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A B S T R A C T

The study of correlations between brain regions is an important chapter of the analysis of large-scale brain
spatiotemporal dynamics. In particular, novel methods suited to extract dynamic changes in mutual correlations
are needed. Here we scrutinize a recently reported metric dubbed “Multiplication of Temporal Derivatives” (MTD)
which is based on the temporal derivative of each time series. The formal comparison of the MTD formula with
the Pearson correlation of the derivatives reveals only minor differences, which we find negligible in practice. A
comparison with the sliding window Pearson correlation of the raw time series in several stationary and non-
stationary set-ups, including a realistic stationary network detection, reveals lower sensitivity of derivatives to
low frequency drifts and to autocorrelations but also lower signal-to-noise ratio. It does not indicate any evident
mathematical advantages of the proposed metric over commonly used correlation methods.
1. Introduction

An important challenge and a very active area of research in the
neuroimaging community is the study of correlations between brain re-
gions, as a central point in the analysis of large-scale brain spatiotem-
poral dynamics. Usually the correlation measures are computed between
several thousand time series—the BOLD (“blood-oxygen-level depen-
dent”) signals—covering the entire brain, and averaged over a period of
tens of minutes. However such evaluations fall short of characterizing the
highly dynamic changes occurring in the brain (Chang and Glover, 2010;
Preti et al., 2017; Yu et al., 2015; Gonzalez-Castillo et al., 2014;
Thompson and Fransson, 2016) and, consequently, the current emphasis
shifted to the study of time-varying correlations.

In that line, a recent report (Shine et al., 2015) introduces a metric
dedicated to investigation of dynamic functional connectivity (DFC) in
fMRI time series data—dubbed Multiplication of Temporal Derivatives
(MTD)—based on the temporal derivative of each BOLD time series. The
authors used this measure on a three-part experiment claiming that it
demonstrates “the ability of this novel metric to calculate dynamic and
stationary functional connectivity structure in both real and simulated
data” (Shine et al., 2015). Naturally, there are numerous other DFC
methods available, based on sliding-window Pearson correlation (e.g.
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(Chang and Glover, 2010; Hutchison et al., 2012),), clustering (Liu and
Duyn, 2013) or temporal ICA (Smith et al., 2012) to name just a few.
Many of them can be formulated in a general conceptual framework
described by Thompson and Fransson (2018)—most notably MTD
method and weighted Pearson correlation to which it bears resemblance.
It is of particular importance to explore and determine in which tasks
these methods perform well and what properties of BOLD time series
they rely on.

These notes are dedicated to carefully inspect the mathematical
grounding of the MTD measure and revisit some of the scenarios for
which the metric is intended. We will first discuss the case of stationary
processes, and then inspect the non-stationary cases. The paper is orga-
nized as follows: the next section contains the mathematical definition of
the MTD measure side by side with the mathematical expression for the
Pearson correlation coefficient. To develop some intuition, Section 3
provides extremely simple examples allowing comparison of the ex-
pected results for Pearson correlation in the raw time series and its time
derivative. Section 4 presents a formal framework to predict the expected
behavior of the correlations for the case in which a raw time series is
compared with its temporal derivative. In Section 4.1 we inspect a simple
non-stationary example which lends support to the analytical expecta-
tions for the two time series (raw and derivatives). The analytical
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Fig. 1. Simple examples of raw time series st (black) and its series of derivatives
dst (red) for a Gaussian (top), a sinusoid (middle), and a typical brain BOLD
(bottom) time series. The diagrams on the right plot the time series against
each other.
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framework is further contrasted, in Section 5, with the results of
analyzing resting state BOLD time series. In Section 6 we use surrogate
data from BOLD time series to determine the behavior of the derivatives
to a sudden change in covariance. Finally, in Section 7 the performance of
the MTD approach in inferring the underlying network connectivity is
examined. The paper closes with conclusions and a brief summary of the
results. Further details are condensed in the Appendix section with the
appropriate derivations.

2. Correlations of first-order derivatives

Let us start by recalling how the authors in (Shine et al., 2015) define
Multiplication of Temporal Derivatives:

dsit ¼ sitþ1 � sit (1)

MTDijt ¼ dsitdsjt
σiσj

(2)

SMAijt ¼ 1
2wþ 1

X
t0 ¼t�w

tþw

MTDijt0 ¼
1

2wþ 1

X
t0 ¼t�w

tþw dsit0
σi

dsjt0

σj
; (3)

where 2wþ 1 equals to the number of samples considered in a temporal
window ½t� w; tþ w�, si is an i-th time series, and σi is the standard
Fig. 2. Analytical and numerical results for the correlations
of a AR(1) process of two nodes with a range of coefficients
(the auto-coeff. a1, and the cross-coeff. a2). In all graphs rij
corresponds to the Pearson correlation for the raw (green
circles) and derivative (blue squares) time series. Dashed lines
represent the asymptotic analytical expectation for rij, and
symbols and error bars correspond to the mean and standard
deviations of the numerical results. Upper panels show cor-
relation of entire series, lower panels show sliding window
correlation (i.e., SWPC of raw series and MTD). Time series
length T ¼ 1000; N ¼ 1000 realizations; window length 2wþ
1 ¼ 21.
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deviation of the entire dsi series. We call sit the raw time series as opposed
to the series of derivatives dsit . Usually, the series dsit is called inter-
changeably increments, finite differences, temporal derivatives or
differentiated time series. While the first two are terminologically more
adequate, for consistency with the established name of MTD we continue
to use temporal derivatives throughout. Note that (1) is a forward differ-
ence with a unit time step, but other choices are also possible.

Now, let us reflect on how these definitions relate to correlation co-
efficients. For any two time series sit 0 and sjt 0 , where i; j 2 f1;2;…;Ng are
indices numbering the series and t

0 2 ft � w; t � wþ 1;…; t þ w� 1; t þ
wg is a time index in a window around time t, the sample estimator of
Pearson correlation coefficient for the given time window is defined as

rijt ¼
Xtþw

t0 ¼t�w

�
dsit0 � dsi

��
dsjt0 � dsj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXtþw

t0 ¼t�w

�
dsit0 � dsi

�2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXtþw

t0 ¼t�w

�
dsjt' � dsj

�2q

¼ 1
2wþ 1

X
t0 ¼t�w

tþw dsit0 � dsi
σi

dsjt0 � dsj
σj

; (4)

where dsi ¼ 1
2wþ1

Ptþw
t '¼t�wdsit ' is the sample mean and σi denote standard

deviations of the time series dsi in the given time window ½t� w; tþ w�.
Centering around the mean and dividing by standard deviations is
necessary for the coefficient to be invariant under linear transformations
(aþ bdsit , with constants a and b).

The form of equations (3) and (4) are visibly similar. The difference is
that the derivatives in SMAijt are not centered and that the standard
deviations σi in (3) are computed over the whole series and not just over
the time window as σi in (4). As regards centering, the mean dsi ¼

1
2wþ1

Ptþw
t '¼t�wdsit ' ¼ sit�w�sitþw

2wþ1 → 0 for large window sizes; the standard de-
viation of the (window) sample also converges to the standard deviation
of the entire series. While we expect that for short windows the centering
and variances might introduce some bias, Fig. 2 corroborates that the two
ways are tantamount: the numerical results for temporal derivatives
calculated exactly from (3) conform to the analytical solution derived for
large window limit of (4).

In other words, asymptotically for large window sizes the SMA of
MTD (Shine et al., 2015), i.e., the moving average of multiplication of
temporal derivatives equates with the sliding-window Pearson correla-
tion (SWPC) of temporal derivatives (not to be confused with the SWPC
of the raw series). In the general notation used by Thompson and
Fransson (2018), Y ¼ RðUðXÞ;WÞ—where X are raw data series, W are
weight vectors,U is a transform of the data, R is a relation function, and Y
is the resulting estimate of DFC—SMA of MTD can be expressed with the
temporal derivative (1) standing for U and Pearson correlation standing
for R. While we believe, the “SWPC of derivatives” is a more informative
term than MTD, hereafter we do not use it in order to avoid termino-
logical confusion.

As also mentioned in (Shine et al., 2015), differencing has the
high-pass filtering effect preferable in some situations. Indeed, differ-
encing is a well-known method for reducing some time series to sta-
tionary ones (Box et al., 2015, Ch. 6.2), which one could expect to show
no or, in real data, at least less dynamics. Therefore, a valid question is
how is this method different from the sliding window Pearson's corre-
lation coefficients referred to therein or, from another angle, what in-
formation do derivatives contain that the raw series do not? To unravel
this issue, in the next section we will first scrutinize the simplest exam-
ples of time series, allowing a comparison with the Pearson correlation
expected for a raw time series and its temporal derivatives. Again we
remark that the stationary cases will be treated first to later analyze the
relevant case of non-stationarity.

3. Simple examples

For the sake of simplicity, let us consider how the two correlation
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measures behave in simple cases. First, in the case of signals which are
Gaussian white noise (see Fig. 1) let us assume that sit ¼ ξit where ξi are
independent and identically distributed random variables, and the ξit are
the outcomes of these variables (random variates). Let us remind that
independence of random variables X;Y is equivalent to the statement
that the expectation value factorizes E½f ðXÞgðYÞ� ¼ E½f ðXÞ�E½gðYÞ� for any
functions f and g. In the case of Pearson correlation, the centered time
series E½sit � si� ¼ 0 and thus, thanks to the independence between si and
sj, also the correlation coefficient (4) is zero for i 6¼ j. It follows that since
E½dsi� ¼ 0 also E½dsitdsjt � ¼ 0 for i 6¼ j, and so the expected value of the
moving average (3) yields E½SMAijt � ¼ 0 as well. It is noteworthy, how-
ever, that since dsi is a sum of two random variables, its variance is twice
the variance of si. Thus, in all noisy time series we can expect the signal-
to-noise ratio of the derivatives to be lower than that of the raw series.

Now let us assume that instead of a discrete time series sit , we have a
continuous, differentiable signal siðtÞ ¼ sinðtþ ϕiÞ, which has zero mean
and σ2i ¼ 1=2. For signals siðtÞ; sjðtÞ differing only by their phases ϕi;ϕj

the correlation coefficient equals rij ¼ cosðϕi � ϕjÞ. The differentiated
series dsiðtÞ ¼ cosðt þ ϕiÞ have the same mean and variance and corre-
lation coefficients. Introducing arbitrary frequencies have no effect as
well. Thus, we expect similar results for the both Pearson correlation
measures for signals that are sinusoidal. For a discrete signal, the
amplitude of derivatives decreases linearly with increasing sampling
rate, see Fig. 1 (middle panel). Computationally, differences between the
two correlation measures will only appear from an artifact when the
length of the sliding windows is comparable to the period of the sinu-
soidal oscillation. In such case, there is an asymmetry, as the sine waves
will be cut at different positions depending on their phase and frequency.
For the sake of intuition, the bottom panel of Fig. 1 depicts a BOLD time
series and its derivative, which illustrate the phase shift mentioned above
for the case of sinusoidal signals. Note that the derivatives produce series
one data point shorter than the raw time series, as visible in the figure.

Before proceeding further let us recall that the main claim of (Shine
et al., 2015) was that the cross-correlation of the derivative time series is
more informative of brief correlation changes.

4. Autoregressive models

To revisit and understand the results under scrutiny, in this section we
study the case of two AR(1) processes for which we can manipulate their
interactions and compute the expected correlations measures for both the
raw and derivative time series. Despite the enormous differences be-
tween the properties of the BOLD signal and a simple AR(1) process, its
analysis can bring about some general understanding on what to expect
from the proposed correlation metric of derivatives. The two time series
are simulated as follows:

x1t ¼ a1x1;t�1 þ a2x2t�1 þ ξ1t ; x2t ¼ a1x2;t�1 þ a2x1t�1 þ ξ2t ; (5)

where ξit are uncorrelated. The range of parameters is limited by ja1j þ
ja2j < 1 to ensure weak stationarity. The model (5) is a special case of
VAR(q) processes—in the Appendices Appendix A, Appendix B, Appen-
dix C we show how one can derive analytically and compute Pearson
correlation (and correlation of the derivative) of such a process knowing
its parameters. Thanks to that, we can predict the average behavior of
SWPC and MTD for a range of parameters within that model, as well as
we can reverse-engineer the real data, designing a model that exhibits
specific Pearson correlations.

Notice that a1 and a2 above represent the auto-interaction and the
cross-interaction coefficients, respectively, which can be estimated in this
linear case by the correlation coefficients. Thus, in the jargon of (Shine
et al., 2015) a1 and a2 are the values representing the “ground truth”
which the numerical methods of functional connectivity shall predict.

Fig. 2 (upper panels) shows the numerical results (symbols and error
bars) for the asymptotic correlations of the process of two nodes in (5) as
well as the analytical results (dashed lines) provided in Appendices



Fig. 3. Analytical asymptotic Pearson correlations of an AR(1) process of two nodes with a range of coefficients, as in Fig. 2. Left panel corresponds to raw series, right
panel to temporal derivative. Note that the allowed parameter range is given by ja1j þ ja2j < 1.

Fig. 4. A step change in the cross-interaction coefficient (a2ðtÞ ¼ 0 for t < 50 and a2ðtÞ ¼ :5 otherwise) can be detected by evaluating either the correlation of the raw
or the derivative time series. Compare with Fig. 3 to see the expected change in rij for different values of auto-coefficient a1. (Window size¼ 21, sliding with unit steps,
lines are averages and shaded regions are standard deviations of N¼ 200 realizations).
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Appendix A, Appendix B, Appendix C. The results show that in the case of
fluctuations modelled by an AR(1) process the Pearson correlation of its
derivative exhibits a negative sign. Moreover, depending on a1 and a2 it
can be weaker or stronger than the correlation of its raw time series. A
realistic, with high values of autocorrelation, is further shown in Sections
5-6. The analytical result for the full parameter range is shown in Fig. 3.

Similar conclusions can be drawn from computing sliding windows of
the Pearson correlation of both the raw time series and its derivative as
shown in lower panels of Fig. 2. The only difference with the results in
upper panels are the larger magnitude of the error bars expected from the
relatively smaller sample size.
4.1. A non-stationary example

The report introducing MTD (Shine et al., 2015) relies on the hy-
pothesis that the time derivative of a signal could bring about new in-
formation in the case of time dependent mutual correlations. In simple
terms, the idea was that sudden changes in correlations would be best
estimated by the correlation of derivatives. The set-up of Experiments 1a
and 1b therein is essentially Gaussian signals undergoing an instanta-
neous change from null to positive Pearson correlation (from 0.1 up to
0.5). Autoregressive models offer a more general and slightly more
realistic scenario, allowing us to tune the autocorrelations of the signal.
We consider the same scheme of (5), with a1 ¼ 0:2 and a1 ¼ 0:5 but with
the modification that the cross coefficient a2ðtÞ depends on time, and is
undergoing a sudden step change:
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x1t ¼ a1x1;t�1 þ a2ðtÞx2t�1 þ ξ1t; x2t ¼ a1x2;t�1 þ a2ðtÞx1t�1 þ ξ2t: (6)
Then we compute correlation measures over the raw and derivative
time series and attempt to predict at which time step the change occurs.
Fig. 4 shows an example of the typical results obtained. Mark that for the
derivatives, we compareMTD (3) and SWPC (4), showing that despite the
difference in centering and standardization they behave almost the same
even for a small window size.

It is visible that correlations computed over the raw or the derivatives
accurately detect the change in the coefficient from a2 ¼ 0 to a2 ¼ 0:5 as
soon as the sliding window reaches the transition point. In fact, the
correlation values after the transition can be read already from Fig. 3 by
looking at the corresponding parameter coordinates. Moreover, from the
preceding section, and specifically from Figs. 2–3, one can see that the
size of the change in correlations rij heavily depends on the parameters
a1, a2. Also the relative size of rij between raw series and derivatives
depends on them. Additionally, mark the standard deviations in Fig. 4:
for a2 ¼ 0 they are comparable between the methods; for a2 ¼ 0:5, MTD
has the largest spread, followed by SWPC of raw series and SWPC of
derivatives having the best precision. Lastly, while the raw series does
not allow significant detection of change in cross-coefficient for small
auto-coefficient, for high a1 the detection is possible even sooner than for
derivatives, owing to the steeper early slope during the transition.

This simple example demonstrates how strongly correlation metric of
both raw series and derivatives depends on the model of the signal,
which raises doubts about any general advantages of one method over
the other to detect such non-stationary effects. In some scenarios,



Fig. 5. Comparison between an ARMA model correlation behavior for both raw
and differentiated experimental BOLD time series. Left Panel: Each dot repre-
sents the cross-correlation (rij) of two BOLD time series versus the average
autocorrelation value (AC) of the pair (small filled green circles for raw BOLD
and open squares for derivatives; red big circles denote binned averages for raw
and squares for derivatives, with horizontally equidistant binning). Right Panel:
Dashed lines are analytical expectations of cross-correlations for the fitted model
given its autocorrelation. The symbols with errors bars correspond to mean
cross-correlation values and standard deviations, respectively, from simulation
of the fitted ARMA model, where circles denote results for the raw series and
squares those from differentiated series. The model consists of two coupled
ARMA(1,1) time series with three 2� 2 coefficient matrices in total (A for AR, B
for MA and Σ for noise). The parameters A1;1 ¼ A2;2 ¼ a1 were fixed by the
autocorrelations of the BOLD pairs (green circles data points); the other pa-
rameters were fitted by least square differences between the analytical lines and
the data points (both raw and differentiated).
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however, one or the other method might have an edge—like MTD in the
particular model of head motion originally reported in (Shine et al.,
2015). The following sections, and in particular Fig. 6, test these obser-
vations in a much more realistic, data-driven fashion.

5. Correlation properties of BOLD signals and its fitted ARMA
model

Now we turn to study the correlation properties of real BOLD brain
signals estimated for both the raw time series and its derivative.
Furthermore, we extend the analysis of each time series to its autore-
gressive moving average (ARMA) models (Brockwell and Davis, 2016),
an approach which is often used to explore the statistical properties of
time series. This approach allows for a description in terms of a stochastic
process with two polynomials, one for the auto-regression and the second
for the moving average.

In Fig. 5 we show the results of such an approach informed by brain
resting state BOLD data. These time series correspond to closed-eyes
resting state fMRI, 240 vol with 2.5 s TR amounting to 10-min
recording of one healthy subject, already described in (Haimovici
et al., 2013) (all the acquisition and preprocessing information can be
found in the supplemental information therein) and were extracted ac-
cording to the parcellation of Hagmann et al. (2008) which covers the
entire human cortex in N ¼ 998 patches of approx. 1� 1 centimeters. In
order to make a comparison of auto and cross-correlation properties, the
autocorrelation of each time series was computed and used to sort the
998 data sets. After that the cross-correlations were computed between
consecutive pairs of time series with neighboring autocorrelation values.
The dots in Fig. 5 represent the cross-correlation rij between each pair as a
function of their mean autocorrelation value. Green dots correspond to
the raw data and blue dots to the time series of derivatives, while the
symbols and error bars denote the predictions of the ARMA model.

The reason for scrutinizing the dependence of cross-correlation on
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autocorrelation is the following: in general, one would like to know,
whether (linear) Pearson correlations of raw or derivative time series are
informative of interactions between brain regions that produced the se-
ries. In Sec. 4 we have shown that it is not only the interactions (modelled
by cross-coefficient a2) but also the auto-coefficient a1 responsible for
autocorrelations that might strongly influence what is measured by the
cross-correlations. Knowing that, it is worth checking how different
methods measuring cross-correlations depend on autocorrelations in real
data.

A straightforward visual inspection of Fig. 5 immediately reveals that,
on average, most pairs of derivative time series (square symbols) exhibit
a weak and constant value of the correlation (as already suggested by the
results in Figs. 2 and 3), while the raw data (circle symbols) shows an
increasing trend of cross-correlations for increasing autocorrelations of a
given pair. This tendency can to an extent be reproduced with a
VARMA(1,1) model, both simulated and analytical, as presented on the
right panel of Fig. 5. The model is defined by two coupled ARMA(1,1)
time series with three 2� 2 coefficient matrices in total (A for AR—see
also Appendix Appendix A, Appendix B for MA and Σ for noise).

These observation can be interpreted in several ways. First, correla-
tions can be misleading in the case of raw series, because they might only
be a result of autocorrelation. On the other hand, the best fit ARMA(1,1)
model, although not fully adequate, cannot explain the whole range of rij
by manipulating a1 when the interactions (i.e., A1;2 and A2;1 matrix el-
ements) are kept constant. It suggests that rij of raw series comes at least
partly from the functional interactions. Secondly, the rij of derivatives can
be explained more easily by the simple model, which might mean they
are less informative. How generic this behavior is, however, remains to
be studied analytically. Finally, the rij of raw BOLD series and of de-
rivatives are uncorrelated, which means that SWPC and MTD methods
can produce either complementary or contradictory results that are hard
to interpret at the current level of understanding. More subtle temporal
dynamics can be unraveled using the spectral analysis of cross-
correlation matrices (Burda et al., 2010; Livan and Rebecchi, 2012;
Nowak and Tarnowski, 2017) and the approach discussed in the next
section.

6. Further testing with surrogate data sets with identical
covariance and spectral properties as BOLD

The properties discussed so far for the raw and derivative time series
can be further investigated in the setting of simulated sets that contain
the exact same correlation properties as the BOLD data. For that purpose
we simulate time series which mimic closely the covariance and spectral
properties of the BOLD data. This approach was used recently by Lau-
mann et al. (2016) to study the contribution of various sources of
non-stationarity. The starting point is the BOLD data set from an indi-
vidual subject. After applying the bandpass filters usual in most fMRI
studies, two estimators are computed: the average power spectrum and
the covariance matrix. After that we create a time series of random
Gaussian data of size equal to the real BOLD data set. Subsequently, the
spectral content is matched by multiplying these random time series by
the two-sided average power spectrum obtained from the real data.
Finally, the time series are projected onto the eigenvectors of the
covariance matrix calculated from the real data. In this way multivariate
data sets—of arbitrary length—are generated, which are stochastic re-
alizations of the chosen BOLD data sets, with identical covariance
structure and mean spectral content.

Using this simulation method, similarly as in Sec. 4.1, we test the
scenario of a sudden change in the covariance, considered in the work
being discussed (Shine et al., 2015). Fig. 6 illustrates an example using
the same BOLD data used in Fig. 5 consisting of 998 time series. Here are
plotted the covariances of a pair of time series, both for the raw and the
differentiated ones. Up to the step indicated by the dashed line, the series
corresponds to a realization of the selected original data (same spectra



Fig. 6. Simulation of a sudden change (at time¼ 124) in covariance using surrogate times series. Left panels: cross-correlation drops to 0.2 with constant autocor-
relation close to 1. Right panels: cross-correlation drops to 0.2 and autocorrelation to 0.4. The bottom graphs depict the time series and derivatives of two selected ROI.
The top graphs show the covariance and correlation as in Fig. 4, with sliding window of 21 steps. Lines are averages and shaded regions are standard deviations of
N¼ 200 realizations. Dashed vertical line indicates the step at which the change occurred.
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and covariance) having high cross-covariance, approx. 0.8, and further
on to a sudden change of non-diagonal entries of the covariance matrix to
0.2 we introduced in the simulation. In a similar manner, we also
introduced simultaneous change in both cross- (again to 0.2) and
auto-covariance (to 0.4). It can be seen that estimators of both raw series
and derivatives track the change. Note the relatively smaller amplitude of
covariance of derivatives, something expected by definition, as follows
from discussion in Sec. 3. Next, the spread of MTDmetric is much greater
than that of SWPC, as illustrated by the shaded strips of standard de-
viations. At the same time, the intuitions gained from autoregressive
processes, as demonstrated in Fig. 4, appear to hold. The autocovariance
does affect the two metrics differently: MTD remains relatively insensi-
tive to it, while it does make the step in SWPC smaller. It should be
emphasized that such simultaneous amplitude modulation does not
necessarily arise from any communication of the two ROIs. Since neither
method is able to tell the difference, any preference in such a case is
debatable.

7. Detection of ground truth network from realistic BOLD
simulations

An important claim in (Shine et al., 2015) is the apparent benefit of
using the MTD approach to estimate the stationary connectivity structure
of a functional network. They compared the performance of the corre-
lation of derivatives against existing methods studying a well charac-
terized fMRI dataset as well as a previously published gold-standard
simulated data set (Smith et al., 2011) obtained from FMRIB (http://
www.fmrib.ox.ac.uk/analysis/netsim). For the sake of comparison with
the original result, we use the exact same setting, irrespective of its
suitability to test for a time-varying connectivity. The data set is
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simulated BOLD signals with known network structure, thus enabling
evaluation of a range of connectivity models and comparing the results
with the “ground truth” network structure. Briefly, this dataset consists of
28 simulations of BOLD data in 50 realizations (TR¼ 1.5–3 s; 200–1000
individual time points; 5–50 nodes; and differing levels of noise and
hemodynamic response function variability). Each simulated dataset was
created using an fMRI forward model based on dynamic causal modeling
(DCM; Friston et al., 2003), combined with a non-linear balloon model
(Buxton et al., 1998) to simulate vascular dynamics (see Smith et al.,
2011, for details of the simulation).

Here we restrict our attention to the network labeled “sim4”, which
simulates 50 BOLD signals. The simulated network comprises 10 regular
modules interconnected by a few links, forming a typical small-word
graph. There is a total of 50 nodes interconnected by 61 positive off-
diagonal interactions, 40 of them corresponding to nearest neighbors
(link weights are 0:4� 0:03; mean � s.d.). There are also 50 negative
(diagonal) self-interactions which determine the characteristic time scale
for the dynamics. The data set contains 50 stochastic realizations which
meant to represent fMRI records of different human individuals.

We proceed to use the same dataset and check how well the methods
perform in predicting from the time series the underlying graph. Spe-
cifically, we check how well the correlation matrices obtained from both
the raw BOLD dataset and its derivative describe the ground-truth
network. We used partial correlations (instead of Pearson's) since that
was the optimal method reported in the original Smith et al. (2011)
report.

To gauge each method we used the receiver operating characteristic
curve (ROC; Fawcett, 2006), which benchmark specificity and sensitivity
as a function of a given parameter. To determine whether a connection
between two nodes is predicted or not we choose a decision threshold of

http://www.fmrib.ox.ac.uk/analysis/netsim
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Fig. 7. Left Panel: Receiving Operating Characteristic curves
obtained for both methods in detecting the presence of links
(1:75σ threshold) computed for the five time series length
(indicated in the right panel). Right Panel: The results
correspond to the area under the ROC curve, computed for
both methods as a function of increasing length of the time
series considered. Note that the similarity of performance of
the two measures for relatively small windows lengths is ex-
pected since both must converge to the 0.5 chance value.
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1.75 σ at the entries ði; jÞ of the partial correlation matrices, interpreting
any value larger than that as a connection between such nodes. The
presence of each link predicted in this way is compared with the
respective entry in the adjacency matrix of the sim4 network, resulting in
a false positive or a true positive event. The same procedure is applied for
a range of time series lengths and repeated for the raw time series (green
points) and the derivatives (blue points).

Fig. 7 illustrates the results: there is a family of curves corresponding
to various lengths of the considered time series. The shortest data
(T¼ 200 samples) give the less confident results and the longest
(T¼ 1000 samples) a very good estimation of the network connections.
The area under the curve (AUC), plotted in the right panel of Fig. 7, is a
good estimate of the performance of the method, where a value of 1
corresponds to a perfect prediction and a value of 0.5 is equivalent to
chance. The results in this figure clearly show that the estimates based
on the derivatives perform worse than the ones using the raw BOLD
time series, suggesting that MTD offers no advantage over standard
methods.

8. Conclusions

In this paper we have analyzed the basis of a metric dubbed Multi-
plicative Temporal Derivatives recently proposed as a novel way to
determine changes in functional correlations between regions of interest
in the brain. Even though we focused on properties of only two DFC
methods, MTD together with sliding-window Pearson correlation, many
others are available and it is noteworthy that there are efforts (Thompson
et al., 2017) to systematically assess their performance.

A formal comparison of the MTD formula with the Pearson correla-
tion of a time derivative reveals two differences, namely that derivatives
are not centered in MTD and that their variance is computed over
different ensembles. We find it negligible in practice, although centering
and windowed standardization tend to decrease uncertainty of
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estimating correlations. In effect, what we compared was the mathe-
matical features of correlations of raw and derivative time series.
Consequently, the choice of the examined scenarios was dictated by
relation of these features to characteristics of BOLD signals. The results of
our analysis show that in a realistic scenario of stationary network
detection a metric based on derivatives performs worse. This could be a
consequence of decreased signal-to-noise ratio of such time series—-
which we expect from the increased variance of noise and decreased
amplitude of oscillatory signals for derivatives of a discrete time
series—as well as its enhanced stationarity. Derivatives, on the other
hand, are not affected by low frequency drifts. A comparison with the
SWPC of the raw time series in non-stationary set-ups also does not
indicate any evident mathematical advantages of the proposed metric
over commonly used correlation methods: it reveals lower sensitivity of
derivatives to autocorrelations, which might offer higher reliability but
at the cost of slower detection and larger deviations. The extent and
complementarity of information carried by correlations of raw BOLD
series and its derivatives demands further inquiry.
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Appendix A. VAR(1)

Let us consider a vector autoregressive process, VAR(q), governed by the following equation

xit ¼
Xq
k¼1

XN
j¼1

AðkÞ
ij xj;t�k þ ξit : (A.1)

The Equation (5) are a special case of the above process, which can be seen after inserting q ¼ 1, N ¼ 2, Að1Þ
11 ¼ Að1Þ

22 ¼ a1, A
ð1Þ
12 ¼ Að1Þ

12 ¼ a2. In
general, there areN time series indexed by i;j, and memory of q time steps. The matricesAðkÞ are of size N � N (in general non-symmetric) with elements

AðkÞ
ij , and ξit are Gaussian random variables which are uncorrelated in time, i.e., ξit and ξjt ' are independent if t 6¼ t 0 . General VAR models allow for

correlated noise with true covariances E½ξitξjt � ¼ Σij, where Σ is symmetric positive definite. By hi we denote the sample average of the time series. For

instance, in this case the estimator of the true covariance matrix reads hξitξjti ¼ 1
T

PT
t¼1ξitξjt , where T is the length of the series. For infinite time series

length the true covariance matrix and its estimator are identical.
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From this point on our aim is to calculate the Pearson correlation coefficients for VAR(1) process and its temporal derivative. We define the time-
lagged cross-covariance matrix as

CðτÞij :¼
�
xitxj;tþτ

� ¼ Cð�τÞji: (A.2)

For brevity we denote C � Cð0Þ and A � Að1Þ. For simplicity of calculation let us start by deriving Cð1Þ.

Cð1Þij ¼
�
xitxj;tþ1

� ¼
*
xit

 X
k¼1

N

Ajkxkt þ ξj;tþ1

!+
¼
X
k¼1

N

Ajk

*
xitxkt

+
þ
*
xitξjtþ1

+
(A.3)

The first equality is the definition, in the second one we substitute (A.1) for xj;tþ1, in the third we expand the multiplication. The last term vanishes
because the only case in which it could give a contribution is when xit contained ξj;tþ1—but according to the definition (A.1), it does not. Moreover, we
recognize the first term as the equal-time covariance matrix. Therefore

Cð1Þij ¼
XN
k¼1

CikAjk : (A.4)

The results can be presented in a clearer fashion with the use of matrix notation

Cð1Þ ¼ CAT ; (A.5)

where the sum over matrix elements has been replaced with matrix multiplication, and the reversed order of indices of matrix elements (Ajk instead of
Akj) has been replaced with the transpose of the matrix A denoted by the superscript T. Such notation provides a considerably more manageable
equations.

It is worth noting that the assumption hxitξj;tþ1i ¼ 0 is true only for long time series T → ∞. The empirical sample average might yield a non-zero
result. This might be partly responsible for the discrepancy between analytical values and simulations observed in Fig. 2.

The equal-time covariance matrix can be obtained by repeating the above steps:

Cij ¼
�
xitxjt

� ¼XN
k¼1

XN
l¼1

AikAjl

�
xk;t�1xl;t�1

�þ �ξitξj;t� ¼XN
k¼1

XN
l¼1

AikAjlCkl þ Σij;

where we already omitted the substitution of (A.1), and by virtue of stationarity of the time series hxitxjti ¼ hxi;t�1xj;t�1i. In matrix notation

C ¼ ACAT þ Σ: (A.6)

We solve this equation in App. Appendix C.

Appendix B. Time derivative of VAR(1)

Let us rewrite (A.1) for q ¼ 1 in matrix notation

xt ¼ Axt�1 þ ξt; (B.1)

where xt ¼ ½x1t ;…; xNt � and ξt ¼ ½ξ1t ;…; ξNt � are N-element vectors. By temporal derivative we mean here taking finite forward differences

dxt ¼ xtþ1 � xt ¼ Aðxt � xt�1Þ þ ξtþ1 � ξt: (B.2)

To obtain its equal-time cross covariance matrix—which we denote by C
0
—we follow the same steps as outlined in the previous section, which leads

to

C' ¼ 2C � Cð1Þ � Cð�1Þ (B.3)

¼ Cð1� ATÞ þ ð1� AÞC; (B.4)

where the first equality is general, while the second one holds for VAR(1) process only (cf. A.5); 1 denotes the N � N unit matrix. Thanks to the
connection between covariances of the derivatives and the raw time series, now we only need to solve (A.6), which is described in the next section.
Although more convoluted, equations for C and C

0
can be obtained also for higher VAR orders, as well as for VARMA models.

Appendix C. Vectorization

Equation (A.6) provides us with a way to compute C (in the limit T → ∞) knowing A and Σ. The procedure is simpler if we utilize vectorization (see,
e.g., Laub, 2005), which means stacking columns of a matrix into a single column vector. In the vec notation the equation takes the form

vecðCÞ ¼ vecðACAT Þ þ vecðΣÞ (C.1)
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¼ ðA� AÞvecðCÞ þ vecðΣÞ; (C.2)
where in the second line we used the property vecðA1A2A3Þ ¼ ðAT
3 � A1ÞvecðA2Þ, which expresses the matrix multiplication as a linear transformation

on matrices with the help of the Kronecker product � . Solving for vecðCÞ is now straightforward:

vecðCÞ ¼ ð1� 1� A� AÞ�1vecðΣÞ: (C.3)

When one of the eigenvalues of A is equal to one, the matrix in the parenthesis is not invertible (which may be an onset of non-stationarity of time
series).
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