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Abstract

Growing evidence is challenging the assumption that brain disorders are diagnostically clear-cut 

categories. Transdiagnostic studies show that a set of cerebral areas is frequently altered in a 

variety of psychiatric as well as neurological syndromes. In order to provide a map of the altered 

areas in the pathological brain we devised a metric, called alteration entropy (A-entropy), capable 

of denoting the “structural alter ation variety” of an altered region. Using the whole voxel-based 

morphometry database of BrainMap, we were able to differentiate the brain areas exhibiting a high 

degree of overlap between different neuropathologies (or high value of A-entropy) from those 

exhibiting a low degree of overlap (or low value of A-entropy). The former, which are parts of 

large-scale brain networks with attentional, emotional, salience, and premotor functions, are 

thought to be more vulnerable to a great range of brain diseases; while the latter, which include the 

sensorimotor, visual, inferior temporal, and supramarginal regions, are thought to be more 

informative about the specific impact of brain diseases. Since low A-entropy areas appear to be 

altered by a smaller number of brain disorders, they are more informative than the areas 

characterized by high values of A-entropy. It is also noteworthy that even the areas showing low 

values of A-entropy are substantially altered by a variety of brain disorders. In fact, no cerebral 

area appears to be only altered by a specific disorder. Our study shows that the overlap of areas 

with high A-entropy provides support for a transdiagnostic approach to brain disorders but, at the 

same time, suggests that fruitful differences can be traced among brain diseases, as some areas can 

exhibit an alteration profile more specific to certain disorders than to others.
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1. Introduction

The analysis of the cerebral areas that appear to be co-altered in brain disorders can provide 

invaluable insights for better understanding these diseases. This approach is especially 

important with regard to mental illnesses, as it could radically improve their classification as 

well as their diagnoses (Hyman, 2010). The DSM-based models of psychopathology 

(American Psychiatric Association, 2013) and the corresponding categorization of the World 

Health Organization (World Health Organization, 2007) treat psychiatric disorders as 

distinct pathological constructs with different etiologies and biomarkers. However, this view 

(derived from clinical observations and patient self-reports) is likely to be mistaken. On the 

one hand, traditional classifications may consider to be similar certain clinical 

manifestations that are instead characterized by biological heterogeneity; on the other hand, 

these classifications may categorize as different certain diseases that might share 

neurobiological underpinnings.

This diagnostic rigidity has stirred the idea that each defined disorder is real, clear-cut and 

caused by specific factors, but increasing evidence is beginning to challenge this assumption 

(Buckholtz and Meyer-Lindenberg, 2012). For instance, large-scale phenotypic studies show 

that brain disorders have common liabilities and that the acute manifestation of symptoms 

does not exactly correspond to noticeable deficits in cognitive functions (Buckholtz and 

Meyer-Lindenberg, 2012; Krueger, 1999). Comorbidity, too, is a sign that defies a rigid 

classification, especially of mental disorders. Indeed, the clinic picture of co-occurrences of 

psychiatric diseases is rather the rule than the exception. The co-variation between diagnoses 

of mental disorders is so common that makes the categories described in our clinical 

manuals very artificial. Thus, this broad variability in symptomatology, dimensionality and 

comorbidity (Kessler et al., 2005; Krueger and Markon, 2011; Markon, 2010) suggests that 

our categorical models need profound revision (Krueger and Markon, 2006).

Etiological studies provide further support for discarding any rigid categorization of mental 

illnesses, which are frequently characterized by polygenic inheritance with multiple small-

effect risk alleles that bring about a continuous distribution of genetic liability (Gejman et 

al., 2011). Moreover, with regard to psychiatric disorders, the genetic risk is pleiotropic, thus 

capable of impacting on broad dimensions of symptomatically-related conditions – see the 

case of bipolar disorder and schizophrenia (Gejman et al., 2011; Purcell et al., 2009). This 

complex etiological picture implies that mental illnesses might be extreme expressions of 

quantitative traits that are generally distributed throughout the population (Plomin et al., 

2009), and challenges our traditional categorical models based on closed symptomatic 

domains.

From the clinical point of view, similar considerations hold true for neurological diseases as 

well. In particular, differential diagnosis between types of neurodegenerative conditions – 

for instance, mild cognitive impairment, Alzheimer’s disease (AD) and frontotemporal lobar 
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degeneration – is often challenging (Bird and Smith , 2018; Padovani et al., 2013). Several 

biomarkers, such as amyloid-β (Aβ) plaques, neurofibrillary tangles and other pathological 

deposits, have been proposed to differentiate these types of disorders. To date, however, for 

the cases characterized by high uncertainty only the autopsy can confirm or reject the 

clinical diagnosis. And similar to psychiatric conditions recent research has proposed 

models of alteration spread based on network-like patterns (Iturria-Medina and Evans, 2015; 

Raj et al., 2012; Seeley et al., 2009).

This new trend in considering brain disorders is supported by transdiagnostic studies 

showing that a common set of cerebral areas is frequently altered in a variety of psychiatric 

conditions (Buckholtz and Meyer-Lindenberg, 2012; Cauda et al., 2017; Cauda et al., 2018; 

Cole et al., 2014; Goodkind et al., 2015; McTeague et al., 2016). These studies suggest that 

the investigation of brain disorders under the aspect of their common alteration patterns is 

extremely useful, as it can provide an essential bridge between neurobiology and clinical 

practice.

The present study aims to start building one of the pillars of this bridge by analyzing how 

each cerebral area is altered by a great or small number of brain disorders and by identifying 

whether or not certain areas are typically more vulnerable to specific diseases. To do so we 

decided to use the whole disease-related voxel-based morphometry (VBM) database of 

BrainMap (www.brainmap.org) (Fox et al., 2005; Fox and Lancaster, 2002; Laird et al., 

2005b). BrainMap is an online open access database which applies a systematic coding 

scheme; it contains over 15000 published human neuroimaging experimental results and 

reports over 120000 brain locations in stereotactic space. Its VBM dataset constitutes 

therefore an ideal environment for conducting structural meta-analyses (Fox et al., 2005; 

Fox and Lancaster, 2002; Laird et al., 2005b; Vanasse et al., 2018). VBM is a computational 

procedure that can measure focal differences in the concentration, density or volume of brain 

tissues between healthy and pathological subjects (Ashburner and Friston, 2000). We 

retrieved from BrainMap all the data that were stored in its VBM database regarding brain 

diseases, so as to achieve the most overarching investigation of how neuropathological 

processes affect the brain.

In order to understand how morphometric alterations differentiate within each cerebral area 

we devised a metric, which we have called “alt eration entropy” or A-entropy, based on 

Shannon’s entropy, capable of denoting the “structu ral alteration variety” of an altered 

region. This type of analysis has already been used in functional contexts by Anderson et al. 

(2013), but so far it has never been applied to the study of morphometric alterations. The 

metric of A-entropy is based on the idea that the measurement of structural varieties is 

similar to the measurement of the informational content in a message; it therefore makes 

possible to identify the brain areas exhibiting a high degree of overlap between 

neuropathologies (or high value of A-entropy) and those exhibiting a low degree of overlap 

(or low value of A-entropy; this can also be mathematically defined as high value of A-

negentropy, which is the reverse of the A-entropy, see Liloia et al. (submitted) for more 

details). As a result, the former areas are supposed to be more vulnerable to a variety of 

brain diseases, while the latter are supposed to be more informative about the impact of 

specific brain diseases.

Cauda et al. Page 3

Neuroimage. Author manuscript; available in PMC 2020 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.brainmap.org/


2. Materials and methods

2.1 Selection of studies

Analyses were performed on the whole VBM dataset of BrainMap until March 2016. Data 

have been previously codified by the BrainMap staff on the basis of the International 

Statistical Classification of Diseases and Related Health Problems, release 10 (ICD-10). The 

dataset included 646 studies, 1827 experiments, 19325 subjects and 20238 foci of gray 

matter (GM) decrease/increase (see Liloia et al. (submitted) for further information). For 

each eligible experiment stored in the VBM dataset, the BrainMap staff provided us with the 

categorical class (ICD pathological block) of the sample with the relative alphanumeric 

code, as well as with the specific alphanumeric code of the single pathological condition 

(ICD pathological category). This allowed us to carry out our analyses both on the coarse-

grained subdivision and on the fine-grained subdivision of the ICD-10. At the time of the 

selection of studies, the VBM dataset consisted of 40 ICD pathological blocks, for a total of 

82 ICD pathological categories.

Differently from what our team and another research group did in previous works, which 

were focused only on psychiatric diseases (Cauda et al., 2017; Cauda et al., 2018; Goodkind 

et al., 2015), in this study we included all the brain disorders stored in BrainMap. We did so 

because we were interested in investigating in a more comprehensive way the overlaps 

between all the alteration patterns induced by neuropathological processes. Moreover, during 

a pilot inspection of the BrainMap database, we had found that overlaps between brain 

alterations were not confined to psychiatric conditions but largely included neurological 

disorders as well. This does not obviously suggest that, contrary to Crossley et al. (2015), 

psychiatric and neurological diseases are not dissociable on the basis of neuroimaging 

evidence, but, at least, puts forward the intriguing possibility that categorically different 

neuropathological processes might in part exhibit common patterns of neuronal alterations.

2.2 Anatomical likelihood estimation and creation of modeled activation maps

We first performed an anatomical likelihood estimation (ALE) (Eickhoff et al., 2012; 

Eickhoff et al., 2009; Turkeltaub et al., 2012) using an in-house developed Matlab® script 

following both the algorithms utilized in Gingerale 2.3.6 and the recommendation of 

Eickhoff et al. (2017). Results have been clustered at a level of p < 0.05, family-wise error-

corrected for multiple comparisons, with a cluster-forming threshold of p < 0.001 at voxel 

level. The ALE is a quantitative voxel-based meta-analysis technique able to give 

information about the anatomical reliability of results through a statistical comparison, using 

a sample of reference studies from the existing literature (Laird et al., 2005a).

An ALE meta-analysis models each focus of every experiment as a Gaussian probability 

distribution:

p d = 1
σ3 2π 3e− d2

2σ2
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where d is the Euclidean distance between the voxels and the focus taken into account, and σ 
is the spatial uncertainty.

Then for each experiment a modeled alteration (MA) map was calculated as the union of the 

Gaussian probability distribution of each focus of the experiment. The union of the MA 

maps resulted in the final ALE map.

The significance of the ALE map activations was assessed by a permutation test that 

redistributed the same number of foci in the brain and calculated an ALE map as described 

before. Finally, the histogram of the obtained scores was used to assign a threshold for P 

values. For calculating the A-entropy metric we used the unthresholded ALE map of every 

brain disorder so as to obtain for each brain area the probability distribution of its alteration.

2.3 A-Entropy

In the literature, entropy has been used as measure of diversity, complexity and randomness 

in different contexts, from economics to biology. If we define the informational content of 

an event x as:

I = logb p(x)

where b is the base of the logarithm (usually base 2), then, the entropy H of a discrete 

random variable X with values {x1,x2,….,xn} and probability P (X) is defined as:

H X = E −logb P X

In our case, from each ALE thresholded map of every brain disorder we calculated the 

probability of every brain disorder pi and the entropy in each voxel as:

Hj = − ∑i pijln pij

where pij is the probability of the voxel j in the brain disorder i.

To get comparisons relative to the number of brain disorders we also used the normalized A-

entropy, which is determined as follows. Given the A-entropy of each voxel calculated with 

the previous formula, the result is divided by the A-entropy obtained considering a uniform 

distribution of probability of the brain disorders:

pij = 1
N

so that the maximum A-entropy is

Hmax = ln N
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We thus obtain a relative metrics showing the degree of homogeneity of the distribution of 

brain disorders in the voxel considered. This is a robust and representative metric because it 

is true for any value of N.

2.4 Network decompositions

In a previous study by Biswal et al. (2010) the brain surface was parcellated using a large 

cohort of volunteers (1414) who underwent a resting-state fMRI scan. Authors found out 

that, on the basis of data-driven methodology, 20 large-scale networks could be identified 

within the brain at rest; these networks are also recognizable when the brain is performing a 

task. Following the Biswal’s parcellation, we determined the mean ALE values of the GM 

voxels included in each of the following networks: premotor (PreMOT), dorsal attentional 

(DAN), orbitofrontal (OFC), ventral attentional right and left (VAN R and L), thalamus and 

basal ganglia (TH-Ganglia), default mode network (DMN), salience, motor, sensorimotor 

(SensMOT), cerebellum, auditory, V1, V2 and V3 (Fig. 1, middle panel).

2.5 Winner takes all and overlap maps

To compare the alteration map and the A-entropy map we performed two analyses:

1) A winner takes all map (WTA). To calculate this map we employed the 

normalized alteration probability map (normalized unthresholded ALE map) and 

the normalized A-entropy map. We attributed to each voxel a value of 0 or 1 

according to its prevalent involvement into the ALE map or the A-entropy map. 

To visualize the WTA map we assigned the color blue to the areas in which 

values of A-entropy were prevalent and the color red to the areas in which values 

of ALE were prevalent.

2) An overlap map. To calculate this map we employed the thresholded ALE map 

(see Methods) and we thresholded the A-entropy map by setting to zero all the 

voxels with values <0.5. To visualize this map we assigned the color green to the 

areas of overlap and the color red to the areas with only A-entropy values. No 

areas with only ALE values were found.

3. Results

3.1 A-Entropy

An important finding of our analysis is that there are no brain areas affected by just one 

brain disorder. Indeed, most of the brain areas appear to be altered by the majority of the 

diseases taken into consideration in this study (see Table 2 in Liloia et al. (submitted) for a 

detailed description of this result).

The upper and lower panels of Figure 1 show 2D and 3D visualizations of the A-entropy 

calculated using a fine-grained neuropathological subdivision (ICD pathological categories). 

As we have already said, the A-entropy metric (Shannon, 1948) can express the variety of 

neuropathologies causing structural alteration (Magurran, 2004) exhibited by a brain region. 

As detailed in Table 1, several brain areas are characterized by high values of A-entropy. The 

areas with the highest peak values (i.e., the maximum normalized A-entropy) are the 
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following: right anterior insula, left precentral gyrus, left inferior temporal gyrus, left medial 

frontal gyrus, right caudate head and right anterior cingulate. Instead, the areas with the 

highest mean values (i.e., the mean normalized A-entropy) are the following: the amygdalae, 

the medial dorsal nucleus of the thalamus, the hippocampi, the left and right anterior insula 

and the parahippocampal gyri.

The middle panel of Figure 1 shows that the large-scale brain networks with the highest A-

entropy rates are mainly the more integrative ones, encompassing ventral and dorsal 

attentional/executive, orbitofrontal, emotional, salience, thalamus/basal ganglia, default 

mode and premotor networks. On the contrary, the visual (V1, V2, V3), auditory, cerebellar 

and sensorimotor networks exhibit lower A-entropy rates (see Table 1 for more details about 

the maximum and the mean A-entropy values for each brain area; interestingly, certain brain 

areas have high both the maximum and mean values, while others have low mean values 

even though some of their peaks exhibit high maximum values, which means that the A-

entropy distribution is less uniform).

Figure 2 shows a comparison between the A-entropy calculated on the basis of a fine-

grained neuropathological subdivision (ICD pathological categories, Fig. 2 upper panel first 

row) and the A-entropy calculated on the basis of a coarser subdivision (ICD pathological 

blocks, Fig. 2 upper panel second row). Not surprisingly, the fine-grained subdivision leads 

to a more entropic map but, interestingly, both maps showed the aforementioned areas to be 

the ones with the highest A-entropy. These cerebral areas are altered in almost all the brain 

disorders considered in this study (see also Table 1 and 2 in Liloia et al. (submitted)). The 

middle panel of Figure 2 shows the ALE map of all the disease-related GM alterations 

detected with VBM and included in the BrainMap database. The areas showing high values 

of A-entropy are often the areas that are more frequently altered in the ALE map (however, 

this is not always the case: there are in fact various regions with high A-entropy showing low 

p values in the alteration ALE map). This may seem an expected result, as areas that mostly 

overlap between brain disorders are also the more susceptible to be altered. However, on 

further reflection this result is intriguing, as the algorithm employed for calculating the A-

entropy normalizes the results on the basis of the number of alterations found in each voxel, 

so that the “overlapping effect” should be removed.

3.2 Winner takes all and overlap maps

The two lower panels of Figure 2 shows comparisons between the ALE and the A-entropy 

maps (fine-grained). One panel (the row before last) shows the WTA map between 

normalized probabilities of alteration and A-entropy. The areas characterized by an A-

entropy prevalence are located in sensorimotor/premotor, angular, dorsolateral prefrontal, 

superior temporal districts and posterior parietal gyri.

The other panel (the last row) shows the overlap map between alteration and A-entropy. 

Regions with high A-entropy but not frequently altered (and thereby not overlapping with 

significant areas in the ALE map) are highlighted in red. Notably, these regions (pertaining 

to dorsolateral prefrontal, sensorimotor/premotor, posterior parietal, superior temporal 

districts and angular gyri) cover most of the areas with high A-entropy that are not parts of 

the salience network; instead, they are mainly parts of the executive network. The areas 
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highlighted in green are those of overlap between the ALE map and the A-entropy map. 

These regions principally pertain to the salience and the default mode networks. No areas 

showing significant ALE results and low A-entropy values are revealed.

Since a very high percentage of alterations seems to affect the insulae, we decided to analyze 

the A-entropy patterns within these brain areas and comparing those patterns to the ALE 

results. Figure 3 shows that the insular portions with the highest A-entropy values are the 

anterior insula along with a superior layer extending through the mid-posterior insula. The 

ALE map shows a very similar pattern.

The fact that the alteration probability maps (i.e., the unthresholded ALE map) and the A-

entropy maps overlap greatly in some areas is not an obvious result. To better understand the 

point, let us see in more detail how the final ALE map is obtained.

If we have ni experiments for k neuropathologies, then N = ∑i = 1
k ni . For each experiment 

we calculate the probability of activation of every voxel, as follows:

Li v = 1
σ3 2π 3e− d2

2σ2

For all the experiments the resulting ALE is then:

ALE v = 1 − ∏
i = 1

N
1 − Li v

The final ALE is therefore the product of the ALE values of each considered experiment. As 

the calculation is commutative for the single values, this formula collapses the information 

regarding the different neuropathologies, so that it is not possible to infer the contribution to 

the map of a specific brain disorder. In contrast, when we consider the A-entropy values we 

can obtain a map for each brain disorder. All the A-entropy values are in fact normalized to 

obtain a probability distribution of neuropathologies. This distribution is then used in the A-

entropy calculation and, as a consequence, the information contained in the A-entropy map 

is different from the one contained in the ALE map. In fact the A-entropy weighs the 

contribution of each brain disorder that is present in the probability distribution.

The high values of the ALE map indicate only that we have a high probability of activation 

regardless of the type of brain disorder. In contrast, the high values of the A-entropy map 

indicate that the probability of activation is really high for many neuropathologies. The two 

maps are therefore complementary and both the similarity and dissimilarity that certain areas 

show in the two maps (see the last panel of Fig. 2) provide relevant information.

3.3 Core areas

In a previous study (Cauda et al., 2012b) we showed how certain brain areas (including the 

anterior insulae, the thalami and the cingulate cortices) are activated by a wide range of 

cognitive tasks, encompassing pain, memory, touch, interoception, attention, action, 
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emotion, and reward. Most of these “core areas” are important parts of the cognitive control 

system (Cole et al., 2014; McTeague et al., 2016; Miyake and Friedman, 2012) and because 

of their intense functional connectivity are thought to be more vulnerable to 

neuropathological processes (Cauda et al., 2017; Cauda et al., 2018; Cauda et al., 2012b; 

Cauda et al., in press; Crossley et al., 2014; Manuello et al., 2018; Tatu et al., 2018; Zhou et 

al., 2012).

We were therefore interested in investigating whether or not these core areas may be 

characterized by high entropy values and, thereby, be part of a “high A-entropy group”. 

Figure 4 shows a comparison between the two source maps (for a tridimensional view of the 

same results see also the green areas showed in the lower panel of Figure 2). Of note, the 

core areas (Cauda et al., 2012b) show a relevant overlap with the highest entropic brain 

areas. It is also interesting to note that the areas with low values of A-entropy are quite 

similar to the areas that in Cauda et al. (2012b) were found to exhibit a low percentage of 

overlap (for a detailed description of low A-entropy areas see Liloia et al. (submitted)).

These findings suggest that the brain areas involved in a great variety of cognitive tasks are 

typically more characterized by high A-entropy values. Moreover, this observation is 

partially confirmed by the results of Anderson et al. (2013), which provide evidence that 

certain areas (distributed in prefrontal, insular, cingulate, thalamic and premotor cortices) 

show a high diversity of activation (i.e., high functional entropy) in different cognitive tasks.

4. Discussion

In this study we analyzed the “structural alteration variety” (Magurran, 2004) of brain areas. 

To do so we have devised the A-entropy metric capable of indicating how brain areas are 

differentiated in terms of their alteration profiles based on their A-entropy values (Shannon, 

1948). Cerebral areas with high values of A-entropy are affected by a large number of brain 

disorders; they are therefore little informative and have a limited predictive power about the 

neuropathological processes to which they are vulnerable. On the other hand, cerebral areas 

with low values of A-entropy are altered by a small number of brain disorders, so that they 

may be more informative about the nature of the disease and its development.

Our analysis points out that areas with low values of A-entropy are sparse, even though they 

tend to concentrate in brain sites with unimodal functions, in particular in the visual regions. 

In contrast, several areas, especially those involved in networks with cognitive and 

integrative functions, are highly entropic, which means that they are altered by a large 

number of brain disorders. In fact, the great variety of cognitive, social and emotional 

activities that shape the human lives are supported by the interaction of large-scale brain 

networks, which can be disrupted by different types of neuropathological processes 

(Crossley et al., 2014; Seeley et al., 2009).

Among the highly entropic areas the insula exhibits the highest values of maximum and of 

mean normalized A-entropy (Cauda et al., 2012a; Cauda et al., 2011). Specifically, its 

anterior and, to some extent, medial parts are associated with the salience network, as well 

as with the DMN (Mohan et al., 2016) and with the dorsal and ventral attentional networks 
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(Vercelli et al., 2016). The anterodorsal region underpins cognitive, salience and decision 

making functions associated with the cognitive control system, while the anteroventral 

region is involved in emotional and autonomic regulation (Bauernfeind et al., 2013; Chang et 

al., 2013; Christopher et al., 2014; Craig, 2002; Singer et al., 2009).

If we compare the areas with high A-entropy values with the areas that appear to be the most 

frequently altered by brain disorders (i.e., showing high ALE values), we see that the former 

mostly overlap with the latter, especially with regard to subcortical and cingulate/insular 

regions. However, other areas, located especially in frontoparietal and temporal regions, do 

not appear to be frequently altered, even though they are characterized by high A-entropy 

values.

Of note, areas with high A-entropy mostly overlap with areas exhibiting a wide 

differentiation in their functional activations (Anderson et al., 2013); they have, in other 

words, a high functional entropy. As we have already pointed out, these regions have been 

identified as parts of a set of core areas that is involved in a variety of cognitive functions. 

This set comprises highly connected cortical hubs (Achard et al., 2006), which have been 

found to be typically altered by brain disorders (Crossley et al., 2014).

Quite recently, an interesting model has been put forward by Buckholtz and Meyer-

Lindenberg (2012) to explain this complex picture (see Fig. 5 for a diagram illustrating this 

model). According to these authors the breakdown of the interaction between networked 

brain areas is capable of producing a panoply of cognitive and affective symptoms, which 

are transdiagnostically shared by different diseases. So, the more disrupted the large-scale 

networks are, the more diversified is the susceptibility to neuropathological conditions. The 

involvement of these core areas in the pathological brain affects several dimensions of 

cognition and, thereby, causes vulnerability to broad domains of neuropathology rather than 

to specific disorders. This is why similar patterns of disconnectivity are observed across 

multiple diagnostic boundaries (Goodkind et al., 2015) and, as we said above, explains the 

fact that comorbidity between brain disorders appears to be generally the case.

With regard to the genetic point of view, the pleiotropic risk associated with genes appears to 

increase susceptibility to a variety of brain disorders. For instance, twin studies show that 

common genetic factors can mostly account for clusters of syndromes (Wen et al., 2016), 

thus suggesting a biological basis for comorbidity (Kendler et al., 2011; Kendler et al., 

2003). Indeed, high covariation at the phenotypic level appears to be influenced by high 

covariation at the genetic level (Lahey et al., 2011). According to this view, patterns of 

genetic covariance across individual genomes would lead to patterns of covariance in 

connectivity profiles and, as a consequence, bring about patterns of symptoms’ covariance 

(i.e., comorbidity). In other words, the overt constellations of different symptoms in 

psychopathological conditions may partly reflect a genetically-determined latent structure of 

brain connectivity.

Our analysis supports the model proposed by Buckholtz and Meyer-Lindenberg (2012), as it 

shows that certain areas are generally altered in a wide range of diseases (see the upper 

panels of Figures 1 and 2). Moreover, brain networks do not appear to be all equally 
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involved. Networks associated with cognitive functions, such as the salience network, the 

dorsal and ventral attentional networks and the DMN exhibit higher values of A-entropy. So 

far, studies have highlighted that the cognitive control system (Cole and Schneider, 2007) is 

one of the most involved circuits in psychopathology (Buckholtz and Meyer-Lindenberg, 

2012; Caspi et al., 2014; Cole et al., 2014; McTeague et al., 2016). Our findings support this 

hypothesis but, in addition to the cognitive control system – which is divided in subunits by 

our independent component analysis (Esposito and Goebel, 2011) on large-scale brain 

networks used as regions of interest (ROIs) – suggest that other important functional systems 

may play a relevant part in the clinical picture of the pathological brain, especially when 

subcortical areas are involved. The overemphasis on the cognitive control system may be 

due to the fact that the aforementioned studies limited the scope of their analyses on 

psychiatric diseases instead of focusing, as we did, on a broader range of conditions.

The attempt to pinpoint common neurobiological roots among brain disorders, which could 

serve as transdiagnostic links, is synergistic with current efforts to redefine psychiatric 

nosology in terms of underlying biology, such as the Research Domain Criteria (RDoC) 

initiative of NIMH (Insel, 2014). However, while RDoC is organized around domains that 

roughly correspond to neuropsychological functions, the idea proposed by Buckholtz and 

Meyer-Lindenberg (2012) goes one step further, as it proposes that specific circuits should 

be thought of as meaningful systems-level units of inquiry in order to both investigating 

etiology and transdiagnostic underpinnings.

These approaches do not imply that phenotypic differences between diagnoses are supposed 

to be negligible. In fact, disruption in large-scale networks with highly integrative and 

associative functions does not preclude the manifestation of distinct deficits related to 

specific disorders as well as to specific brain areas. Indeed the analysis of the low A-entropy 

areas can be seen as the other side of the coin with respect to the transdiagnostic pattern of 

brain A-entropy.

On the basis of the pattern of brain alterations, low A-entropy areas appear to be the most 

informative for diagnostic purposes; in fact, being altered by a few diseases, they allow a 

better identification of the pathological processes affecting the brain, especially if their 

alteration occurs in the early stages of the disease. This would also be significant 

information for an in-depth understanding of the pathological brain, as it would help reduce 

and better define the number of potential pathological causes of the alterations.

An interesting result of our analysis is that no brain area can be deemed immune to 

pathological alterations. In principle, every area of the cortex can be more or less vulnerable 

to several pathological processes; and this can lead to a great overlap of alterations caused 

by different brain disorders. This result, however, is not completely unexpected, as it may be 

partly due to the severity and stage of disease development included in BrainMap. During 

their last stages, in fact, many disorders will eventually affect large portions of the brain. 

What differentiates a brain disease from the others, then, is whether or not it affects areas 

with low A-entropy, as well as its early stages (i.e., areas of pathological inception) and its 

typical spatial progression.

Cauda et al. Page 11

Neuroimage. Author manuscript; available in PMC 2020 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The two analyses carried out in this study (i.e., the ALE and the A-entropy calculations), 

therefore, provide an overarching picture of the pathological brain, which is of great interest 

for a better understanding of how neuropathological processes can affect this organ. 

Intriguingly, though a large number or brain areas appear to be altered by the majority of 

diseases, profiles of alterations specificity to certain neuropathological conditions may still 

emerge, so as to give rise to the diversified landscape of structural alteration variety. These 

peculiarities are valuable insights that can help us improve our clinical tools for better 

predicting the development of brain disorders.

4.1 Limitations and future directions

Since the BrainMap database used for this study does not report for each disease an equal 

number of experiments, our results do not represent equally all the disorders taken here into 

consideration. Furthermore, the use of meta-analytic data, which are characterized by a 

certain degree of deterioration and of spatial uncertainty, may have enhanced the overlap 

between areas affected by different brain disorders and, thereby, partly increased their values 

of A-entropy. However, we believe that the good levels of overlaps found in this study 

describe real phenomena, as they can be determined only residually by the spatial 

uncertainty of meta-analytic data. Relationships between the entropic values of brain areas 

are in no way supposed to be influenced by these issues.

Future investigations could be based on a tool (working on the VBM disease-related data of 

BrainMap) that allows the inverse Bayesian inference so as to verify how informative are the 

low A-entropy areas about the pathological impact of brain disorders. Furthermore, A-

entropy maps could serve for comparisons in meta-analytic studies with alteration patterns 

of specific disorders or categories of diseases. With regard to this, we aim to provide the 

BrainMap database with our maps, so that other researchers could use them to compare 

alteration patterns associated with specific disorders or categories, or to select ROIs for 

specific investigations.

5. Conclusion

This study has investigated how a large number of brain disorders can preferentially cause 

patterns of structural alterations to few specific brain areas. The A-entropy is a valuable 

metric capable of denoting the “structural alterati on variety” of an altered region. Our 

analysis shows that regions characterized by high values of A-entropy are multimodal/

polymodal and are, therefore, frequently parts of large-scale brain networks associated with 

cognitive/integrative functions. Coherently, unimodal areas exhibit less overlap and are 

characterized by low values of A-entropy.

These findings provide support for a transdiagnostic model suggesting that genetic and 

environmental risk factors can disrupt patterns of interaction between brain regions and, as a 

consequence, increase the vulnerability to neuropathology. The disruption of brain circuits 

supporting multiple cognitive processes may lead to deficits and symptoms related to 

specific cognitive domains with an overlap of diagnostic taxa. In a sense, certain symptoms 

could constitute diagnostic criteria for disorder “A” but not for disorder “B” and, conversely, 

certain other symptoms could be to some extent selective for disorder “B” but not for 
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disorder “A”. Overall, however, taken as a whole, t his plurality of symptoms is likely to be 

associated with a transdiagnostic feature of brain disorders that are traditionally considered 

as separate clinical entities, given that at their root the neurobiological underpinnings are the 

same.

The identification of low A-entropy areas put forward by this study may serve as clinical and 

experimental insights in order to better understand distinctions and similarities between 

brain disorders. Our study shows that the overlap of brain areas with high A-entropy 

provides support for a transdiagnostic view of neuropathological processes but, at the same 

time, especially through the analysis of the low A-entropy patterns, suggests that fruitful 

differences can be traced among brain diseases. These findings open interesting prospects 

for better characterizing brain disorders, thus hopefully contributing to the intriguing 

endeavor to decipher the complex alteration landscape of the pathological brain.
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Figure 1. 
2D and 3D (fine-grained) visualizations of disease-related alteration entropy maps. The 

radar graph illustrates the mean alteration entropy values of the principal large-scale brain 

networks: premotor (PreMOT), dorsal attentional (DAN), ventral attentional right and left 

(VAN R and L), thalamus and basal ganglia (TH-Ganglia), default mode network (DMN), 

salience network (Salience), motor network (Motor), sensorimotor network (SensMOT), 

Cerebellum, auditory network (Auditory), visual network (V1, V2, V3).
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Figure 2. 
Comparison between the alteration entropy calculated on the basis of a fine-grained 

neuropathological subdivision (ICD pathological categories, upper panel first row) and the 

alteration entropy calculated on the basis of a coarser subdivision (ICD pathological blocks, 

upper panel second row). The middle panel illustrates a map of the probability for each brain 

area to be altered (derived from an unthresholded ALE map of all the disease-related gray 

matter (GM) alterations detected with VBM and included in the BrainMap database). The 

lower panel (row before the last) shows a winner takes all (WTA) comparison between the 
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ALE map and the A-entropy map (fine-grained). Regions showing a prevalence of the A-

entropy values (i.e., with high A-entropy values but less frequently altered) are highlighted 

in blue. Regions showing a prevalence of the ALE values (frequently altered but 

proportionally with lower A-entropy values) are highlighted in blue. The lower panel (last 

row) shows a comparison between the thresholded ALE map and the A-entropy map (fine-

grained, thresholded to show only the voxels with values >0.5). Regions with high A-

entropy values but not frequently altered (and thereby not overlapping with significant areas 

in the ALE map) are highlighted in red. Regions with both high A-entropy and significant 

ALE values are highlighted in green. No areas with significant ALE values and low A-

entropy were found. All the significant ALE values characterize areas that also show high A-

entropy.
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Figure 3. 
Comparison between the insular areas that were most frequently reported as being altered in 

our sample (upper panels) and the brain areas showing the highest A-entropy values (lower 

panels).
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Figure 4. 
Bidimensional view of the areas exhibiting 100% of overlap between the thresholded ALE 

map of the most frequently altered brain regions and the A-entropy map (50% of the regions 

having the highest A-entropy values).
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Figure 5. 
Diagram depicting the model proposed by Buckholtz and Meyer-Lindenberg (2012).
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Table 1.

Local Maxima normalized alteration entropy values, mean normalized alteration entropy values and Talairach 

coordinates of the different brain areas.

ID Brain Area

Local Maxima
(Talairach)

Maximum
Normalized

Entropy

Mean
Normalized

Entropy
X Y Z

1 Right Anterior Insula (BA 13) 30 18 −3 0,999 0,327

2 Left Precentral Gyrus (BA 6) −51 0 35 0,999 0,221

3 Left Inferior Temporal Gyrus (BA 20) −57 −27 −18 0,999 0,448

4 Left Middle Frontal Gyrus (BA 10) −39 48 12 0,999 0,304

5 Right Anterior Insula (BA 13) 33 16 0 0,999 0,816

6 Right Insula (BA 45) 30 24 3 0,999 0,194

7 Left Medial Frontal Gyrus (BA 9) −6 36 30 0,999 0,355

8 Right Caudate Head 6 3 −3 0,999 0,759

9 Left Middle Frontal Gyrus (BA 46) −40 48 15 0,999 0,237

10 Right Anterior Cingulate (BA 25) 4 3 −6 0,999 0,517

11 Right Anterior Cingulate (BA 32) 3 36 21 0,998 0,544

12 Left Inferior Frontal Gyrus (BA 47) −36 24 0 0,998 0,354

13 Right Superior Temporal Gyrus (BA 38) 33 18 −21 0,998 0,268

14 Right Anterior Cingulate (BA 10) 6 48 6 0,998 0,284

15 Left Cingulate Gyrus (BA 32) −4 36 29 0,998 0,552

16 Right Posterior Insula (BA 13) 42 −9 3 0,998 0,535

17 Right Parahippocampal Gyrus (BA 34) 30 3 −18 0,998 0,845

18 Left Parahippocampal Gyrus (BA 35) −24 −15 −21 0,998 0,804

19 Right Parahippocampal Gyrus (BA 35) 24 −24 −14 0,998 0,702

20 Left Anterior Insula (BA 13) −39 3 6 0,998 0,869

21 Right Amygdala 18 −6 −21 0,997 0,954

22 Left Middle Temporal Gyrus (BA 21) −55 −18 −15 0,997 0,339

23 Right Pulvinar 4 −24 10 0,997 0,684

24 Left Superior Temporal Gyrus (BA 41) −48 −33 12 0,997 0,582

25 Left Uncus (BA 28) −27 −12 −25 0,997 0,789

26 Right Anterior Cingulate (BA 24) 1 27 23 0,997 0,277

27 Left Parahippocampal Gyrus (BA 34) −21 −12 −18 0,996 0,839

28 Right Middle Temporal Gyrus (BA 21) 48 6 −33 0,996 0,279

29 Left Hippocampus −26 −12 −22 0,996 0,894

30 Left Caudate Head −6 12 −6 0,996 0,817

31 Right Medial Frontal Gyrus (BA 9) 1 36 30 0,996 0,299

32 Left Pulvinar −6 −24 9 0,995 0,707

33 Left Anterior Cingulate (BA 24) −3 21 −6 0,995 0,266

34 Left Amygdala −21 −9 −18 0,995 0,975
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Mean
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35 Left Superior Temporal Gyrus (BA 42) −54 −34 18 0,995 0,281

36 Right Anterior Nucleus (Thalamus) 9 −12 15 0,995 0,663

37 Left Posterior Insula (BA 13) −40 0 8 0,995 0,445

38 Left Precentral Gyrus (BA 44) −41 6 6 0,994 0,317

39 Left Medial Dorsal Nucleus (Thalamus) −6 −23 9 0,994 0,941

40 Right Caudate Body 9 12 9 0,993 0,534

41 Right Precentral Gyrus (BA 44) 42 12 6 0,993 0,365

42 Right Medial Dorsal Nucleus (Thalamus) 3 −21 6 0,993 0,940

43 Left Medial Frontal Gyrus (BA 11) −5 36 −12 0,993 0,125

44 Left Medial Globus Pallidus −8 0 0 0,993 0,499

45 Left Superior Temporal Gyrus (BA 22) −48 12 −6 0,991 0,291

46 Left Inferior Frontal Gyrus (BA 45) −36 24 2 0,991 0,214

47 Left Lateral Globus Pallidus −24 −6 −3 0,991 0,512

48 Left Putamen −24 −6 −3 0,991 0,576

49 Right Precentral Gyrus (BA 4) 48 −12 42 0,990 0,160

50 Left Caudate Body −9 6 9 0,990 0,596

51 Left Lateral Posterior Nucleus (Thalamus) −18 −21 9 0,990 0,759

52 Left Parahippocampal Gyrus (BA 36) −28 −15 −24 0,989 0,603

53 Right Hippocampus 27 −22 −12 0,988 0,835

54 Right Medial Frontal Gyrus (BA 6) 2 36 33 0,987 0,185

55 Right Parahippocampal Gyrus (BA 36) 24 −29 −12 0,987 0,510

56 Right Hypothalamus 4 −1 −6 0,984 0,599

57 Left Precentral Gyrus (BA 4) −36 −13 52 0,983 0,206

58 Right Medial Frontal Gyrus (BA 11) 1 36 −11 0,982 0,076

59 Right Supramarginal Gyrus (BA 40) 54 −53 27 0,980 0,182

60 Right Cerebellar Tonsil 12 −45 −42 0,980 0,037

61 Right Midline Nucleus (Thalamus) 7 −15 15 0,979 0,942

62 Right Putamen 27 −9 9 0,979 0,584

63 Right Superior Temporal Gyrus (BA 39) 54 −54 27 0,977 0,140

64 Left Mammillary Body −8 −18 3 0,976 0,570

65 Right Posterior Cingulate (BA 29) 3 −57 9 0,975 0,329

66 Left Parahippocampal Gyrus (BA 37) −30 −39 −12 0,973 0,334

67 Right Superior Temporal Gyrus (BA 22) 45 −21 0 0,970 0,285

68 Right Ventral Lateral Nucleus (Thalamus) 11 −12 15 0,969 0,677

69 Right Mammillary Body 8 −21 5 0,968 0,470

70 Right Fusiform Gyrus (BA 37) 30 −36 −12 0,968 0,323

71 Right Lateral Dorsal Nucleus (Thalamus) 10 −16 15 0,968 0,869

72 Left Midline Nucleus (Thalamus) −7 −20 14 0,968 0,903
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73 Left Hypothalamus −5 −3 −5 0,963 0,648

74 Left Middle Frontal Gyrus (BA 8) −30 39 39 0,962 0,175

75 Right Postcentral Gyrus (BA 3) 48 −15 42 0,958 0,179

76 Right Middle Frontal Gyrus (BA 46) 42 31 22 0,957 0,171

77 Left Postcentral Gyrus (BA 3) −54 −15 30 0,957 0,144

78 Right Parahippocampal Gyrus (BA 27) 24 −30 −7 0,955 0,448

79 Left Postcentral Gyrus (BA 40) −57 −27 21 0,954 0,151

80 Left Ventral Lateral Nucleus (Thalamus) −6 −9 6 0,952 0,758

81 Right Medial Globus Pallidus 9 3 −3 0,948 0,523

82 Left Lateral Dorsal Nucleus (Thalamus) −9 −20 14 0,948 0,883

83 Right Red Nucleus 4 −20 2 0,947 0,209

84 Right Postcentral Gyrus (BA 2) 48 −24 42 0,944 0,233

85 Right Superior Temporal Gyrus (BA 41) 54 −24 14 0,943 0,340

86 Right Lateral Globus Pallidus 18 0 −7 0,943 0,466

87 Left Anterior Nucleus (Thalamus) −6 −9 12 0,939 0,748

88 Left Medial Geniculum Body −15 −24 2 0,935 0,534

89 Right Declive (Cerebellum) 15 −60 −12 0,933 0,157

90 Right Ventral Posterior Medial Nucleus (Thalamus) 12 −19 10 0,932 0,589

91 Right Nucleus Accumbens 9 12 −6 0,931 0,789

92 Right Lateral Posterior Nucleus (Thalamus) 13 −22 12 0,931 0,573

93 Right Medial Frontal Gyrus (BA 8) 3 42 42 0,930 0,291

94 Right Cuneus (BA 18) 3 −87 24 0,922 0,134

95 Left Precuneus (BA 7) −3 −63 36 0,921 0,236

96 Left Ventral Anterior Nucleus (Thalamus) −6 −7 3 0,919 0,493

97 Left Middle Occipital Gyrus (BA 18) −36 −81 −9 0,919 0,104

98 Right Ventral Posterior Lateral Nucleus (Thalamus) 12 −16 10 0,918 0,488

99 Left Middle Temporal Gyrus (BA 39) −51 −57 9 0,916 0,240

10
0

Right Inferior Temporal Gyrus (BA 20) 36 −6 −36 0,916 0,311

10
1

Left Postcentral Gyrus (BA 2) −54 −19 30 0,915 0,200

10
2

Left Declive (Cerebellum) −42 −69 −18 0,914 0,129

10
3

Left Middle Occipital Gyrus (BA 19) −54 −60 −6 0,912 0,128

10
4

Right Caudate Tail 36 −16 −6 0,912 0,353

10
5

Left Caudate Tail −36 −14 −10 0,910 0,370

10
6

Left Precuneus (BA 31) −9 −54 30 0,907 0,272
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10
7

Right Cuneus (BA 19) 3 −87 25 0,907 0,170

10
8

Left Nucleus Accumbens −9 13 −8 0,906 0,503

10
9

Left Posterior Cingulate (BA 23) −6 −39 27 0,906 0,246

11
0

Right Precuneus (BA 7) 0 −60 36 0,904 0,160

11
1

Right Cingulate Gyrus (BA 23) 0 −33 27 0,904 0,275

11
2

Left Culmen (Cerebellum) −24 −33 −18 0,901 0,064

11
3

Right Culmen (Cerebellum) 12 −63 −10 0,901 0,095

11
4

Left Tuber (Cerebellum) −42 −69 −23 0,900 0,076

11
5

Right Superior Temporal Gyrus (BA 42) 57 −30 6 0,899 0,163

11
6

Left Parahippocampal Gyrus (BA 27) −24 −34 −3 0,896 0,533

11
7

Right Cingulate Gyrus (BA 31) 6 −57 30 0,895 0,300

11
8

Left Parahippocampal Gyrus (BA 30) −18 −42 −3 0,895 0,175

11
9

Right Ventral Anterior Nucleus (Thalamus) 12 −9 12 0,885 0,469

12
0

Left Inferior Semi-Lunar Lobule (Cerebellum) −24 −66 −39 0,881 0,043

12
1

Right Tuber (Cerebellum) 33 −57 −30 0,876 0,045

12
2

Left Cerebellar Tonsil −24 −63 −45 0,876 0,044

12
3

Right Pyramis (Cerebellum) 29 −57 −30 0,876 0,097

12
4

Right Inferior Semi-Lunar Lobule (Cerebellum) 24 −78 −35 0,876 0,027

12
5

Left Precentral Gyrus (BA 43) −57 −6 12 0,876 0,228

12
6

Left Red Nucleus −7 −18 2 0,863 0,146

12
7

Left Postcentral Gyrus (BA 1) −56 −25 37 0,857 0,073

12
8

Right Lateral Geniculum Body 24 −26 −3 0,856 0,194

12
9

Left Paracentral Lobule (BA 5) −9 −42 60 0,842 0,178

13
0

Right Uvula (Cerebellum) 20 −73 −31 0,838 0,057
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13
1

Right Anterior Cingulate (BA 33) 1 22 22 0,824 0,280

13
2

Right Precentral Gyrus (BA 43) 54 −3 12 0,803 0,213

13
3

Left Lingual Gyrus (BA 17) −4 −84 1 0,784 0,050

13
4

Medulla Oblongata 3 −39 −42 0,778 0,071

13
5

Left Cerebellar Lingual −6 −45 −18 0,777 0,152

13
6

Right Postcentral Gyrus (BA 1) 62 −23 34 0,776 0,095

13
7

Left Fastigium (Cerebellum) −6 −47 −19 0,762 0,180

13
8

Right Postcentral Gyrus (BA 5) 6 −46 63 0,755 0,170

13
9

Left Anterior Cingulate (BA 33) −3 22 21 0,753 0,203

14
0

Left Lateral Geniculum Body −24 −27 −3 0,748 0,343

14
1

Left Subthalamic Nucleus −11 −11 2 0,742 0,183

14
2

Left Posterior Cingulate (BA 29) −6 −41 22 0,741 0,078

14
3

Right Culmen (Cerebellum) 5 −33 −13 0,700 0,074

14
4

Left Substantia Nigra −17 −20 −6 0,625 0,074

14
5

Right Pons 14 −14 −19 0,572 0,015

14
6

Left Lingual Gyrus (BA 17) 0 −84 3 0,560 0,092

14
7

Right Subthalamic Nucleus 11 −12 2 0,540 0,106

14
8

Left Dentate (Cerebellum) −12 −47 −18 0,487 0,031

14
9

Right Medial Geniculum Body 14 −24 2 0,475 0,073

15
0

Left Declive (Cerebellum) 0 −75 −12 0,317 0,028

15
1

Right Dentate (Cerebellum) 18 −54 −18 0,317 0,012

15
2

Left Nodule (Cerebellum) −6 −46 −26 0,218 0,004

15
3

Right Substantia Nigra 16 −20 −6 0,214 0,019

15
4

Right Fastigium (Cerebellum) 6 −48 −19 0,212 0,019
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15
5

Right Culmen (Cerebellum) 6 −59 3 0,206 0,011

15
6

Left Uvula (Cerebellum) −4 −60 −34 0,164 0,006

15
7

Left Tuber (Cerebellum) −1 −75 −24 0,093 0,009

15
8

Right Locus Coeruleus 6 −28 −8 0,037 0,006

15
9

Left Pyramis (Cerebellum) −2 −78 −27 0,026 0,003

16
0

Left Locus Coeruleus −5 −25 −7 0,013 0,004
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