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ABSTRACT

In early life auditory discrimination ability carelenhanced by passive sound exposure. In
contrast, in adulthood passive exposure seems ittshéficient to promote discrimination
ability, but this has been tested only with a sngihort exposure session in humans. We
tested whether passive exposure to unfamiliar andistimuli can result in enhanced
cortical discrimination ability and change detestim adult humans, and whether the
possible learning effect generalizes to differetitngli. To address these issues, we
exposed adult Finnish participants to Chinese &xanes passively for 2 h per day on 4
consecutive days. Behavioral responses and the'®ravent-related potentials (ERPS)
were measured before and after the exposure fosaine stimuli applied in the exposure
phase and to sinusoidal sounds roughly mimicking fitequency contour in speech
sounds. Passive exposure modulated the ERPs tohsgeaend changes in both ignore
(mismatch negativity latency, P3a amplitude and RB8mncy) and attend (P3b amplitude)
test conditions, but not the behavioral responBaghermore, effect of passive exposure
transferred to the processing of the sinusoidahdsuas indexed by the latency of the
mismatch negativity. No corresponding effects i@ ERPs were found in a control group
that participated to the test measurements, b@ived no exposure to the sounds. The
results show that passive exposure to foreign $pseands in adulthood can enhance
cortical discrimination ability and attention ortation toward changes in speech sounds

and that the learning effect can transfer to naesp sounds.

Keywords: perceptual learning, speech sounds, passive esgavent-related potentials
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1. Introduction

In early infancy, cortical discrimination abiliig enhanced even by passive sound
exposure alone (e.g., Cheour et al., 1998; Chetoair,2002; Kuhl, 2004; Trainor, Lee, &
Bosnyak, 2011). In contrast, in adulthood passwend exposure in absence of training
seems to be insufficient to affect the neural-ledistrimination ability (Naatanen et al.,
1993; Sheehan et al., 2005; Elmer et al., 201 Hebtiavioral discrimination performance
(Wright et al., 2010; 2015). Instead, effects ofivec discrimination training have been
shown in several studies by measuring the mismasgativity (MMN) (Kraus et al.,
1995; Tremblay et al., 1997; Tremblay et al., 19B&nminen et al., 2015), P3a (Atienza
et al., 2004; Uther et al., 2006; Seppanen ef@l?2) and P2 (Atienza et al., 2002; Reinke
et al., 2003; Sheehan et al., 2005) componentyariteelated potentials (ERPs). These
components reflect pre-attentive change detectidMN) and subsequent attention
shifting (P3a) based on a memory trace formed byldhrned sound feature (Naaténen et
al., 2005; Polich, 2007) and sound feature encodimystimulus classification (P2) (for a
review see Crowley & Colrain, 2004).

Even though effects of passive exposure have baetied on brain responses
related to pre-attentive change detection, possiiexts of passive exposure on attentive
change detection of sounds have not been investigate. effects on N2b and P3b
components. 1-hour attentive identification tragnimith speech sounds, however, showed
learning-related changes in N2b and P3b (Alain ket 2010). In another study,
identification training resulted in only enhance8bPresponses and no changes in N2b
(Ben-David et al., 2011). Similarly, attentive distination training with speech sounds
resulted in enhanced P3b-like but not N2b-like ostates in electroencephalography
(Giroud et al., 2017).

Even if previous studies have failed to demonstedtect of passive exposure on
auditory change detection in adults (Naatanen.etl@B3; Sheehan et al., 2005; Elmer et
al., 2017; Wright et al., 2010; 2015), passive expe to sounds seems not to be entirely
ineffective either. Perceptual learning on an swgidiscrimination task (Wright et al.,
2010) or on an identification task (Wright et &015) that is combined with sessions of
passive exposure is more efficient than the adta@ing alone as indexed by behavioral

responses (Wright et al., 2010; 2015). Furthermpassive exposure to sounds increases
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amplitude of the P2 component (Sheehan et al., ;ZD@nblay et al., 2007; Tremblay et
al., 2010; Ross et al., 2013). Thus, passive exposeems to have at least facilitating
effect on auditory perceptual learning in adulthood

One possible reason for the failure of the prevstuslies in demonstrating the effect
of passive exposure on discrimination ability cantbe short, 1 - 2 hour, exposure time
that has been used in previous studies (Naatanain 993; Sheehan et al., 2005; Elmer
et al., 2017). Active training studies have prodideining over several days, and this has
led to better discrimination ability as indexed thg enhancement of the MMN, P3a and
P3b responses (Kraus et al., 1995; Tremblay et 1#897; Giroud et al., 2017).
Furthermore, it has been shown that sleep depoivdiinders the learning-related increase
in the MMN amplitude and prevents the appearanda@®fP3a component (Atienza et al.,
2004). Thus, the learning-related changes in @rtiesponses seem to be sleep-
dependent, probably requiring memory consolidatianng nocturnal sleep (Alain et al.
2015). Based on this assumption, it could be ptsghmat the effects of mere passive
exposure emerge if the exposure is expanded onradedays, allowing memory
consolidation. This has not yet been tested exiyliciowever.

The evidence on generalization of the auditorynieay to stimulus features not
encountered during training is scarce. There aneesstudies showing that frequency or
syllable discrimination training generalizes to sgty similar untrained stimuli (for a
review see Wright & Zhang, 2009). One study appMMN to study the generalization,
and showed that categorization training of labipsconsonant generalizes also to
alveolar stop consonant as indicated by the shexitéstency and increased amplitude of
the MMN to non-trained stimuli (Tremblay et al.,91d).

In the present study, we tested two highly noveleats of auditory perceptual
learning: i) Effect of passive speech sound exposur change detection and attention
orienting in ignore and attend test conditions, and the effect of passive exposure is
observed, whether it generalizes to ignored noedpestimuli. Adult native Finnish
participants were exposed to speech sounds (cham@&sinese lexical tones) for a total
of 8 hours over 4 days. ERPs were recorded befodeadter the exposure to the same
speech sounds and also to sinusoidal sounds roaghijcking the pitch contours of the
speech sounds. A control group received no expdsurearticipated only in the ERP
recordings at the same time intervals as the exyertal group.

We expect that the passive exposure would resulinadulations in the ERPSs,

reflecting changes in both pre-attentive and aitenthange detection and attention
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orienting toward changes (MMN, P3a, N2b, and P8b)the exposure time is longer than
in the previous studies (Naaténen et al., 1993eldme et al., 2005; Elmer et al., 2017) and
allows memory trace consolidation during the nigbttween the exposure periods
(Stickgold, 2005; Alain et al., 2015). Changeshese ERP components are assumed to
occur due to the formation of long-term memory esgntations of the sounds, making
change detection and attention orienting to themmenedficient (as in Naatanen et al.,
1997; Winkler et al.,, 1999). We also hypothesizbdsed on the findings on sound
frequency training (Wright & Zhang, 2009), that #féect of passive exposure transfers to

the non-speech sounds.

2. Material and methods

2.1 Participants

A total of 39 monolingual Finnish-speaking papemts (mean age = 23.0 years,
standard deviation [SD] = 3.3 years; 32 females Amdales) volunteered for the study.
They were recruited with announcements in the aoboards and e-mail lists of the
University of Jyvaskyla. The inclusion criteria ftive study were an age of 18-30 years,
right-handedness, normal hearing measured usingraetty, and self-reported normal
vision (or corrected to normal vision). The excbusicriteria for the study were
neurological or psychiatric disorders, includingeg problems, and exposure to or training
in tonal languages. However, previous exposurendutrips to countries where tonal
languages are spoken (maximum of 2 weeks) was trtafyritten informed consent was
obtained from each participant before inclusion tire study. The experiment was
undertaken in accordance with the Declaration dfidki, and the ethical committee of
the University of Jyvaskyla approved the researotogol.

The participants were divided to two groups, omeug of participants were
passively exposed to speech sounds (n = 18, mearr &1.7 years, SD = 1.7) and the
other served as a control group (n = 21, mean agd.x years, SD + 3.6). Data was
collected in ignore and attend test conditions ¢desed below). From both ignore and

attend conditions data of 3 participants were aditfrom statistical analysis due to
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extensive artifacts in the EEG. After the omissidata of 18 and 21 control group
participants and 18 and 15 passive exposure gratgipants remained for the ignore and
attend test conditions, respectively. In the igntest condition data, 66.6% of the
participants in the exposure group and the samgopoof the participants in the control
group had some musical training or had played atrument or sang as a hobby. In the
attend test condition data, this was the case@@% of the exposure group and 61.9% of
the control group participants. All the participamitad studied English and Swedish as a
foreign language. In addition, in the ignore teshdition data, 61.1% of the exposure
group and 88.9% of the control group participarad Btudied an additional language for
over 2 years. In the attend test condition daia,wlas the case for 73.3% of the exposure

and 81.0% of the control group participants.

2.2 Stimuli

We exposed the participants to lexical tones,eskianish belongs to a quantitative
language group, and tonal changes are not parhefphonological system in this
language. Therefore, we expected that trainingctffecould be observed. Because
discrimination threshold for the lexical tones agglin the study was not known for the
Finnish participants, and we did not want the pgréints to actively listen to the sounds,
two levels (large and small) of change were setetdanaximize the possibility to find an
exposure effect.

The sounds were prepared so that the first phonemeas spoken by a female
native Chinese speaker with rising (i.e., Chineseéchl tone 2) and falling (i.e., Chinese
lexical tone 4) pitch contour, and they were reedrdt a sampling rate of 44.1 kHz. The
sounds were then digitally edited using SoundFasgéware (SoundForge 9, Sony
Corporation, Japan) to modify them to have a domatf 200 ms. To isolate the lexical
tones and keep the rest of the acoustic featussgiaal, pitch tier transfer was performed
using Praat software (Praat v5.4.06, University Aohsterdam). Pitch tier transfer
generated a rising tone and a falling tone, whienewdentical to each other, except for a
pitch contour difference in fundamental frequen€®)( These two tones were taken as the
endpoint stimuli to create a continuum of lexicaiés with 10 interval steps. A morphing
technique was performed in MATLAB (MathWorks, InbMA, US), and a STRAIGHT
tool (Kawahara et al., 1999) was used to createhiee tones applied in the experiment.

The repeatedly presented standard sound was tlegfabne (Fig. 1A), and deviant
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sounds were a slightly falling tone (small deviamid a rising tone (large deviant, Fig.
1A) corresponding to the tones 11, 7, and 3, résmdg, on the tone continuum. All
stimuli were normalized to have the same root msegnare intensity. The detailed
procedure concerning how the stimuli were generatasl reported previously elsewhere
(Xi et al., 2010).

The sinusoidal sounds were created using SoundFsofievare (SoundForge 9,
Sony Corporation, Japan) and they had the saméi@u(@00 ms) and start and end FO as
the corresponding speech sounds. For the standandi sthe starting frequency of FO was
312 Hz and it gradually decreased to 180 Hz. Trgelaeviant had the starting FO at 233
Hz and it increased gradually to 268 Hz (Fig. 1 IBstly, the small deviant had a starting
FO at 268 Hz and it gradually decreased to 215Rity. (LB).

During the pre- and post-exposure electroencephaiog(EEG) recordings and
during the exposure, the sounds were presentechenotidball condition, where a
frequently occurring standard stimulus (probabilitfy 0.80) was interspersed with two
deviant sounds (large or small, probability of 0.fdr each), using E-prime 1.2
(Psychology Software Tools Inc., Sharpsburg, US#wsare, resulting in 1000 stimulus
presentations with a sound pressure level (SPIZPadB. The inter-stimulus interval (I1SI)
varied randomly between 440 and 520 ms (offsens®t). The stimuli were delivered in a
pseudorandom fashion, with the restriction thatsecutive deviant sounds were separated
by at least two standard sounds.
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Fig. 1. lllustration of the experiment design and fundamental frequency (FO) and pitch applied in the
stimuli. (A) In the pre EEG measurement, stimuli were preseintégnore and attend test conditions for
both groups. After the pre EEG measurement, ppdits in the exposure group were exposed to speech
sounds for 4 consecutive days, 2 h per day, wioiteérol group did not get any exposure. After thpasure

post EEG measurement took place in the same masnie pre EEG measurement for both gro(B<C)

In pre- and post-measurements, in separate stimhlbeks the stimuli were speech (phoneme /a/) or
sinusoidal sounds presented in the oddball comdifidhe same speech sounds were also applied in the
exposure phase. The black lines represent the mtes@ainds (large and small deviants), and the bmag

represent the standard sounds.

2.3 Procedure

For the exposure group, experimental sessions egr@éucted on 5 consecutive days
(Fig. 1A). On the first day, a pre-exposure EEG soeament was carried out to determine
the responses to stimuli before the passive expoguring the experiment, participants
sat in a comfortable chair in a well-lit room wighvideo connection to the experimenter.
Auditory stimuli were presented via a loudspealaced at approximately 50 cm above
the participant's head. Two experimental conditiomere applied. First, in separate

stimulation blocks, we played the speech sounds () and sinusoidal sounds (Fig. 1C)
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to the participants and asked them to ignore thd® and concentrate on a silent movie.
Second, participants were instructed to detect gémim the speech sounds (Fig. 1B) and
press a button as quickly as possible wheneverdb®ct a deviant sound. They were not
informed about the type of changes (e.g., risinfalling pitch).

From 2 - 6 hours after the pre-exposure EEG meamnt the first exposure session
started. Participants watched silent movies for, 2vhile in the background the same
speech sounds as used in the pre-exposure EEGQumae@nt were presented in same
oddball paradigm from the loudspeaker placed atrcegmately 50 cm above the
participant’s head with sound pressure level (S6fL30 dB (Fig. 1A). Participants were
instructed to ignore the sounds and pay attentothé movie. Again, no information
about the sounds was given to the participanterAdvery 30 min, a break was taken and
participants were asked questions regarding thtegblthe movie to keep their focus on it.
The second, third, and fourth exposure sessionth@riollowing consecutive days were
the same as the first one. A total of 2 h of expesuas given on each day, summing to a
total of 8 h for each participant. During the exypes EEG time-locked to sounds was
recorded, but these data are not reported here.

On day 5, a post-exposure EEG measurement wasrpedo The procedure was
identical to that in the pre measurement (Fig. 1A).

Control participants went through the pre and g6 measurements the same way
as the exposure group on days 1 and 5, but theyeztno sound exposure between these

measurements (Fig. 1A).
2.4 EEG measurements

Raw EEG was recorded with the Electrical Geoddsics(EGI, Eugene, OR, USA)
system with 128-channel sensor nets (Hydrogel G233y 1.0) using Ag-AgCl electrodes.

The sampling rate during the pre- and post-tests % Hz, and the data were filtered
online from 0.1 Hz to 200 Hz. Impedances for trecebdes were kept below 5@k

2.5 Analysis of behavioral data

Responses to the target deviant stimuli were densd hits if they occurred after the

offset of the deviant sound and before the onséhetecond standard stimulus onset (i.e.
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the hit response could occur during the post-déandard stimulus). The reaction times

for the hits were calculated from the onset ofdbeiant stimulus.

2.6 EEG analysis

Offline data analysis was performed on Brain Misinalyzer 2.1 (Brain Products
GmbH). An infinite impulse response (lIR) filterrfa 1-Hz low cut-off (24 dB/octave)
was applied for the continuous EEG data offlineeMhindependent component analysis
(ICA) was performed to detect and remove eye mowtradifacts from the data. Noisy
channels were interpolated using a spherical sphodel (Perrin et al., 1988); the average
of the interpolated channels was seven. Epochs @thms before to 700 ms after the
stimulus onset were parsed into segments. Theibas®rrection was calculated based on
a 100-ms prestimulus interval. Epochs including inombe values outside the range from -
200 to 200 pV, activity less than 0.5 pV, and geath larger than 75 uVv/ms were rejected
within 100-ms consecutive intervals for the epdeépochs were averaged separately for
each deviant type and the standard stimuli thatgated the deviant stimuli. The data were
re-referenced offline to an average reference. A2Mhigh cut-off filter was applied to the
averaged segments. Averages that had more tha@®bacttepted epochs were included in

the analysis.

2.7 Statistical analysis of behavioral data

Reaction times and discrimination accuracy wedyaed with a repeated-measures
analysis of variance (ANOVA), with the deviant tyff@rge vs. small) and session (pre vs.
post) as within-subject factors and the group pa between-subject factor (exposure vs.

control).

2.8 Statistical analysis of EEG data

For the ignore condition, mean amplitude valuesewealculated from the time
windows of 190-240 ms after stimulus onset forMdN, of 250-300 ms for the P3a to
the speech sounds, and of 300 - 350 ms for thetd8a sinusoidal sounds. The time
windows for the attend condition were 230-280 nrstiie@ N2b and 360-410 ms for the
P3b.

10
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The mean values for the MMN and P3a in both spa&chsinusoidal sounds in the
ignore condition were extracted as a mean frometlseparate electrode clusters, as
follows: left frontal (20, 23, 24, 28), mid-frontéd, 11, 16, 19), and right frontal (3, 117,
118, 124), corresponding roughly to the areas of F8 and F4 in 10-20 system,
respectively. For the N2b, the electrode clusteeseweft central (29, 30, 36, 37), mid-
central (5, 6, 12, 11), and right central (87, 1045, 111), corresponding to C3, Fz, and
C4, respectively. Finally, for the P3b, the leftiptal (47, 52, 59, 60), mid-parietal (61, 62,
72, 78), and right parietal (85, 91, 92, 98) elmi¢r clusters, corresponding to P3, Pz, and
P4, respectively, were selected (Supplementary BigThe time windows and electrode
clusters were selected based on the previoustlitergfor reviews, see Naatanen et al.,
2005; Patel et al., 2005; Polich, 2007) and visusgpection of the topographies and grand
averaged waveforms (Supplementary Fig.s 2 - 5).

The latencies were analyzed from the deviant resgwonly since standard stimuli
did not elicit clear responses for all participaritatencies for the MMN, in both speech
and sinusoidal sounds, and N2b were determined &se point where a minimum
amplitude (most negative) value for the devianpoese was found from the time window
of 150 - 260 ms and 200 - 310 ms, respectively. [@tencies for the P3a, in both speech
and sinusoidal sounds, and P3b were determined tameapoint where a maximum
amplitude (most positive) value for the devianpsse was found from the time window
of 250-350 ms and 340-460 ms, respectively. Thetrelde clusters for the latency
analyses were the same as those applied for thitadepanalysis for each component.

Statistical analyses were performed on IBM SPS8s8ts v. 24 (IBM corporation,
NY, USA). The mean amplitude values were analysghsately for each component with
a repeated-measures ANOVA with stimulus type (sdeshds. deviant), deviant type (large
vs. small), electrode cluster (left vs. mid vs.htjgand session (pre vs. post) as within-
subject factors and a between-subject factor gr@xposure vs. control). The mean
deviant response latency values were analyzed aeparfor each component with
repeated-measures ANOVA, with deviant type (largesmall), electrode cluster (left vs.
mid vs. right) and session (pre vs. post) as withibject factors and a between-subject
factor group (exposure vs. control). Huynh—Feldt-ected degrees of freedom were used
whenever the sphericity assumption was violate@. ddrrected p-values are reported, but

the degrees of freedom are reported as uncorreRgibtal eta squarg) was used as an

index of the effect size estimate. Here we giveramlete report of only interaction effects
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that contain session x group effect since our fosum the effect of the passive exposure.
Other effects are reported in the supplementargnads.

Repeated measures of ANOVAs and paired t-tests-t@wed with Bonferroni
correction) were used to further investigate thteraction effects. For the four-way
interactions, repeated measures of ANOVAs withieass group interaction effects were
investigated first, and then continued with sessalated interactions separately for each
group. For the three-way interactions session e@dlanteractions were investigated
separately for each group.

P-values and confidence intervals (Cls) of 95% rm@orted after performing a
bootstrapping with 1,000 permutations. Cohen’s thwgooled standard deviation was
used as an index of the effect size estimate.

Whenever a statistically meaningful interactioreet§ of session x group was found
in the ANOVA, Pearson correlation coefficients (ttailed) were calculated between
behavioral responses (reaction time, accuracy)tl@dorresponding ERP amplitude and
latency values of the deviant responses from tis¢ ppeasurement. For the correlations, P-
values, 99% Cls, and correlation coefficients amorted based on 1,000 permutations in

bootstrapping. The threshold for statistical sigaifice was p < 0.05.

3. Results

3.1 Attend condition for speech sounds

3.1.1 Behavioral results

There were no interactions including session x grow the reaction times or for the

accuracy of the behavioral responses. Detaileditsefor the behavioral responses are

reported in the supplementary materials S1.1.
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3.1.2 N2b component

There were no interactions including session x gréor the N2b amplitude or
latency (Table 1). The responses to deviant andlatd sounds in N2b time window are

reported in supplementary Fig. 2.

3.1.3 P3b component

For the P3b amplitude, an interaction effect ofidettype x stimulus type x session
x group was found (Table 1). The following ANOVAsparately for the deviant responses
(deviant type x session x group) (Supplementaryelapor separately for small and large
deviant responses (stimulus type x session x groeppaled no session x group
interactions (Supplementary Table 2). However,diiesequent ANOVA (stimulus type x
deviant type x session) performed separately farhegroup, revealed a significant
interaction effect of stimulus type x session ia gassive exposure group,= 4.97, p =
0.043,n; = 0.26 (Supplementary Table 3). There was no segsiated interaction effect

in the control group. For the passive exposure greubsequent t-tests were conducted
where amplitude values between the pre and posturgaents were compared separately
for the standard and deviant sounds. These revéadhe deviant responses became
significantly more positive from the pre measuretn@m®8 + 1.55) to post measurement
(3.61 £ 1.20), t(14) = 2.78, p = 0.032, 95% CI p9,.-0.21], d = 0.45 (Fig. 2 and Fig. 3),

but there was no change in the standard responbese was no exposure effect for the

latencies of the P3b response (Table 1).
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409  Table 1. Summary of the significant effects in the repeatszhsures of ANOVA for the attend condition
410 (speech sounds). * marks exposure-related effesgré®s of freedom (df), F-values (F), P-values &Ry

411 parietal eta squared) for effect sizes are reported.

Component/variable Effect df F P 1112,
N2b/ Stimulus type 1,34 379 0.0001 0.53
amplitude Deviant type 1,34 5.2 0.030 0.13
Session 1,34 57.9 0.0001 0.63
Electrode x Group 2,33 3.5 0.043 0.17
Deviant type x Stimulus type 1,34 38.8 0.003 0.23
Stimulus type x Electrode 2,33 6.4 0.004 0.28
Session x Electrode 2,33 4.8 0.014 0.22
Stimulus type x electrode x session 2,33 4.9 0.013 0.23
N2b (deviant)/ Deviant type 1,34 77.36 0.0001 0.70
latency Session 1,34 9.46 0.004 0.22
Electrode 233 991 0.0001 0.38
Deviant type x Session 1,34 417 0.049 0.11
P3b/ Deviant type 1,34 32.18 0.0001 0.47
amplitude Stimulus type 1,34 97.03 0.0001 0.74
Session 1,34 468 0.038 0.12
Electrode 2,33 22.08 0.0001 0.57
Electrode x Group 2,33 426 0.023 0.21
Deviant type x Stimulus type 1,34 34.93 0.0001 0.51
Stimulus type x Session 1,34 537 0.027 0.14
Stimulus type x Electrode 2,33 33.64 0.0001 0.67
Session x Electrode 233 505 0.012 0.23
Stimulus type x Electrode x Group 2,33 9.36 0.001 0.36

Deviant type x Stim type x Electrode 2,33 6.42 0.004 0.28
Deviant type x Stim type x Session x Group* 1,34 6.50 0.015 0.16

P3b (deviant)/ Deviant type 1,34 899 0.005 0.21
latency Session 1,34 59.89 0.0001 0.64
Electrode 1,34 4.08 0.027 0.20

412

413  3.1.4 Correlations between ERPsin attend condition and behavioral responses

414

415 In the exposure group, there was a marginallyisogmt correlation between the
416  post measurement P3b amplitude and reaction tiorethé small deviant, r = —-0.497, p =
417  0.059, 99% CI [-0.80, —0.11]; the larger the resgommplitude was, the faster the reaction
418 time became. Other correlations were non-significan

419
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Fig. 2. Grand averaged P3b responsesin the exposure group, n =15 and the control group, n = 21. The

gray lines represent responses to deviant sounds tlhe pre measurement, and the black lines sighédy
responses to deviant sounds from the post measote@®end averaged waveforms are presented as mean
values from the collapsed electrode clusters (feitldle, and right parietal; see Supplementary Fignd 3).

In lower panel, grand averaged scalp topograpHigiseodeviant responses as a mean amplitude véaline o

analyzed time window at 360—410 ms from the 128tedeles for the P3b for the exposure group andrabnt

group are shown
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Fig. 3. Passive exposure enhanced the P3b amplitude. The mean amplitude values of P3b averaged across
the three electrode clusters (left, middle, andhtrigarietal) in 360-410 ms time window. The whitrd
indicate the amplitude values at the pre measurgensrd the gray bars represent those at the post
measurement. *** indicates a statistically sigrdiit difference (p < 0.05) and error bars indicdte t
standard error of the mean. Post exposure resptmsles deviant sounds were enhanced comparease th

in pre measurement. No such effect was found irc¢imérol group.

3.2 Ignore condition for speech sounds

3.2.1 MMN component

There was no exposure effect for the amplitudtnefMMN response. However, for
the MMM latency, an interaction effect of sessiograup was found (Table 2). Separate t-
tests for the groups comparing the latencies betvpee and post measurements showed
that the deviant response latencies became sHaostarthe pre to post measurements in
the exposure group, while no such changes in legengere found in the control group
(Fig. 4 and 5).

3.2.2 P3a component

For the amplitude of the P3a component, an interacffect for stimulus type x
session x group was found (Table 2). Subsequent WAQ@stimulus type X session)
performed separately for each group revealed thetetwas an interaction effect of

stimulus type x session in the exposure groypy¥5.66, p = 0.02%; = 0.25, while no

session-related main or interaction effects weresepled in the control group
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(Supplementary Table 4). Separate t-tests for atahdnd deviant responses comparing
the amplitude change from pre to post measurement wonducted for the exposure
group. Responses to deviant sounds increased ifitat@ptoward a positive polarity and
the same was observed for the responses to thdastbsounds (Fig. 4 and 5).

The passive exposure affected the latencies ofiél&@nt responses in the P3a time
window, as indicated by the deviant type x sessigroup interaction effect (Table 2).
Subsequent ANOVA (deviant type x session) perfornsegarately for each group
revealed an interaction effect of deviant type ssgen in the exposure group, /7= 9.01,

p = 0.008,n; = 0.35. No session-related main or interactiorea# were found in the
control group. Subsequent t-tests comparing lagsrgeparately for the deviant types in
the exposure group showed that after the expothedatency of P3a to the large change
was shorter (273.6 ms = 14.9) than it was befoeeetkposure (294.0 ms £ 24.5), t(17) =
2.92, p = 0.02, 95% CI [8.0, 34.0], d = 1.00 (F3y- No effect was found for the small
change (Fig. 5).

Table 2. Summary of the significant effects in the repeateghsures of ANOVA for the ignore condition

where the speech sounds were presented. * marksavgrelated effect. Degrees of freedom (df), kBes

(F), P-values (P), and parietal eta squaré) for effect sizes are reported.

Component/variable Effect df F P ;112,

MM N/ Stimulus type 1,34 6.73 0.014 0.17
amplitude

MMN (deviant)/ Electrode 2,33 5.14 0.011 0.24

latency Deviant type 1,34 6.92 0.013 0.17

Deviant type x Session 1,34 4.17 0.049 0.11

Session x Group* 1,34 6,71 0.014 0.17

P3a/ Deviant type 1,34 4,27 0.047 0.11

amplitude Stimulus type 1,34 4.34 0.045 0.11

Session 1,34 6.91 0.013 0.17

Electrode 2,33 4.59 0.017 0.22

Stimulus type x Group 1,34 46.57 <0.0001 0.58

Session x Group* 1,34 2112 <0.0001 0.38

Deviant type x Group 1,34 13.76 0.001 0.29

Dev type x Stim type x Group 1,34 12.83 0.001 0.27
Stimulus type x Session x Group* 1,34 9.90 0.003 0.23
Stimulus type x Electrode x Group 2,33 4.95 0.013 0.23

P3a (deviant)/ Session x Group* 1,34 4.78 0.036 0.12
latency Deviant type x Session x Group* 1,34 6.64 0.014 0.16
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Fig. 4. Grand averaged deviant responsesin the time windows of the mismatch negativity (MM N) and
P3aresponsesin the exposure group, n = 18, and in the control group, n = 18. Grand average waveforms

to deviant responses (small and large deviant geddaare presented as mean values from the collapse
electrode clusters (left frontal, middle frontafht frontal; see Material and methods and Suppigarg

Fig. 1 and 4). The gray lines represent responsethe pre measurement, while black lines represent
responses in the post measurement for the expagorg and the control group. The light gray bars
represent the time windows analyzed for the MMN &3@& responses (190-240 ms and 250-300 ms post
stimulus onset, respectively). In lower panel, grand averaged scalp topographies of the respdnses
deviant sounds as a mean amplitude value of thlzathtime window from the 128 electrodes for the

MMN and P3a for the exposure group and the cogialp are shown.
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Fig. 5. Mismatch negativity latency and P3a latency and amplitude are enhanced after the passive
exposure. The white and gray bars represent the mean vdhees the pre and post measurements,
respectively. Error bars indicate the standardresfahe mean. *** indicates a statistically signdnt (p

< .05) difference. The latency of the responsehto deviant sounds in the MMN time window shortened
from the pre measurement (222.45 ms * 19.61))dqtst measurement (194.57 ms + 24.81), t(17) &,4.7
p = 0.00, 95% CI [17.44, 39.78], d = 1.25), in #gosure group, while there were no changes in the
control group. In addition, in the P3a time windaleviant response latencies became significantiyteh
for the large deviant after the exposure, but wotthe small deviant, and there were no changeabkén
control group. Standard response amplitudes weree mositive after the exposure (—0.05 pV = 0.64)
compared to the pre measurement (-0.53 pV = 0tbB) 3.18, p = 0.026, 95% CI [-0.79, —-0.19], d.80
Also deviant response amplitudes became more pesifter the exposure (0.57 pV + 0.57) compareti¢o
pre measurement (-0.30 uV = 0.74), t(17) = 4.79,00002, 95% CI [-1.23, —0.53], d = 1.32.
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3.3 Ignore condition for sinusoidal sounds

The transfer effect to non-exposed sound featwras tested by presenting
sinusoidal sounds roughly mimicking the pitch camsoof the speech sounds in a passive
oddball condition (Fig. 1C). The transfer effectswavestigated for the components and
variables showing group x session interaction ¢gfetthe ignore condition where speech

sounds were presented, i.e. for the MMN latency &8plitude and P3a latency.
3.3.1 MMN component

For the MMN latency, there was a significant iat#ion effect of electrode cluster x
session x group (Table 3). Subsequent ANOVA (ebelercluster x session) performed
separately for each group revealed an significaihreffect session for both groups: =
15.03, p = 0.001y; = 0.47; k17=5.90, p = 0.027q; = 0.26 (Supplementary table 5).
Post hoc paired samples t-tests comparing latemaggeen pre and post measurements
separately for groups showed that in the exposurapgthe latencies got significantly
shorter from pre measurement (234.9 ms = 10.58)ot measurement (215.27 ms +
21.44), t(17) = 3.88, p = 0.014, 95% CI [10.43,729. d = 1.16). There were no changes
in the latencies in the control group.

Table 3. Summary of the significant effects in the repeatezhsures of ANOVA for the sinusoidal sounds in
the ignore condition. * marks exposure-relatedaffBegrees of freedom (df), F-values (Fyalues P),

and Partial eta squareqif,(} for effect size are reported.

Component/variable Effect df F P ;112,
MMN (deviant)/ Electrode 2,33 6.89 0.003 0.29
Latency Session x Group* 1,34 1957 <0.001 0.37
Session x Electrode x Group* 2,33 4.52 0.018 0.22
P3a/ Stimulus 1,34 37.9 <0.001 0.53
Amplitude Electrode 2,33 8.4 0.001 0.34
Stimulus x Group 1,34 12.4 0.001 0.27
Stimulus x Session 1,34 4.2 0.047 0.11
Stimulus x Session x Electrode x Group* 2.33 4.0 0.027 0.20
P3a (deviant)/ Deviant type 1,34 7.36 0.01 0.18
latency Deviant type x Group 1,34 5.65 0.023 0.14

3.3.2 P3a component

For the P3a amplitude, there was an interactiéecedf stimulus type x electrode
cluster x session x group (Table 3). The followkidOVAs (electrode cluster x session x
group) for the deviant responses (Supplementairg &bor (electrode cluster x session x
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group) performed separately for each electrodetedusevealed no session x group
interaction effects (Supplementary table 7) SubsefANOVA (stimulus type x electrode
cluster x session) performed separately for eaclugrevealed significant interaction
effect of stimulus type x electrode cluster x s@ssn the control group, while there was
no session-related effects in the exposure growppl®mentary Table 8). T-tests
comparing deviant and standard responses separfatety pre measurement to post
measurement in each electrode cluster was perform#ee control group. They did not

reveal any significant results.
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Fig. 6. Grand averaged MMN and P3a responses to sinusoidal sounds. Grand averaged waveforms of
responses reflecting MMN and P3a in the exposurem(n = 18) and the control group (n = 18). Thaygr
lines represent responses to deviant sounds (lamgk small deviant types averaged) from the pre
measurement, while black lines represent respotasegviant sounds from the post measurement for the
exposure group and the control group. The lighy dpars represent the time windows applied in thadyais

of for the P3a amplitude (mean amplitude value betw300-350 ms). The mesealp topographies of the
differential response (standard subtracted fromd#hgant, deviant types averaged) from the 128tldes

for the P3a for the exposure group and the comgirolip from the analyzed time window. Although there
was a significant stimulus type x electrode clustesession x group effect for the P3a amplitudestihoc
tests did not reveal any generalization of the eyp® effect. Please note that the MMN amplitude mats
investigated since there was no exposure effedt.for
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4. Discussion

Here we show in adult humans that passive expdsui@eign speech sounds for 4
consecutive days, 2 h per day, enhanced the ndig@aimination ability and attention
orientation toward changes in the speech soundsdased by ERPs recorded in ignore
and attend test conditions. The effect of passkmosure to auditory change detection
mechanism has earlier been found only in infantsee@@r et al., 1998; Cheour et al., 2002;
Kuhl, 2004; Trainor, Lee, & Bosnyak, 2011). In #tend test condition, effect of passive
exposure was demonstrated as enhanced P3b amplitudbe ignore test condition,
effects of passive exposure were demonstrated @seslkd latency of the MMN and
enhanced amplitude and shortened latency of the P3a

The learning effect generalized to some extendowehsounds: the latency of the
MMN shortened to the sinusoidal sounds not enceedtduring the exposure phase. This
effect was demonstrated only in the exposure groapin the control group.

Effects of auditory perceptual learning have raifeden tested for attentive change
detection. Here we showed that passive exposuraneed the amplitude of the P3b and
there was trend towards significant correlationMeein the enhanced P3b amplitude and
shortened behavioral reaction times to small devi@reviously, it has been shown that
when the perceptual task becomes easier, the Pglithe increases (Isreal et al., 1985).
Our results are also in line with one previous gtwihich showed that active training to
discriminate speech sounds enhances the microstatated to the P3b component
accompanied by improvements in behavioral readiimes (Giroud et al., 2017). In the
light of the context-updating model (Polich, 200pgssive exposure seems to ease
comparison process between the representationeaftémdard sound in memory and the
deviant sound input, which is also reflected astsined reaction times.

N2b was the other component that was investigatethe attend test condition.
Here, the amplitude of the N2b was not enhancedwas its latency shortened due to
passive exposure. In prior studies applying attentraining, in line with our findings,
N2b was not enhanced during identification tasknBavid et al. 2011) or during
discrimination task (Giroud et al. 2017). Howeweistudy that had longer practice period
than in study by Ben-David et al. (2011) reportiedt tenhancement in ability to identify

speech sounds were followed by increased N2b (Adaal. 2010). It remains thus unclear
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whether perceptual learning requires attentivenitngi to modulate the N2b, and if so,
whether the training should be identification tra@) instead of discrimination training.

No exposure-related effects were found for behaVvicgsponses measured in the
attentive test condition. Reaction times decredsau pre to post measurement in both
groups, and the decrease was larger for the sragitugt than for the large deviant. The
detection of the large deviant was more accuraie0¢) than the detection of small
deviant (88.4%) but there was no change from prpost test in accuracy. Sometimes
neural changes related to auditory learning predsdesehavioral indices (Tremblay et al.,
1998). It is possible that the passive exposurdiegpmere should have been more
extended in order to induce changes at behavieval.l

In the ignore test condition, the peak latencyrd MMN response to the speech
sounds was significantly shorter after the expostwenpared with that before the
exposure, while no latency changes were observétkigontrol group. Changes in MMN
latency have been interpreted as enhanced disatimmability due to enhanced memory
traces of deviant sounds in studies where attemtaming has been found to modulate the
latency of MMN (Kraus et al., 1995; Tremblay et 41997; Tremblay et al., 1998). Our
results show that similar modulation of the MMN cha induced by mere passive
exposure. However, the MMN amplitude did not shaw ahanges due to the passive
exposure, although it typically increases in stadiglizing active training (Naatanen et al.,
1993; Kraus et al., 1995; Tremblay et al., 1997%0An our previous study in rats, 36-h
passive exposure to spectro-temporal changes gchmound /a/ enhanced the mismatch
response amplitude (Kurkela et al., 2016).

Even though the amplitude of the MMN response watschanged due to passive
exposure, the following P3a component’s amplitudes enlarged. Also the latency of P3a
was shortened, for the large deviant. Previousiyiva training of discriminating pitch
(Seppanen et al., 2012), tone sequences (Atienak, &004) or to learning to use Morse
code (Uther et al., 2006) have led to increasedd@alitude. Our results demonstrate that
mere passive exposure suffices changes in theuntaly attention-shifting mechanism
which the P3a is typically linked to.

Here passive exposure expanded over four consecoddiys, totaling in eight hours
of exposure. Studies applying attentive trainingehaisually also spread the training
sessions over several days (6-9 days) (for exankpbeys et al., 1995; Tremblay et al.,
1997). Previous studies of passive exposure hapéedponly short exposure session

during a single day, and in these works, no effetisassive exposure in ERPs reflecting
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sound discrimination have been demonstrated (Néaaténal., 1993; Sheehan et al., 2005;
Elmer et al., 2017). It can be assumed that we \abte to demonstrate the effect of
passive exposure in the ERPs related to changetibet@nd attention shifting because the
exposure was relatively long-lasting. In addititiie exposure that was extended for four
consecutive days could have facilitated memory clisetion for the exposed sounds
during the nocturnal sleep, allowing the emergeotdéhe exposure effect. Previous
studies applying attentive training have shown tkblep deprivation prevents the
emergence or enhancement of the MMN and the P3an(at al., 2015; Ross et al., 2015;
Atienza et al.,, 2004). It thus seems that noctussiekp is a crucial factor for the
emergence of learning-related enhancement in tlaageh detection, probably due to
memory consolidation for the learned sounds.

We also investigated the generalization of the gqr@l learning from speech
sounds to sinusoidal sounds. This was studiedh®mMMN latency and P3a latency and
amplitude since these showed the effect of passkp®sure. For the sounds that were
mimicking the pitch contours of the speech souritls, peak latency of the deviant
responses in the MMN time window was significarghorter in the exposure group after
the exposure than before the exposure. No sucttefies found in the control group. This
pattern of results can be interpreted to reflemdfer of learning at a neural level due to
passive exposure to speech sounds. Our resukedeiatgeneralization is in line with the
results of previous behavioral studies showing tlegrning to discriminate sound
frequencies or syllables generalizes to closelyilainsounds (for a review, see Wright et
al. 2008). Furthermore, our findings are in linegthwa study, where attentive training
induced changes in the MMN (Tremblay et al., 199he learning effect also transferred
to novel speech stimuli, i.e. from one place ofcatation (labial) to another (alveolar).
Our results extend this finding by showing thatimtransfer effect can be induced by
mere passive exposure and from speech to non-speanls.

The generalization effect was not observed forRBa amplitude or latency. It thus
seems that in the case of passive exposure latelnagges are more sensitive than
amplitude changes to reflect generalization effect.

In summary, passive exposure to foreign speechdsotor 2 h for 4 consecutive
days induced plastic cortical changes related tangh detection and attention shift
mechanisms. As indexed by ERPs, this was demoedtratthe attend test condition by
increased P3b amplitude and in the ignore testittondoy the shortened latency of the

MMN and P3a as well as increased amplitude of tRa Eomponent. In addition, the
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latency of the MMN shortened to the sinusoidal stsumot encountered during the
exposure, reflecting generalization of the learngfigct. For the first time, these results
demonstrated that mere passive exposure to soamdsi@duce plastic changes related to
change detection in the adult human brain, whick praviously thought to happen only in
infancy during the sensitive period. Changes innbrasponses occurred from 8 h of
exposure. This encourages testing the effectiverméspassive exposure in real-life

language learning situations.
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