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Abstract

Multimodal, imaging-genomics techniques offer a platform for understanding genetic influences 

on brain abnormalities in psychiatric disorders. Such approaches utilize the information available 

from both imaging and genomics data and identify their association. Particularly for complex 

disorders such as schizophrenia, the relationship between imaging and genomic features may be 

better understood by incorporating additional information provided by advanced multimodal 

modeling. In this study, we propose a novel framework to combine features corresponding to 

functional magnetic resonance imaging (functional) and single nucleotide polymorphism (SNP) 

data from 61 schizophrenia (SZ) patients and 87 healthy controls (HC). In particular, the features 

for the functional and genetic modalities include dynamic (i.e., time-varying) functional network 

connectivity (dFNC) features and the SNP data, respectively. The dFNC features are estimated 

from component time-courses, obtained using group independent component analysis (ICA), by 

computing sliding-window functional network connectivity, and then estimating subject specific 

states from this dFNC data using a k-means clustering approach. For each subject, both the 

functional (dFNC states) and SNP data are selected as features for a parallel ICA (pICA) based 

imaging-genomic framework. This analysis identified a significant association between a SNP 

component (defined by large clusters of functionally related SNPs statistically correlated with 

phenotype components) and time-varying or dFNC component (defined by clusters of related 

connectivity links among distant brain regions distributed across discrete dynamic states, and 

statistically correlated with genomic components) in schizophrenia. Importantly, the polygenetic 

risk score (PRS) for SZ (computed as a linearly weighted sum of the genotype profiles with 

weights derived from the odds ratios of the psychiatric genomics consortium (PGC)) was 

negatively correlated with the significant dFNC component, which were mostly present within a 

state that exhibited a lower occupancy rate in individuals with SZ compared with HC, hence 

identifying a potential dFNC imaging biomarker for schizophrenia. Taken together, the current 

findings provide preliminary evidence for a link between dFNC measures and genetic risk, 

suggesting the application of dFNC patterns as biomarkers in imaging genetic association study.

Keywords

Multimodal analysis; resting-state fMRI; schizophrenia; single nucleotide polymorphism; dynamic 
functional connectivity; parallel ICA

1. INTRODUCTION

Understanding how genetic risk factors are translated into clinical symptoms, disease 

progression and response to treatment of complex mental disorders, such as schizophrenia 
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(SZ), is challenging. SZ is a serious, highly heritable (i.e. proportion of variance explained 

by genetic factors; SZ heritability rate is about 80% (Sullivan et al., 2003)) genetically 

complex disorder with disruptions in brain structure and function, and cognition (Ellison-

Wright and Bullmore, 2010; Keshavan et al., 2011; Lichtenstein et al., 2009; Meda et al., 

2012). Family and twin studies have shown evidence of moderate to high heritable 

component related to most psychiatric disorders (Kendler and Eaves,2005). The 

concordance rate is defined by the probability that a second twin will progress to a disorder 

given the first examined twin already has the disorder, and for monozygotic twins it has been 

found to be about 40%−50% for schizophrenia (Cardno and Gottesman, 2000). These results 

indicate that the unaffected twins might carry a heritable genetic risk for schizophrenia 

without expressing the disease.

An efficient strategy to unravel the genetic risk factors of SZ is through investigating the 

effects of genetic variations on intermediate phenotypes such as aberrant brain structure and 

function, as they are more related to biological mechanisms compared to behavioral 

measures. An intermediate phenotype or so-called “endophenotype” represents more 

biologically defined levels, such as cellular, neuronal level or neurocognitive measures, and 

is thought to reflect the genetic effects more prominently than disease entities such as SZ 

(Gottesman and Gould, 2003; Gottesman and Shields, 1972). Brain function measured by 

fMRI data has been proposed as an intermediate phenotype for genetic studies of mental 

illness, and patients with psychiatric disorders indeed present brain structural and functional 

idiosyncrasies, which may underlie the clinical manifestations. Such brain related 

idiosyncrasies in psychiatric disorders include significantly less gray matter and abnormal 

regional activations during cognitive task performance (Harris et al., 2006; Ivleva et al., 

2012; Manoach et al., 2000; Monks et al., 2004). Moreover, disrupted patterns in resting 

state inter-network functional connectivity have been reported in a wide range of psychiatric 

disorders, including schizophrenia and bipolar disorder (Bassett et al., 2012; Calhoun et al., 

2012; Jafri et al., 2008; Manoliu et al., 2013; Meda et al., 2012; Pearlson and Calhoun, 2009; 

Rashid et al., 2014), Alzheimer’s disease and mild cognitive impairment (Petrella et al., 

2011) and dyslexia (Koyama et al., 2010). Interestingly, studies have suggested that resting 

state networks are heritable (Fu et al., 2015; Glahn et al., 2010). Further, a recent study on 

the UK Biobank participants suggested lower rate of heritability for connectivity edges, but 

higher heritability for independent component analysis (ICA) extracted connectivity 

components (Elliott et al.,2017). In particular, the default-mode network connectivity was 

reported to have a heritability of 0.42 (Glahn et al., 2010).

Recent resting state and task-based fMRI studies examining dynamic (i.e., time-varying) 

functional network connectivity (dFNC) offer additional information beyond conventional, 

static or average functional network connectivity (sFNC) (Calhoun et al., 2014; Hutchison et 

al., 2013; Preti et al., 2017; Rashid et al., 2016). The time-varying or dFNC approach 

focuses on identifying whole brain transient and recurring patterns in temporal coupling in 

the human brain (Allen et al., 2014; Calhoun et al., 2014; Rashid et al., 2014). The temporal 

dynamics of the identified components’ timecourses are commonly characterized by the 

sliding window approach to estimate the connectivity as moving between stable dFNC 

patterns or states (Allen et al., 2014; Sakoglu et al., 2010). These dFNC states have been 

shown to be stably present in the data, reoccurring over time, and disrupted by null models, 
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providing further evidence of replicability of dFNC states (Abrol et al., 2016; Abrol et al., 

2017; Miller et al., 2017).

Before the availability of low-cost genomic technologies, most genetic association studies 

focused on exploring candidate genes involvement in a target disease. The advance in 

technologies has made it possible to study the whole genome, a large portion of which have 

not been previously studied or understudied for a particular disease (Hirschhorn and Daly, 

2005) and therefore, offers substantial potential for identifying cluster of genetic variants 

associated with complex genetic disorders (Hindorff et al., 2009). The conventional SNP or 

candidate gene analysis using predefined reference set of SNPs or genes only investigates 

the SNPs (or genes) of interest. Therefore, it cannot provide a comprehensive genetic risk 

profile for a complex trait like SZ. Genome-wide association studies (GWAS) can solve this 

problem, however, it will not shed light on the interplay among genetic variables unless 

additional analysis (e.g., pathway analysis) is employed for interpretation.

There has been a tremendous growth of interest in the application of multivariate, 

multimodal techniques, in areas such as imaging-genetics, to understand interactions 

between neuronal and genetic mechanisms of schizophrenia. The complexity of the genetics 

in schizophrenia strongly supports a genomic approach, i.e. an approach that can capture not 

only a single genetic effect but also the relationship between multiple genetic factors and 

phenotypic information. Imaging genomics method integrates genetic with structural and 

functional neuroimaging data to explore individuals with multiple genetic risk variants that 

relate to a psychiatric disorder. Multivariate multimodal techniques provide additional 

statistical power by extracting genetic and imaging data to capture the aggregated effect of 

multiple genetic factors and brain regions and assess the co-varying pattern of these data 

modalities (Calhoun and Sui, 2016; Chen et al., 2013; Liu and Calhoun, 2014). Multivariate 

data fusion techniques enable us to assess multiple variables simultaneously, and offer some 

additional benefits over the use of univariate techniques. The interpretation of results from 

multivariate data-fusion approaches is relatively simple due to co-varying nature of the 

variables (i.e., regions of interest or ROIs) as measures from patterns are explored rather 

than a huge number of univariate paired relationships (Calhoun and Sui, 2016). Further, 

using multivariate strategy replicability of the results can be improved. A number of 

multivariate data-fusion approaches have been proposed including parallel independent 

component analysis (pICA) (Liu et al., 2009; Pearlson et al., 2015), joint independent 

component analysis (jICA) (Calhoun et al., 2006), multiset canonical correlation analysis 

(mCCA) (Correa et al., 2007), partial least squares (PLS) (Chen et al., 2009), linked ICA 

(Groves et al., 2011), and coefficient constrained ICA (CC-ICA) (Sui et al., 2009).

The pICA approach, a data-driven technique, is constructed upon the conventional ICA 

algorithm to jointly conduct separate multivariate analysis in two different data modalities 

while also optimizing the inter-modality association (Liu and Calhoun, 2014).pICA has been 

applied to incorporate genetic and neuroimaging data including gray matter density, gray 

matter volume, and task-related activation (Gupta et al., 2014; Meda et al., 2014; Pearlson et 

al., 2015). In the context of imaging-genetics study, pICA uses higher order statistics to 

identify the independent brain networks, associated genetic variants, and their 

interrelationships (Jagannathan et al., 2010; Liu et al., 2009). Similar to the conventional 
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ICA approach, pICA can identify hidden linear mixture of factors within the genetic and 

neuroimaging data, while also eliminating unwanted artifacts from the data. The results from 

the pICA provide independent components (ICs) from both data sets (neuroimaging and 

genetics) that are inter-linked while maximizing the linkage function in a joint estimation 

approach (Liu et al., 2009; Meda et al., 2010). There are three criteria that pICA optimizes 

simultaneously, including identifying a set of maximally independent functional 

neuroimaging factors, identifying a set of maximally independent genetic variants, and 

identifying the inter-modality linking relationship between the identified genetic and 

neuroimaging components. Furthermore, pICA also provides loading parameters for each 

component that reflect the component’s influence in individual subjects (Liu et al., 2009), 

and interrelationships between neuroimaging and genetic components can be statistically 

tested and compared between groups.

In the current work, we studied 61 SZ patients and 87 healthy controls with genome-wide 

single nucleotide polymorphism (SNP) and fMRI data following denoising and quality 

control (QC) assessment (where SNP data went through several QC steps, imputation and 

post-imputation QC steps as described in section 2.2 and Figure S1, and fMRI data went 

through pre- and post-processing steps as described in section 2.3 and Figure S2 to ensure 

data quality). We focused on feature based fusion analysis of an array of genetic variants 

(SNP) and functional (fMRI) images hypothesizing a significant correspondence between 

genomic factors and brain function. Our expectation is that the relationship between SNP 

patterns and time-varying functional connectivity is a more natural way to analyze the data 

which will improve our understanding of both genomic factors and functional connectivity 

measures. We estimate the functional features for neuroimaging data as subject-specific 

states that are revealed from the dynamic FNC data using a sliding window plus clustering 

approach (Allen et al., 2014; Rashid et al., 2014; Sakoğlu et al., 2010). The SNP data were 

first pre-filtered using results from an independent GWAS study to locate risk variants based 

on a large cohort. These risk loci were then simultaneously analyzed for multivariate 

associations with the derived functional features from fMRI data using the pICA data fusion 

algorithm. Further, we explored the association between genetic risk and SNP and functional 

connectivity features. Polygenic risk score (PRS) estimates the aggregate risk of a set of 

SNPs, by computing a linearly weighted sum of the genetic data where weights are derived 

from the effect sizes of the individual SNPs obtained from univariate analysis. This approach 

enables us to study genomic patterns grouped that co-vary across subjects with maximally 

independent dynamic FNC patterns. To guard against overfitting, the identified dFNC-SNP 

associations were evaluated with a permutation test.

2. MATERIALS AND METHODS

2.1 Participants

We used resting-state functional magnetic resonance imaging (fMRI) data and single 

nucleotide polymorphism (SNP) data obtained from 87 healthy controls (61 males, 26 

females; mean age 36.83) and 61 age- and gender matched patients with SZ (52 males, 9 

females; mean age 38.36) during eyes closed condition as part of the multi-site fBIRN 
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project (Potkin and Ford, 2008). Informed consent was obtained from each participant prior 

to scanning in accordance with the Internal Review Boards of corresponding institutions.

2.2 SNP Data Preprocessing and Feature Selection

DNA was extracted from blood and saliva samples collected from the participants. No 

significant difference was noted in genotyping call rates between blood and saliva samples. 

DNA extraction was performed at the University of California at Irvine and genotyping was 

performed by Illumina (SD) using a custom made assay including the Infinium MEGAex chip 

as well all SNPs on the Psych chip. The SNP data went through quality control (QC), 

imputation and post-imputation QC as described in (Chen et al.,2018), which is briefly 

summarized here. PLINK (Purcell et al., 2007) was employed for pre- and post-imputation 

QC (Chen et al., 2012), including: (a) gender consistency check, (b) sample relatedness (not 

closer than second degree relatives), (c) genotyping call rate (>90% at both the individual 

and SNP level), (d) Hardy-Weinberg equilibrium in the control population (p <1 × 10 −6), (e) 

minor allele frequency (MAF > 0.05). Then imputation was conducted with SHAPEIT used 

for pre-phasing (Delaneau et al., 2011), IMPUTE2 for imputation (Marchini and Howie, 

2010), and the 1000 Genomes data as the reference panel (Altshuler et al., 2012). Only 

markers with high imputation qualities (INFO score > 0.95) were retained. Missing calls 

were replaced using high linkage disequilibrium (LD) loci if available or otherwise removed. 

A total of 977,242 SNP loci were obtained after post-imputation QC and LD pruning (r2 < 

0.9), and discrete numbers were then assigned to the categorical genotypes: 0 (no minor 

allele), 1 (one minor allele), and 2 (two minor alleles). Population structure was corrected 

with PCA (Price et al.,2006). A pre-filtering (i.e., pre-selection) step was conducted 

leveraging the Psychiatric Genomic Consortium SZ GWAS (Ripke et al., 2014) based on SZ 

relevance (i.e., the p- values reported by the PGC SZ GWAS). This resulted in a total of pre-

filtered 1546 SNPs, discriminating patients from controls via a univariate SNP-wise test with 

p-values less than 5× 10−7 in the GWAS.

Imaging data processing and feature selection

2.3.1 fMRI Data Collection and Preprocessing—Imaging data was collected on 3T 

Siemens Tim Trio Systems (all but one site) or on a 3T General Electric Discovery MR750 

scanner. Resting state fMRI scans were acquired using a standard gradient-echo echo planar 

imaging paradigm: FOV of 220 × 220 mm (64 × 64 matrix), TR = 2 s, TE = 30 ms, FA = 

77°, 162 volumes, 32 sequential ascending axial slices of 4 mm thickness and 1 mm skip. 

Subjects had their eyes closed during the resting state scan.

Data processing was performed using a combination of toolboxes (AFNI, SPM, GIFT) and 

custom code written in Matlab. We performed rigid body motion correction using the 

INRIAlign (Freire and Mangin, 2001) toolbox in SPM to correct for subject head motion 

followed by slice-timing correction to account for timing differences in slice acquisition.

Then the fMRI data were despiked using AFNI’s 3dDespike algorithm to mitigate the 

impact of outliers. The fMRI data were subsequently warped to a Montreal Neurological 

Institute (MNI) template (Calhoun et al., 2017), and resampled to 3 mm3 isotropic voxels. 

Instead of Gaussian smoothing, we smoothed the data to 6 mm full width at half maximum 
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(FWHM) using AFNI3s BlurToFWHM algorithm, which performs smoothing by a 

conservative finite difference approximation to the diffusion equation. This approach has 

been shown to reduce scanner specific variability in smoothness providing a “smoothness 

equivalence” to data across sites (Friedman et al., 2006). Each voxel time course was 

variance normalized by removing the mean and dividing by the standard deviation at each 

voxel prior to performing group independent component analysis as this has shown to better 

decompose subcortical sources in addition to cortical networks. Note that, no significant 

group difference in signal-to-noise ratio (SNR) was found (p=0.5, Figure S4).

2.3.2 Group ICA, Intrinsic Connectivity Network (ICN) Selection and Post 
processing—After preprocessing the data, functional data from both control and patient 

groups were analyzed using spatial group independent component analysis (GICA) 

framework as implemented in the GIFT software (Calhoun and Adali, 2012; Calhoun et al., 

2001; Erhardt et al., 2011). Spatial ICA decomposes the subject data into linear mixtures of 

spatially independent components that exhibit a unique time course profile. A subject- 

specific data reduction step was first used to reduce 162 time point data into 120 direction of 

maximal variability using principal component analysis. Then subject-reduced data were 

concatenated across time and a group data PCA step reduced this matrix further into 100 

components along directions of maximal group variability. Note that, group PCA on the 

entire dataset was performed to avoid biasing the solution to group differences (Erhardt et 

al., 2011). One hundred independent components were obtained from the group PCA 

reduced matrix using the infomax algorithm (Bell and Sejnowski, 1995). To ensure stability 

of estimation, we repeated the ICA algorithm 20 times in ICASSO, and aggregate spatial 

maps were estimated as the modes of component clusters (Ma et al., 2011). Subject specific 

spatial maps (SMs) and time courses (TCs) were obtained using the spatiotemporal 

regression back reconstruction approach (Calhoun et al., 2001; Erhardt et al., 2011) 

implemented in the GIFT software.

Subject specific SMs and TCs underwent post-processing as described in our earlier work 

(Allen et al., 2012). Briefly, we obtained one sample t-test maps for each SM across all 

subjects and thresholded these maps to obtain regions of peak activation clusters for that 

component; we also computed mean power spectra of the corresponding TCs. We visually 

inspected and identified a set of components as intrinsic connectivity networks (ICNs) if 

their peak activation clusters fell on GM (gray matter) and showed less overlap with known 

vascular, susceptibility, ventricular, and edge regions corresponding to head motion. We also 

ensured that the mean power spectra of the selected ICN time courses showed higher low 

frequency spectral power. This selection procedure resulted in 47 ICNs out of the 100 

independent components obtained. The ICNs were assessed and distributed into sub-cortical 

(SC), auditory (AUD), visual (VIS), sensorimotor (SM), attention/cognitive control (CC), 

default-mode (DMN), and cerebellar (CB) network domains.

Subject-specific TCs corresponding to the retained ICNs underwent additional post 

processing steps. The TCs were detrended to remove any existing linear, quadratic or cubic 

low frequency trends originating from scanner drift, orthogonalized with respect to 

estimated subject motion and realignment parameters, and despiked using AFNI’s 
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3dDespike function to replace outlier points with values estimated from third order spline fit 

to neighboring portions of the TCs.

2.3.3 FC Estimation and Clustering—Similar to our previous work (Damaraju et al., 

2014) time-varying FNC was estimated by sliding a window of length 22 TRs (44 s) in steps 

of 1 TR (2 s). This sliding window analysis used a tapered window generated by convolving 

a rectangular window of length 22 TRs (44 s) with a Gaussian window of standard deviation 

equal to 3 TRs. To characterize the full covariance matrix, we estimated covariance from the 

regularized precision matrix or the inverse covariance matrix (Smith et al., 2011). Following 

the graphical LASSO method (Friedman et al., 2008), we placed a penalty on the L1 norm 

of the precision matrix to promote sparsity. The regularization parameter lambda was 

optimized separately for each subject by evaluating the log-likelihood of unseen data 

(windowed covariance matrices from the same subject) in a cross-validation framework. 

Final dynamic FC estimates for each window, were concatenated to form a C x C x W array 

representing the changes in covariance (correlation) between components as a function of 

time.

Next, we selected windows of higher variability as subject exemplars and used K-means 

clustering to obtain group centroids. We determined the number of clusters to be five using 

the elbow criterion of the cluster validity index, which is computed as the ratio between 

within-cluster distances to between-cluster distance. These centroids are then used as 

starting points to cluster all of the dynamic FNC data. Group- and subject- specific centroids 

were computed for further analyses (Allen et al., 2014).

2.4 Proposed pICA framework

Figure 1 and Figure S5 provides an illustration of the proposed framework. pICA was 

performed through the Fusion ICA Toolbox (FIT, http://mialab.mrn.org/software/fit) using 

the imaging (dynamic states) and genomic (SNP array) features. The algorithm was 

configured with a threshold of 0.25 for constrained correlations to avoid false positive 

associations and to only constrain one pair of components (Liu et al., 2009). A SNP 

component is defined by large clusters of functionally related SNPs statistically correlated 

with phenotype components, whereas a dFNC component is defined by clusters of related 

connectivity links among distant brain regions distributed across 5 discrete dynamic states, 

and statistically correlated with genomic components (Table S2). An endurance parameter 

was set to −5 × 10−4 to control the decreasing slope of the entropy term and to mitigate 

against over fitting. For the fMRI modality (dFNC features), the component number was 

predefined as 15, and for genomic modality (SNP data) the component number was 

predefined as 25 based on pICA model stability, which was validated using the permutation 

test. The parallel ICA estimates components by maximizing component independence 

within each data modality, and maximizing the inter-modality association assessed based on 

component loadings from the two modalities. In the current work, parallel ICA extracted 15 

dFNC components and 25 SNP components, which led to a total of 375 SNP-dFNC pairs for 

which the associations were assessed. Significant SNP-dFNC associations were then 

identified based on Bonferroni correction (p < 0.05/375).
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We performed a 1000-run permutation test to assess the validity and stability of identified 

dFNC-SNP association by investigating the occurrences of inter-modality correlations by 

chance in permuted dFNC and SNP datasets (Chen et al., 2012). The null distribution was 

constructed with the top correlation obtained from each test run. We then counted the 

instances with correlations greater than that observed from the original data and calculated 

the two-tail probability as the significance level.

2.5 Polygenic Risk Score Analysis

Additionally, we computed the polygenic risk score (PRS) for SZ of the set of thresholded 

SNPs (i.e., top SNPs after thresholding the SNP component), which was a linearly weighted 

sum of the genotype profiles with weights derived from the odds ratios of the PGC SZ 

GWAS (Purcell, 2009; Ripke et al., 2014). The loading parameters from significant pICA 

paired components were then assessed for associations with PRS for SZ using Pearson’s and 

Spearmann’s rank order correlations.

2.6 Partial Replication Study

While an independent dataset with exact imaging and genomic features was unavailable for 

replication purpose, we implemented our proposed model on a separate, independent dataset 

for partial replication. The resting-state fMRI data were collected while the participants had 

their eyes open (as opposed to our main analyses where resting-state fMRI data were 

collected in eyes closed condition). We used resting-state functional magnetic resonance 

imaging (fMRI) data and single nucleotide polymorphism (SNP) data obtained from a local 

COBRE (center of biomedical research excellence) study. After preprocessing, we obtained 

data from a total of 135 participants (72 healthy controls and 63 SZ patients matched for 

age) for which both fMRI and SNP data were collected.

Using the same steps mentioned for our main analyses, we preprocessed both fMRI and SNP 

data. As the genomic features, we identified the same 1546 pre-selected SNPs as our main 

analyses. In order to identify the similar imaging features (i.e., dFNC states), we 

implemented the following two-step replication: (i) using a spatially constrained ICA 

approach, we computed subject specific maps and timecourses for the 49 ICNs and 

computed the sliding-window based dynamic connectivity matrices for each subject, and (ii) 

using k-means clustering approach while using the original dFNC states (i.e., from our main 

study) as stating points for clusters, we identified 5 cluster centroids/dFNC states for each 

subject. These dFNC states were then used as the imaging features for our proposed pICA 

framework.

The proposed algorithm proceeds in two stages, consisting of independent component 

computation at group and subject levels, respectively. First, a group-level ICA is performed 

to extract information in the form of group ICs from preprocessed fMRI data of multiple 

subjects. Then the group information is used as guidance for the subject-level ICA, 

computed separately on the fMRI data of each subject (Du and Fan, 2013; Du et al., 2015; 

Lin et al., 2010).

A list of key acronyms and definitions can be found in Tables S1 and S2.
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3 RESULTS

Figure 2 demonstrates the dFNC states for HC and SZ participants. The pICA framework 

identified one dFNC-SNP component pair with (i) significant correlation between the 

functional and genetic components, (ii) significant group difference in the functional 

component loading scores, and (iii) significant correlations between polygenic risk scores 

(PRS) and functional and genetic components. Figure 3 and Figure S3 show the significant 

component pair, with the connectivity strengths for the parallel co-varying functional 

component’s inter-regional links or connections and Manhattan plot showing the SNP 

component. In order to display the top 5% of the connectivity links and SNPs, only links 

with connectivity strengths and SNPs with genomic component weights higher or lower than 

a cutoff value are shown. In particular, after converting to z-scores the genomic (SNP) 

component is thresholded at |z|>2 to retain only the top 5% SNPs, whereas the inter-regional 

connectivity strengths from the functional component, are thresholded at |z|>3 to retain only 

the top 5% connectivity links. For both functional and genetic components, we will hereafter 

refer to the retained inter-regional connections and top SNPs as “top links” and “top SNPs”, 

respectively.

3.1 Parallel Significant Component

As illustrated in Figure 3 and Figure S3, the number of significant connections in the linked 

functional component were high for the temporal, parietal, limbic and occipital regions in 

state 1, whereas state 5 only had two significant connections, and state 2, 3 and 4 had none. 

The peak activation coordinates of the significant links identified in state 1 and state 5 are 

presented in Table 4. In terms of occupancy rate, state 1 was dominated by the healthy 

subjects (HC=22%; SZ=14%), whereas state 5 was dominated by schizophrenia patients 

(HC=16%; SZ=27%). Note that, a positive connectivity is defined as the positive correlation 

strength between two brain networks (ICNs), and depicted with red color within the 

connectogram plots (i.e., the greater the positive connectivity strength is, the darker red color 

is used as per the color bar), whereas a negative connectivity is defined as the negative or 

anti-correlation strength between two brain networks (ICNs), and depicted with blue color 

within the connectogram plots (i.e., the greater the negative connectivity strength is, the 

darker blue color is used as per the color bar)

The significant SNP component was first z-scored and then absolute z-scored values were 

used to represent the normalized component weight. The SNP component consists of peak 

weights of SNPs mostly located in chromosome 6 (and few at chromosomes 1, 2, 3,5, 15 and 

17). The significant SNP component was predominantly contributed to by 80 SNPs (Table 5; 

top 5% based on absolute values of the component weights). 24 SNPs were mapped to 13 

unique genes using UCSC hg19 assembly (http://hgdownload.cse.ucsc.edu/), while the rest 

were from inter-genic regions.

The correlation between the significant (i.e., after the correlations identified by pICA which 

were controlled for diagnosis were corrected for multiple comparisons), parallel co-varying 

dFNC and SNP components was: Pearson’s r= 0.5223 (p< 6.95 × 10-9) and Spearmann’s: r 

= 0.4952 (p < 6.95 × 10-9). In a 1000-run permutation test, the absolute values of the dFNC-
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SNP top correlations ranged from 0.15 to 0.67 with a median of 0.26, yielding a p-value of 

1.1 × 10-2.

3.2 Group Differences in Component Loadings

Figure 4a presents the scatterplot of the significant parallel components’ loading parameters, 

with a pattern of positively increasing relationship between these two loading parameters. 

Figures 4b and 4c show the group-wise loading parameters in healthy control and 

schizophrenia populations estimated from dFNC and SNP components, respectively. The 

ANOVA showed a significant group difference in the dFNC loading parameter (p=0.008), 

with a lower dFNC mean loading in the SZ group (mean=0.0066, standard 

deviation=0.0159) compared to the control group (mean=0.0152, standard 

deviation=0.0212). There was no significant group difference in the SNP loading parameter 

(p=0.243), although the group mean SNP loading was lower in the SZ group (mean=

−0.0265, standard deviation=0.0977) compared to the healthy group (mean=- 0.0069, 

standard deviation=0.1012). This validates our pICA approach as typically between group 

effect sizes for imaging data are much larger than those for genomic data.

3.3 Risk Score and Component Loadings

We also assessed the correlations between the polygenic risk scores (PRS) and both dFNC 

and SNP components’ loading parameters. The PRS was computed from the top SNPs (i.e., 

80 SNPs after thresholding the SNP component at |z|>2)) of the linked SNP component. The 

PRS computed using the top SNPs ranged between 0 and −8. The scatterplots of PRS versus 

component loadings are shown in Figure 5. The correlation between the risk scores and 

dFNC loadings was: Pearson’s r= −0.26 (p=0.0017); Spearmann’s r=−0.2743 

(p=7.7230e-4), whereas the correlation between the risk scores and SNP loadings was: 

Pearson’s r= −0.5401 (p=1.4×10-12); Spearmann’s r=−0.5406 (p =< 6.95 × 10-9). Results 

show that, as the risk of SZ increases, the loading coefficients associated with the dFNC 

component decrease, suggesting that the SZ patients tend to under-utilize the vast amount of 

connections available through the brain regions, particularly SZ patients have the poor 

utilization of the top links in state 1 (mostly among temporal, parietal, limbic and occipital 

regions, see Figure S3 and Table 4 for more details). Interestingly, the SZ group showed low 

occupancy rate in state 1 compared to the HC group (HC=22%; SZ=14%) suggesting lower 

occupancy of that state may be a marker of schizophrenia risk.

3.4 Pathway Analysis Using Top Genes

We examined the genetic architecture of our findings using Reactome Pathway Analysis 

(RPA: https://www.reactome.org), where the 13 genes were compared with the preselected 

SNPs as background. The results obtained from RPA are provided in Table 2. Further, 

GeneMANIA (Mostafavi et al., 2008) was used to identified the interactions among the 

query genes. We also analyzed our query genes to find the biological functions of these top 

genes, which are provided in Table 3.
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3.5 Parallel Significant Component From Partial Replication Study

The results from pICA framework captured a significant imaging (dFNC) and genomic 

(SNPs) component pair with a correlation of r= 0.22 (p=0.0099). The correlation between 

the main (fBIRN) and replication dataset () SNPs components was 0.28 (p<0.0005). 

However, the correlation between dFNC components was not significant (r= 0.01,p=0.46). 

We speculate that, due to different imaging data acquisition conditions (eyes closed versus 

eyes open) (Wu et al., 2010), we were unable to replicate the imaging part of the pICA 

component. Future work should implement replication using an independent dataset with 

similar features in order to systematically verify our findings from this pilot study.

In summary, here we have investigated the genomic underpinnings of dysfunctional dynamic 

FNC in SZ. A multivariate approach, pICA, was used to extract SNP and dFNC components, 

and retrieve intermodality associations. We investigated the relationship between genomic 

data and time-varying FNC measures and explored characteristic brain abnormalities with 

regard to schizophrenia. By employing a novel approach, we first estimated relatively lower-

dimensional feature spaces from the high-dimensional fMRI and SNP array data. Next, we 

performed a multivariate data fusion approach on these estimated lower-dimensional feature 

spaces by implementing a pICA approach to extract corresponding co-varying genetic and 

functional brain components and evaluated associations between the components. Due to the 

limited sample size compared to genome-wide SNPs, we preselected 1546 SZ risk loci 

based upon large-scale GWAS in the published PGC study (Ripke et al., 2014) to focus the 

dFNC-SNP association analysis on polymorphisms likely relevant to SZ. One significant 

dFNC-SNP pair was identified and the permutation test indicated a low possibility that the 

observed correlation was due to overfitting, though the current result still awaits further 

independent validation.

4. DISCUSSION

In this study, we have investigated the relationship between neuroimaging and genomic 

features in patients with SZ. In particular, our results captured one pICA component pair that 

exhibited significant correlation between their underlying modality-specific components, 

highlighting significant group differences in time-varying FNC component loadings, and 

significant negative correlations between polygenic risk scores (PRSs) and both dFNC and 

SNP component. The pICA dFNC and SNP components showed a significant positive 

correlation of r=0.5223 (p<6.95e−09), as depicted in Figure 4a. This implies that, individuals 

that load more heavily on the top SNPs (and therefore the unique genes that these SNPs are 

map into) show more increased (or more decreased) functional connectivity among brain 

networks that underlie the functional component capturing top positive (and negative) 

connectivity strengths (i.e., top links in state 1 and 5).

Substantial correspondence with previously reported studies in literature could also be 

drawn for few evaluated top inter-regional (i.e., inter-ICN) links in the estimated functional 

components. First, the functional component for the retained parallel source showed top 

connectivity links in time-varying connectivity states 1 and 5. Most of the top inter-ICN 

links are captured in state 1, a state more often occupied by healthy individuals, where both 

positive and negative connectivity strengths across various network domains can be observed 
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(Figure 3). In particular, a CC domain component, IC47 (cingulate gyrus), showed inter-ICN 

link with components from several domains including VIS (IC60: right precuneus/left 

cuneus; IC78: right cuneus and IC 80: middle temporal gyrus), SM (IC63: fusiform gyrus; 

IC6: right postcentral gyrus and IC10: left precentral gyrus) and DMN (IC53: left anterior 

cingulate gyrus; IC69: right medial frontal gyrus; IC84: right angular gyrus and IC90: right 

angular gyrus). Additionally, in this state, ICNs in the DMN domain showed connectivity 

within themselves and with ICNs from CC and VIS domains as well. For example, one of 

the DMN ICNs, IC84, highlighted by the brain regions in right angular gyrus (parietal 

component), showed positive connectivity weight with an ICN from the VIS domain 

characterized by calcarine gyrus (IC91, occipital component) and negative connectivity 

weight with a CC ICN, cingulate gyrus (IC47, limbic component). Another DMN ICN, 

IC90, encompassing the right angular gyrus also showed negative connectivity weights with 

two ICNs from the VIS and CC domains, right calcarine gyrus (IC43, occipital component) 

and cingulate gyrus (IC47, limbic component). Moreover, two DMN ICNs, IC53 (left 

anterior cingulate gyrus, limbic component) and IC95 (left angular gyrus, parietal 

component) have shown positive connectivity weight between themselves. These results are 

in line with a previous reports that have shown aberrant connectivity patterns within regions 

including angular gyrus, calcarine gyrus and cingulate sub-regions in schizophrenia patients 

(Rashid et al., 2014; Wang et al., 2015). Indeed, the roles of angular gyrus in language 

processing, memory and social cognition have been extensively reported (Binder et al., 

2009; Clos et al., 2014; Hall et al., 2005). Disrupted DMN connectivity in schizophrenia 

patients has been extensively reported by several recent studies (Garrity et al., 2007; Ongur 

et al., 2010; Rashid et al., 2014). Thus, further follow-up examination of these top links 

involving the DMN ICNs is warranted. Interestingly, four temporal lobe components, IC63 

(fusiform gyrus), IC80 (middle temporal gyrus), IC51 (middle temporal gyrus) and IC57 

(parahippocampal gyrus) showed connectivity with limbic (IC47: cingulate gyrus), frontal 

(IC5: precentral gyrus) and occipital (IC7: right cuneus) components. Previous studies have 

reported disrupted temporal lobe connectivity in schizophrenia (Alonso-Solis et al., 2015; 

Barta et al., 1990; £etin et al., 2014; Ford et al., 2002; Peters et al., 2016; Wolf et al., 2007), 

suggesting that components within the temporal lobe play an important role in schizophrenia 

disease etiology. However, further investigation is required to validate the role of temporal 

lobe dysfunction in schizophrenia with regard to the current imaging-genomics framework.

Dynamic connectivity state 1 also captured a CC ICN, left precuneus (IC35, parietal 

component) showing negative connectivity weight with a VIS component, right lingual 

gyrus (IC91, occipital component). Patterns of disrupted connectivity in schizophrenia 

within the precuneus and lingual gyrus have been reported (Kühn and Gallinat, 2011; Rashid 

et al., 2014; Zhu et al., 2017). Precuneus is involved in episodic memory (Rugg and Henson, 

2002), mental imagery recall (Fletcher et al., 1996), and self-processing operations (Cavanna 

and Trimble, 2006), whereas lingual gyrus is involved in visual processing (Bogousslavsky 

et al., 1987). In state 2, positive connectivity weight between two VIS domain ICNs, right 

cuneus (IC7, occipital component) and right calcarine gyrus (IC43, occipital component), 

and negative connectivity weight between a CC domain ICN, cingulate gyrus (IC47, limbic 

component) and a SM domain component, precentral gyrus (IC5, frontal component) have 

been observed. While we evaluate only a few interesting links within the scope of the current 
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work, there is much more that could be done to explore these results to further expand our 

understanding of the genomic- connectivity relationships and further contribute to 

characterization of schizophrenia.

While inter-modality association is assessed based on loading vectors, interpretation of 

source of variance is based on component scores. Figure S3(a) demonstrates the top 

connectivity features obtained with thresholding the dFNC component scores at |z| > 3. In 

the ICA framework, the corresponding loading vector largely captures the covariation of 

these top features. Figure S3(b) shows that these top features majorly comprise regional 

connectivities of State-1 and State-5, involving mostly brain regions of temporal, parietal, 

limbic and occipital areas (see Table 4 for details on the top brain regions). In parallel, the 

SNP loading vector primarily reflects the covariation among the 80 top SNPs obtained with 

thresholding the SNP component scores at |z| > 2, as shown in Figure S3(c). Collectively, the 

identified SNP-dFNC association indicates that the across-subject covariation pattern of the 

top 80 SNPs explains 11.55% of the variance in the across- subject covariation pattern of the 

top connectivity feature (i.e., top links). Our results imply that the identified 13 genes 

mapped from the thresholded 80 SNPs derived from the significant pICA component (for 

details on the derivation steps of these thresholded SNPs and the mapped genes, see Figure 

S5) might mediate the dysfunctional connectivity links (observed among the thresholded 

dFNC component’s connectivity links found in State-1 and State-5, Figure S3) among these 

brain regions in patients with SZ.

The identified pICA component revealed significant group differences in dFNC loading 

parameters, where patients with SZ exhibited a significantly lower group mean compared to 

the HC group. This could imply that, for the significant links within dFNC component, SZ 

individuals have diminished capability to establish links between these brain regions and 

share information. We also assessed the correlations between the polygenic risk scores 

(PRS) and both dFNC and SNP components’ loading parameters. Also, the correlations 

between the polygenic risk scores (PRS) and dFNC loadings were significantly negative 

(Figure 5). For dFNC component, thresholded top links were observed mostly in state 1, a 

state that is dominated by the healthy controls in terms of occupancy rate (Table 1; HC=22% 

and SZ=14%). This could imply that, as the polygenic risk scores increase for individuals 

(as measured using PRS), chances to load onto the links within state 1 decrease.

Using GeneMANIA (Mostafavi et al., 2008) we estimated the percentages of co expression 

and genetic interaction among the 13 query genes (where co-expression measures whether 

the genes have similar expression levels across conditions and therefore are linked, and 

genetic interaction assesses whether the genes are functionally associated by identifying if 

perturbing one gene would result in perturbations to a second gene). The result obtained 

from GeneMANIA shows that 40.49 % of the 13 listed genes show co-expression. There is 

59.51% genetic interaction among the query genes. A Reactome Pathway Analysis (RPA) 

(Croft et al., 2013) further shows that these selected genes are involved in different cellular 

processes including the immune system, metabolism and neuronal systems (Table 2). 

Among the top 13 genes, CHRNA3, ATXN7 and SMG6 are found to be involved in 

neurological, psychological and developmental disorders, while RERE and HLA-C are 

involved in immunological disease (Table 3). Indeed, previous evidence indicated that 

Rashid et al. Page 14

Neuroimage. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensorimotor gating is influenced by variations of the CHRNA3 gene, and might affect the 

course and severity of schizophrenia (Petrovsky et al., 2010). Moreover, a recent pICA based 

work explored the genetic control over the DMN in SZ and psychotic bipolar disorder 

patients, and identified the underlying biological pathways and neurodevelopment/

transmission processes including PKA, immune response signaling, NMDA-related long-

term potentiation, axon guidance, and synaptogenesis that significantly influenced DMN 

disconnectivity (Meda et al., 2014). Taken together, the proposed pICA framework presents 

a powerful way to understand how disrupted connectivity in SZ can be mediated by 

underlying genes, which could lead us to potential disease-specific biomarkers.

6. LIMITATION AND FUTURE DIRECTION

This is the first study to examine the link between genetic data and resting-state dynamic 

functional connectivity in schizophrenia and healthy controls using a simultaneous ICA 

(pICA) approach. The samples in this study, although albeit small, were well characterized, 

and the pICA approach is a powerful method to examine dFNC-SNP relationships. While 

the current findings unravel few important aspects of the proposed model, there were some 

limitations. First, sample sizes in this study were small, so future studies should endeavor to 

replicate these findings in larger samples. Second, for our replication study, one dataset 

acquired fMRI data while participants were resting with their eyes closed (fBIRN), and the 

other dataset acquired fMRI data while participants were resting with their eyes open 

(COBRE). Recent studies investigating dynamic FNC found difference in patterns of 

connectivity measure between eyes open and eyes condition (Allen et al., 2018). While we 

have partially replicated our pICA findings, future studies should investigate independent 

dataset with same acquisition paradigms (i.e., eyes closed) for full replication. Finally, based 

on the known dynamic nature of the brain and the unconstrained nature of resting fMRI data, 

we utilized dFNC as our imaging modality-related features. As a future investigation, an 

extension of this work should compare performance of the proposed pICA framework using 

sFNC versus dFNC features. The dFNC-SNP association presented here is the first step 

showing the strength of the proposed framework, and future work will involve investigation 

of other potential connectivity references, for association with genomic data.

7. CONCLUSION

In summary, using a multivariate pICA based fusion approach, we propose a framework to 

identify and investigate parallel co-varying SNP and dFNC components that might uncover 

genetic contributions to disrupted dynamic connectivity in schizophrenia. We demonstrate 

that studying such interactions can provide a powerful way of evaluating gene-brain 

relationships to characterizing schizophrenia and other mental illnesses.
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Figure 1: An overview of proposed imaging genetics approach.
Genomic features (preselected SNPs) and imaging features (dynamic connectivity states 

estimated using sliding-window k-means clustering approach) are used in a parallel 

independent component analysis (pICA) framework, and the component showing significant 

association between genomic and imaging features is identified.
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Figure 2: Dynamic connectivity states from clustering approach for k=5.
Group- specific centroids of the dynamic states for healthy (HC) and schizophrenia (SZ) are 

obtained from k-means clustering.
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Figure 3: Parallel ICA component.
Results from pICA showing significantly correlated dFNC component (top), and SNP 

component (bottom). For the dFNC component the significant links (i.e., functional 

connections with highest connectivity strengths thresholded using z-scores of connectivity 

strengths: |z| > 3) and their connectivity strengths for the functional component are shown. 

For the SNP component, a Manhattan plot highlighting the thresholded SNPs at |z| > 2, and 

the unique genes that these thresholded SNPs are mapped into are shown.
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Figure 4: Loading parameter from the significant parallel ICA component.
Scatterplot showing dFNC loading parameters versus SNP loading parameters from the 

significant pICA component (top), group-wise violin plots of dFNC loading parameters 

(middle, left) and SNP loading parameters (middle, right).
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Figure 5: Component loading parameters and polygenic risk scores.
Scatterplots showing polygenic risk scores versus (a) dFNC loading parameters and (b) SNP 

loading parameter for the significant pICA component.
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Table 1:

Significant dynamic FNC cells and group-wise occupancy rate across each state

State# #dFNC Cells Occupancy (HC/SZ)

1 23 22%/14%

2 0 32%/11%

3 0 20%/18%

4 0 9%/32%

5 2 16%/27%
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Table 2:

Reactome Pathway Analysis using the top genes

Canonical Pathway P-value Gene Name

Neuronal System 0.604202 CHRNA3

Neurotransmitter Receptor Binding And Downstream Transmission In The Postsynaptic Cell 0.313669 CHRNA3

Transmission across Chemical Synapses 0.431053 CHRNA3

Immune System 9.28E-05 HLA-C

Metabolism 0.064322 SLC44A4, ATXN7

Gene Expression 0.866556 EHMT2, THOC7, SMG6
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Table 3:

Biological functions of the top genes

Functions P-value Gene Name

Neurological Disease, Psychological Disorders 4.64E-02 CHRNA3

Hereditary Disorder, Neurological Disease 6.78E-04 ATXN7

Molecular Transport, RNA Trafficking 3.10E-04 SMG6, THOC7

Visual System Development and Function 4.45E-02 ATXN7

Cell Morphology, Embryonic Development 6.76E-03 CCHCR1

Nervous System Development and Function, Tissue Morphology 1.55E-02 ATXN7

Developmental Disorder, Neurological Disease 3.34E-02 SMG6

Immunological Disease 1.08E-02 RERE

Immunological Disease, Inflammatory Disease, Inflammatory Response 6.78E-04 HLA-C
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Table 4:

Peak activations of ICN spatial maps related to significant links identified from pICA framework. For more 

information on ICNs, see (Damaraju et cl., 2014).

BA Nv Tmax. Coordinate

Auditory

IC51

R Middle T emporal Gyrus 21 440 32.6 63, −15, −9

L Middle T emporal Gyrus 21 300 30.4 −60, −18, −6

Visual

IC57

L Parahippocampal Gyrus 37 234 37.5 −24, −45, −12

R Parahippocampal Gyrus 37 206 39.3 30, −45, −12

IC7

R Cuneus 17 855 54.4 3, −84, 6

IC20

R Middle Frontal Gyrus 10 332 31.2 −30, −93, −6

L Superior Frontal Gyrus 10 278 29.4 30, −90, 5

IC78

R Cuneus 18 949 29 3, −87, 21

IC43

R Calcarine Gyrus 30 952 23.2 15, −63, 9

IC24

R Superior Parietal Lobule 7 768 25.3 −32, −88, −1

IC91

R Lingual Gyrus 19 277 29.9 27, −66, −6

IC60

R Precuneus 19 357 39.8 30, −78, 33

L Cuneus 19 278 33.6 −27, −78, 27

IC80

R Middle T emporal Gyrus 22 414 38.4 54, −51, 12

L Middle T emporal Gyrus 22 185 28.1 −54, −51, 9

Sensorimotor

IC6

Right Postcentral Gyrus 3 622 39.8 42, −21, 54

IC10

L Precentral Gyrus 4 598 39.6 −36, −24, 51

IC5

R Precentral Gyrus 6 328 47.4 54, −6, 27

L Precentral Gyrus 6 288 49.6 −54, −9, 30

Cognitive Control
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BA Nv Tmax. Coordinate

IC63

L Fusiform Gyrus 37 236 35.6 −42, −57, −12

R Fusiform Gyrus 37 89 28.1 45, −54, −12

IC35

R Middle Frontal Gyrus 10 332 31.2 33, 54, 12

L Superior Frontal Gyrus 10 278 29.4 −33, 45, 21

IC47

Cingulate Gyrus 23 621 47.4 0, −36, 27

IC94

R Inferior Parietal Lobule 40 374 34.9 −42, −42, 45

IC21

R Middle Frontal Gyrus 10 332 31.2 33, 54, 12

L Superior Frontal Gyrus 10 278 29.4 −33, 45, 21

Default-mode

IC84

R Angular Gyrus 40 443 45.8 51, −60, 39

IC90

R Angular Gyrus 39 213 36.1 45, −75, 30

L Superior Occipital Gyrus 19 89 26.6 −36, −81, 30

IC53

L Anterior Cingulate Gyrus 32 742 43.5 −3, 48, 12

IC69

R Medial Frontal Gyrus 8 443 45.8 3,42, 45

IC95

L Angular Gyrus 40 555 43 −48, −63, 42

BA=Brodmann area; Nv=number of voxels in each cluster; Tmax.=maximum t-statistic in each cluster; Coordinate = max coordinate (mm) in MNI 
space, following LPI convention.
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Table 5:

Top 80 SNPs ID, chromosome number (Chr. #) and base position

SNP ID Chr. # Base Position

rs10779702 chrl 8423510

rs3765971 chrl 8445360

rs6709720 chr2 57967563

rs832190 chr3 63842629

rs704373 chr3 63867355

rs56293138 chr3 63888935

rs59971314 chr3 63914618

rs7615475 chr3 63926661

rs3774720 chr3 63951765

rs13272 chr3 63986170

rs13160798 chr5 152276252

rs150082944 chr6 28728722

rs115003944 chr6 28734806

rs115544230 chr6 28742340

rs116558610 chr6 28773983

rs148659564 chr6 28817300

rs138562260 chr6 28854772

rs115018585 chr6 28862617

rs115673158 chr6 28877773

rs2233956 chr6 31081205

rs3130566 chr6 31102618

rs114523252 chr6 31116636

rs115997058 chr6 31142265

rs139358712 chr6 31147476

rs150576357 chr6 31149520

rs150602567 chr6 31154434

rs114702079 chr6 31154493

rs116340174 chr6 31161577

rs114974300 chr6 31163638

rs149973721 chr6 31166352

rs115250945 chr6 31178279

rs116311494 chr6 31178328

rs115883612 chr6 31183509

rs141197791 chr6 31184877

rs114272705 chr6 31191070

rs139837897 chr6 31195996

rs115761897 chr6 31197074
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SNP ID Chr. # Base Position

rs114504365 chr6 31200764

rs145495788 chr6 31201357

rs116254022 chr6 31202680

rs114151693 chr6 31220273

rs112684598 chr6 31228634

rs2524108 chr6 31232451

rs114031082 chr6 31237061

rs114700001 chr6 31251477

rs116824795 chr6 31258255

rs115612789 chr6 31271700

rs149248545 chr6 31326324

rs2395475 chr6 31326920

rs2523587 chr6 31327400

rs116778584 chr6 31335901

rs2763981 chr6 31840021

rs652888 chr6 31851234

rs142520578 chr6 31861815

rs114425641 chr6 32200670

rs116153975 chr6 32226126

rs143312186 chr6 32229238

rs150597224 chr6 32237221

rs145499705 chr6 32237260

rs116522184 chr6 32237463

rs115430867 chr6 32247710

rs116105456 chr6 32252507

rs114513253 chr6 32270283

rs116434681 chr6 32298484

rs10957102 chr8 60544006

rs7465167 chr8 143315080

rs8180995 chr8 143326237

rs10875482 chr8 143330385

rs564585 chr15 78886227

rs7359276 chr15 78892661

rs11637630 chr15 78899719

rs8042059 chr15 78907859

rs1532292 chr17 2097483

rs11078865 chr17 2109109

rs9906500 chr17 2129210

rs9893527 chr17 2164210
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SNP ID Chr. # Base Position

rs170044 chr17 2197502

rs216200 chr17 2199846

rs2224770 chr17 2205923

rs391300 chr17 2216258

rs114151693 chr6 31220273
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