaded SEM). Top: average across subjects that were 
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exposed to the first ordering (n=20): MRS rest scan, followed by the uncertainty, Null, and discrimination conditions. Bottom: 

average across subjects that were exposed to the second ordering of conditions (n=11): MRS rest scan followed by the Null, 

uncertainty, and discrimination conditions. The graphs demonstrate a gradual increase in the high-gain-tone (‘better-option’) 

selection probability during the discrimination condition, irrespective of the ordering, and no selection preference during the 

uncertainty condition (see text for statistics). D. High gain tone selection probability averaged across the first and last 10 trials in 

each condition (mean +/- SEM). Participants chose the high gain tone more often in the last part of the discrimination condition 

compared to its first part, as well as to the last parts of the two other conditions (****p<0.0001, post-hoc Tukey-Kramer). Inset 

presents pretest results (n=10) showing that learning was similar regardless of whether a high frequency (light blue) or low 

frequency tone served as the better-option (Wilcoxon p>0.05 in each one of the four points comparisons).  

 

Measuring neurotransmitter concentrations in the dACC using 1H-MRS 

The MRS technique requires long scanning sessions in order to achieve good signal to noise 

ratio. Therefore, we defined the region-of-interest (the dACC) a-priori based on anatomical 

maps (Fig.2A). Please see methods for full description of how we measure and quantify GABA 

and Glx concentrations (Fig.2B). In addition, we conducted two tests to assess whether results 

might be confounded by the order of experimental conditions and/or the stability of metabolite 

levels over the long scanning time.  

First, we assessed putative temporal metabolic drift by examining metabolites levels during the 

rest scan, which is the only scan type that was not influenced by task manipulation but could be 

affected by time. Metabolites levels were compared in subjects that performed the rest scan 

block twice: at the beginning and at the end of the experiment (Fig.2C, n=18). There was no 

difference between the levels of GABA/Water (t (17) = 0.46, p>0.05, paired sample t-test) or 

Glx/Water (t (17) = 1.06, p>0.05, paired sample t-test). We conclude that the time did not 

influence metabolite levels and is not a major contributor to the results.  

To further validate that the order of conditions was not a factor, we had two groups of subjects, 

one performed the uncertainty before the Null condition (n=20), and the other performed the 

Null condition before the uncertainty (n=11), and compared levels of GABA and Glx during the 

Null condition in the two experimental orders. Because we already established that metabolite 

levels during rest are stable from start to end, we standardized GABA and Glx levels during the 

Null condition to the initial rest level (Eq. (1)). We found no difference (Fig.2D) between the 

signals of GABA (Wilcoxon p>0.05, Z=0.14) or Glx (Wilcoxon p>0.05, Z=0.56).  
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Figure 2. MRS  measurements of GABA and Glx concentrations are stable. A. A 40×25×10 mm3 voxel was placed on the 

midline of the dACC, chosen anatomically, presented in sagittal (left) and coronal (right) T1-weighted anatomical MPRAGE scans. 

B. Sample spectra from three different subjects (144 averages, 9:57 minutes), displaying the peaks of GABA and Glx at 3.01 and 

3.75 ppm respectively. Blue dashed lines represent the integration limits that were used to quantify each metabolite. The integrated 

area under the curve, used for quantification, is illustrated by diagonal lines. C. Eighteen subjects went through an additional final 

session of rest scan after completion of the task. Comparison between metabolites levels in the initial and in the final rest scans, 

revealed no difference over time in GABA/Water and Glx/Water levels (p>0.05, paired sample t-test). Levels of metabolites in 

single subjects are represented by connected dots (mean +/- SEM). D. Order of experimental conditions did not affect metabolite 

levels in the Null condition. Compared between the first (n=20) and the second (n=11) orderings for both GABA and Glx 

standardized to rest (Wilcoxon p>0.05). (mean +/-SEM). E. Chosen integration limits for each metabolite were validated to be 

robust by an optimization process. We varied the limits and used a ROC curve analysis (insets) to choose the best limits. Shown are 

examples of the area-under-curve (AUC) for each pair of tested integration limits, with the best integration limits for each 

metabolite circled in blue. The grey line is based on simulated random noises as control. The results are highly similar to the limits 

chosen traditionally (usually based on visual considerations alone). 

 

Increased GABA during uncertainty condition only 

Differences between the conditions of the task were found when examining GABA/Water and 

Glx/GABA levels (Fig. 3A; p<0.05 with F (2, 60) = 3.6 and F (2, 60) = 4.1 respectively, one 

way repeated measures ANOVA). These differences originated from elevated GABA/Water and 

reduced Glx/GABA levels during the uncertainty condition compared to the discrimination 

condition (p<0.05, post hoc Tukey-Kramer). Glx/GABA displayed a marginal non-significant 

trend for the difference between the Null condition to the uncertainty condition (p=0.052, post 

hoc Tukey-Kramer), but not for GABA/Water levels (p>0.1, post hoc Tukey-Kramer). No 
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differences were found for GABA/water and Glx/GABA between the Null and discrimination 

conditions (p>0.1, post hoc Tukey-Kramer). Finally, Glx/Water did not exhibit any differences 

between the conditions (p>0.1, F (2, 60) = 0.5, one way repeated measures ANOVA). 

For robustness, we repeated these comparisons after standardization to rest levels, for Glx, 

GABA and Glx/GABA (Eq. (11)). This yielded similar results to the ones obtained using the 

raw data, mainly presented a significant difference between the uncertainty to the discrimination 

condition in GABA and in Glx/GABA levels. When standardized to rest, GABA and 

Glx/GABA levels were found to vary significantly between the uncertainty and discrimination 

conditions (Fig. 3B; p<0.05 with F (2, 60) = 3.5 and F (2, 60) = 3.8 respectively, repeated 

measures one way ANOVA; p<0.05, post hoc Tukey-Kramer). A non-significant trend was 

exhibited by Glx/GABA when comparing the uncertainty and Null conditions (p=0.086, post 

hoc Tukey-Kramer), but no differences were found when examining GABA (p>0.05, post hoc 

Tukey-Kramer). Additionally, no difference was found between the Null condition to the 

discrimination condition in GABA level or in Glx/GABA (p>0.05, post hoc Tukey-Kramer). No 

difference was found between the conditions in the Glx levels (p>0.05, F (2, 60) = 0.6, one way 

repeated measures ANOVA).  

Furthermore, we standardize directly between conditions (see methods), and used one sample 

t-test with Bonferroni adjusted alpha level of 0.015 (0.05/3). The comparison between the 

uncertainty to the discrimination conditions (Fig. 3C) yielded a significant standardized GABA 

and Glx/GABA scores (t (30) = 3.0, p=0.005, and t (30) =-2.64, p=0.013, respectively; one 

sample t-test). As expected, Glx did not change significantly in this comparison (t (30) = -0.56, 

p>0.015, one sample t-test). The comparisons between the null to the uncertainty condition and 

between the null to the discrimination condition were non-significant in all measurements 

(p>0.015, one sample t-test, data not shown).  

It was tempting to hope that Glx/GABA results have an additional component to the GABA 

findings alone, thereby providing evidence to a specific E/I balance mechanism. To assess 

whether the significant differences in Glx/GABA between the uncertainty and the 

discrimination conditions could be explained by GABA, Glx or their combined effect, we 

implemented repeated measures ANOVA on GABA/water with and without Glx/water as a 

varying covariate. The resulting effect size increased from h2=0.24 without the covariate to 

h2=0.26 with the covariate. Subsequently, the square of each effect size was modeled as an 

index of correlation between the learning conditions to the GABA measurement, and a test for 

the difference between correlations was performed on the Fisher-transformed correlations. The 

test revealed no-difference between correlations, meaning Glx measurement was not found to 

add any significant information (Z=0.07, p>0.05). 
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 We conclude that the major changes between conditions occur due to changes in GABA 

concentrations mainly. 
 

 

Figure 3. Higher GABA levels observed during the uncertainty condition. A,B, Metabolites levels quantified as ratio to water 

(A) or standardized to rest (B) reveal a consistent result: higher GABA levels and lower Glx/GABA levels in the uncertainty 

condition, yet similar lower levels during the Null and discrimination conditions (p<0.05, repeated measures one way ANOVA; 

*p<0.05, post hoc Tukey-Kramer). See text for detailed statistics. C. Standardization between pairs of task conditions reveal 

significant differences in GABA and Glx/GABA levels when comparing between the uncertainty and the discrimination conditions 

(*p<0.015, one sample t-tests with Bonferroni adjusted alpha; error bars represent the SEM). D. A positive correlation between 

Glx/Water and GABA/Water levels during the uncertainty condition only (r=0.540, p=0.001). Inset shows the same without 

normalization by water signal (r=0.467, p=0.008). 

 

GABA and Glx levels are correlated during uncertainty condition 

Although Glx was not found to significantly contribute to the differences observed between the 

conditions in Glx/GABA, and these were driven mainly by GABA changes – we aimed to 

further analyze the relationships between Glx and GABA. To do so, we calculated Pearson’s 

correlation coefficient between Glx/Water and GABA/Water in each of the conditions (Fig. 

3D). A positive correlation was found during the uncertainty condition (r=0.540, p=0.001), but 

not during the Null (r= 0.024, p>0.05) or discrimination (r=0.281, p>0.05) conditions. This 

persisted when examining the correlation between GABA and Glx without the contribution of 
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water (Fig. 3D inset r=0.467, p=0.008), and again there were no significant correlations in the 

other two conditions (p>0.05 in both, r=-0.12 for Null condition; r=0.26 for discrimination 

condition). A regression of GABA on Glx levels showed that although they increased in 

correlation, the E/I balance does change (𝛽 = 0.4182, significantly different than 1, p<0.01). 

We propose that changes in Glx, although too small to show significant variations across 

conditions, still maintain a balance with the GABA signal when it varies extensively and 

significantly i.e. when GABA levels are especially high as in the uncertainty condition. 

 

GABA levels in the Null condition predict learning performance  

We tested whether GABA and Glx levels during each experimental condition were directly 

related to subjects’ behavioral performance during the discrimination condition, as a proxy for 

their learning ability (Fig.4A). To do so, we calculated Pearson’s correlation coefficients 

between the behavioral measures during the discrimination condition to GABA/water and 

Glx/water levels during the different conditions.  

We used two behavioral measures. First, we approximated the learning-rate as the trial when a 

subject reached performance criterion of 0.7, which is similar to the overall mean selection 

probability (0.69). There was a negative correlation (Fig.4B) between the learning-rate and 

GABA/water levels during the Null condition (r=-0.550, p=0.001), but not during the 

discrimination (r=-0.020, p=0.888) or uncertainty (r=0.096, p=0.618) conditions. Glx/water 

levels in the different experimental conditions did not reveal significant correlations with 

learning rate (p>0.05 in all conditions, r=-0.07 for Null condition; r<0.001 for uncertainty 

condition; r=-0.1 for discrimination condition). 

Second, we assessed behavioral performance by the proportion of selection of the better-option. 

We found a positive correlation (Fig.4C) between the proportion and GABA/water levels during 

the Null condition (Fig.4C; r=0.418, p=0.019); but not during the other two conditions (r= -

0.004, p=0.980 for uncertainty; r=0.067, p=0.717 for discrimination). As before, the selection 

probability was uncorrelated with Glx/water levels in any of the conditions (p>0.05 in all 

conditions; r=0.03, 0.09 and 0.15 for the null, uncertainty and discrimination conditions, 

respectively). 

We conclude that baseline levels of available GABA, i.e. in a Null condition, predict better 

performance in a subsequent discrimination learning task.  
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Figure 4. GABA levels in the Null condition predict 

behavioral performance during discrimination learning 

condition. A. Behavioral performance across all conditions. 

Gradual increase in selection probability of the better-option 

(high-gain tone) is observed during the discrimination condition. 

Averaged across all subjects (n=31) in 10-trial running window 

(mean +/-SEM). B. Negative correlation between the learning-

rate, quantified as the trial # when a 0.7 criterion is reached 

during the discrimination condition, and GABA/water levels 

during the Null condition (r=-0. 550, p=0.001). C. Positive 

correlation between mean selection of the better-option during the 

discrimination condition and GABA/water levels during the Null 

condition (r=0.418, p=0.019). 
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Discussion 

The paradigm presented here simultaneously examined excitatory and inhibitory modifications 

in the dACC during learning. Behaviorally, the participants performed the task as expected, and 

learned to prefer the option that predicted higher gain in the discrimination condition, while 

lacked any preference in the two other conditions. These behavioral differences were expressed 

as increased GABA and decreased Glx/GABA levels during the uncertainty condition – when 

rewards and punishments are abundant, but there is no information to learn from. Although Glx 

was not significantly altered across conditions and did not seem to contribute beyond GABA to 

the difference in Glx/GABA across the conditions, further analysis revealed that Glx and 

GABA were positively correlated in the uncertainty condition only. This further supports the 

notion that when GABA is significantly increased, Glx levels do try to maintain a balance. 

Finally, examination of the relationship between GABA levels to the behavioral measures 

revealed that higher GABA levels in the Null condition predicted better learning, both when 

measured as time to reach criterion (learning rate), and when measured as final performance. 

As previously shown, E/I balance is essential for cortical network stability [4, 5, 39, 40]. The 

precision of the balance depends on the degree of correlation between excitation and inhibition, 

ranging from a global balance in the absence of correlated inputs to a detailed balance for strong 

correlations [41]. The tight correlation, observed during the uncertainty condition, suggests a 

more homeostatic activity, in which specific functional patterns are amplified [42] and promote 

the occurrence of a distinctive functional activity. Moreover, we observed elevated GABA 

levels that can be interpreted as increase in inhibition which occurred in situations that are 

known to modulate the activity of the dACC, and consist of uncertain rewards [33-35, 43], high 

mental effort [36-38, 44], and requirements for cognitive control [30-32]. Additionally, a line of 

evidence linked the  inhibitory system with achievement of efficient performance during high 

cognitive load [45, 46]. Therefore, presumably, during a need to make a decision in highly 

demanding cognitive load, specific functional patterns are amplified in the dACC and an 

increased inhibition occurs. This inhibition is required in order to achieve efficient and better 

performance. Similarly, individual differences in inhibition levels in the dACC might be linked 

to each individual experienced cognitive load, and reflect mental effort, uncertainty or a need 

for cognitive control.  

In a neutral situation, such as the Null condition, the influences of external cognitive aspects of 

learning like incentives (rewards/punishments) are likely eliminated, exposing the underlying 

intrinsic motivational or attention-oriented processes, or simply the availability of the relevant 

neurotransmitter. Therefore, the correlation between inhibition in the dACC during neutral 

situation and later performance when learning is possible, might reflect the connection between 

the cognitive load and the motivational processes that take place during learning [47-50], which 
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in their turn, lead to a better performance [51]. The fact that we did not identify any changes 

during learning itself (the discrimination condition) remain to be explored further. A possible 

interpretation is that learning occurred too fast for the long scan process required for MRS to 

detect changes beyond the signal-to-noise ratio; yet another possibility is that once uncertainty 

is reduced (because the subjects unveil a pattern to learn), less and less inhibitory mechanisms 

are required to maintain high cognitive load, attention, or uncertainty. A final possibility we 

cannot rule-out, is that the number of errors as well as punishments diminishes quickly, and the 

dACC signal diminishes with it. If either of the above is indeed the case, a design with much 

slower learning rate might allow detection of GABA levels in the dACC that are inversely-

correlated with the learning performance.  

Overall, the effects demonstrated here emphasize the importance of the dACC in processes of 

decision making and expand the understanding regarding its involvement in high cognitive 

demanding situations, and how it can later enable better learning. Importantly, it paves the way 

to further use of magnetic-resonance-spectroscopy (MRS) in identifying specific neural 

mechanisms and the use of neurotransmitters in brain networks during active behavior, and next 

steps should examine further regions, either by a-priori selection as done here, or by 

development of better sequences that allow simultaneous measurements from several regions. 

Combined with the paradigm we used here, it unveils the contribution of excitatory and 

inhibitory modifications during active learning in humans. 
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Methods 

Participants  

All studies were performed in accordance to the procedures approved by the Internal Review 

Board of Haemek Medical Center (Afula, Israel). Thirty-seven right-handed healthy subjects 

(age range 22–39 years; median age 26 years; 21 females) participated in the experiment after 

written informed consent was obtained. Three subjects were excluded from the experiment due 

distorted signals, resulting from magnetic field drift, improper shimming or motion. Three 

additional subjects were excluded due to recurrent GABA and Glx outlier levels (more than 2.5 

standard deviations). 

Behavioral Paradigm 

A two-alternative forced choice task was conducted using a block design paradigm (Fig. 1A), 

while subjects laid in an MRI scanner. During each trial, subjects heard two short (270 ms) 

pure-frequency tones which were played out in succession and in a random order, each to a 

different ear. Subsequently, a visual response cue appeared, comprised of two arrows, 

corresponding to the two sides the tones were played to. The subjects chose their preferred tone 

by selection of the right or left remote buttons of a response box, corresponding to the side their 

preferred tone was played to. Following the selection, the chosen arrow was marked in black 

and subsequently an outcome screen appeared, presenting the response for the last selection, 

which was one of three possible outcomes: a monetary gain (+2), loss (-2) or neutral feedback 

(0). The paradigm consisted of three experimental conditions, each implemented within a 

separate block composed of 45 trials and lasting 12 minutes: (1.) the null condition with a 

consistent 0 reward (00/00 probability of loss/gain); (2.) the uncertainty condition 

(50/50 loss/gain probability, independent of the participant's choice); and (3.) the discrimination 

condition (80/20 loss/gain probability), in which one of the tones was paired with a monetary 

gain in 80% of the trials it was chosen and monetary loss in 20% of the trials it was chosen, and 

vice versa for the other tone. Stimuli were generated by MATLAB (R2015b, The MathWorks, 

Natick, USA) using the Psychophysics Toolbox extension[52]. Each of the conditions was 

assigned one of three pairs of tone frequencies, mixed between subjects in pairing order.  The 

tones’ frequencies were kept at a 4:7 ratio to facilitate their distinction. A fourth frequency pair 

was assigned to a short initial training session.  

Pretest A pre-test was conducted prior to the experiment to examine innate bias to low or high 

frequency tones. We compared between two groups with n=5 subjects each, in one the low 

frequency tones and in the other the high frequency tone was associated with the higher 

monetary gain in the discrimination condition (0.8 probability to gain money). The trials were 

divided into four periods, and the averaged selection probability was calculated for the tone that 
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was associated with higher monetary gain. No bias was evident, and learning was similar to 

both options (Fig. 1D inset; Wilcoxon p>0.05 in each one of the periods). 

MR Scanning Protocol 

MR data was collected using a 3 Tesla Tim Trio scanner (Siemens, Erlangen), with a 

12-channel receiver head coil. Body coil with a peak B1 of 19 µT was used for transmission. 

Anatomical images were acquired using three-dimensional T1-weighted MPRAGE sequence 

(1´1´1 mm3 voxels, TR/TE/TI = 2300/2.98/990 ms, 176 slices, FA=9°, in-plane FOV=256´256 

mm2, TA=4:44 min). The sagittal and coronal T1-weighted anatomical images enabled 

localization of a 40×25×10 mm3 1H-MRS voxel on the midline of the dACC (Fig. 2A). In order 

to enhance magnetic field homogeneity, first and second order shim adjustments were 

performed using the default Siemens shimming tool, yielding water line widths of 6-7 Hz. The 

GABA and Glx 1H-MRS spectra were acquired using the spectral editing sequence Mescher-

Garwood Point RESolved Spectroscopy (MEGA-PRESS)[8]. Each MEGA-PRESS scanning 

block (TR/TE=2000/68 ms, 2048 complex FID points, 2 kHz bandwidth, 16-step phase cycle) 

consisted of a metabolite scan (144 averages, TA=9:57 min) that was followed by a water 

reference scan (16 averages, TA=1:00 min). The individual coils’ spectra were phased and 

weighted by their signal to noise ratios using the reference coil sensitivity maps before 

combining their respective spectra.  

Procedure 

Participants underwent initial training composed of four trials in front of a computer to ensure 

the task was correctly understood. Upon completion, they entered the magnet head first supine, 

while being visually monitored for awareness. A response box was handed to all subjects, and a 

projector was used for visual feedback while lying in the scanner. Anatomical images were 

acquired and enabled localization of the 1H-MRS voxel in the dACC. Shimming was carried 

out, followed by a 1H-MRS “rest” scan, during which the subjects were asked to focus on a 

fixation cross placed at the center of the screen. Following the rest scan, the participants began 

the experimental session in which, at the onset of each experimental condition block, a 

MEGA-PRESS metabolite scan was initiated, followed by a water reference scan. The 

responses of the subjects, along with the rewards they received, were recorded and labeled 

(Fig. 1B). The subjects were divided into two cohorts, each exposed to a different ordering of 

the experimental conditions (Fig. 1C): The first cohort (20 subjects) started with two blocks of 

the uncertainty condition, continued with one block of the null condition, and concluded with 

two blocks of the discrimination condition. The second cohort (11 subjects) started with one 

block of the null condition, followed by two blocks of the uncertainty condition and concluded 

with two blocks of the discrimination condition. Eighteen subjects (seven from the first cohort 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/318659doi: bioRxiv preprint 

https://doi.org/10.1101/318659


and all subjects from the second cohort) also performed an additional and final rest scan after 

concluding the task. 

Behavioral Analysis 

The behavioral data was analyzed concentrating on the first block of each condition, using in-

house MATLAB scripts. In order to examine the dynamics of the subjects’ choices over the 

course of each experimental condition’s block, we performed a moving average of the selection 

probability with a window width of 10 trials. Additionally, to assess behavioral performance per 

condition, we calculated the averaged selection probability of the high gain tone. To probe the 

learning rate in the discrimination condition, we calculated the mean overall selection 

probability, and used the first trial in which each subject reached this selection probability.  

1H-MRS Processing and Quantification 

MEGA-PRESS spectra were analyzed using in-house MATLAB scripts. Spectra were 

zero-filled 8-fold, apodized using an exponentially time decaying function with a linewidth of 

3.2 Hz, Fourier transformed and phased. Difference spectra were generated by subtraction of the 

alternating ON and OFF spectra, which were subsequently aligned to the NAA methyl singlet at 

2.01 ppm. 

Metabolite quantification was achieved via peak integration with the integration limits 3.56 to 

3.94 for Glx and 2.83 to 3.19 for GABA (Fig. 2B). The signals of GABA’s methylene group+ 

macromolecular contributions at 3.01 ppm [9, 53], and the Glx complex at 3.75 ppm are 

represented by:  

𝑆 ∝ 𝐶 ⋅ 𝑉 ⋅ (1 − 𝑓,-.) ⋅ 𝐵12 ⋅ 𝑓3 

where C is the metabolite’s concentration, V the voxel volume, B1- the receiver coil sensitivity, 

fCSF the fraction of CSF in the voxel, and fR a factor accounting for T1 and T2 relaxation. Taking 

the ratio of each metabolite to the reference water signal (GABA/water, Glx/water) removed 

common factors such as B1- and V, and reduced signal variability. The remaining factors, such 

as 𝑓3 and 𝑓,-. , as well as the macromolecular contamination, remained unaccounted for, but 

were assumed constant throughout the paradigm when interpreting our results. Since our 

analysis focused on intra-subject changes to metabolite levels during the learning task, these 

inter-subject sources of variability did not bias our conclusions. To further factor-out these 

constant elements we have also examined the standardized differences:   

                     f5,789: = ; -<
=>?

-<
@A?>B −

-C
=>?

-C
@A?>BD ; -<

=>?

-<
@A?>B −

-C
=>?

-C
@A?>BDE ,  (1) 

where met=Glx, GABA and A,B=null, discrimination, uncertainty or rest. The expression in Eq. 

(1) is independent of 𝑓,-. , 𝑓3, 𝐵12 and any other factor assumed unchanged between conditions. 

This expression, when standardized to rest, served as standardization to baseline activity, and 
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when was conducted between two conditions was reflecting a direct comparison between 

conditions of the task. 

Validating robustness of integration limits  

In order to validate the robustness of choosing the integral limits for each metabolite, we further 

carried an optimization process, varying the integration limits, from 3.01±0.35 ppm for GABA 

and 3.755±0.35 ppm for Glx, and then doing multiple comparisons to choose the best 

‘classifier’. In accordance to Eq. (1), the receiver operating characteristic (ROC) curve of each 

classifier was calculated three times, testing for a difference between two conditions of the task 

in each time (Fig. 2C inset). The areas under the curve (AUCs) of all the tested classifier were 

compared (Fig. 2C) and the classifiers with the highest AUC were selected in each comparison 

type. Subsequently, for each metabolite, the averages of the highest AUCs were set as the 

chosen integration limits: 3.56 to 3.94 for Glx and 2.83 to 3.19 for GABA. As a control, we 

performed this process on two sets of random noises. The AUCs for all the tested pairs were 

close to 0.5 (in gray line, Fig. 2C), implicating that no significant data could be found in case of 

noise, and that the integration limits that showed significance for the real data, indeed included 

important information. We note that the process resulted in integration limits that are highly 

similar to the ones chosen by an experienced observer and/or in similar studies that take such 

limits a-priori. 

Statistical tests 

Changes to within-subject behavioral and metabolic measures were compared using two- or 

one-way repeated measure analyses. Tucky-Kramer tests were conducted for post-hoc paired 

comparisons. One sample t-tests was conducted in order to assess normalized metabolic levels 

significance, while paired sample t-tests was conducted for temporal metabolic drift analyzing. 

To analyze behavioral pretest data and in order to assess conditions ordering effect, we 

performed unpaired group comparisons using nonparametric Wilcoxon rank sum tests. 

Pearson’s correlation coefficient was conducted in order to test correlations between metabolites 

levels and behavioral performance. Unless otherwise stated, significance level was set to 

P<0.05. 
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