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A B S T R A C T

Performance monitoring is a critical process which allows us to both learn from our own errors, and also in-
teract with other human beings. However, our increasingly automated world requires us to interact more and
more with automated systems, especially in risky environments. The present EEG study aimed at investigating
and comparing the neuro-functional correlates associated with performance monitoring of an automated system
and a human agent using a vertically-oriented arrowhead version of the flanker task. Given the influence of task
difficulty on performance monitoring, two levels of difficulty were considered in order to assess their impact
on supervision activity. A large N2 P3 complex in fronto-central regions was observed for both human agent
error detection and system error detection during supervision. Using a cluster-based permutation analysis, a sig-
nificantly decreased P3-like component was found for system compared to human agent error detection. This
variation is in line with various psychosocial behavioral studies showing a difference between human-human
and human-machine interactions, even though it was not clearly anticipated. Finally, the activity observed dur-
ing error detection was significantly reduced in the difficult condition compared to the easy one, for both system
and human agent supervision. Overall, this study is a first step towards the characterization of the neurophysio-
logical correlates underlying system supervision, and a better understanding of their evolution in more complex
environments. To go further, these results need to be replicated in other experiments with various paradigms to
assess the robustness of the pattern and decrease during system supervision.

1. Introduction

Our everyday life interactions with others rely highly on our abil-
ity to anticipate their actions, but also detect whenever they commit
an error or not. This error detection process is called “performance
monitoring”. It is defined as “[…] a set of cognitive and affective
functions determining whether adaptive control is needed and, if so,
which type and magnitude is required” (Ullsperger et al., 2014). Oth-
er's performance monitoring is crucial in learning processes but also
for correct social interactions (Tomasello et al., 1993). Even though
the neural correlates of monitoring of our own errors are relatively
well know (for a review on performance monitoring, see Gehring et
al., 2011; Holroyd and Coles, 2002; Riesel et al., 2013; Taylor et al.,
2007), the brain correlates associated with performance monitoring
of others are still poorly documented (Bates et al., 2005; Koban et
al., 2010; Van Schie, Mars, Coles and Bekkering, 2004). However,
various studies suggest that similar brain processes are in

volved in supervision of another human and one's own performance
monitoring (for reviews, see Ninomiya et al., 2018; and Somon et al.,
2017).

During supervision tasks, several electroencephalographic (EEG)
studies have shown that the detection of another person's error in-
duces a negative component followed by a positive deflection in frontal
and central regions. These components have been called the observa-
tion error-related negativity (oERN) and observation error positivity
(oPe)(Carp et al., 2009; de Bruijn and Von Rhein, 2012; Koban et al.,
2010; Van Schie et al., 2004; Weller et al., 2018) with regards to the
Error-Related Negativity (ERN) and error Positivity (Pe) components de-
scribed for our own performance monitoring (Falkenstein et al., 1991;
Gehring et al., 1990). Moreover, functional magnetic resonance imaging
(fMRI) studies have shown that the same brain regions seem to be ac-
tivated during others' error and our own error detection (Cracco et al.,
2015; Desmet and Brass, 2015; Jääskeläinen et al., 2016).

More recently, the increasing amount of automation technology
in our daily-life has also raised questions about system performance
monitoring.
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Adding automation has been considered for a long time as a simple
substitution of human activity for machine activity (substitution myth,
see Woods and Tinapple, 1999). However, automation has profoundly
changed human activity at work. Human operators are now relegated to
the role of passive supervisors: they are solely asked to monitor the ac-
tions and detect failures of automated systems (Moray, 1986; Sheridan,
1992, 1997; Sheridan and Verplank, 1978). This change in activity has
led to new cognitive dysfunctions such as the out-of-the-loop perfor-
mance problem (Endsley and Kiris, 1995; Kaber and Endsley, 1997).
This issue, triggered by over-trust and complacency towards highly reli-
able automated systems, is characterized by an inability to detect errors
correctly and to take over whenever necessary (Berberian et al., 2017).
It has been pointed out as the cause of several accidents and incidents in
aeronautics, for example (Shappell et al., 2007). A better understanding
of the brain process related to the detection of others' errors, and partic-
ularly during system supervision, has thus become essential.

A few researchers have started to tackle the issue of performance
monitoring during system supervision and have looked at its neural
correlates. They assessed several types of system errors (Chavarriaga
and Millán, 2010; Chavarriaga et al., 2014; Ferrez, 2007; Padrao et
al., 2016; Shappell et al., 2007) or malfunctions (Desmet et al., 2014;
Gentsch et al., 2009). Quite consistently, they were able to observe the
same ERPs as those observe during human agent supervision (i.e., the
oERN, oPe) at the same locations (i.e., Fz, Cz or FCz electrodes). fMRI
studies have also shown that the same type of activity is observable,
in the same brain regions as for human agent supervision (i.e., pMFC),
when looking at system malfunctions. Nevertheless, several groups have
identified another ERP during system supervision: the N400 (Padrão
et al., 2016; Pavone et al., 2016). This component is usually linked to
semantic processing, and more precisely to the observation of seman-
tic aberrations, when recorded at the Pz electrode (Kutas and Hillyard,
1980). However, Balconi and Vitalloni (2014) have argued that this po-
tential can be measured during the observation of aberrations in move-
ment sequences at more frontal and temporo-parietal locations. Simi-
larly, Padrão and colleagues (2016) and Pavone et al. (2016) observed
this ERP during avatar error observation respectively at the Pz and FCz
electrodes, whereas Ferrez and Millán (2005) observed it during Hu-
man-Machine Interaction (HMI) error detection at the Cz electrode. But
this component seems to be observed solely whenever a movement, ei-
ther of the avatar or of the HMI system, is involved.

To our knowledge, even though the neural correlates of performance
monitoring seem similar, no direct comparison has been performed be-
tween human and artificial agent supervision while both executed the
same task. No study has measured brain activity in reaction to supervi-
sion of an automated system performing a human task either. In addi-
tion, system error monitoring was mainly assessed through a few studies
about system malfunctions triggered by human agent actions (Gentsch
et al., 2009; Ullsperger et al., 2014; Padrão et al., 2016; Desmet et al.,
2014) or by using human avatars (Pavone et al., 2016). Thus, they do
not allow to specifically identify the possible effect of psychosocial pa-
rameters on performance supervision while several studies have shown
that various psychosocial parameters differentiate interactions with hu-
man and artificial, automated agents. For example various emotions,
feelings or representations can have an impact on performance mon-
itoring ERPs activity. Interpersonal similarity (Carp et al., 2009), em-
pathy (Marco-Pallarés et al., 2010), intentionality (Desmet and Brass,
2015), rivalry (Koban et al., 2010), agency feeling (Cracco et al., 2015),
motor representation (Van Schie et al., 2004) also modulate the per-
formance monitoring activity. Most of these processes cannot be devel-
oped with an automated system as they can with another human agent
(see for example Riek, Rabinowitch, Chakrabarti and Robinson, 2009;
Wohlschläger et al., 2003). Finally, Ninomiya et al. (2018) argue that
observed errors in everyday tasks should have some kind of relevance
for the observer in order to trigger the pMFC activity, thus the per-
formance monitoring system. In comparison with literature, our study
compares the supervision of both a human and an artificial agent with
the same task configuration thus modulating only the psychosocial fac-
tors and controlling for any other factor which could modify the perfor-
mance monitoring activity during supervision.

The present EEG study aims at characterizing the brain correlates re-
lated to performance monitoring of either a human agent or a system, in
the same experimental paradigm. To this purpose, participants took part
in a vertically-oriented arrowhead version of the flanker task in which
they had to supervise another human and an artificial agent while he/
it was performing the task. This experimental procedure allows to su-
pervise both the human and artificial agents that perform exactly the
same task thus modulating only the interaction type that the participant
develops with each agent. Moreover, several studies suggest ERPs asso-
ciated with performance monitoring in execution tasks are modulated
by task difficulty (Van der Borght et al., 2016). However, the extent to
which task difficulty modulates ERPs associated with performance su-
pervision remains still largely unknown. Two levels of difficulty (easy
and difficult) were thus considered in our study in order to assess the
influence of task difficulty on supervision activity and to have a better
understanding of ERPs' function in performance supervision tasks. The
level of task difficulty was manipulated using distractors (difficult con-
dition) or not (easy condition) above and below the target arrow in the
modified flanker task. Both executor (the agent) and supervisor visu-
alize the same type of stimulus for both easy and difficult conditions.
In comparison with literature, this experimental procedure will allow
to clarify the impact of distractors on the supervision activity. Indeed,
in most studies measuring other's monitoring with the flanker task, the
executor performs the equivalent of our difficult task (i.e. target with
flankers), whereas the supervisor is only given the target (our easy task)
as stimulus.

Concerning performance monitoring activity, we expect to observe
fronto-central response-locked ERPs similar to that observed in the liter-
ature during one's own performance monitoring - i.e. observational ERN
and Pe - for both human agent and system supervision. With regards to
the effect of accuracy, irrespective of the agent type, the amplitude of
the oERN and oPe are assumed to be higher for error supervision com-
pared to correct response observation in accordance with the literature
(Van Schie et al., 2004; Carp et al., 2009, de Bruijn and Von Rhein,
2012).

Concerning the influence of the agent type on performance moni-
toring, it remains under debate. Some authors suggest an increase of
the performance monitoring activity for system supervision due to a de-
crease in interpersonal similarity, which is negatively correlated with
the oERN amplitude (Carp et al., 2009). Conversely, a decrease of the
oERN can be expected due to a decrease of the motor representation
and intentionality for system compared to human agent supervision as
both have been reported to impact supervision activity (Van Schie et
al., 2004; Desmet and Brass, 2015). In our study, participants will not
be faced with the other agent, nor presented thoroughly to him. So,
based on the previous literature we can assume a decrease in perfor-
mance monitoring activity as we believe that interpersonal similarity
and motor representation won't have any effect in our study. Intention-
ality should have the highest effect thus decrease monitoring activity
during system supervision compared to human agent supervision.

Concerning the effect of task difficulty on supervision, we expect a
decrease of supervision ERPs amplitude with increasing level of task dif-
ficulty. The degree of uncertainty in the difficult condition of our study
is higher due to the visual complexity of the stimulus and several stud-
ies have shown that amplitudes of performance monitoring components
(ERN, Pe) were modulated by uncertainty and task difficulty (Van der
Borght et al., 2016; Pailing and Segalowitz, 2004; Endrass et al., 2012).
Consequently, we assume that the amplitudes of the oERN and oPe as-
sociated with errors should be decreased in the difficult condition com-
pared to the easy condition. A similar effect of task difficulty on supervi-
sion ERPs is expected for human agent and system supervision, the task
being similar for both agents.

Finally, in this study, in order to identify the brain activity specifi-
cally related to performance monitoring of another agent without pre-
conceived notions about their spatiotemporal characteristics, the elec-
trophysiological data were statistically analyzed using a robust clus-
ter-based permutation test (Maris and Oostenveld, 2007). This analy-
sis, which was at first introduced to investigate magnetic resonance
imaging (MRI) data (Bullmore et al., 1999) does not require choosing
a particular time window, neither a particular electrode location, to
process data. To our knowledge, this type of analysis has never been per
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formed on performance monitoring data. Results of this analysis will
be compared to a more classical analysis of variance (ANOVA) at given
electrode locations, in accordance with the literature and based on
grand averages.

2. Materials and methods

2.1. Participants

A power analysis of performance monitoring data during supervision
suggested a sample size of 7 subjects to detect both the oERN (de Bruijn
and Von Rhein, 2012: 1-β=0.80, , α=0.05)

and the oPe (Weller et al., 2018: 1-β=0.80,
, α=0.05). Based on these results and the population sizes typically
described in this literature in the research domain (including between
15 and 20 participants), we recruited seventeen healthy right-handed
participants (12 men; 27.5 years±4.78 years) to perform the experi-
ment from the general population via mailing-lists and published ads.
Their laterality was measured with the Edinburgh inventory test
(m±SEM=87.06±4.54%; Oldfield, 1971). They had normal or cor-
rected-to-normal vision and hearing, had no neurological or psychiatric
disorders and were not under any medication. The study was approved
by the local French ethics committee for non-interventional research
(CERNI - Comité d'Ethique pour les Recherches Non Interventionnelles,
IRB00010290-2016-09-13-12) of the Pôle Cognition Grenoble and con-
ducted according to the principles expressed in the 1964 Declaration of
Helsinki. A written informed consent was obtained from all participants,
who received a financial compensation.

2.2. Experimental task and procedure

2.2.1. Stimuli
Task stimuli were displayed in white against a black background us-

ing the E-prime 2.0 software (v.2.0.10.356, E-prime Psychology Soft-
ware Tools Inc., Pittsburg, USA) onto a 19-in CRT monitor (with a
1024×768 pixels resolution and a 100-Hz refresh rate) located 46cm
away from the participant in an unlit room. They consisted of five ver-
tically-oriented arrowheads (2.8°×0.6° of visual angle) that included a
target (central arrowhead) and four flankers (2 arrowheads above and
below the target). Two difficulty levels were considered (see Fig. 1). The
easy condition only displayed the target arrowhead (0.5°×0.6° of visual
angle). It could either be pointing up, or down. The difficult condition
displayed the target flanked above and below. The flanking arrowheads
all pointed in the same direction, but could either be congruent with the
target arrowhead (in the same direction) or incongruent (in the opposite
direction).

Following the display of task stimulus, the agent's response accord-
ing to the target orientation was displayed and consisted of the same
arrowhead as presented in the easy condition.

2.2.2. Procedure
Participants took part in a modified version of the flanker task

(Eriksen and Eriksen, 1974). They had to supervise and assess the ac-
curacy of an artificial or a human agent in a modified vertically-ori-
ented arrowhead version of the flanker task, using a response box
(Chronos ⁠® Psychology Software Tools Inc., Pittsburg, USA). The exper-
iment was divided into two difficulty sessions (easy and difficult), sep-
arated by at least a week. Sessions order was counterbalanced across
participants: eight participants started with the easy condition, whereas
the other nine started with the difficult one. Each session, lasting ap-
proximately 1h, included ten task blocks performed by a human agent
(a fellow coworker), and ten task blocks performed by an artificial
agent (a computer), separated by breaks. The order of the 20 blocks
was pseudo-randomized for each subject and differed between partic-
ipants. However, the same order of blocks was used for both diffi-
culty sessions. Participants were informed of the type of agent per-
forming the task at the beginning of each block. In the easy session,
each of the 20 blocks was composed of 72 trials (lasting 3.75min): 36

with the target facing up and 36 with the target facing down
pseudo-randomly presented. In the difficult session, each of the 20
blocks was composed of 48 trials (lasting 2.5min) and 4 types of stimuli
(congruent up and down, incongruent up and down) were equiproba-
ble and pseudo-randomly presented. ⁠1 Each trial started with the display
of a fixation rectangle (4.85°×1.9° of visual angle) for a variable dura-
tion (1±0.25s), followed by the display of the task stimulus for 10ms.
A fixation point was displayed until the agent's – human or artificial
– response (an arrowhead pointing up or down), which was then pre-
sented for 350ms and followed by a jitter black screen for a duration of
300–350ms. Each trial ended with the question “ERREUR?” (“ERROR?”
in French) for 1 s and the participant had to state whether the agent
was right or wrong by pressing the corresponding response key. Re-
sponses (“Oui” or “Non”, i.e., “Yes” or “No” in French) associated with
response buttons were counterbalanced across participants. Participants
were previously familiarized with the task for each difficulty condition
using trials performed by the artificial agent. No training trial was ana-
lyzed. Fig. 2 shows a complete description of a trial and stimuli.

In order to avoid any bias in the number of errors and correct re-
sponses performed by the other agent across participants, all trials were
computerized. Still the fellow human agent stayed in the room next to
the one of the participant during the whole experiment and came to see
him at every break. The error rate for both sessions was set at 33.3%.
Reaction times of the agent for each experimental condition were based
on the reaction times of the participant obtained during a previous ex-
perimental session in which the same participants had to perform them-
selves the same modified version of the flanker task (data in revision).

2.3. Measure and analysis

2.3.1. Subjective and behavioral data
2.3.1.1. Subjective data Task difficulty was assessed at the end of each
session, on a Likert scale from 0 to 10. Task difficulty was analyzed
with a pairwise t-test with session type (easy vs. difficult) as within
subject factor. Two participants did not fill the difficulty questionnaire
at the end of the difficult session, and consequently were removed from
the statistical analysis.
2.3.1.2. Behavioral data Participants' responses were recorded using
the E-Prime 2.0 software (v.2.0.10.356) and analyzed with the R soft-
ware (v.3.3.2, R Core Team, 2016). For each participant, error detec-
tion rates (EDRs) for agent accuracy were computed for each experi-
mental condition (difficulty level, type of agent) as the ratio between
the number of errors correctly detected by the participant and the total
number of errors in the given condition (the total number of errors is
240 in the easy condition and 160 in the difficult condition, for each
type of agent, per participant). EDRs were analyzed using a two-way
repeated-measures ANOVA with agent type (human vs. artificial) and
difficulty (easy vs. difficult)⁠2 as within subject factors. The d’ coeffi-
cient was measured for each experimental condition. This measure cor-
responds to “…the detectability of a given signal for a given observer”
(Swets et al., 1961). d’ equals 0 if a participant obtains 50% accuracy
(chance level) whereas a positive d’ indicates a better than chance per-
formance (Haatveit et al., 2010). d’ values

1 The difference in the number of trials between the easy and the difficult conditions
comes from a pre-test phase that we performed with other participants in order to define
several parameters of the task. We observed during this pre-test that the probability of
making errors in the easy condition was lower than in the difficult condition. Thus we
estimated that 72 trials were required in the easy condition to end up with the same
number of errors than in the difficult condition, when performing the modified flanker
task. This number of trials per difficulty condition was then validated during a prior
session where participants had to perform themselves the modified flanker task, before the
supervision task described here (data under revision). This number of trials was then kept
in the supervisory task for both agent types.

2 We performed a first analysis that took into account the congruency of the stimuli
in the difficult conditions. We assessed the difference between EDRs with three difficulty
levels: easy, difficult congruent and difficult incongruent. As there was no main effect of
difficulty (F(2,32)=2.72, p=.08), and for statistical robustness, we decided to collapse
difficult congruent and incongruent trials for both behavioral and EEG data analysis.
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Fig. 1. Task stimuli (a) and agent's response stimuli (b) presented to the participant in the modified flanker task.

Fig. 2. Experimental design of the trial during the easy and difficult conditions of the supervised flanker task: participants had to determine whether the agent executing the task (human
or artificial) performed correctly or not in the flanker task by comparing the orientation of the central target arrowhead of the task stimulus and the response given by the other agent.

were analyzed using a two-way repeated-measures ANOVA with type of
agent (human vs. artificial) and difficulty (easy vs. difficult) as within
subject factors.

For both EDRs and d’ comparisons, partial eta squared was provided
as a measure of the effect size and mean comparisons were performed
using a Bonferroni correction. Reaction times were not analyzed, given
participants were not required to respond as quickly as possible. All re-
sults are reported as mean±SEM. The significance level was placed at
.05.

2.3.2. Electroencephalography
The electroencephalogram (EEG) was continuously recorded using

an actiCAP (Brain Products GmbH) equipped with 75 Ag/AgCl unipo-
lar active electrodes (i.e., the 65 actiCAP montage to which we added
F9, F10, P9, P10, PO9, PO10, O9, O10, M1, M2) which were positioned
according to the extended 10–20 system (Oostenveld and Praamstra,
2001). The reference and ground electrodes used for EEG data acqui-
sition were those of actiCAP and were positioned on the forehead (at
AFz and Fpz electrodes respectively). Blinks and eye movements were
also monitored using four pure silver electro-oculography electrodes:
two positioned above and below the left eye on the median axis for ver-
tical activities and two at the eyes’ outer canthi for horizontal activities.
The ground electrode for the EOG electrodes was placed on the earlobe.
In addition, participants were instructed to limit blinking and eye-move-
ments from the fixation point to their response. The signal impedance
was kept below 10kΩ for all electrodes. The signal was amplified using
an actiCHamp system (Brain Vision, LLC), digitized at a 24-bit rate and
sampled at 1,000Hz, with a 0.05μV resolution. No filtering was applied
during data acquisition.

All EEG data analyses were performed using EEGLab (v.14.1.1;
Delorme and Makeig, 2004) and Fieldtrip (Oostenveld et al., 2011) tool-
boxes on Matlab R2014b (v.8.4; The MathWorks, Inc.). Raw EEG data
were re-referenced offline to the linked mastoids. The signal was seg-
mented into 3-s epochs from trial onset. The signal was then down-sam-
pled at 500Hz and band-pass filtered between 0.5 and 30Hz. All seg-
ments contaminated with muscular activity and/or non-physiological
artifacts were rejected offline after a visual inspection. Artifacts re-
lated to ocular movements (saccades and blinks) were corrected us-
ing an Independent Component Analysis (ICA). Seventy-two indepen-
dent components were utilized to perform the analysis, and on aver-
age 1.29±0.11 components were removed per subject. Preprocessed
epochs were segmented again from 200ms before to 750ms after the
agent's response display in order to identify the event-related potentials
(ERPs) time-locked to this response. Baseline correction was then ap-
plied from the 200 to 0ms period preceding the agent's response dis-
play. For each participant, the ERPs induced by each type of agent's re-
sponses and measured over each electrode were averaged according to
the accuracy of the response (agent error and correct response), the type
of agent (human and system) and the level of task difficulty (easy and
difficult). Trials which were misclassified by the participant (i.e. correct
responses classified as errors, and vice versa) were excluded from EEG
analyses.

Several ERPs were visually identified in fronto-central regions on
basis of the grand averages of data in accordance with the litera-
ture. First, a positive wave (called P2) peaking at the FCz location
was observed between 200 and 300ms from the agent's response dis-
play (Pfefferbaum et al., 1985). This component was followed by a N2

P3 complex including a negative wave (N2) extending to 350ms
maximum, and then a positive wave (P3), which peaked at
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the FCz location between 300 and 500ms from the agent's response
onset (Enriquez-Geppert et al., 2010; Gajewski and Falkenstein, 2013).
The negative fronto-central activity, followed by a positive fronto-cen-
tral one have been identified in the literature either as the observation
ERN (oERN) and observation Pe (oPe) complex, or as the N2 P3 com-
plex. The fact these two complexes represent the same activity is still
under debate (Ullsperger et al., 2014). Here we chose to use the N2
P3 nomenclature in adequacy with the obtained data.

Peak amplitudes of the P2, N2 and P3 components were defined us-
ing the ERPLAB (v7.0) toolbox on Matlab R2014b (v8.4) and an adap-
tation of the local peak characterization function (with the “Neighbor-
hood” parameter equal to 2; Lopez-Calderon and Luck, 2014).

Mean peak amplitudes of the P2, N2 and P3 components were classi-
cally analyzed at FCz with a three way repeated measures ANOVA with
difficulty (easy vs. difficult), accuracy (error vs. correct) and agent type
(human vs. artificial) as within subject factors. For robustness purposes
of the EEG analysis, difficult trials were not separated considering the
congruency of the stimulus. This choice was made for two main reasons:
i) a first analysis on the EDRs considering congruency showed no main
effect of difficulty on this measure (F(2,32)=2.72, p=.08); and ii) data
from a previous experimental session where the participants had to per-
form the same modified flanker task as with this study showed no effect
of congruency on performance monitoring ERPs in the difficult condi-
tion (F(1,16)=0.97, p=.34; data in revision). Mean comparisons were
explored using Bonferroni post-hoc test (for multiple comparisons) and
a significance threshold set at 0.05.

In order to identify brain activities specifically related to perfor-
mance monitoring of another agent, without preconceived notions
about their spatiotemporal characteristics, the ERP data were also statis-
tically analyzed using the robust cluster-based permutation test (Maris
and Oostenveld, 2007) with the Fieldtrip toolbox on Matlab R2014b
(v.8.4). This analysis is based on the cluster mass test (Oostenveld et al.,
2011) which was at first introduced to investigate MRI data (Bullmore
et al., 1999).

This method identifies spatio-temporal clusters, in ERP data, present-
ing a significant difference between the conditions (accuracy, difficulty
and type of agent as factors) in a given time window. With the clus-
ter-based permutation test, two-dimensional EEG data (spatial and tem-
poral dimensions) are averaged for each condition and for all the par-
ticipants. There are two main steps for this analysis. The first step con-
sists in selecting the significant clusters. To begin with, for every chan-
nel x time-point pair (a sample), the experimental conditions are com-
pared two by two with a t-test. Each sample for which the test statistic is
larger than a predefined threshold (here the value of the t-test statistics

for α=.05) is selected in a subset of samples. Then, clusters are drawn
from this subset according to the temporal and spatial adjacency of the
samples, but also to similarity in sign and magnitude. Here, we con-
sider a minimum of 2 neighboring electrodes per cluster and a mini-
mum duration of 20ms. Finally, cluster statistics are calculated by sum-
ming the t-values of each sample in the cluster (definition of observed
statistics: t⁠obs). This leads to the second step of the analysis: the permu-
tation test. For this non-parametric statistical analysis, the averages for
the two experimental conditions compared are first randomly assigned
to 2 subsets of data for every subject. These subsets are called a random
partition. Second, the samples in these random partitions are compared
two-by-two. Third, clusters are drawn from these random partition sam-
ple statistics, with the same spatio-temporal constraints than in the ob-
served cluster selection. Fourth the largest cluster is selected as the one
for which the sum of samples statistic is the maximum. Fifth, another
random partition is created and analyzed, and so on. A total of five hun-
dred random partitions of data were computed and analyzed using the
same scheme. This repetition yields a non-parametric Monte-Carlo ran-
domization procedure to estimate the empirical distribution of the test
statistic under the null hypothesis: each t-value is used to construct a
histogram. Sixth, p-values are finally calculated for each cluster from
the test statistic that was actually observed and the histogram as the pro-
portion of random partitions that resulted in a larger test statistic than
the observed one. A more visual description of these steps is provided in
the Supplementary materials (see Fig. S1).

ERP data in the various conditions are then considered for each clus-
ter by averaging across channels included in the cluster. The differences
between conditions are now evaluated through a single test statistic for
the complete grid of spatio-temporal pairs. The cluster-based permuta-
tion analysis revealed several significant clusters which are described in
the results section.

3. Results

3.1. Subjective and behavioral data

3.1.1. Difficulty assessment
Participants reported that the task was harder to perform in the dif-

ficult condition (4.60±0.58) compared to the easy one (3.35±0.46 on
a scale from 0 to 10, t(14)=3.073, p<.01).

3.1.2. Error detection rates (EDRs)
EDRs were not modulated by the type of agent (F(1,16)=0.78,

p=.39) nor by task difficulty (F(1,16)=0.48, p=.5; see Fig. 3a).

Fig. 3. Mean Error Detection Rate (a) and Detectability of stimuli (b) for all easy (left) and difficult (right) conditions, for human (red) and artificial (blue) agent supervision. Black
points show the individual values for each participant in every condition. Error bars show standard errors to the mean (SEM) a.u.: arbitrary unit. ***: p < .005. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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3.1.3. d’ value
Overall d’ value was 2.20, and was significantly above chance per-

formance (F(1,16)=204.02, p<.001, ƞ⁠2
⁠P =.93). No effect of the type

of agent (F(1,16)=2.11, p=.17) and no interaction effect with this
factor (F(1,16)=0.12, p=.73) were observed on the values of d’. d’
was only significantly modulated by task difficulty (F(1,16)=17.24,
p<.001, ƞ⁠2

⁠P =.52). Mean comparisons revealed that d’ was signif-
icantly higher in the easy condition than in the difficult condition
(p<.005, see Fig. 3b).

3.2. Monopolar ERPs

3.2.1. P2 component
The classical statistical analysis revealed no effect of agent type

(F(1,16)=0.38, p=.55) and no interaction of other factors with this
factor on the P2 amplitude. The P2 amplitude was however significantly
modulated by accuracy (F(1,16)=4.97, p<.05, ƞ⁠2

⁠P =.24), task diffi-
culty (F(1,16)=5.24, p<.05, ƞ⁠2

⁠P =.25) and tended to be significantly
modulated by the difficulty×accuracy interaction (F(1,16)=4.21,
p=.057, ƞ⁠2

⁠P =.21; see Fig. 4). Mean comparisons revealed that the P2
ERP was higher for detected errors compared to detected correct re-
sponses and in the easy compared to the difficult condition (see Fig. 4a
and b).

3.2.2. N2 component
The classical statistical analysis revealed no effect of agent type

(F(1,16)=3.7×10⁠−3, p=.95) and no interaction with this factor on
the N2 amplitude. The amplitude of the N2 component tended to
be modulated by accuracy (F(1,16)=4.40, p=.052, ƞ⁠2

⁠P =.22) and
was significantly modulated by task difficulty (F(1,16)=4.60, p<.05,
ƞ⁠2

⁠P =.22) and the difficulty×accuracy interaction (F(1,16)=4.61,
p<.05, ƞ⁠2

⁠P =.22, see Fig. 4). Mean comparisons

showed that the N2 amplitude was significantly higher (lowest value)
in the difficult compared to the easy condition. The interaction was re-
vealed in the fact that the N2 amplitude following error detection in the
difficult condition was significantly higher than for all the other condi-
tions (all p<.005, see Fig. 4a and b). No difference in N2 amplitude
was observed between errors and correct responses in the easy condi-
tion, neither between the easy and difficult conditions for correct re-
sponses.

3.2.3. P3 component
The classical statistical analysis revealed no effect of agent type

(F(1,16)=4.6×10⁠−3, p=.95) and no interaction with this factor on
the P3 amplitude. The amplitude of P3 was significantly modulated
by accuracy (F(1,16)=69.42, p<.005, ƞ⁠2

⁠P =.81), task difficulty
(F(1,16)=15.77, p<.005, ƞ⁠2

⁠P =.50), and the difficulty×accuracy in-
teraction (F(1,16)=11.07, p<.005, ƞ⁠2

⁠P =.41, see Fig. 4). Mean com-
parisons revealed that the P3 amplitude was significantly higher for de-
tected errors than for detected correct responses in both easy and diffi-
cult conditions (both p<.005, see Fig. 4a and b). The interaction effect
was reflected in the fact that the easy condition induced a significantly
higher P3 amplitude than the difficult condition for detected errors only
(p<.005).

3.3. Cluster-based permutation test

For main effects, we observed two clusters which were significantly
different between errors and correct responses detection, regardless the
type of agent and the difficulty level: i) one associated with a nega-
tive potential in the right central region (36 electrodes activated) from
160 to 340ms post-agent response (p<.05), and ii) one associated with
a positive potential in a large fronto-centro-parietal region (all elec-
trodes activated except TP9, P10, PO10, O9/O10) from 340 to 750ms
(p<.005). Both clusters were higher for errors than for correct re-
sponses. The corresponding ERPs are assumed to be the N2 – for the

Fig. 4. Time-course of event-related potentials time-locked to the agent's response display (0 ms) at the FCz electrode for erroneous responses (red) in the easy (plain line) and difficult
(dashed line) conditions, and for correct responses (blue) in the easy (plain line) and difficult (dashed line) conditions, for (a) human agent supervision and (b) system supervision. Wave-
forms are represented as mean ± SD across participants for each condition. The far right panel represents the topographies at the time-point 410 ms post-response (black vertical dashed
line on the graphs) for errors in the difficult and easy condition with both human and system supervision responses averaged. (c) Results of the statistical analysis are represented for the
P2 (left), N2 (middle) and P3 (right) components. Amplitudes give mean ± SEM for every category of the ANOVA (Accuracy, Difficulty and Type of Agent). *: p < .05; ***: p < .005.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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negative potential – and the P3 – for the positive potential. Concerning
the effect of agent, no significant cluster was obtained. Concerning the
effect of difficulty, a significant cluster associated with positive activ-
ity was observed in the centro-parietal region (44 electrodes activated)
from 0 to 110ms which was significantly higher in the difficult, com-
pared to the easy condition. This cluster is assumed to correspond to the
P2 component.

We then looked deeper into the comparisons of the conditions
two-by-two. Only the significant comparisons are presented hereafter.

For human agent supervision, the comparison between correct re-
sponses and error detection based on permutation analysis revealed
one significant cluster in a large fronto-centro-parietal region associated
with a positive potential: i) in the easy condition (all electrodes acti-
vated except for P10, PO10, O9/O10) from 330 to 750ms post agent re-
sponse (p<.005), and ii) in the difficult condition from 360 to 750ms
post agent response with the same topography than in easy condition
(p<.005). The positive potential was significantly higher for detected
errors than for detected correct responses in both the easy and difficult
conditions (see Fig. 5a).

For artificial agent supervision, the comparison between correct re-
sponses and error detection based on permutation analysis revealed
one significant cluster in a large fronto-centro-parietal region associ-
ated with a positive potential, similar to the cluster observed for the
human agent: i) in the easy condition (all electrodes activated except
for TP9, P10, PO10, O9/O10) from 340 to 750ms post agent response
(p<.005), and ii) in the difficult condition (all electrodes activated ex-
cept for TP10, P10, PO10, O9/O10) from 350 to 750ms post agent re-
sponse (p<.005). For both difficulties, the positive potential elicited
was significantly higher for detected errors than for detected correct re-
sponses (see Fig. 5b). This result was similar to the ones obtained for hu-
man agent supervision. They are assumed to correspond to the P3 com-
ponent of the N2 P3 complex observed on grand average ERPs.

For artificial agent supervision and in the difficult condition only, an
accuracy effect was also observed on another cluster, located in right
central regions and associated with a negative potential from 240 to
370ms post agent response (p<.05). The permutation test revealed
that this negative potential was significantly higher for detected errors
than for detected correct responses (see Fig. 6a). This cluster can be as-
similated to the N2 component of the N2 P3 complex.

The comparison between human and artificial agent supervision
based on permutation analysis according to accuracy of responses re-
vealed a significant

cluster in fronto-centro-parietal regions associated with a positive po-
tential from 400 to 500ms post agent response (p<.05). This signif-
icant cluster was only observed for error detection, regardless of task
difficulty (both difficulty levels grouped). It is assumed to correspond
to the P3 component of the N2 P3 complex (see Fig. 6b for its time
course and topography). This P3 component was significantly higher for
human error detection than for system error detection.

The comparison between the easy and difficult conditions based on
permutation analysis according to accuracy of responses revealed a sig-
nificant cluster in fronto-central regions associated with a positive po-
tential from 180 to 590ms post agent response (p<.005). This signifi-
cant cluster was only observed for error detection for both human and
artificial agents grouped. This potential, assumed to correspond to the
P2 and P3 components, was significantly higher in the easy condition
than in the difficult condition.

4. Discussion

The main aim of this EEG study was to characterize ERPs related to
performance monitoring during supervision of either a human or an ar-
tificial agent. To this purpose, participants took part in a modified ver-
tically-oriented arrowhead version of the flanker task. In order to assess
the influence of task difficulty on supervision activity, two levels of task
difficulty were considered. Finally, brain activities specifically related to
performance monitoring of another agent were statistically analyzed (i)
with classical analyses of variance on peak amplitude of grand average
ERPs and (ii) without preconceived notions about their spatiotemporal
characteristics using the robust non-parametric cluster-based permuta-
tion test. Three main questions were asked in this study: i) Is it possi-
ble to observe performance monitoring activity in a supervision context,
i.e. a cerebral activity triggered by error detection? ii) If so, is this er-
ror-related activity different when we supervise an automated system as
compared to a human agent? iii) Does the difficulty of the task have an
impact on the brain activity linked to other agent supervision? Thus, we
will now discuss our results with regards to these three questions.

4.1. Supervision ERPs of others’ performance

Although error detection during supervision has attracted more and
more attention, it is not as well documented as error commission stud-
ies (Riesel et

Fig. 5. Time course of significant clusters obtained with cluster-based permutation analysis on EEG data after error (red) and correct response (blue) detection in the easy (plain line) and
difficult (dashed line) conditions (a) Significant differences for human agent supervision in the easy (horizontal plain line) and difficult (horizontal dashed line) conditions. The bottom
panel represents topographies at time-point 410ms (black vertical dashed line on the graphs) for the cluster-level difference wave between human agent detected errors and correct re-
sponses in the easy (left) and difficult (right) conditions for the cluster's electrodes only. (b) Significant differences for artificial agent supervision in the easy (horizontal plain line) and
difficult (horizontal dashed line) conditions. The bottom panel represents topographies at time-point 410ms (black vertical dashed line on the graphs) for the cluster-level difference wave
between system detected errors and correct responses in the easy (left) and difficult (right) conditions for the cluster's electrodes only. (c) Results for the statistical analyses are presented
for significant clusters only as the mean±SEM across participants on the significant period of time (results not presented correspond to non-significant differences, thus resulting into no
significant cluster). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 6. Time course of significant clusters obtained with cluster-based permutation analysis on EEG data after error (red) and correct response (blue) detection for human agent (plain
lines) and system (dashed lines) supervision (a) Negative cluster (i.e., N2 component). in the difficult condition significant for system error detection only (horizontal plain line). The
topography (bottom panel) shows the differential activity between the two significantly different conditions at time-point 300ms post-system response (black dashed vertical line) in the
difficult condition for the cluster's electrodes only. Bar graphs show the statistical results for this significant cluster as mean±SEM across participants on the significant period of time (b)
Significant difference (horizontal plain line) between human agent and system error detection on the P3 component for both difficulties averaged. The topography (bottom panel) shows
the differential activity at the time-point 410ms post-errors (black dashed vertical line) for the cluster's electrodes only. Bar graphs show the statistical results for this significant cluster
as mean±SEM across participants on the significant period of time. (Results not presented on the bar graphs correspond to non-significant differences, thus resulting into no significant
cluster). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

al., 2013; Somon et al., 2017). Our study gives new insights into the
characterization of the performance monitoring activity during super-
vision. Indeed, we observed that there was a specific brain activity re-
lated to error detection during both human and artificial agent super-
vision. This time-locked activity shares the same characteristics as a
well-known ERP complex: the N2 P3 complex. It was observed in its
usual time window (i.e. 200–750ms post-stimulus) with a maximum at
the FCz electrode. This complex was coupled with a P2 component, sig-
nificantly higher for errors than for the correct responses of the super-
vised agent. Several supervision studies (see e.g., Carp et al., 2009; de
Bruijn et al., 2007; Ferrez and Millán, 2005, 2008), using flanker tasks,
action slips or human-machine interfaces, revealed the same broad com-
plex as that obtained in our study following error observation with sim-
ilar topographies and latencies: a fronto-central positivity, followed by
a central negativity and a fronto-central positivity. Ferrez and Millán
(2005, 2008) actually called this complex the “interaction Error-related
Potential” (iErrP) during performance monitoring of a HMI. Other stud-
ies have argued that they detected the “observational” counterpart of
the ERN and Pe (oERN and oPe; Bates et al., 2005; Koban et al., 2010;
Van Schie et al., 2004) and thus identified respectively a negative com-
ponent followed by a positive one after error detection at fronto-central
sites. The components observed in these studies tend to differ from those
obtained in our studies in their shape and time course but these differ-
ences can be justified by the use of other tasks (Go-NoGo task) and dif-
ferent supervision contexts (e.g. cooperation/competition, different po-
sitions of the observer, difference in the difficulty of stimuli presented
to the performer and the observer). Interestingly, several studies have
suggested that the N2 P3 complex, observed in Go-NoGo tasks for ex-
ample, could correspond to the same cognitive process as the ERN-Pe
complex observed in performance monitoring/error commission tasks.
In this direction, Ullsperger et al. (2014) recently made the hypothe-
sis that the ERN, N200 and FRN were three representations of a unique
process occurring at different stages of goal-directed behavior. Based
on both classical ERP results and computational models, they argued

that these three ERPs would reflect a fast alarm signal responding to
an eliciting event (stimulus or action) occurring before, during or af-
ter the action. Likewise, they argue that the late Pe and P3b following
these ERPs both represent the same subjective evidence signal. Our re-
sults tend to back up Ullsperger and colleagues’ theory and thus suggest
that the N2 P3 and ERN-Pe do both correspond to the same kind of
performance monitoring activity.

The cluster-based permutation analysis revealed a similar pattern
of results, with an effect of accuracy. Nevertheless, the cluster-based
test gives more informative results. On our data, the algorithm identi-
fied significantly larger deflections for error detection compared to cor-
rect response detection from 160 to 750ms after the supervised agen-
t's response: first negative (between 160 and 340ms) then positive (be-
tween 340 and 750ms). The negative cluster included 35 electrodes in
the right central region. This cluster was considered to correspond to
the N2 component. The identified positive cluster was very wide as it
included more than 65 electrodes in fronto-centro-parietal regions, re-
gardless task difficulty and supervised agent type. This deflection was
considered to be the P3 component. Although the P3 component is usu-
ally measured only at a few arbitrarily selected number of electrodes
(at the location of the peak of the component) and as the mean in a
time-window ranging from 300 to 500ms, the cluster-based permuta-
tion analysis shows that this component is statistically broader as all
the spatial and temporal points statistically significantly different be-
tween the two conditions are considered. The statistical scale is much
higher and we can see it on the statistically relevant 67 electrodes and
more than 200 time-points for the P300. This result was also observed
when subdividing the data according to the type of agent: the P3 cluster
was observed for error detection for human agent supervision, but also
for system supervision, separately. These complementary findings result
from the cluster-based permutation test's properties. Indeed, this tech-
nique allows to observe significant differences between various experi-
mental conditions without defining a priori the localization or approxi-
mate starting time point of such activity (Maris and Oostenveld, 2007).
It is also a non-parametric analysis (i.e., it requires no assumptions on
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the data). Another benefit of this technique is that it takes into account
the location and proximity of the electrodes, defining clusters of close
electrodes.

In addition, in the difficult condition and for system supervision
only, a significant cluster associated with a negative fluctuation was
also measured in right central regions between 240 and 370ms post-re-
sponse when comparing the detection of errors and correct responses.
The amplitude of this activity was significantly higher for error detec-
tion than for correct responses detection. Given its polarity, latency, and
topography, this cluster was assumed to correspond to the N2 compo-
nent peaking at the FCz electrode in grand averages. The frequency the-
ory (Donkers and van Boxtel, 2005) can nicely explain such a differ-
ence appearing only in the difficult condition, and for system supervi-
sion. Indeed, this theory assumes that the N2 amplitude is modulated
by the frequency of stimuli. Particularly, the N2 component is increased
when faced with an attended deviant stimulus: its amplitude appears to
be negatively correlated with the frequency of this deviant stimulus. In
other words, the more the deviant stimulus is rare (the least frequent),
the greater the amplitude of the N2 associated with it (Enriquez-Geppert
et al., 2010). In our experiment, the error rate was equivalent for both
difficulty levels (33.3%) but the actual detectability of error stimuli, as
measured by the d’ coefficient, was significantly smaller in the difficult
condition compared to the easy condition. Thus, errors in the difficult
condition represent the least frequent – or the most deviant – stimuli,
which could explain why the amplitude of the N2 is larger in this con-
dition. Similarly, the performance of the two agents was equivalent, but
the verbal reports collected at the end of the experiment indicate that
participants perceived the errors as less frequent for system than for hu-
man supervision (see next section), thus explaining why the amplitude
of the N2 is larger for system error detection in the difficult condition.
Interestingly, this latter result illustrates an impact of both agent type
and task difficulty on the brain components associated with the perfor-
mance monitoring of another agent. These impacts are detailed and dis-
cussed below.

4.2. Error detection and type of agent

The ANOVA on peak amplitude in grand averages revealed no main
effect of the type of agent supervised, nor any interaction effect with
this factor, whatever the ERPs considered (N2, P2 and P3). On the other
hand, the cluster-based permutation analysis revealed a cluster signif-
icantly modulated by the type of agent and associated with a positive
deflection in fronto-centro-parietal regions from 400 to 500ms post-er-
roneous response of the supervised agent, corresponding to the time
course and location of the P3 wave. This positive deflection was signif-
icantly lower for automated system than for human agent error detec-
tion, regardless task difficulty (i.e. when both difficulties were grouped).
This result again shows the interest of the cluster-based permutation test
compared to classical ANOVA. Indeed we can see on the data that the
amplitude difference is very small. Thus the analysis of variance might
not have picked it up. But the permutation test, through the Monte
Carlo estimation allowed to fit more the data. Interestingly, some par-
ticipants (11) filled a questionnaire after the supervision task.⁠3 All re-
ported that the supervision of the human agent was different from the
supervision of the automated system. Even though the error rate was
similar and error presentation was randomized for the two types of

3 They were proposed 3 scales: i) to state which type of agent was more difficult to
supervise (scale from +5 – human – to −5 – computer), ii) to state their confidence
level towards the automated system (from 0 – no confidence – to 10 – confident), iii)
to state their confidence level towards the human agent (from 0 – no confidence – to
10 – confident). They were also asked, as an open question, whether they observed any
difference between the human agent and the automated system. Unfortunately the too
small number of participants who filled the questionnaires did not allow us to report
statistical results on these data. But the 11 subjects interviewed (6 for both sessions, 5
for one session) all reported at least one difference between the two types of agents. On
average, they reported that both the human agent and the automated system were as easy
to supervise (m±SEM: 0 ± 0.16). Mean confidence towards the automated system was
6.24 ± 0.36; and mean confidence towards the human agent was 6.06 ± 0.36. Finally,
4 participants out of 11 reported that a human agent error led more to a succession of
errors, 2 participants reported that the human agent made more errors than the automated
system, and 1 participant reported the opposite; and 1 participant reported that the
automated system's reaction times were steadier.

agents, seven participants out of the eleven stated spontaneously that
the human agent tended to either make more errors, or to make series
of errors more than the artificial agent. In the performance monitoring
literature, human agent supervision has been studied more than system
supervision (except for BCI errors detection). The comparison between
both has never been performed to our knowledge. Nevertheless, alike in
our results, separate studies have shown error detection activity for both
human agent and system supervision.

Several assumptions may justify this difference between human
agent and system supervision in our study. Various studies have shown
that human-human interactions differ from human-system interactions.
A first assumption refers to the impact of similarity with the observed
agent. In a study assessing error observation, Carp and collaborators
(2009) showed that interpersonal similarity, as measured based on par-
ticipants' beliefs and opinions, had an impact on brain activity associ-
ated with supervision of another human agent. They showed that the in-
terpersonal similarity of the participant was both negatively correlated
with the oERN amplitude and positively correlated with the oPe am-
plitude. Further, Riek et al. (2009) showed in a study that increase in
“humanity” of a robot improved the participants' empathy for this ro-
bot. In a neuroimagery study, Shane and collaborators (2009) observed
that empathic concern during other's performance observation in a Go/
NoGo task modulates the activity in the rostral/ventral ACC (part of the
medial prefrontal cortex). This result was backed up by another study
by Newman-Norlund and collaborators (2009), but also by studies on
pathological populations (Fitzgerald et al., 2005). All similarity effects
are likely candidates to explain the decrease of the amplitude of perfor-
mance monitoring ERPs when supervising the artificial compared to the
human agent in our study.

Another assumption involves trust. The role of trust in human-au-
tomation interaction has been the focus of much research over the past
decade (e.g., Dzindolet et al., 2003; for a comprehensive review, see
Lee and See, 2004; Madhavan and Wiegmann, 2007). Particularly, it
has been proven that high levels of automation could lead to over-re-
liance and failure to monitor the “raw” information sources provided
as input to automation – the so-called complacency effect (Moray and
Inagaki, 2000; Sheridan and Parasuraman, 2005). Yet, Lewandowsky
and colleagues (2000) observed that human operators find automated
systems more trustworthy than human collaborators when performing
a task allocation work. Moreover, increasing complacency is often asso-
ciated to decreasing attention. Several studies have assessed the effect
of attention, or attention allocation, on the P300 amplitude and showed
that it was greater for attended stimuli compared to unattended ones
(Donchin and Coles, 1988; Johnson and Donchin, 1978). An increase of
trust and complacency toward the automated system may thus explain
our results, i.e. a lower positive cluster amplitude, assimilated to the P3
component, for system compared to human agent supervision.

Finally, the concept of intentionality attribution could also justify
the difference observed between human and artificial agent supervision.
Indeed, at the behavioral level Wohlschläger et al. (2003) showed that
it is more difficult to attribute intentionality to an artificial agent than it
is to another human agent, as measured by intentional binding. In neu-
roimagery, Desmet and Brass (2015) showed that the intentionality and
usuality of an action performed by someone else modifies the activity
in the medial pre-frontal cortex (MPFC). They observed an antero-pos-
terior gradient of activation in the MPFC: the posterior MPFC was more
activated for unusual accidental actions (i.e., errors) than for unusual
intentional actions, and vice versa for the anterior MPFC. They also ob-
served increased activation of other areas implicated in performance
monitoring (e.g., anterior insula, inferior frontal gyri) for accidental ac-
tions observation compared to intentional ones. Thus a decrease of in-
tentionality decreases the activity in the anterior MPFC which could also
explain the decrease in the positive cluster amplitude assimilated to the
P3 component for system supervision compared to human agent super-
vision.

4.3. Supervision and task difficulty

The ANOVA revealed a lower amplitude of the P3 component in
the difficult condition compared to the easy condition, for error de-
tection. The effect of
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task difficulty also appears stable and robust as similar results were ob-
served using the cluster-based permutation analysis. Although the role
of the P2 and P3 components remains under debate, a majority of stud-
ies suggests a close link with attentional processes. Our results support
the theories according to which the P3 amplitude variations reflect the
stimuli categorization processes or target salience (Kök, 2001). Indeed,
the P3 amplitude decreases with increasing categorization uncertainty,
and with decreasing salience of the target. Both those factors are mod-
ulated in our task. The introduction of flankers in the difficult condi-
tion decreases the salience of the target compared to the easy condition.
Likewise, as the salience of the target is decreased, the categorization
uncertainty is increased in the difficult condition, compared to the easy
one. Thus the impact of difficulty on our data is consistent with the lit-
erature.

In addition, the cluster-based permutation analysis reveals a main ef-
fect of difficulty on the P2 cluster from 0 to 110ms. This analysis also al-
lowed to identify a large cluster in fronto-central regions (61 electrodes)
associated with a significantly larger positive deflection in the difficult
condition than in the easy condition as early as 180ms and up to 590ms
after the response of the supervised agent for only error detection and
for both human agent and system. This deflection can be considered to
include the P2 and P3 components.

An important aspect of our study is that the stimulus is the same for
the participant and the supervised agent for both difficulty levels. In-
deed, in everyday-life situations, the supervisor must be able to deter-
mine whether the agent's response is correct or erroneous based on his
own analysis of stimuli that may be more or less complex. Neverthe-
less, at a theoretical level, our manipulation doesn't allow to determine
whether the difference in brain activity between the easy and difficult
conditions is due to a difficulty of the task at hand per se, or if it is
due to differences in supervision difficulty. This aspect is also relevant
as (i) distinguishing the impact of both allows to understand more the
supervision and performance monitoring process, and (ii) it might be of
interest in everyday-life situations where the supervision activity may
be degraded because of various parameters. This question was tackled
by a few researchers at the execution level (Scheffers and Coles, 2000)
and could also be studied for the supervision activity in future works, in
continuity of our research.

5. Conclusion

The error detection process takes place in our everyday-life, when
we are performing various actions, but also when we observe or su-
pervise the actions of another human agent or a system. The results of
our EEG study revealed that the detection of errors performed by an-
other agent or a system was characterized at the cerebral level by a
larger P2 N2 P3 complex than the detection of correct responses
in an extended fronto-centro-parietal region. Using a cluster-based per-
mutation analysis, a lower positive fluctuation, considered as the P300,
in fronto-centro-parietal regions was found for system supervision com-
pared to human agent supervision. Furthermore, task difficulty only im-
pacted error detection and modulated the entire P2 N2 P3 com-
plex, for both human agent and system supervision. Better charac-
terizing neurophysiological correlates underlying supervision will help
better understand the associated cognitive dysfunctions that may ap-
pear with increasing automation and in degraded conditions. A repli-
cation of these results with other experimental paradigms would al-
low to determine if this pattern holds. Monitoring difficulties, like the
“out-of-the-control-loop phenomenon”, have been characterized at the
behavioral level, but have rarely been looked at from a neuroscientific
perspective. Our study can help apprehend how real-time control, su-
pervision and error detection processes can be degraded when interact-
ing with highly automated systems in our everyday life, and what the
effects are on the brain.
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