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Abstract

In resting-state fMRI, dynamic functional connectivity (DFC) measures are used to characterize 

temporal changes in the brain’s intrinsic functional connectivity. A widely used approach for DFC 

estimation is the computation of the sliding window correlation between blood oxygenation level 

dependent (BOLD) signals from different brain regions. Although the source of temporal 

fluctuations in DFC estimates remains largely unknown, there is growing evidence that they may 

reflect dynamic shifts between functional brain networks. At the same time, recent findings 

suggest that DFC estimates might be prone to the influence of nuisance factors such as the 

physiological modulation of the BOLD signal. Therefore, nuisance regression is used in many 

DFC studies to regress out the effects of nuisance terms prior to the computation of DFC 

estimates. In this work we examined the relationship between seed-specific sliding window 

correlation-based DFC estimates and nuisance factors. We found that DFC estimates were 

significantly correlated with temporal fluctuations in the magnitude (norm) of various nuisance 

regressors. Strong correlations between the DFC estimates and nuisance regressor norms were 

found even when the underlying correlations between the nuisance and fMRI time courses were 

relatively small. We then show that nuisance regression does not necessarily eliminate the 

relationship between DFC estimates and nuisance norms, with significant correlations observed 

between the DFC estimates and nuisance norms even after nuisance regression. We present 

theoretical bounds on the difference between DFC estimates obtained before and after nuisance 

regression and relate these bounds to limitations in the efficacy of nuisance regression with regards 

to DFC estimates.
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1. Introduction

In resting-state functional magnetic resonance imaging (fMRI), the correlation between the 

BOLD time courses from different brain regions is used to estimate the functional 

connectivity (FC) of the brain in the absence of an explicit task. This approach has revealed 

a number of resting-state networks, where each network consists of brain regions that exhibit 

a high degree of mutual correlation (Fox et al., 2005). For the most part, FC estimates have 

assumed temporal stationarity of the underlying BOLD time courses and are obtained by 

computing correlations over the entire scan duration. As the resulting estimates represent a 

temporally averaged measure of brain connectivity over a typical scan duration of 5–10 

minutes, they can miss important dynamic temporal changes in FC (Allen et al., 2014; Preti 

et al., 2017; Hutchison et al., 2013).

An increasing number of studies have focused on the dynamics of functional brain 

connectivity by considering dynamic FC (DFC) measures that are computed over time scales 

typically on the order of tens of seconds and thus much shorter than the scan duration (Allen 

et al., 2014; Preti et al., 2017; Hutchison et al., 2013). Approaches for estimating DFC 

include sliding window correlation method (Hutchison et al., 2013; Calhoun et al., 2014), 

time-frequency methods such as wavelet transform coherence (Chang and Glover, 2010; 

Yaesoubi et al., 2015), and probabilistic inference methods such as hidden Markov modeling 

(Vidaurre et al., 2017). To date, the sliding window correlation approach is the most widely 

used DFC estimation method (Hutchison et al., 2013). In this approach, the correlations 

between BOLD time courses from different brain regions are computed over sliding 

windows with durations typically ranging from 30–60 seconds (Preti et al., 2017). 

Regardless of the analysis method, non-neural processes that affect the BOLD time series 

can also contaminate the DFC estimates (Murphy et al., 2013; Preti et al., 2017; Hutchison 

et al., 2013). These confounds are often referred to as nuisance terms and include the effects 

of motion, cardiac and respiratory activity, and fluctuations in arterial CO2 concentration. 

Hutchison et al. (2013) noted that non-neuronal sources that introduce spatial correlations 

into the time series can also give rise to spurious dynamics in FC measures. Recently, 

Nikolaou et al. (2016) reported that temporal fluctuations in network degree were related to 

fluctuations in both heart rate and end-tidal CO2. Glomb et al. (2017) found that temporal 

fluctuations in FC were related to temporal variations in a global measure of average BOLD 

signal magnitude.

A common step in most fMRI analyses is the use of nuisance regression to minimize the 

contributions of nuisance terms in BOLD time courses (Liu, 2016; Ciric et al., 2017). 

Nuisance regressors include cardiac and respiratory activity derived time courses (Birn et al., 

2008; Chang et al., 2009), head motion parameters, Legendre polynomials to model scanner 

drift, signals from white-matter (WM) and cerebrospinal fluid (CSF) regions, and a whole 

brain global signal (GS) (Liu et al., 2017). Although nuisance regression is widely employed 
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prior to the computation of DFC estimates (Murphy et al., 2013), efforts to examine its 

efficacy with regards to DFC estimates have been limited. Hutchison et al. (2013) noted that 

residual nuisance effects “inevitably remain” in the BOLD time series and must be 

considered in the interpretation of DFC measures. In support of this view, Nikolaou et al. 

(2016) found that nuisance regression diminished but did not completely remove the 

relationship between network degree and measures of cardiac and respiratory activity. On 

the other hand, Xu et al. (2018) reported that global signal regression (GSR) had a spatially 

heterogeneous impact on DFC estimates, but did not assess whether GSR removed GS 

contributions from the DFC estimates.

In this paper, we take a closer look at (1) the role of nuisance terms in correlation-based 

DFC estimates and (2) the efficacy of nuisance regression for DFC studies. In particular, we 

use two independent datasets to examine the relationship between seed-specific sliding 

window correlation-based DFC estimates and the norms of various nuisance regressors (WM 

and CSF signals, GS, cardiac and respiratory measurements, and head motion). We then 

assess the effect of nuisance regression on this relation, considering both regression applied 

to the entire scan and regression applied on a sliding window basis. To interpret the 

empirical findings, we derive mathematical expressions to describe the effect of regression 

on DFC estimates and compare the experimental results with the theoretical predictions. 

Preliminary versions of this work have been presented in (Nalci et al., 2017a; Nalci and Liu, 

2018).

2. Methods

2.1. Datasets

In this work, we analyzed two datasets in order to show the generality of our results and to 

experiment with different types of nuisance measurements. First, to understand the effect of 

nuisance measurements derived directly from the MRI images such as the GS, WM and 

CSF, and head motion (HM) time courses on the DFC estimates, we used a publicly 

available dataset originally analyzed by Fox et al. (2007), which will refer to as the BS002 

dataset. Second, to understand the effect of physiological measurements such as changes in 

the respiration and cardiac rate on the DFC estimates, we used the dataset analyzed by Wong 

et al. (2012), which we will refer to as the CFMRI dataset.

BS002 data were acquired from 17 young adults (9 females) using a 3 T Siemens Allegra 

MR scanner. Each subject underwent 4 BOLD-EPI fixation runs (32 slices, TR=2.16 s, 

TE=25 ms, 4×4×4 mm), each lasting 7 minutes (194 frames). The subjects were instructed 

to look at a cross-hair and asked to remain still and awake. High-resolution T1-weighted 

anatomical images were acquired for the purpose of anatomical registration (TR=2.1 s, 

TE=3.93 ms, flip angle=7 deg, 1×1×1.25 mm).

CFMRI data were acquired from 10 healthy volunteers (4 males and 6 females) using a 3 

Tesla GE Discovery MR750 system. Each subject underwent four separate resting-state 

scans (5 minutes per scan with either their eyes open or closed). High resolution anatomical 

data were collected using a magnetization prepared 3D fast spoiled gradient (FSPGR) 

sequence (TI=600 ms, TE=3.1 ms, flip angle = 8 degrees, slice thickness = 1 mm, FOV = 

Nalci et al. Page 3

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25.6 cm, matrix size = 256×256×176). Whole brain BOLD data were acquired over thirty 

axial slices using an echo planar imaging (EPI) sequence (flip angle = 70 degrees, slice 

thickness = 4 mm, slice gap = 1 mm, FOV = 24 cm, TE = 30 ms, TR = 1.8 s, matrix size = 

64×64). Cardiac pulse and respiratory data were monitored using a pulse oximeter (InVivo) 

and a respiratory effort transducer (BIOPAC), respectively. The pulse oximeter was placed 

on each subject’s index finger while the respiratory effort belt was placed around the 

subject’s abdomen. Physiological data were sampled at 40 Hz using a multi-channel data 

acquisition board (National Instruments).

2.2. Preprocessing steps for the BS002 dataset

Standard pre-processing steps were conducted with the AFNI software package (Cox, 1996). 

The initial 9 frames from each EPI run were discarded to minimize longitudinal relaxation 

effects. Images were then slice-time corrected and co-registered, and the 6 head motion 

parameter time series were retained. The resultant images were converted to coordinates of 

Talairach and Tournoux (TT), resampled to 3 mm cubic voxels, and spatially smoothed 

using a 6 mm full-width-at-half-maximum isotropic Gaussian kernel. The 1st and 2nd order 

Legendre polynomials (a constant term to model the temporal mean and a linear trend) were 

projected out from each voxel’s time course. Each voxel time series was then converted into 

a percent change BOLD time series through demeaning and division by its mean value.

To analyze the effect of nuisance regression on DFC estimates, we used both (1) full linear 

regression in which regression is performed over the whole scan duration and (2) block 

regression (also referred to as sliding window regression) in which regression is performed 

for each window separately (more details on block regression are provided in Section 2.6). 

For each type of regression, we performed a separate regression on the data using one of the 

following types of regressor: (1) the set of all 6 head motion parameters, (2) nuisance signals 

from WM and CSF regions, and (3) the global signal (GS), which was calculated as the 

average of the percent change time series across all voxels within the brain.

For DFC analysis, we used seed signals derived from the posterior cingulate cortex (PCC), 

intraparietal sulcus (IPS), frontal eye fields (FEF), and motor network (MOT). These seed 

signals were obtained by averaging time series selected over spheres of radius 6 mm (2 

voxels) centered about their corresponding TT coordinates (He and Liu, 2012). The sphere 

centers were obtained by converting the MNI coordinates from Van Dijk et al. (2010) to TT 

coordinates (Lacadie et al., 2008). For the PCC, left MOT, and right MOT seeds we used the 

coordinates [0,−51,26], [−36,−22,52] and [37,−21,52], respectively. A combined MOT seed 

was obtained by using the left and right MOT coordinates to define two spheres and by 

merging them. For the IPS and FEF seeds, we used the coordinates [27,−58,49] and 

[24,−13,51] from (Fox et al., 2006). Finally, for the WM and CSF nuisance signals, we 

defined the sphere centers as [12,−36,27] and [9,−9,15], respectively.

2.3. Preprocessing steps for the CFMRI dataset

We used FSL and AFNI packages to preprocess the CFMRI dataset (Woolrich et al., 2009; 

Smith et al., 2004). First, high-resolution anatomical data were skull stripped and 

segmentation was applied to estimate WM, gray matter, and CSF partial volume fractions. 
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Images were then slice-time corrected and co-registered and the 6 head motion parameter 

time series were retained. The anatomical data were then aligned to the functionals. Each 

subject’s native space data were transferred to TT coordinates and spatially smoothed using 

a 6 mm full-width-at-half-maximum isotropic Gaussian kernel. A binary brain mask was 

created for each subject using the transferred data and was eroded by 2 voxels along the 

brain edges to eliminate possible inclusion of non-brain areas (Rack-Gomer and Liu, 2012). 

The first 6 frames (10.8 seconds) from each functional data were discarded to minimize 

longitudinal relaxation effects. For each run, the 1st and 2nd order Legendre polynomials and 

the 6 head motion parameters were projected out to obtain the ‘baseline’ CFMRI data.

We performed RVHRCOR by simultaneously projecting out the physiological nuisance 

regressors derived from cardiac and respiratory signals using both full linear regression and 

block regression (Chang et al., 2009; Birn et al., 2008). Specifically, a respiratory variation 

(RV) signal was computed as the standard deviation of the respiratory signal using a 7.2 

second sliding window and was then convolved with the respiration response function (RRF) 

to obtain the respiration regressor (RVf). Similarly, a heart rate (HR) signal was computed as 

the inverse of average peak to peak time interval between two consecutive heartbeats over a 

7.2 second sliding window. The HR was then convolved with a cardiac response function 

(CRF) to obtain the cardiac regressor (HRf). In this process, we discarded 4 scans out of 40 

due to the poor quality of physiological signals, leaving a total of 36 scans for analysis. For 

DFC analysis, we used the same seed coordinates as mentioned for the BS002 dataset.

2.4. Calculation of the DFC estimates: Sliding window correlations

The DFC estimates were obtained by computing the sliding window correlations between 

pairs of seed signals selected from the PCC, IPS, FEF, and MOT regions. Specifically, we 

computed the sliding window correlations between the following seed pairs: PCC and IPS, 

PCC and FEF, PCC and MOT, IPS and FEF, IPS and MOT, and FEF and MOT. Denoting x1 

and x2 as two seed time series and x1,k and x2,k as the windows taken from those signals 

(where k denotes the window index), we computed the window correlation value as 

rk =
x1, k
T x2, k

x1, k x2, k
= cosθk. Here, 𝜃k is the observed angle between those time courses and |.| is 

the vector norm. Note also that here and throughout the paper the time courses are 

represented as column vectors. This process was repeated by temporally shifting the window 

index until all sliding window correlations were carried out over the entire scan duration. 

The final aggregated set of correlation values rDFC = [r1, r2, · · ·, rT] was used as an estimate 

for the DFC.

In our primary analysis, to maximize the number of available DFC samples per scan, the 

sliding window duration in this paper was fixed at 30 TRs and a window shift of 1 TR was 

used (Hutchison et al., 2013; Xu et al., 2018). This duration corresponds to a window length 

of 63 seconds for the BS002 dataset and 54 seconds for the CFMRI dataset. These window 

lengths lie within the range of durations typically used in the existing DFC literature (Preti et 

al., 2017). In supplementary analyses, we considered two additional window sizes: a longer 

window of duration of 100 seconds, which corresponds to 48 TRs for the BS002 dataset and 
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56 TRs for the CFMRI dataset, and a shorter window size of 40 seconds, which corresponds 

to 20 TRs for the BS002 dataset and 22 TRs for the CFMRI dataset.

2.5. Calculation of the nuisance metrics: Nuisance norms

To examine the relationship between the nuisance measurements and the DFC estimates, we 

used the norm of the regressor as our nuisance metric. Note that the norm of a regressor is 

simply the geometric length of the column vector used to represent the regressor time 

course. In Section 4 we present some toy examples and geometric arguments to show how 

DFC estimates can be related to the norms of various nuisance terms. The theoretically 

inclined reader may choose to read that section first before continuing.

For a single regressor, the computation of the windowed norms was done by first demeaning 

the nuisance regressor for each window. Denoting nk as the demeaned nuisance 

measurement in the kth window, the window norm was computed as nk = ∑t = tk

tk + TDnk(t)2, 

where t indicates time in TR units and TD is the window duration minus 1 (e.g. TD = 29 for a 

window duration of 30 TRs). When multiple regressors were used in the regression (e.g. for 

HM), we computed the total norm as nk Total = ∑i = 1
NR nk, i

2
, where i denotes the index for 

different regressors and NR is the number of regressors. In the text we use the term norm and 

the notation |nk| to denote both |nk| and |nk|Total. The norm was computed for all windows by 

temporally shifting the window index. The final set {|n1|, |n2|, …, |nT|} of nuisance norms 

comprised the nuisance norm time course. To examine the relationship between the nuisance 

norm and DFC estimates, we computed the correlation coefficient between the DFC 

estimates and the nuisance norm time courses.

2.6. Analysis of nuisance regression techniques

We applied two types of linear regression, which we refer to as full regression and block 

regression. In full regression, the nuisance terms were projected out of the voxel time series 

over the entire scan duration. For example, for a single regressor, the clean time course after 

full regression was obtained as x = x − n nTn
−1

nTx = x − bn, where n is the column vector 

representing the nuisance regressor and b = (nTn)−1nT x is the scalar fit coefficient for the 

entire scan duration. In block regression, the nuisance measurement was projected out of 

each window separately, such that the clean time course for the kth window was 

xk = xk − nk nk
Tnk

−1
nk

Txk = xk − bknk, where bk = nk
Tnk

−1
nk

Txk is the window-specific scalar 

fit coefficient. Note that all time courses (seed and nuisance signals) were demeaned prior to 

the regression process. The signals were demeaned across the full scan duration when 

performing full regression and demeaned for each window independently when performing 

block regression.

Note that we will refer to the “clean” DFC estimates obtained after the application of 

regression as Post FullReg DFC and Post BlockReg DFC estimates for full and block 

regression, respectively. To simplify the presentation, we will also use the shorter term Post 
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DFC to refer to Post FullReg DFC, since full regression is the method that has typically been 

used in the literature.

2.7. Significance testing of the relationship between DFC estimates and nuisance norms

To assess the statistical significance of the relationship between the DFC estimates and 

nuisance norms, we used an autoregressive (AR) bootstrapping procedure based on the work 

of (Chang and Glover, 2010; Efron and Tibshirani, 1986; Zalesky et al., 2014). As our null 

hypothesis was that the DFC estimates and nuisance norms were not linearly related, we fit 

(on a per scan basis) separate AR processes of model order q to the DFC estimates and 

nuisance norm time courses both before and after full/block regression. The model order q 
was determined according to the Bayesian information criterion (BIC). Using the estimated 

AR coefficients from each scan, we generated 10,000 surrogate time series for both the DFC 

estimates and nuisance norms and then computed the associated surrogate correlation 

coefficients.

To create a null distribution for the assessment of significance across the study sample, we 

computed the absolute value of each of the surrogate correlation coefficients in the sample 

and took the mean of the absolute values across the sample (i.e. mean across all scans, seed 

pairs, and regressor types). The resulting null distribution consisted of 10,000 surrogate 

mean absolute correlation values. We used this null distribution to assess the significance of 

the sample mean absolute correlation value.

As a secondary descriptive analysis, we also assessed significance on a per-scan basis. We 

formed a null distribution of correlation values for each scan by correlating the surrogate 

nuisance norms with the surrogate DFC estimates. We used the resulting null distribution to 

compute the p-value associated with the correlation coefficient computed from each scan’s 

measured data. We then calculated the percentage of scans that showed significant 

correlations between the DFC estimates and nuisance norms for significance thresholds of 

0.05 and 0.10.

3. Results

In this section, we first show that the DFC estimates obtained between pairs of seed time 

courses can be significantly correlated with the norms of various nuisance measurements. 

We demonstrate that strong correlations between the DFC estimates and nuisance norms 

exist even when the correlations between the nuisance and seed time courses are small. We 

then show that performing nuisance regression prior to the computation of the DFC 

estimates does not necessarily eliminate the presence of strong and significant correlations 

between the nuisance norms and DFC estimates.

3.1. Examples of correlations between DFC estimates and nuisance norms

In Figure 1, we present examples of scans from the BS002 dataset in which significant 

positive correlations between the DFC estimates and nuisance norms were observed. The 

column labels indicate the seed region pair (e.g. PCC and IPS, PCC and FEF, and PCC and 

MOT) and the row labels indicate the type of nuisance norm. The solid blue line in each 

panel shows the DFC estimate before nuisance regression (labeled as Pre DFC) and the solid 
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black line shows the respective nuisance norm. In these scans, the correlations between the 

nuisance norms and the Pre DFC estimates ranged from r = 0.68 to r = 0.94 with a mean 

correlation value of r = 0.79, corresponding to a range of explained variances from 46% to 

88% over the example scans. The nuisance norms in these scans were significantly 

correlated with the DFC estimates with per-scan p-values across the example scans of p < 
0.0075 for WM+CSF, p < 0.0009 for GS and p < 0.0237 for HM regressors.

In Figure 2, we show 6 example scans from the CFMRI dataset demonstrating significant 

positive correlations between DFC estimates and physiological nuisance norms. The first 

row shows 3 scans using the HRf norm as the nuisance measure and the second row shows 3 

scans using the RVf norm. Each column shows a different seed pair for the DFC estimates. 

The correlations between the Pre DFC estimates and the nuisance norms in these scans 

ranged from r = 0.56 to r = 0.85 with a mean correlation of r = 0.71 corresponding to a range 

of explained variances from 31% to 72%. The RVf and HRf norms were significantly 

correlated with the DFC estimates with per-scan p-values of p < 0.0345 for RVf and p < 

0.0355 for the HRf regressors.

In Figure 3 and Supplementary Figure 1, we show additional examples for each regressor 

and seed pair in cases of weak to medium positive correlations observed between the DFC 

estimates and nuisance norms. Note that all qualitative examples shown in this paper are 

from different scans but can be from the same subject.

In Figure 4a, we show the histogram of correlations between the nuisance norms and the 

DFC estimates across all scans, seed pairs, and nuisance norms. The histogram includes a 

total of 1, 656 correlation values with 1, 224 belonging to the BS002 dataset (68 scans × 6 

seed pairs × 3 types of nuisance norm) and the remaining 432 from the CFMRI dataset (36 

scans × 6 seed pairs × 2 types of nuisance norm). The correlations ranged from a negative 

value of r = –0.83 to a positive value of r = 0.96, with a skewed distribution in which 68% of 

the correlations were positive and the remaining 32% were negative. In Supplementary 

Figure 2, we present the correlations from Figure 4a separated into the values for individual 

regressors. Figure 4c shows the histogram of absolute correlation values, with a sample 

mean value of |r| = 0.37. The significance of the sample mean absolute correlation value is 

assessed in the following section.

In Figure 5, we show 3 example scans to demonstrate the existence of significant anti-

correlations between the Pre DFC estimates and various regressor norms. The type of 

nuisance regressor and the seed region pair are indicated in the column labels. For these 

scans, the correlation values were strongly negative ranging from r = –0.82 to r = –0.61 with 

an increase in nuisance norm corresponding to a decrease in the DFC estimate. The nuisance 

norms in these scans were significantly anti-correlated with the DFC estimates with per-scan 

p-values of p < 0.001 for HRf, p < 0.0024 for WM+CSF and p < 0.0226 for the HM 

regressors

As an exploratory analysis, we also assessed whether the state of the eyes (open or closed) in 

the CFMRI dataset affected the relationship between the DFC estimates and the norms of the 
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RVf and HRf time courses. We found no significant difference (p = 0.95, two-tailed paired t-

test) in the correlations obtained between eyes open and eyes closed conditions.

3.2. Assessing significance across the sample

We now consider whether the DFC estimates are significantly correlated with nuisance 

norms across the study sample. As demonstrated in the previous section, both positive and 

negative correlations can exist between the DFC estimates and nuisance norms. Taking this 

into account, we focused on the absolute value of the correlation values and computed the 

mean of the absolute correlation values across the sample. As described in the Methods 

section, we assessed the significance of the mean absolute value using an empirical null 

distribution. Figure 6a shows the empirical null distribution and the sample mean absolute 

value, which was found to be significant with p < 10−6. Note that the sample mean absolute 

value indicated here is simply the mean of the histogram of the absolute correlation values 

shown in Figure 4c. In panels (b) and (c), we show the null distributions and sample values 

when considering complementary subsets of the sample where the global signal (GS) is 

either included or not included, respectively, with associated p-values of p < 10−6 for both 

subsets. In Supplementary Figure 3, similar plots are provided for analyses with window 

lengths of approximately 40 and 100 seconds.

To complement our primary analysis, we also considered the extent to which the correlation 

coefficients were significant at the per-scan level. Using the scan-specific null distributions 

(see Methods), we found that 24% of the correlations between the nuisance norms and Pre 

DFC estimates were significant at the p < 0.05 level and 30% of the correlation values were 

significant at the p < 0.10 level. In supplementary material, Table 1 summarizes these 

findings and provides results for analysis window lengths of 40s and 100s. The results for a 

shorter window length of 40s were fairly similar to that of our primary results (approximate 

window length of 60s). However, we observed a slightly higher percentage of significance 

scans at the longer window length of 100s.

3.3. Strong correlations between DFC estimates and nuisance norms exist even when the 
underlying correlations between the nuisance and seed time courses are small

In this section, we ask the question: can strong correlations between DFC estimates and 

nuisance norms occur even when the nuisance time course are only weakly correlated with 

the seed time courses? Figure 7a shows the correlations between the DFC estimates and the 

nuisance norms plotted against the root-mean-squared (RMS) correlations between the 

underlying nuisance and seed time courses. Each point corresponds to a specific scan, 

nuisance term, and seed region pair. For each point, the RMS correlation is computed by 

correlating the nuisance time course with each of the two seed time courses (from the same 

scan) and then calculating the RMS value (e.g. rRMS = rSeed1
2 + rSeed2

2 /2, where rSeed1 and 

rSeed2 are the correlation coefficients between the nuisance time course and the first and 

second seed signals, respectively).

We first observe that strong correlations (points above and below the dashed lines in Figure 

7a) between the DFC estimates and nuisance norms exist even when the RMS correlation 

between the nuisance and seed time courses is close to zero. We defined strong correlations 
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between the DFC estimates and nuisance norm as those correlations for which |r| > 0.5, 

corresponding to an explained variance of greater than 25%. This threshold corresponded to 

an empirical p = 0.09 as assessed with the null distribution obtained by correlating the 

surrogate time series across all scans and realizations. Note that the threshold we have used 

merely serves as a convenient way to delineate strong correlations and its exact value is not 

critical. Conclusions similar to those stated here and below would be obtained even if we 

increased or decreased the threshold.

For further analysis, we binned the points according to the RMS correlation values using a 

bin width of 0.05. For each RMS correlation bin, we counted the number of points in which 

the nuisance norm explained more than 25% variance in the DFC estimates (i.e. number of 

scans above the threshold) and then divided this count by the total number of points across 

all bins. In Figure 7b, the blue bars indicate the percentage of strong correlations between 

the DFC estimates and nuisance norms as a function of the binned RMS correlation values. 

The green bars indicate the percentage of strong correlations associated with the GS 

regressor. The cumulative percentage of strong correlations versus RMS correlation value is 

shown by the red dotted line.

We found that a large percentage of the strong correlations between the DFC estimates and 

nuisance norms occurred for fairly small RMS correlation values between the raw nuisance 

time course and seed signals. For example, 22% of the all strong correlations between the 

DFC estimates and nuisance norms occurred for RMS values in the interval r = 0 to r = 0.15. 

Note that in this interval, the nuisance terms account for less than 2.2% of the average 

variance of the seed time courses. Excluding the GS, 33% of the strong correlations between 

the DFC estimates and Non-GS nuisance norms occurred in the same interval. If we expand 

the interval r = 0 to r = 0.25, then 36% of the strong correlations lie within this expanded 

interval, corresponding to nuisance terms that account for less than 6.25% of the average 

variance of the seed time courses. Excluding the GS, 54% of the strong correlations lie 

within the same interval. In other words, for 36% of the all cases and 54% of the Non-GS 

cases examined, the nuisance norm explains more than 25% of the variance in the DFC 

estimates even though the raw nuisance time courses explain less than 6.25% of the average 

variance of the seed time courses.

Overall, we have the rather surprising observation that strong correlations between the DFC 

estimates and nuisance norms can exist even when the underlying nuisance terms account 

for only a small fraction of the variance of the seed time courses. We present a plausible 

explanation for this observation in Section 4.3 and examine its implications for nuisance 

regression later in the text.

Finally, the green bars in Figure 7b show the percentage of strong correlations between the 

DFC estimates and nuisance norm due to the GS regressor. This shows that the RMS 

correlation values between the GS and seed signals are relatively higher as compared to the 

Non-GS regressors. This is expected since the GS is computed as the average of all voxels 

time courses and is expected to correlate well with the seed time courses. On the other hand, 

the Non-GS regressors (difference between the blue and green bars) have fairly small RMS 
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correlation values with the seed time courses even though their norms can be strongly 

correlated with the DFC estimates.

3.4. Regression does not eliminate the relation between the DFC estimates and nuisance 
norms

In this section, we show that full regression does not necessarily eliminate the relationship 

between the DFC estimates and the nuisance norms. Revisiting Figures 1 and 2, our focus 

now is on the solid red lines (Post DFC), which show the DFC estimates obtained after 

projecting out the relevant nuisance regressors. The fluctuations in the Pre DFC and Post 

DFC estimates in both figures are similar to each other and there is very little difference in 

their relationships to the nuisance norm. In the scans shown in both figures, the mean 

correlation value between the Post DFC estimates and the nuisance norms was r = 0.73, 

which is very close to the mean correlation value of r = 0.76 between the Pre DFC estimates 

and the nuisance norms. For these example scans, the Post DFC estimates were still 

significantly correlated with the nuisance norms after nuisance regression for the WM+CSF, 

GS and HM regressors (p < 0.02) and also for the RVf and HRf regressors (p < 0.04). 

Additional examples of Post DFC estimates are provided in Figures 3 and 5 and 

Supplementary Figure 1.

Viewed across the entire sample, the Post DFC correlation values shown in Figure 4b ranged 

from a minimum of r = –0.88 to a maximum r = 0.86 with a skewed distribution in which 

60% of the correlations were positive and the remaining 40% were negative. The correlation 

distributions were similar to the Pre DFC histograms in Figure 4a,b with a cosine similarity 

values of S = 0.77 and S = 0.87 for the correlation and absolute correlation values, 

respectively.

Over the sample, the mean absolute correlation |r| was found to be significant with p < 10−6 

(see Figure 6a). Moreover, we found that 14% of the correlations between the nuisance 

norms and Post DFC estimates were still significant at the p < 0.05 level and 22% of the 

correlation values were significant at the p < 0. 10 level.

To further demonstrate the relationship between the Pre and Post DFC estimates, in Figure 

8a we plotted the correlations between the Post DFC estimates and nuisance norms versus 

the corresponding correlations between the Pre DFC estimates and the nuisance norms 

across all scans, nuisance time courses, and seed pairs. The relative density of correlation 

values is indicated with the color bar on the right hand side. There was a significant linear 

relationship between the two correlation populations (r = 0.77, p < 10−6) indicating that the 

Post DFC estimates largely retain the correlation with the nuisance norms that is observed in 

the Pre DFC estimates.

3.5. Block regression is similarly ineffective in removing nuisance effects from the DFC 
estimates

As an alternative nuisance removal approach, we performed block regression in which 

nuisance measurements were projected out from each window separately. In Figure 9, we 

superimposed plots of the DFC estimates after performing block regression (green lines; 

referred to as Post BlockReg DFC) on the plots previously shown in Figure 1 for the BS002 
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dataset. The correlations between the Post BlockReg DFC estimates and nuisance norms 

ranged from r = 0.63 to r = 0.86 with a mean correlation of r = 0.70 and per-scan p < 0.03. 

For the CFMRI dataset, the corresponding qualitative figures for block regression results are 

given in Supplementary Figure 4. Additional examples are provided in Figures 3 and 5 and 

Supplementary Figure 1.

Viewed across the entire sample, the Post BlockReg DFC correlation values shown in Figure 

4b ranged from a minimum of r = −0.89 to a maximum r = 0.87. The correlation 

distributions were similar to the Post FullReg DFC histograms with cosine similarity values 

of S = 0.93 and S = 0.95 for the correlation and absolute correlation values, respectively.

Over the sample, the mean absolute correlation |r| between the Post BlockReg DFC 

estimates and nuisance norms across all scans was significant with p < 10−6 (see Figure 6a). 

We also found that 14% of the correlations between the nuisance norms and Post BlockReg 

DFC estimates were significant at the p < 0.05 level and 22% of the correlation values were 

significant at the p < 0.10 level.

Lastly, in Figure 8b, we plot the correlations between the Post BlockReg DFC estimates and 

the nuisance norms versus the correlations between the Post FullReg DFC estimates and the 

nuisance norms. A linear fit between the two correlation populations (shown with solid 

black line) revealed a significant linear relationship (R2 = 0.86, r = 0.93, p < 10−6). In 

addition, the correlation distributions for full and block regression were not significantly 

different from each other (p = 0.86, paired two-tailed t-test). The effect size (d = 0.0017) and 

the absolute difference in correlation population means (0.0006) were negligibly small. 

Thus, with respect to the relationship between the DFC estimates and the nuisance norms, 

block and full regression have nearly identical effects.

In the results presented so far, we have looked at the effects of nuisance regression when 

using different groups of regressors separately (e.g. WM and CSF, RVf and HRf, GS, and 

the 6 HM regressors). Note that multiple regression was used when there were more than 

one regressor in a group. In Supplementary Figures 5 and 6, we show that similar results are 

obtained when performing multiple regression with (a) WM and CSF grouped with the 6 

HM regressors and (b) GS grouped with WM, CSF, and the 6 HM regressors.

4. Interpretation

4.1. Nuisance effects on correlation estimates

In Section 3.1, we showed that DFC estimates can be related to the norms of various 

nuisance terms. Here, we aim to provide an intuitive understanding of how this relationship 

might arise. We use simple toy examples to demonstrate the key principles and to establish 

concepts that will be further developed in the Theory section. In the toy examples, we 

represent time series as vectors in a low-dimensional (2D or 3D) space, such that the 

correlation between time series is simply the cosine of the angle between the vectors. For all 

of the examples, we will assume that there is a set of two underlying vectors with a fixed 

angle across time windows, corresponding to an idealized case in which the windowed 

correlation between two time series is fixed across time. Then, we examine what happens 
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when a nuisance term is added to the underlying vectors. Note that due to considerations of 

simplicity and mathematical tractability, we restrict our presentation to the case of a single 

nuisance regressor in both this section and the following Theory section.

4.2. 2D Examples

4.2.1. Positive correlations (Aligned Case)—We begin with a simple 2D toy 

example in which an additive nuisance term points in the same general direction as the 

underlying vectors. The underlying vectors are depicted with green vectors and denoted as 

y1 and y2 in Figure 10a for 5 consecutive windows (k through k + 4). The angle between the 

vectors is fixed at an angle of 135°, such that the correlation is r = −0.70 for each window. 

We consider an additive nuisance term pointing along the horizontal axis with a norm that 

varies across windows (indicated by the red vectors and denoted as nk through nk+4).

In this example, the nuisance vectors nk are aligned with the underlying vectors y1 and y2, 

meaning that the inner products (y1
Tnk > 0 and y2

Tnk > 0) are positive. The sum of the 

underlying vectors and additive nuisance terms yields the observed time series as shown by 

the blue vectors in the second row of Figure 10a and denoted as x1,k and x2,k. The angle 

between the observed vectors (shown with 𝜃k) varies with the nuisance norm, with smaller 

angles observed for larger nuisance norms. In the last row of Figure 10, we plot the 

correlation between the observed signals (cosine of the angle between observed signal 

vectors) and the nuisance norm across windows. There is a strong relationship (r = 0.98) 

between the window correlation values and the nuisance norm. This simple example shows 

how variations in the norm of a nuisance term may induce variations in the windowed 

correlation estimates that are highly correlated with the norm of the nuisance term.

4.2.2. Anti-correlations (Anti-aligned Case)—As noted in Section 3.1, the DFC 

estimates can sometimes be anti-correlated with the nuisance norms. To see how this might 

arise, we consider the ‘anti-aligned’ case shown in Figure 10b. In contrast to the aligned case 

discussed above, the nuisance vector points in a direction opposite to the average direction 

of the underlying signals, such that the corresponding dot products (y1
Tnk < 0 and y2

Tnk < 0) 

are negative. In this example, the correlation between y1 and y2 is fixed at a value of r = cos 

37° = 0.80.

The addition of the anti-aligned nuisance vector leads to cancellation of vector components 

along the horizontal axis. As a result, the angle between the observed vectors x1,k and x2,k in 

the second row tends to increase as the nuisance norm increases. Taking the cosine of the 

angle between the observed vectors to obtain the correlation estimates, we find that the 

correlation values are anti-correlated (r = −0.98) with the nuisance norm, as shown in the 

third row of Figure 10b. This simple example shows that an additive nuisance term can 

induce variations in the windowed correlation estimates that are anti-correlated with the 

nuisance norm.

We should note that if the nuisance norm becomes extremely large for the anti-aligned case, 

the observed vectors can be dominated by the nuisance term in a manner that can cause the 

nuisance norm to be positively correlated with the resulting DFC estimates (see the first 
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three windows nk through nk+2 in Supplementary Figure 7 for an illustration). It is possible 

that this mechanism may contribute to the positive skew observed in the correlation 

histograms in Figure 4a-b. However, in the absence of ground truth it is not currently 

possible to make any definitive conclusions in this regard. In general, the extent to which a 

nuisance term induces positive or negative correlations between the correlation estimates and 

the nuisance norm depends on both the angle between the underlying vectors and the relative 

direction and magnitude of the nuisance vector.

Finally, in Supplementary Figure 7 we present a last 2D example in which the relationship 

between the DFC estimates and nuisance norms exhibits both positive and negative 

correlations such that the overall observed correlation is r = 0. The nuisance norm is 

extremely large in the first three windows (k through k + 2) and dominates over the 

underlying vectors such that the nuisance norm is positively correlated with the resulting 

DFC estimates. The nuisance norm then becomes much smaller in the last two windows (k 
+ 3 and k + 4) so that the nuisance term is no longer able to dominate over the underlying 

vectors and the nuisance norm is anti-correlated with the resulting DFC estimates. Because 

of this varying relationship between the DFC estimates and nuisance norms, the observed 

correlation across all windows is equal to r = 0 even though there is a clear effect of the 

nuisance term on the observed vectors. In general, the relationship between DFC estimates 

and nuisance norms will exhibit a highly variable and complex behavior across different 

scans, such that there are many other possible scenarios (in addition to the simple one 

presented here) that could be used to explain the observation of small correlations between 

DFC estimates and nuisance norms.

4.3. Extension to 3D with addition of an orthogonal nuisance component

In the 2D examples discussed so far, the nuisance term was completely within the 2D plane 

spanned by the observed vectors. We now expand the example to 3D by including an 

additional nuisance component that is orthogonal to the 2D plane, such that the overall 

nuisance term is the sum n = nI + nO of an in-plane component nI that lies in the subspace 

spanned by the observed vectors x1 and x2 and an orthogonal component nO that is 

orthogonal to the subspace.

In Figure 11, we have constructed the observed signals (blue vectors in the first row) using 

the fixed vectors and in-plane nuisance components previously used in the 2D example of 

Figure 10a. We then modify the nuisance terms by adding orthogonal components, such that 

the overall nuisance terms (red vectors) have both in-plane and orthogonal components. We 

construct the orthogonal component in each window such that its norm is proportional to the 

norm of the in-plane component (i.e. |nO,k| ∝ |nI,k|). Here, it is useful to define a metric |nO|
2/(|nI|2 + |nO|2) = |nO|2/|n|2 that reflects the relative fraction of nuisance energy that lies in the 

orthogonal component. The orthogonal nuisance fraction is equal to 1.0 when the nuisance 

component is completely orthogonal to the observed signal subspace and is equal to 0.0 

when the nuisance component lies within the subspace. For this example, the orthogonal 

nuisance fraction (indicated by the black dots in the fourth row) is relatively large and fairly 

constant with a mean value of 0.94.
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The resulting 3D example has several important properties. First, the Pre DFC estimates 

(blue dots in the third row) exhibit a strong correlation (r = 0.98) with the nuisance norm 

(red dots), similar to that previously shown for the 2D example in Figure 10a. This is 

because (1) the observed signals are the same in the 2D and 3D examples and (2) by 

construction the nuisance norm of the 3D nuisance term scales with the norm of the in-plane 

component.

Second, because the orthogonal nuisance fraction is relatively large, the underlying 

correlations between the nuisance terms and the observed vectors (i.e. cosine of the angle 

between the red and blue vectors) are relatively small as shown by the red and blue curves in 

the fourth row. Thus, this example is consistent with the empirical findings discussed in 

Section 3.3: a strong correlation between the Pre DFC estimates and the nuisance norms can 

exist even when the correlation between the nuisance and seed signals is small and the 

orthogonal fraction is high.

Third, linear regression has a minimal effect in this example, such that the signal vectors 

after regression (blue vectors in the second row) are similar to the original observed signals 

(blue vectors in the first row). Note that to simplify the presentation, we have used block 

regression to obtain the Post DFC estimates. The resultant Post DFC estimates (shown with 

solid green line and diamond markers in the third row) are also highly correlated (r = 0.98) 

with the nuisance norm. This is consistent with the empirical findings from Sections 3.4 and 

3.5 that nuisance regression can have a minimal effect on the relation between the DFC 

estimates and the nuisance norms.

To aid in relating the orthogonal nuisance fraction to the experimental results, Figure 12 

plots the orthogonal fraction values (averaged over each scan) versus the average percent 

variance in the seed time courses that is explained by the nuisance regressors (computed as 

the square of the RMS correlation values previously shown in Figure 7). As the average 

percent variance explained increases, the fraction of the nuisance term energy that is 

orthogonal to the plane spanned by the observed time series decreases. As noted in Section 

3.3, 36% of the strong correlations between the DFC estimates and nuisance norms occurred 

when the percent variance explained was less than 6.25%. Using the linear fit shown in 

Figure 12, this percentage corresponds to orthogonal nuisance fractions greater than 0.80, 

consistent with our use of a large orthogonal fraction in the example.

4.4. Regression effects depend on the orthogonal nuisance fraction

In this section, we present a 3D example to demonstrate how the effects of regression 

depend on the orthogonal nuisance fraction. In each of the 5 cases shown in Figure 13 the 

nuisance vector n has different orientations with respect to the 2D subspace spanned by the 

observed signals x1 and x2. The orthogonal fraction starts at 1.0 for Case 1 and then 

decreases to 0.0 for Case 5, with intermediate values for the other cases. The correlation 

between the observed time courses is fixed at r = 0.78 for all of the cases. In the middle 

column, we show the vectors (denoted as x1 and x2) after nuisance regression.

When the orthogonal fraction is 1.0 (Case 1), the nuisance vector is completely orthogonal 

to the space spanned by the observed signals, and therefore the regression coefficient 
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between the nuisance vector and each observed signal is zero. As a result, linear regression 

has no effect, and the post regression signals are identical to the observed signals. 

Consequently, for Case 1 the post regression correlation value is equal to the pre regression 

correlation value, as shown in the rightmost plot in Figure 13 as the intersection between the 

red dot and the horizontal green line representing r = 0.78.

When the orthogonal fraction is 0.0 (Case 5), the nuisance vector lies completely in the 

plane spanned by the observed time courses. After regression, the vectors x1 and x2 must 

point in opposite directions in order to achieve orthogonality to the in-plane nuisance term. 

As a result, the correlation between the post regression time courses will be −1. (Note that if 

the nuisance term n is in-plane but lies outside of the inner angle formed by x1 and x2 then 

regression will force x1 and x2 to point in the same direction and the correlation will be 

forced to be +1. In the Appendix, we refer to this as the complementary case).

For the remaining cases, the post regression correlation values vary as a function of the 

orthogonal nuisance fraction as shown by the red circles on the right hand side of Figure 13. 

The green line in the plot indicates the pre-regression signal correlation values (r = 0.78), 

which are independent of the fraction. Cases with a larger orthogonal nuisance fraction have 

post regression correlation values that tend towards the pre regression correlation value of r 
= 0. 78, whereas cases with a smaller orthogonal nuisance fraction have post regression 

correlation values that tend towards −1. The blue line in the plot shows the theoretical 

relation between the post regression correlation values and the orthogonal nuisance fraction. 

This relation is discussed in greater detail in the Theory section.

Overall, we see that when the orthogonal nuisance fraction is relatively high (e.g. greater 

than 0.5), the difference between the pre and post regression DFC estimates (distance 

between blue and green lines) will be relatively small. The exact bound on this difference 

(over all possible pre-regression correlation values) is provided in the Theory section, where 

it is also shown that most nuisance regressors lie within the high orthogonal fraction regime 

and therefore exhibit a small difference between the pre and post regression DFC estimates. 

The primary exception is the global signal, which provides the motivation for our next 

example.

4.5. DFC estimates after regression with smaller orthogonal nuisance term

In this subsection, we consider a second example in which the orthogonal nuisance fraction 

is relatively modest with a mean value of 0.47 across windows, as shown with the black line 

with circles in the fourth row of Figure 14. As discussed further in the Theory section, this 

value for the orthogonal nuisance fraction is consistent with what is observed for the global 

signal nuisance term. In this case, linear regression has a noticeable effect as can be seen by 

the difference between the original signal vectors (blue vectors in the top row) and the post 

regression vectors (blue vectors in the second row). Regression moves the post regression 

correlation values away from the pre regression correlation value towards −1.0, similar to 

Cases 2 and 3 in Figure 13. However, since the orthogonal nuisance fraction is relatively 

constant across windows, the difference between the Pre and Post DFC estimates is also 

fairly constant. As shown in the third row in Figure 14 the Post DFC estimates can be 
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approximated as a shifted version of the Pre DFC estimates. Because correlation is invariant 

to constant offsets, the correlation (r = 0.99) between the Post DFC estimates with the 

nuisance norm is essentially the same as the correlation (r = 0.98) between the Pre DFC 

estimates and the nuisance norm. The construction of the toy example is consistent with our 

overall observation of a fairly constant difference between the Pre and Post DFC estimates 

obtained after GS regression. A real example scan with slightly smaller but confined 

orthogonal nuisance fraction is shown in the second row of Figure 15 for GS regression. In 

Section 5.3 we provide additional empirical and theoretical results regarding this effect.

The correlations between the observed signals and the nuisance terms are shown with the 

blue square and red dotted lines in the fourth row of Figure 14, with values ranging from r = 

0.44 to r = 0.70. Consistent with the smaller orthogonal fraction in this example, these 

correlations are higher than those observed in the example shown in Figure 11. The range of 

correlation values used in this example is consistent with the range of RMS correlations that 

is empirically observed for scans, in which the DFC estimates and GS norm are significantly 

correlated. Specifically, as shown by the green bars in Figure 7b, the empirical correlations 

range from r = 0.25 to r = 0.89 with a mean of r = 0.59.

In concluding the Interpretation section, it is important to note that the toy examples 

considered here are designed to provide a basic level of intuition that can be helpful for 

understanding both the empirical findings in the Results section and the theoretical 

expressions which will be presented in the Theory section. While the examples shown here 

demonstrate behavior similar to that observed in the experimental data, they are by no means 

exhaustive and alternative examples might be useful to consider in future work.

5. Theory

5.1. The DFC estimate after block regression

In this section, we provide the expression for the DFC estimate after block regression. The 

detailed steps of this derivation can be found in Appendix A. Dropping the window index 

subscript k for simplicity, the correlation coefficient after block regression for a single 

window is given by:

r =
x1

Tx2
x1 x2

=
x1

Tx2 −
nI

2

n 2 x1
TPnI

x2

x1 x2 1 −
nI

2

n 2

x1
TPnI

x1

x1
2 1 −

nI
2

n 2

x2
TPnI

x2

x2
2

(1)

where x1 and x2 are the time course column vectors prior to regression, x1 and x2 are the 

time course column vectors after regression, n and nI are the nuisance term column vector 

and the in-plane component (also a column vector), respectively, and PnI denotes the 

projection matrix onto the in-plane nuisance component.
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This can rewritten as

r = λr + O (2)

where r = x1
Tx2/( x1 x2 ) is the correlation coefficient before regression and the scaling λ 

and offset O terms are defined as

λ = 1

1 −
nI

2

n 2

x1
TPnI

T x1

x1
2 1 −

nI
2

n 2

x2
TPnI

x2

x2
2

(3)

O = − λ
nI

2

n 2 x1
TPnI

x2/ x1 x2 . (4)

As the orthogonal component nO becomes arbitrarily large compared to the in-plane 

component nI, then the orthogonal fraction 
nO

2

n 2 1 and the term 
nI

2

n 2 = 1 −
nO

2

n 2 0 In 

this case, the scaling term λ → 1 and the offset term term O → 0, such that the correlation 

coefficient after regression approaches the pre-regression value r r. This corresponds to 

Case 1 in Figure 13.

On the other hand, when the orthogonal component becomes arbitrarily small and the 

orthogonal nuisance fraction 
nO

2

n 2 0, it can be shown that r approaches either −1.0 or 1.0 

(see Equation (A.23) in the Appendix). When the terminal value is −1.0, this corresponds to 

Case 5 in Figure 13. For intermediate values 0 <
nO

2

n 2 < 1 of the orthogonal nuisance 

fraction, the correlation coefficient r takes on values between –1 and r, corresponding to 

Cases 2 through 4.

5.2. A mathematical bound on the change in DFC using block regression

Here, we consider the difference ΔDFC = r − r between the correlation coefficients obtained 

before and after block regression. In Appendix B, we show that this quantity is bounded as 

follows:

|ΔDFC| ≤ 2
1 − nO

2/ n 2

1 + nO
2/ n 2 (5)
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As an example of this bound, in the second column of Figure 15 we plot ΔDFC versus the 

orthogonal nuisance fraction 
nO

2

n 2  for WM regression (first row) and GS regression (second 

row) applied separately to two representative scans. Consistent with the discussion in the 

previous sections, when the orthogonal nuisance fraction 
nO

2

n 2  is close to 1.0, the theoretical 

bound (black dashed line) approaches 0.0. Con-sequently, the post regression correlation 

coefficients for the WM signal in the first column of Figure 15 are constrained to be close to 

the pre regression coefficients.

On the other hand, as the orthogonal nuisance fraction 
nO

2

n 2  approaches zero, the theoretical 

bound relaxes and approaches ±2. This corresponds to the case where the post regression 

correlation coefficient approaches either −1.0 or 1.0. Since the pre regression correlation 

coefficient is bounded between −1.0 and 1.0, the maximum absolute difference in 

coefficients is 2, consistent with the theoretical bound on |ΔDFC|. The post regression 

correlation coefficients for the GS signal in the first column of Figure 15 have a noticeable 

negative offset when compared to the pre regression coefficients.

To demonstrate the general validity of the bound, in Figure 16, we plot ΔDFC versus the 

fraction 
nO

2

n 2  for six different nuisance regressors using the data from all scans and different 

seed pairs. For head motion (HM), the nuisance regressor was defined as the first principal 

component of the 6 motion regressors. All of the empirical DFC differences are found to lie 

within the theoretical bounds. For WM, CSF, HM, RVf, and HRf regressors, the mean of the 

orthogonal fractions ranged between 0.78 and 0.83, reflecting the fact that for most of the 

data windows there is a large orthogonal fraction and a fairly tight bound on ΔDFC such that 

mean difference between the pre and post regression values is small, ranging from −0.049 to 

−0.0065. In contrast, for the GS regressor, the mean orthogonal fraction is 0.47, and so the 

data for most of the windows lie in a range where the bounds on ΔDFC are not as tight and 

the mean difference between pre and post regression values is −0.26. The smaller orthogonal 

nuisance fraction observed for GS reflects the fact that it is derived as the mean of all the 

voxel time courses in the brain and therefore is expected to exhibit a greater similarity (and 

hence a greater in-plane component) with the seed voxel time courses, as compared to the 

other regressors.

5.3. Approximate Constant Offset observed in ΔDFC for GS regression

In both the previous section and Section 4.5, we noted that GS regression resulted in a 

relatively constant difference ΔDFC between the Pre and Post DFC values. In addition, we 

can see from the upper righthand panel in Figure 16 that the per-window ΔDFC values with 

GS regression are clustered close to the lower bound.

To further investigate this effect, we computed the mean and standard deviation of the ΔDFC 

values for each scan. We also computed the mean lower theoretical bound for each scan by 
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computing the lower bound for each window and then averaging over windows. Figure 17a 

plots the mean ΔDFC values versus the mean theoretical bounds, with the data for GS and 

non-GS regressors indicated by the circle and square markers, respectively. The line of unity 

is indicated by the dashed green line. Due to the additive property of inequality, the mean 

bound is strict so that all points must lie above this line. A linear fit to the GS data is shown 

with the magenta line (R2 = 0.79, Slope = 0.78), which is fairly close to the line of unity. 

This indicates that the mean ΔDFC values after GS regression approximately follow the 

mean theoretical bound over a large range of ΔDFC values. In contrast, the mean ΔDFC 

values shown for the non-GS regressors are relatively small, consistent with the large 

orthogonal nuisance fractions observed for these regressors in Figure 16.

In Figure 17b, we plot the negative standard deviation (NSD) of ΔDFC for each scan versus 

the average bound, where the standard deviation is negated for display purposes. Note that in 

contrast to the mean ΔDFC values, there is no requirement that these points lie above the 

line of unity (dashed green line). The slope of the linear fit for GS (Slope = 0.2, magenta 

line) is much smaller than the slope of 0.79 observed for mean ΔDFC in Figure 17a. In 

addition, the magnitudes of the SD values are significantly smaller than the magnitudes of 

the mean ΔDFC values (p < 10−6, paired t-test). Thus, the primary effect of GS regression is 

to induce a negative offset in the mean of the DFC estimates accompanied by a relatively 

smaller change in the DFC fluctuations about the mean. As a result, the Post DFC estimates 

after GS regression can be approximated to first order as a shifted version of the Pre DFC 

estimates and will therefore largely retain the correlation with the nuisance norm. An 

example of this limitation was previously shown in the GSR example in the second row in 

Figure 15.

5.4. DFC estimates after full regression

In the Results section we have shown that effects of block regression and full regression on 

the DFC estimates were very similar. Here, we present the expression for the DFC estimate 

after full regression as a modified version of the expression obtained for block regression. 

The main difference between the two approaches is that the regression fit coefficients for full 

regression are computed from the entire time series data, whereas the fit coefficients for 

block regression are computed using only the data in the window of interest. However, it 

important to note that both approaches subtract out a scaled version of the nuisance term in 

the window of interest.

As derived in Appendix C, the correlation coefficient after full regression for the kth window 

can be written as:
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T x2, k

x1, k x2, k
=

x1, k
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x1, k
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2
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T PnI, k

x2, k

x2, k
2

(6)

where the hat notation is used to refer to time courses after full regression, and γ1,k and γ2,k 

are scalar correction terms that account for the difference between full and block regression. 

When these correction terms are zero, the expressions for block and full regression are 

identical.

The correction terms γ1,k and γ2,k are empirically determined and vary with the specific 

features of the signal and nuisance time series. Thus, in contrast to the block regression, it is 

challenging to derive theoretical bounds on ΔDFC for the full regression case. However, as 

shown in Figure 18, the empirical values of ΔDFC for full regression are largely within the 

theoretical bounds obtained for block regression. This is consistent with the empirical 

similarity of the DFC estimates obtained after block and full regression.

The correction term for a time course x1 is given in Appendix C as γ1, k =
β1, F − β1, k

β1, k
, where 

β1,F is the regression fit coefficient using full regression and β1,k is the per-window fit 

coefficient. As defined, the correction term γ1,k blows up for very small β1,k values. 

However, in practice this term is actually multiplied by β1,k (see Equation (C.5)), so that it is 

sufficient to consider the difference between the fit coefficients m1,k = β1,F – β1,k. Similarly, 

for the second time series x2, we may consider the difference term m2,k. Note that as m1,k, 

m2,k, and the product term m1,km2,k go to zero, then γ1,k, γ2,k, and the product γ1,k,γ2,k all 

approach zero, and full regression and block regression become identical operations. To 

provide examples of the behavior of these differences, Supplementary Figure 8 shows that 

m1,k and m1,k as well as the product m1,km2,k are centered around zero for the GS and WM 

regressors.

6. Discussion

6.1. Summary

We have shown that sliding window correlation DFC estimates can be strongly and 

significantly correlated with the sliding window norms of various nuisance measurements. 

This relationship between the DFC estimates and the nuisance norms can exist even when 

the correlations between the underlying nuisance and seed time courses are relatively weak. 

Moreover, we found that significant correlations between the DFC estimates and nuisance 

norms can persist even after performing nuisance regression. We derived mathematical 
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expressions to describe the effects and limitations of nuisance regression on DFC estimates 

and demonstrated that the empirical results lie within the theoretically predicted bounds.

Based on our empirical and theoretical findings, we identified two main mechanisms for the 

inefficacy of nuisance regression. First, as shown in Figure 7, the DFC estimates can be 

strongly correlated with the nuisance norms even when the underlying correlation between 

the nuisance terms and the seed signals is relatively low. As a result, for most cases a large 

fraction of the nuisance term is orthogonal to the subspace spanned by the seed signals. This 

greatly reduces the efficacy of nuisance regression, such that the difference between the Pre 

and Post DFC values is relatively small and the relation between the DFC estimates and 

nuisance norms is largely unaffected. We observed this major limitation of nuisance 

regression particularly for WM, CSF, RVf, HRf, and HM regressors as demonstrated in 

Figure 16.

The second mechanism applies primarily to the GS nuisance term which has a smaller 

orthogonal nuisance fraction. The reduced orthogonal nuisance fraction reflects the fact that 

the GS is computed as the average of the BOLD time courses across the brain and will 

therefore tend to have a higher correlation with the seed time courses. As shown in Figure 

17, the mean ΔDFC values observed for GS regression closely follow the mean theoretical 

bound, which approaches −1 as the orthogonal fraction approaches zero. In contrast, the 

standard deviations of the ΔDFC values exhibit a much weaker dependence on the 

orthogonal fraction. As a result, the Post DFC estimates after GS regression can be 

approximated to first order as a shifted version of the Pre DFC estimates, as illustrated in the 

second row of Figure 15 for a representative subject. Because the Post DFC estimates 

largely retain the fluctuations in the Pre DFC estimates, they will also retain the correlation 

with the nuisance norm. Although this mechanism is most often observed for the GS 

nuisance term, it can sometimes be observed for WM and CSF nuisance terms (e.g. upper 

righthand panel in Figure 9) in which partial volume effects with gray matter can make the 

WM and CSF nuisance terms to behave more like the GS.

6.2. Nuisance effects in DFC studies

It has been previously noted that nuisance effects might account for a significant portion of 

the fluctuations in DFC estimates (Preti et al., 2017; Hutchison et al., 2013). The effects may 

be especially pronounced for sliding window DFC estimates since transient nuisance effects 

can greatly alter the correlation estimates within a short temporal window (Hutchison et al., 

2013). Chang and Glover (2010) looked at the inter-subject correlation between measures of 

motion and DFC variability, but did not find a significant relation. They also found that 

intra-subject correlations between sequences of motion- based and DFCs-based deviations 

were not significant. However, they did not consider the intra-subject correlation between 

DFC estimates and motion nuisance norms, as was done in this study.

Nikolaou et al. (2016) found that dynamic fluctuations in network degree were significantly 

correlated with the spectral power of end-tidal CO2 and heart rate measurements. Since the 

network degree calculated in that study was based on the summation of DFC magnitudes, 

these findings are roughly consistent with our observation of a significant correlation 

between the DFC estimates and the norms of the RVf and HRf regressors.
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Laumann et al. (2017) used multivariate kurtosis to assess deviations from constant 

covariance and found that the removal of high-motion frames reduced the observed kurtosis. 

They concluded that a significant portion of the resting state functional connectivity 

dynamics could be attributable to subject motion.

Glomb et al. (2017) reported that measures of instantaneous BOLD variance (averaged over 

the entire brain) were significantly correlated with instantaneous average correlation (over 

all pairwise correlations). These results are consistent with our findings of significant 

correlations between DFC estimates and the GS norm. A distinction is that the GS norm is 

the magnitude of an average signal whereas the instantaneous BOLD variance was 

calculated as the average across variances from different regions. However, prior work has 

shown that these two measures are highly related (He and Liu, 2012; Wong et al., 2012).

A key finding of this paper is that DFC estimates can be significantly correlated with the 

nuisance norms even when the underlying nuisance time courses are largely orthogonal to 

the observed seed time courses. As discussed in the Interpretation section, one plausible 

scenario that can give rise to this effect is the presence of an additive nuisance term 

consisting of time-varying in-plane and orthogonal terms, where the magnitudes of the two 

terms are roughly in sync and the magnitude of the orthogonal term is much larger than that 

of the in-plane term. Under this scenario, the time-varying in-plane component can cause 

DFC fluctuations in the observed vectors (since it affects the inner-angle between the 

observed vectors) even when the correlation of the putative underlying signal vectors (which 

are not observed) remains constant. Because of the assumed relation between the in-plane 

and orthogonal terms, the resulting DFC fluctuations are correlated with the overall nuisance 

norm. In addition, because the in-plane term is much smaller than the orthogonal term, the 

overall nuisance term exhibits a weak correlation with the observed vectors. It is important 

to note that while this plausible scenario provides some insight into the empirical 

observations and helps to motivate the theoretical findings, it is by no means intended to 

serve as a “model” of the data. The modeling of nuisance effects in fMRI is still an area of 

active investigation (Liu, 2016; Murphy et al., 2013) and future work will be needed to more 

fully characterize the impact of nuisance terms on DFC estimates. Such efforts are likely to 

require a consideration of the non-linear and non-stationary aspects of the underlying signals 

(Sugihara et al., 2012; Hutchison et al., 2013).

6.3. Efficacy of Nuisance regression in DFC studies

Although nuisance regression is widely performed in DFC studies (Hutchison et al., 2013; 

Preti et al., 2017), its effects on DFC estimates have received relatively little attention. 

Nikolaou et al. (2016) reported that regression reduced but did not eliminate the correlation 

between dynamic measures of network degree and measures of heart rate and respiratory 

spectral power. These findings are aligned with our results showing that regression has a 

limited effect on the correlation between DFC estimates and HRf and RVf nuisance norms.

In recent work, Xu et al. (2018) found that global signal regression (GSR) had a maximal 

impact on DFC estimates in temporal windows where the GS mean absolute magnitude was 

large and a lesser impact in windows where the magnitude was small. They interpreted their 

findings using the framework introduced in (Nalci et al., 2017b), where it was shown that 

Nalci et al. Page 23

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GSR can be approximated as a temporal down-weighting process. The authors noted that the 

main effect of GSR was a spatially heterogenous negative shift in the sliding window 

correlation values, an observation consistent with the predominantly negative ΔDFC values 

found in this study (see the upper righthand panel in Figure 16). However, in contrast to our 

study, the authors did not consider the relationship between the DFC estimates and the GS 

norm.

There is related work for static FC studies regarding the inefficacy of nuisance regression 

(Power et al., 2017; Chang et al., 2009; Power et al., 2012, 2014). For instance, Power et al. 

(2017) observed that frame-wise displacement (FD), a summary measure for head motion, 

remained highly related with resting-state fMRI time courses even after HM regression. As 

we have discussed in detail, the efficacy of nuisance regression increases as the orthogonal 

nuisance fraction decreases. Due to the inverse relationship between the orthogonal fraction 

and the percent variance explained (see Figure 12), this means that the efficacy of regression 

will decrease as the amount of variance that can be explained by the nuisance regressors 

decreases. Chang et al. (2009) found that RVf and HRf regressors together explained only 

15.8% of the average total variance in voxels which showed a significant correlation 

between the BOLD time series and nuisance regressors, and the RVf regressor explained 

only 11.7% of the average total variance when used on its own. This is roughly in-line with 

the results shown in Figure 7 where the percent variance values observed for non-GS 

regressors were largely below 20%, with 54% of the strong correlations between the DFC 

estimates and non-GS nuisance norms occurring when the percent variance was less than 

6.25%.

6.4. Other Approaches

In this work, we used the sliding window correlation approach, which is widely used in DFC 

studies (Preti et al., 2017; Hutchison et al., 2013; Calhoun et al., 2014) both as a primary 

analysis approach and as an intermediate analysis step (e.g. used to generate DFC estimates 

that are then further analyzed with k-means clustering or principal components analysis). 

Other approaches include time-frequency methods such as wavelet transform coherence 

(Chang and Glover, 2010; Yaesoubi et al., 2015) and probabilistic methods such as hidden 

Markov modeling (Vidaurre et al., 2017). Regardless of the approach, nuisance regression is 

a standard preprocessing step using nuisance regressors based on either independent 

measures (e.g. physiological measurements) or data-driven measures (e.g. GS, WM+CSF, or 

independent component analysis (ICA) components). Our findings regarding the limited 

efficacy of nuisance regression for sliding-window DFC estimates suggest that caution must 

also be exercised when interpreting DFC estimates obtained with other approaches. 

Nevertheless, future work to assess the impact of nuisance terms and the efficacy of nuisance 

regression when applied to additional DFC approaches would be of great interest.

In this study, we have examined the use of both physiological (respiratory and cardiac) and 

data- driven (motion, GS, and WM+CSF) nuisance regressors, which are all widely used in 

the field (Ciric et al., 2017). There has also been growing interest in the use of ICA-based 

approaches for denoising of fMRI data. Recent work has pointed out that both traditional 

nuisance regressor (excluding GS) and ICA-based approaches are limited in their ability to 
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eliminate spatially widespread effects and suggest the continued need for some type of 

global signal regression (Ciric et al., 2017; Power et al., 2017; Burgess et al., 2016; Power et 

al., 2018). In the case of ICA-based approaches, the limitations most likely reflect the spatial 

independence criteria that is inherent to the ICA algorithm. Given this limitation it is 

unlikely that ICA-based approaches alone can eliminate the relation between DFC estimates 

and nuisance norms. Nevertheless, the development and comparison of nuisance regressor 

and ICA-based approaches continues to be an active area of research, and future work to 

assess the efficacy of ICA-based approaches with regards to the relation between DFC 

estimates and nuisance norms would be of great interest. In addition, as methods for the 

removal of nuisance terms continue to evolve, it will be useful to evaluate whether these 

future approaches can better attenuate the relation between DFC estimates and nuisance 

norms.

For our examination of the relation between DFC estimates and nuisance norms, we used a 

seed-based approach in which the average time series from four different seed regions were 

used. The utilization of the seed based approach with two independent datasets serves as a 

solid approach for an initial and detailed characterization of the relation between DFC 

estimates and nuisance norms and the limited efficacy of nuisance regression. An extension 

of the current work to further characterize these effects using other brain regions and 

networks would be of interest. This could entail the use of cortical parcellations or ICA-

based network components as described in (Preti et al., 2017; Hutchison et al., 2013; 

Calhoun et al., 2014; Laumann et al., 2017). The fact that the various potential approaches 

all utilize some type of spatial weighting to derive region-based or network-based time 

courses suggests that they may yield similar results with regards to DFC estimates and 

nuisance norms. Nonetheless, further work in this area would be useful to determine if there 

are any substantial differences.

6.5. Nuisance Norm Regression

Given the inefficacy of nuisance regression in reducing the correlations between the DFC 

estimates and the nuisance norms, it is reasonable to consider alternative approaches. A 

potential solution is to compute the sliding window norm for each regressor and then project 

these out from the DFC estimates using linear regression. This procedure is described in 

Appendix D and referred to as nuisance norm regression (NNR). This approach differs from 

traditional nuisance regression techniques which regress out nuisance measures directly 

from the fMRI time courses. Instead, NNR acts on the correlation coefficients. Further work 

is needed to characterize the potential advantages and disadvantages of this approach.

6.6. Vigilance Effects

There is a growing appreciation that variations in vigilance may account for a considerable 

portion of the dynamic fluctuations in resting-state fMRI data (Chang et al., 2016; Falahpour 

et al., 2018; Haimovici et al., 2017). In addition, the state of vigilance can have an effect on 

physiological measures, such as the recently reported dependence of pulse oximetry 

amplitudes on the level of wakefulness (Chang et al., 2018). Our preliminary analysis in 

Section 3.1 did not reveal an effect of the state of the eyes (open or closed) on the 

correlations between the DFC estimates and nuisance norms. Nevertheless, future work to 
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assess how the relation between DFC estimates and nuisance norms might depend on the 

state of vigilance would be of great interest.

6.7. Implications for static FC estimates

In this paper, we have considered the relation between nuisance norms and FC estimates 

obtained across different temporal windows. In DFC studies, the temporal windows under 

consideration are typically on the order of 40 to 100 second windows. However, the 

framework for interpreting the observed effects is applicable to arbitrary window lengths. It 

is therefore of interest to consider whether similar effects are observed for static FC 

estimates where the window length is equal to the scan duration. In this case both the static 

FC estimates and nuisance norms are computed over the full duration of each scan and we 

look to see whether static FC estimates and nuisance norms are related across scans.

In Supplementary Figures 9 and 10, we present a preliminary analysis showing the existence 

of significant correlations (both before and after nuisance regressions) between static FC 

estimates and nuisance norms across the 68 scans in the BS002 dataset. These preliminary 

findings are roughly consistent with recent work looking at the correlation between static FC 

measures and motion-related metrics (Ciric et al., 2017; Siegel et al., 2017; Power et al., 

2015). In the preliminary example, the relation between static FC estimates and nuisance 

norms is examined using different combinations of regressors, as detailed in the figure 

captions. Similar to the prior work, the inclusion of additional regressors led to a greater 

reduction (with nuisance regression) in the observed correlations, as compared to the use of 

only motion regressors.

This preliminary work suggests that the framework we have presented may be useful for 

providing deeper insights into the effects of nuisance terms and regression in static FC 

studies. Further work that considers the proposed framework within the context of the 

growing body of related studies on the effects of nuisance terms in static FC studies would 

be of interest.

6.8. Conclusion

We have provided a detailed examination of nuisance effects and regression in DFC 

measures. Our findings both confirm and significantly extend the limited prior work in this 

area. In particular, we have shown that DFC estimates can be strongly correlated with 

nuisance norms even when there is only a weak correlation between the nuisance and seed 

signals. We have demonstrated that although nuisance regression can sometimes reduce the 

correlation between DFC measures and nuisance norms (e.g. when the GS is used as 

regressor), significant correlations can persist after regression with either GS or non-GS 

regressors. Furthermore, we provided a mathematical framework to describe the effects of 

nuisance regression and showed that the experimental findings are in agreement with the 

theoretical predictions. The current mathematical framework considers a single nuisance 

regressor and provides valuable insights into the experimental findings. It can be used to 

approximate the multiple regressor case by taking the first principal component of the 

regressors, as was done for the HM regressors in Figure 16. While our preliminary efforts 
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indicate that an extension of the framework to readily handle multiple regressors is not 

straightforward, future work in this area would be of interest.

It is important to note that there is an ongoing discussion in the literature regarding whether 

DFC estimates are largely due to sampling variability versus true changes in FC (e.g. 

fluctuations in wake-fulness) (Pannunzi et al., 2017; Tagliazucchi and Laufs, 2014; 

Laumann et al., 2017; Haimovici et al., 2017; Liégeois et al., 2017). The present work does 

not make any claims as to whether DFC estimates reflect dynamics changes in brain 

functional connectivity as opposed to sampling variability or other artifactual factors. 

Instead, the focus is on presenting an empirical finding of a relation between DFC estimates 

and nuisance norms. This represents an additional factor that should be considered in the 

interpretation of DFC estimates.

This work highlights a potential confound in the interpretation of DFC studies, which 

typically make the implicit assumption that nuisance effects are largely minimized in the 

pre-processing stage. Our findings suggest that the interpretation of DFC measures should 

be expanded to consider potential correlations with the nuisance norms. If these correlations 

are not adequately considered, differences in DFC estimates (e.g. between groups or 

treatment conditions) may be incorrectly interpreted as reflecting meaningful effects when in 

fact they may be largely attributable to differences in nuisance activity. Because nuisance 

effects such as subject motion, respiration, and cardiac activity originate in brain networks 

that control these functions (Liu, 2016; Iacovella and Hasson, 2011), it will be important to 

distinguish between spatially widespread effects that may be largely considered as 

measurement confounds and more localized effects that may be viewed as meaningful 

reflections of links between DFC measures and physiological activity. Future DFC studies 

would benefit from the development of analysis methods that more effectively take into 

account the origins of the nuisance effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Block regression on windowed time series

In this Appendix section we derive expressions that make explicit the dependence of the 

correlation coefficient after block nuisance regression on the orthogonal and in-plane 

components of the nuisance term. We then use these expressions in Appendix B to derive 

bounds on the difference between the pre and post regression DFC estimates.

To link our derivations with the geometric concepts presented in Section 4, we represent the 

time courses as column vectors and use projection matrices to represent the process of 

regression. We note that alternate derivations are certainly possible. For example, it is 

possible to start with the Yule expression for partial correlation (Yule, 1897) to derive 
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equation A.11. However, such an approach would not be as straightforward since the Yule 

expression does not explicitly model the dependence on the orthogonal and in-plane 

components of the nuisance term.

We begin by presenting the notation for the time series, where each time course is 

represented as a column vector. For the kth window, let x1,k and x2,k be a pair of windowed 

fMRI time series, with x1, k and x2, k corresponding to the time courses after block regression 

using nk as the nuisance regressor. Since each window is treated independently in block 

regression, we can simplify the derivations by dropping the window index k for now. We 

also assume without loss of generality that the time series have zero mean.

For x1 we can write the time course after regression as:

x1 = x1 − n nTn −1nTx1 = x1 − Pnx1, (A.1)

where Pn = n(nTn)−1nT is the projection matrix onto n, and a similar expression holds for x2. 

For the derivations that follow, we decompose the nuisance regressor into in-plane and 

orthogonal components such that n = nI + nO where nI is the component of n that lies in the 

subspace spanned by x1 and x2, and nO is the orthogonal complement.

The squared norm for the time series after regression is:

x1
Tx1 = x1 − Pnx1

T x1 − Pnx1 (A.2)

= x1
Tx1 − x1

TPnx1 (A.3)

= x1
Tx1 −

x1
T nI + nO nI + nO

Tx1
n 2 (A.4)

= x1
Tx1 −

x1
TnInI

Tx1
n 2 (A.5)

= x1
Tx1 −

nI
2

n 2 x1
TPnI

x1, (A.6)
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where n
2

= nI
TnI + nO

T nO, PnI
= nI nI

TnI
−1

nI
T, and we have made use of the relation nO

T x1 = 0

and the symmetry of the projection matrices. The corresponding norm can then be written 

as:

x1 = x1
Tx1 −

nI
2

n 2 x1
TPnI

x1 (A.7)

= x1 1 −
nI

2

n 2

x1
TPnI

x1

x1
2 . (A.8)

A similar derivation holds for x2 .

To compute the correlation coefficient after regression, we start with the dot product 

between x1 and x2 and use the orthogonal decomposition to write:

x1
Tx2 = x1 − Pnx1

T x2 − Pnx2 (A.9)

= x1
Tx2 −

nI
2

n 2 x1
TPnI

x2, (A.10)

where the omitted steps in the derivation are similar to those shown above for the derivation 

of the norm. Normalizing the dot product by the appropriate norms yields the correlation 

coefficient after regression as:

r =
x1

Tx2
x1 x2

=
x1

Tx2 −
nI

2

n 2 x1
TPnI

x2

x1 x2 1 −
nI

2

n 2

x1
TPnI

x1

x1
2 1 −

nI
2

n 2

x2
TPnI

x2

x2
2

. (A.11)

This can be rewritten in the following form:

r = λr + O, (A.12)
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where r =
x1
Tx2

x1 x2
 is the correlation coefficient prior to regression, and the scaling λ and 

offset O terms are defined as:

λ = 1

1 −
nI

2

n 2

x1
TPnI

x1

x1
2 1 −

nI
2

n 2

x2
TPnI

x2

x2
2

(A.13)

O =
−λ

nI
2

n 2 x1
TPnI

x2

x1 x2
. (A.14)

Note that if the orthogonal nuisance component nO is large compared to the in-plane 

component nI, the ratio 
nI

2

n 2 = 1 −
nO

2

nI
2 + nO

2  approaches 0, such that the scaling term λ 

approaches 1, and the offset term O goes to 0. As a result, the correlation coefficients before 

and after regression will be approximately equal r ≈ r.

To gain further insight, it is useful to rewrite Equation (A.11) using trigonometric functions. 

First, note that the correlation coefficient prior to regression can be also written as r = cos θ, 

where θ is the angle between x1. and x2. Then without loss of generality, we can write θ = 

θ1 + θ2 where θ1 is the angle between nI and x1 and θ2 is the angle between nI and x2, 

where both θ1 and θ2 are assumed to be non-negative. This corresponds to the case where 

the in-plane term nI “lies” between the vectors x1 and x2. Note it also possible for the in-

plane term to lie outside of the vectors, such that θ = ±(θ1 – θ2). We refer to this second case 

as the complementary case.

With the stated assumptions, we rewrite the post regression DFC in Equation (A.11) as:

r =
x1

Tx2
x1 x2

=

x1
Tx2

x1 x2
−

nI
2

n 2

x1
TPnI

x2

x1 x2

1 −
nI

2

n 2

x1
TPnI

x1

x1
2 1 −

nI
2

n 2

x2
TPnI

x2

x2
2

(A.15)
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=
cosθ −

nI
2

n 2 cosθ1cosθ2

1 −
nI

2

n 2 cos2θ1 1 −
nI

2

n 2 cos2θ2

(A.16)

=
cosθ −

nI
2

n 2 (cosθ1 ± sinθ1sinθ2)

1 −
nI

2

n 2 cos2θ1 1 −
nI

2

n 2 cos2θ2

(A.17)

=
1 −

nI
2

n 2 cosθ ∓
nI

2

n 2 sinθ1sinθ2

1 −
nI

2

n 2 cos2θ1 1 −
nI

2

n 2 cos2θ2

, (A.18)

where we have used the identities:

x1
TPnI

x2 =
x1

TnInI
Tx2

nI
2 = x1 x2 cosθ1cosθ2, (A.19)

x1
TPnI

x1 = x1
2cos2θ1, (A.20)

x2
TPnI

x2 = x2
2cos2θ2 . (A.21)

Also note that in Equation (A.17) we have used the trigonometric identity cos θ1 cos θ2 = 

cos θ ± sin θ1 sin θ2. If θ = θ1 + θ2, the sign of ∓ in Equation (A.18) is a minus (–), and in 

the complementary case for θ = ±(θ1 – θ2) (i.e. when nI lies outside of x1 and x2) the sign is 

a +.

Finally, by making the substitution 
nI

2

n 2 = 1 −
nO

2

n 2 , the correlation coefficient after 

regression is:
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r =

nO
2

n 2 cosθ ∓ 1 −
nO

2

n 2 sinθ1sinθ2

sin2θ1 +
nO

2

n 2 cos2θ1 sin2θ2 +
nO

2

n 2 cos2θ2

. (A.22)

If the orthogonal component becomes small and the orthogonal fraction 
nO

2

n 2 0, then r

reduces to:

r = ±
sinθ1sinθ2
sinθ1 sinθ2

= ± 1, (A.23)

where the minus sign applies to the case where the nuisance vector lies between the 

observed vectors and the plus sign applies to the complementary case where the nuisance 

vector lies outside the vectors. In terms of the underlying fMRI data, when the orthogonal 

component is zero, the nuisance term completely lies within the hyperplane spanned by the 

two voxel time series (e.g. Case 5 in Figure 13, which corresponds to the conditions that 

give rise to a minus sign). As a result, when the nuisance term is projected out, the resulting 

time series are forced to be completely anti-correlated, as represented by the post regression 

vectors pointing in opposite directions in Case 5.

Appendix B. Derivation of limits on difference in DFC estimates

Here we derive the analytical bound on the difference ΔDFC = r − r, between the pre and 

post regression DFC estimates. First, we provide derivations for the case when θ = θ1 + θ2 

(we will consider the complementary case θ = ±(θ1 – θ2) later). In this case, the ΔDFC is:

ΔDFC =

nO
2

n 2 cos θ1 + θ2 − 1 −
nO

2

n 2 sinθ1sinθ2

sin2θ1 +
nO

2

n 2 cos2θ1 sin2θ2 +
nO

2

n 2 cos2θ2

= − cos θ1 + θ2 . (B.1)

Note that since n- lies between the observed vectors x1 and x2, nuisance regression will 

increase the angle (and decrease the correlation value) between the vectors x1 and x2, and we 

will have r < r. As a result, we are looking for a lower bound on ΔDFC as a function of 

nO
2

n 2 .

It can be shown empirically that the expression for ΔDFC is minimized when θ1 = θ2. Using 

this, we simplify the original expression for ΔDFC in Equation B.1 as:
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ΔDFC =

nO
2

n 2 cos2θ1 − 1 −
nO

2

n 2 sin2θ1

sin2θ1 +
nO

2

n 2 cos2θ1

− cos2θ1 (B.2)

=
−sin2θ1 −

nO
2

n 2 cos2θ1 +
nO

2

n 2 cos2θ1 +
nO

2

n 2 − 1 sin2θ1

sin2θ1 +
nO

2

n 2 cos2θ1

(B.3)

=

nO
2

n 2 sin2θ1 − sin2θ1 cos2θ1 +
nO

2

n 2 − 1 sin2θ1

sin2θ1 +
nO

2

n 2 cos2θ1

(B.4)

=

nO
2

n 2 − 1 sin2θ1 2cos2θ1 − 1 +
nO

2

n 2 − 1 sin2θ1

sin2θ1 +
nO

2

n 2 cos2θ1

(B.5)

=

nO
2

n 2 − 1 sin22θ1

1 − cos2θ1 +
nO

2

n 2 1 + cos2θ1

(B.6)

=

nO
2

n 2 − 1 sin22θ1

1 +
nO

2

n 2 +
nO

2

n 2 − 1 cos2θ1

, (B.7)
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where in the numerator of Equation (B.6), we used the trigonometric identity: 2 sin2 θ1 cos2 

θ1 = sin2 2θ1/2, and in the denominator of the same equation, we used: sin2 θ1 = (1 - 

cos2θ1)/2 and cos2 θ1 = (1 + cos2θ1)/2. We then take the partial derivative with respect to θ1 

as:

∂
∂θ1

[ΔDFC] = ∂
∂θ1

nO
2

n 2 − 1 sin22θ1

1 +
nO

2

n 2 +
nO

2

n 2 − 1 cos2θ1

(B.8)

= 2sin2θ1 1 − 4

nO
2

n 2

1 +
nO

2

n 2 +
nO

2

n 2 − 1 cos2θ1

2 . (B.9)

Now solving for the non-trivial roots of the derivative yields θ1* = ± tan−1 nO
n . Finally, by 

using this value in the ΔDFC expression we find the lower bound as:

ΔDFCLB = − 4
1 + nO / n

− 2 = − 2
n − nO
n + nO

. (B.10)

For the complementary case: θ = ±(θ1 – θ2), in which nI is positioned outside of x1 and x2, 

linear regression will decrease the angle between the vectors x1 and x2 and the correlation 

value after regression will increase yielding ΔDFC ≥ 0. Therefore, we are seeking an upper 

bound. It can be shown empirically that the expression for ΔDFC is maximized when θ1 + 

θ2 = π. Following a derivation similar to the one used for the lower bound, the upper bound 

is obtained as:

ΔDFCUB = + 2
n − nO
n + nO

. (B.11)

Appendix C. Derivation of DFC estimate after full regression

In this section, we show that the correlation coefficients obtained after full regression can be 

expressed as a modified version of the correlation coefficients obtained with block 

regression. First, we note that for the kth window the residual after block regression can be 

written as:
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x1, k = x1, k − Pnk
x1, k (C.1)

= x1, k − β1, knk, (C.2)

where Pnk
= nk nk

Tnk
−1

nk is the projection matrix onto the windowed nuisance time series 

nk, and β1, k = nk
Tnk

−1
nk

Tx1, k is the corresponding scalar fit coefficient computed for the 

windowed time series x1,k.

For full regression the residual can be written as:

x1, k = x1, k − β1, Fnk, (C.3)

where β1, F = nTn
−1

nTx1 is the scalar fit coefficient computed using the entire time series 

x1 and the full nuisance time series n.

Noting that the expressions in Equation (C.2) and Equation (C.3) differ only in the scalar fit 

coefficients β1,F and β1,k, we can rewrite Equation (C.3) as:

x1, k = x1, k − β1, k + m1, k nk (C.4)

= x1, k − 1 +
m1, k
β1, k

β1, knk (C.5)

= x1, k − 1 + γ1, k Pnk
x1, k, (C.6)

where m1,k = β1,F – β1,k is the difference in fit coefficients and γ1, k =
m1, k
β1, k

 is a correction 

term that captures the difference between full and block regression. Note that if γ1,k = 0 then 

full regression and block regression have identical effects for the kth window. The 

expression for x2, k has the same form as Equation (C.6).

To compute the correlation coefficient between x1, k and x2, k, we first note that the dot 

product can be written as:
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x1, k
T x2, k = x1, k − 1 + γ1, k Pnk

x1, k
T

x2, k − 1 + γ2, k Pnk
x2, k (C.7)

= x1, k
T x2, k − 1 − γ1, kγ2, k x1, k

T Pnk
x2, k (C.8)

= x1, k
T x2, k − 1 − γ1, kγ2, k

nI, k
2

nk
2 x1, k

T PnI, k
x2, k, (C.9)

which is similar in form to the dot product expression previously derived in Equation (A.10) 

for block regression with the addition of a correction term [1 – γ1,k γ2,k] and the window 

index k. The norms x1, k  and x1, k  can be derived using similar modifications.

Incorporating all the correction terms, we can write the correlation coefficient after full 

regression as:

x1, k
T x2, k

x1, k x2, k
=

x1, k
T x2, k − 1 − γ1, kγ2, k

nI, k
2

nk
2 x1, k

T PnI, k
x2, k

x1, k x2, k 1 − 1 − γ1, k
2 nI, k

2

nk
2

x1, k
T PnI, k

x1, k

x1, k
2 1 − 1 − γ2, k

2 nI, k
2

nk
2

x2, k
T PnI, k

x2, k

x2, k
2

(C.10)

Note that if γ1,k = γ2,k = 0 and we drop the window index k, then this expression is identical 

to the expression for block regression previously shown in Equation (A.11).

Appendix D. Nuisance Norm Regression (NNR)

Nuisance norm regression aims to remove the nuisance norm-related variance from the DFC 

estimates. In this technique, nuisance removal can be performed in the relevant DFC metric 

space in addition to traditional nuisance removal on raw time series. For sliding window 

correlations obtained between pairs of ROIs, we define a sliding window correlation vector 

R = [r1, r2, · · ·, rk, · · ·, rM]T, where k is the window index, M is the total number of 

windows, and rk is the pairwise correlation value for the kth window. Similarly, we define a 

nuisance norm vector (or matrix for multiple nuisance terms) N = [|n1|, |n2|, · · ·, |nk|, · · ·, |

nM|]T, where |nk| is the norm of the nuisance regressor for the kth window. Then the effects 

of a nuisance norm can be removed through linear regression to obtain a “clean” DFC 
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estimate R = R − N NTN
−1

NTR. In the case of multiple nuisance terms, the nuisance norm 

matrix can be expanded to include additional norm vectors. For example, let NWM, NCSF, 

NRV f, NHRf, and NHM be the sliding window norm vectors for the WM, CSF, RVf, HRf, and 

HM (total norm) regressors, respectively. Then the corresponding nuisance norm matrix is N 
= [NWM, NCSF, NRVf, NHRf, NHM]. Potential variations include expansion of the nuisance 

norm matrix to include additional terms, such as the squared norms or temporal derivatives 

of the sliding window norms.
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Figure 1: 
9 example scans that demonstrate strong and significant (p < 0.02) correlations between the 

nuisance norms and DFC estimates. The type of nuisance regressor is indicated by the row 

label. The seed pair for the DFC estimate is indicated by the column label. The solid blue 

line in each panel shows the DFC estimate prior to nuisance regression (labeled as Pre DFC 

on the legend) and the solid black line shows the corresponding nuisance norm. Correlation 

values between the DFC estimates and nuisance norms are indicated in the legend labels. 

The correlations between the nuisance norms and the Pre DFC estimates varied from r = 
0.68 to r = 0.94 with a mean value of r = 0.79. The DFC estimates after performing full 

linear regression are shown with solid red lines (labeled as Post DFC on the legend). The 

correlations between the nuisance norms and the Post DFC estimates ranged from r = 0.63 to 

r = 0.82 with a mean value of r = 0.74. See Figure 3 and Supplementary Figure 1 for 

examples of weak and moderate correlations.
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Figure 2: 
6 example scans showing that the DFC estimates are significantly (p < 0.03) correlated with 

the norms of physiological nuisance terms. Row labels indicate the type of physiological 

nuisance term considered and column labels indicate the seed pair. Correlation values 

between the DFC estimates and nuisance norms are indicated in the legend labels. The 

correlations between the Pre DFC estimates and the nuisance norms ranged from r = 0.56 to 

r = 0.85 with a mean correlation of r = 0.71. The DFC estimates obtained after performing 

RVHRCOR (Post DFC) are similar to the Pre DFC estimates. The correlations between the 

Post DFC and the nuisance norms ranged from r = 0.54 to r = 0.84 with a mean correlation 

of r = 0.71. See Figure 3 and Supplementary Figure 1 for examples of weak and moderate 

correlations.
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Figure 3: 
15 example scans that demonstrate weaker correlation values (r < 0.30) between the 

nuisance norms (black) and the Pre DFC estimates (blue). The type of nuisance regressor is 

indicated by the row label. The seed pair for the DFC estimate is indicated by the column 

label. Even though the observed correlations are weaker in this Figure, there is some visual 

similarity between the nuisance norms and DFC estimates. Post DFC estimates with full 

(red) and block (green) regression are also shown.
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Figure 4: 
(a) Histogram of correlation values obtained between the Pre DFC estimates and the 

nuisance norm across all scans, seed pairs, and nuisance norms. Distribution of the 

correlation values ranged from r = –0.83 to r = 0.96. (b) After regression, the correlation 

values ranged from a minimum of r = –0.88 to a maximum of r = 0.86 for full regression, 

and from a minimum of r = −0.89 to a maximum of r = 0.87 for block regression. (c) 

Histogram of absolute correlation values between the nuisance norm and Pre DFC estimates 

with a sample mean of |r| = 0.37. (d) Absolute correlation values after full and block 

regression with sample means of |r| = 0.31 for full and |r| = 0.30 for block regression.
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Figure 5: 
3 scans showing examples of strong anti-correlations between the nuisance norms (black) 

and the DFC estimates both before (blue) and after full (red) and block (green) regression. 

The type of nuisance regressor and the seed region pair are indicated in the column labels. 

The correlation values between the DFC estimates and the nuisance norms are indicated in 

the legend labels.
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Figure 6: 
(a) Empirical null distributions for mean absolute correlation values when considering all 

regressors both before regression (blue) and after full regression (red) or block regression 

(green). The sample mean absolute correlation values for these conditions are shown by the 

circles, squares, and triangles, and are equal to the values previously reported in 4c-d. The 

sample mean absolute correlation values were found to be significant (p < 10−6) both before 

and after full or block regression. (b) Empirical null distributions and sample mean absolute 

correlation values when considering only the GS regressor. There was a marked reduction in 

the sample mean absolute correlation values after regression. However, the sample mean 

absolute correlation values were still found to be significant (p < 10−6) both before and after 

nuisance regression. (c) Empirical null distributions and sample mean absolute correlation 

values for the Non-GS regressors. Sample mean absolute correlation values were found to be 

significant (p < 10−6) both before and after nuisance regression.
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Figure 7: 
(a) Correlation between the DFC estimate and nuisance norm versus the RMS correlation 

between the raw nuisance signal and the two seed time courses. Correlation thresholds are 

indicated by the black dashed lines such that points that lie above and below these lines 

correspond to cases in which the DFC estimates are considered to be ‘strongly correlated’ (|

r| > 0.5 with empirical p ≤ 0.09) with the nuisance norms such that nuisance norms explain 

more than 25% of the total variance in the DFC estimates. The relative density of 

correlations (maximum density is normalized to 1.0) is indicated by the color map on the 

right-hand side. The relative density is computed by summing the total number of data 

points in smaller sub-grids and normalizing by the total number of points. (b) The blue bars 

show the percentage (%) of cases in which the nuisance norms explain more than 25% of the 

total variance in the DFC estimates as a function of the RMS correlation between the raw 

nuisance and the two seed time courses. The red dotted line (dots are located at bin centers) 

shows the cumulative sum of the percentage of strong correlations as a function of the RMS 

correlations. The green bars show the percentage (%) of strong correlations that are 

accounted for by the GS regressor.
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Figure 8: 
(a) The correlations between the Post DFC estimates and the nuisance norms (y-axis) versus 

the correlations between the Pre DFC estimates and the nuisance norms (x-axis). Post DFC 

estimates were still largely correlated with the nuisance norms and there was a strong linear 

relationship when compared to the correlations between the Pre DFC and nuisance norms 

(linear fit shown with black solid line, R2 = 0.59, r = 0.77, p < 10−6). The relative density of 

correlations (normalized to 1.0) is indicated by the color map on the right hand side. (b) The 

correlations between the DFC estimates and the nuisance norms after block regression (y-

axis) and after full regression (x-axis). There was a strong linear relationship between the 

correlation populations (fit shown with black solid line, R2 = 0.86, r = 0.93, p < 10−6). The 

correlation distributions for full and block regression were not significantly different (paired 

two-tailed t-test p = 0.86). The effect size (d = 0.0017) and the absolute difference in 

correlation population means (0.0006) were negligibly small.
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Figure 9: 
Same 9 representative scans from Figure 1 with the DFC estimates after block regression 

(solid green line) superimposed. The block regression DFC estimates were significantly 

correlated (p < 0.03) with the respective nuisance norms with a mean correlation value of r = 
0.70.
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Figure 10: 
The relationship between the DFC estimates and the nuisance norms under an additive 

nuisance model. We present two cases indicated as the (a) aligned case and the (b) anti-

aligned case. In the first row in (a), we simulate a set of fixed underlying vectors y1 and y2 

across 5 windows (green arrows). The nuisance vectors nk have different norms in each 

window (red arrows). The observed time courses x1,k and x2,k in the second row (shown 

with blue arrows) are the sum of the corresponding underlying vectors y1 and y2 and the 

nuisance vector nk. In the last row in (a), the simulated DFC estimates (cost θk, solid blue 

line) follows the norm of the nuisance term (|nk|, solid red line). The aligned case shows that 

an increase in the norm of a nuisance vector that points in the direction of the underlying 

signals decreases the inner angle between the observed time courses and increases the value 

of DFC estimates. The anti-aligned case in (b) shows that an increase in the norm of a 

nuisance vector, that points in a direction opposite to that of the underlying signals, can 

decrease the DFC estimate and lead to anti-correlation between the nuisance norm and the 

DFC estimate.
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Figure 11: 
Linear regression can fail to eliminate the relationship between the nuisance norm and the 

DFC estimates due to a large degree of orthogonality between the nuisance measurement 

and fMRI time courses. The observed signals (blue vectors) were obtained using nuisance 

terms (red vectors) for which the in-plane nuisance components are the same as those 

previously used in Figure 10a. The Pre DFC estimate (blue line) is highly correlated r = 
0.98) with the nuisance norm (red line). The nuisance term also has a large orthogonal 

nuisance fraction (indicated by the black dots in the fourth row) with a mean value of 0.94. 

Therefore, linear regression has a minimal effect and Post DFC estimates (green line) are 

also highly correlated (r = 0.98) with the nuisance norm. The correlations between the 

nuisance term and the observed vectors (red and blue lines in bottom row) are relatively 

weak. Note that for display purposes, the orthogonal axes (vertical) in the top 2 rows are 

compressed (×0.7) with respect to the in-plane axes.
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Figure 12: 
The scan-averaged orthogonal nuisance fraction |nO|2/|n|2 versus the percent variance 

explained by the raw nuisance regressors (squared RMS correlation values from Figure 7). 

As shown by the black least squares line, the orthogonal fraction decreases in a linear 

fashion (R2 = 0.79) with increasing percent variance. The relative density of values 

(maximum density is normalized to 1.0) is indicated by the color map on the right-hand side.
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Figure 13: 
The effect of linear regression on cosine of angle between two vectors. We illustrate 5 cases 

for the same observed fMRI time courses with a fixed correlation value (r = 0.78; as shown 

with the green solid line) and a variable nuisance component. In Case 1, the nuisance vector 

is orthogonal to the observed vectors and the orthogonal nuisance fraction (|nO|2/|n|2) is 1.0, 

in which case regression has no effect on the pre regression correlation values. Thus, the 

post regression correlation value is also r = 0.78 as shown with the red marker. In Case 5, 

nuisance vector lies within the observed vectors with |nO|2/|n|2 = 0 and post regression 

correlation value is −1.0 regardless of the pre regression correlation value. For Cases 2, 3, 

and 4, the fraction |nO|2/|n|2 takes on intermediate values, such that the difference between 

the pre and post values increases as the orthogonal fraction decreases. The blue line 

represents the theoretical values obtained from Equation 2.
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Figure 14: 
Toy example illustrating how linear regression can fail to eliminate the relationship between 

the nuisance norms and the DFC estimates when the nuisance orthogonality is weak. Similar 

to the first toy example in Figure 11, the in-plane nuisance components are the same as those 

previously used in Figure 10a, however, the orthogonal part of the nuisance term in this 

example is much smaller as compared to Figure 11. Therefore, linear regression has a 

noticeable effect on the DFC estimates. Since the orthogonal nuisance fraction is fairly 

constant across windows, the difference between the Pre and Post DFC estimates is also 

fairly constant. As the correlation coefficient is invariant to constant offsets, the correlation 

between the nuisance norm and Pre DFC estimate (r = 0.98) is essentially the same as the 

correlation between the nuisance norm and the Post DFC estimate (r = 0.99).
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Figure 15: 
Two representative scans that demonstrate the theoretical bounds on ΔDFC. In the first 

column, we show the DFC estimates obtained between the PCC and IPS seeds. In these 

scans the DFC estimates show a large degree of correlation with the norm of the WM time 

course (r = 0.66) in the first row, and with the norm of the GS time course (r = 0.7) in the 

second row. Performing full or block regression does not reduce these correlations and the 

correlations are larger than 0.7 after each regression technique. In the second column, we 

show the ΔDFC values versus the orthogonal nuisance fraction for the WM and GS 

regressors. Each point in these plots corresponds to the orthogonal nuisance fraction and 

ΔDFC values in a specific window. We also superimpose the theoretical bounds. For the 

WM nuisance term, the effects of regression are limited by the tight bound imposed by the 

large orthogonal nuisance fractions. For the GS nuisance term, the bounds are more relaxed 

due to the smaller orthogonal nuisance fraction. However, the ΔDFC values are clustered 

around −0.5 and the difference between the Pre DFC and Post DFC values in the first 

column is also fairly constant. Thus, the Post DFC values remain correlated with the 

nuisance norms after GS regression.
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Figure 16: 

ΔDFC versus the fraction 
nO

2

n 2  for six different nuisance regressors (from left to right and 

top to bottom: GS, WM, CSF, HM, RVf, and HRf) using the data from all scans. Each point 

in a given plot corresponds to a single window. The theoretical bounds for block regression 

are shown with the dashed black lines. The empirical ΔDFC values were found to lie within 

the theoretical bounds. For WM, CSF, HM, RVf and HRf regressors, the mean of the 

orthogonal fractions ranged between 0.78 and 0.83. In this region, the bounds are fairly 

narrow such that the mean differences between the pre and post regression values were 

small, ranging from −0.049 to −0.0065. For GS, the mean orthogonal fraction was 0.47 and 

the bounds on ΔDFC were not as tight. However, the the ΔDFC values were clustered about 

a mean value of −0.26 and closely followed the lower bound. Note that the relative density 

of data points (maximum density is normalized to 1.0) is indicated by the color map on the 

right-hand side of each plot.
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Figure 17: 
(a) Mean ΔDFC versus scan-averaged theoretical bound. Data for GS and non-GS regressors 

are indicated by the circle and square markers, respectively. For GS regression, the linear fit 

(magenta line, R2 = 0.79, Slope = 0.78) is close to the line of unity (dashed green line). For 

non-GS regressors, the linear fit is indicated by the black line and most values occur at small 

ΔDFC values. (b) Negative Standard Deviation (NSD) of ΔDFC (over each scan) versus the 

mean theoretical bound. For GS regression, both the slope of the best fit line (magenta line, 

R2 = 0.38, Slope = 0.2) and the magnitude of the NSD values are considerably lower than 

the slope and magnitudes observed for the mean ΔDFC values. The relative density of data 

points (maximum density is normalized to 1.0) is computed for GS and non-GS data 

separately and indicated by the color map on the right-hand side.
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Figure 18: 

The empirical ΔDFC versus the 
nO

2

n 2  fraction for the same six nuisance regressors used in 

Figure 16. This time full regression was performed to obtain the empirical values but the 

same bounds are taken from the block regression derivation. The empirical values of ΔDFC 

for full regression are largely within the theoretical bounds obtained for block regression, 

consistent with the empirical similarity of the DFC estimates obtained after block and full 

regression. Note that the relative density of data points (maximum density is normalized to 

1.0) is indicated by the color map on the right-hand side of each plot.
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