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Abstract

In recent years, longitudinal neuroimaging study has become increasingly popular in neuroscience 

research to investigate disease-related changes in brain functions, to study neurodevelopment or to 

evaluate treatment effects on neural processing. One of the important goals in longitudinal imaging 

analysis is to study changes in brain functional networks across time and how the changes are 

modulated by subjects’ clinical or demographic variables. In current neuroscience literature, one 

of the most commonly used tools to extract and characterize brain functional networks is 

independent component analysis (ICA), which separates multivariate signals into linear mixture of 

independent components. However, existing ICA methods are only applicable to cross-sectional 

studies and not suited for modelling repeatedly measured imaging data. In this paper, we propose a 

novel longitudinal independent component model (L-ICA) which provides a formal modeling 

framework for extending ICA to longitudinal studies. By incorporating subject-specific random 

effects and visit-specific covariate effects, L-ICA is able to provide more accurate estimates of 

changes in brain functional networks on both the population-and individual-level, borrow 

information across repeated scans within the same subject to increase statistical power in detecting 

covariate effects on the networks, and allow for model-based prediction for brain networks 

changes caused by disease progression, treatment or neurodevelopment. We develop a fully 

traceable exact EM algorithm to obtain maximum likelihood estimates of L-ICA. We further 

develop a subspace-based approximate EM algorithm which greatly reduce the computation time 

while still retaining high accuracy. Moreover, we present a statistical testing procedure for 

examining covariate effects on brain network changes. Simulation results demonstrate the 

advantages of our proposed methods. We apply L-ICA to ADNI2 study to investigate changes in 

brain functional networks in Alzheimer disease. Results from the L-ICA provide biologically 

insightful findings which are not revealed using existing methods.

1. Introduction

Brain functional network analysis has been widely used in neuroimaging studies to reveal 

organization architectures of human brain. In functional imaging studies, neural activity is 
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often captured by a series of 3-D fMRI brain images where the observed data represent the 

combinations of signals generated from various brain functional networks. One of the major 

objectives of fMRI-based network analysis is to decompose the observed series of brain 

images to identify underlying networks and characterize their spatial patterns and temporal 

dynamics. Independent component analysis (ICA) is one of the most commonly used tools 

for this purpose. As a special case of blind source separation, ICA decomposes observed 

fMRI signals into linear combinations of latent spatial source signals that are statistically as 

independent as possible. These latent independent components correspond to various 

functional networks. The popularity of the ICA method is mainly due to the following 

reasons. As a multivariate approach, ICA can jointly model the relationships among multiple 

voxels and hence provide a tool for investigating whole brain connectivity. Unlike second-

order statistical methods such as PCA, ICA takes into account higher-order statistics, and the 

spatial statistical independence assumption of ICA is well-supported by the sparse nature in 

typical fMRI activation patterns (Calhoun et al., 2001a; Beckmann and Smith, 2004). 

Furthermore, ICA is a fully data-driven approach that does not require a priori temporal or 

spatial models. This makes ICA an important tool for analyzing resting-state fMRI where 

there is no experimental paradigm (Beckmann et al., 2005).

The classical ICA model was first applied to neuroimaging studies for single subject fMRI 

data decomposition (Mckeown et al., 1998). Some extensions referred as group ICA 

(Calhoun et al., 2001a) have been proposed to decompose the multiple-subject fMRI data. 

One commonly used group ICA framework is the temporal concatenation group ICA (TC-

GICA) which stacks subjects’ fMRI data in the temporal domain and then decompose the 

concatenated group data via ICA (Beckmann and Smith, 2005; Calhoun et al., 2001a; Guo 

and Pagnoni, 2008). The main limitation of TC-GICA is the assumption of the homogeneity 

in spatial distribution of the networks across subjects while studies have shown that 

functional networks can vary considerably due to subjects clinical, biological and 

demographic characteristics (Zhao et al., 2007; Greicius et al., 2004, among others). To 

address this limitation, a hierarchical ICA framework has been proposed to directly account 

for between-subject differences in group ICA decomposition and further allows for 

modeling subjects’ covariate effects in ICA (Guo and Tang, 2013; Shi and Guo, 2016; 

Lukemire et al., 2018). All the aforementioned ICA methods are developed for cross-

sectional imaging studies where subjects are only scanned once during the study.

In recent years, longitudinal studies have become increasingly popular in the neuroscience 

community. In such studies, brain imaging such as fMRI scans from the same individual are 

acquired repeatedly at multiple time points including the baseline as well as follow-up visit 

times. Within-subject changes in brain images across different time points provides great 

insights into effects and causal relationships in investigating changes in brain networks 

related to disease progression, treatment or neurodevelopment. By taking the advantage of 

using each subject as his/her own control, longitudinal studies are well-known to have the 

potentials to provide more reliable and significant scientific findings than cross-sectional 

studies. Existing longitudinal imaging analysis often focus on modeling fMRI brain 

activation or structural MRI volumetric measures across time (Calhoun et al., 2001b; 

Dettwiler et al., 2014; Lee et al., 2015). There has also been some work on longitudinal 

analysis of brain connectivity, which mainly involve modeling pairwise connectivity 
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measures or network summary measures from a per-specified network structure (Dai et al., 

2017; Wu et al., 2013; Li et al., 2009). However, methods are lacking for conducting 

longitudinal ICA that jointly decompose the subjects’ repeatedly measured fMRI data, 

extract the underlying brain functional networks and studying the longitudinal effects on 

brain networks.

Existing group ICA methods are not suitable for modeling repeated measured images in 

longitudinal studies. There are only a couple of ad-hoc strategies for longitudinal ICA 

decomposition. The first approach is to conduct ICA separately at each time point and then 

take the ICs extracted from different time points for secondary longitudinal analysis. This 

separate analysis approach has limited capacity to evaluate changes in functional networks 

across time because 1) independent components do not have a natural order, it is difficult to 

identify matching components across different time points, especially in resting-state fMRI. 

2) ICA algorithms usually have random elements in that they may find different local 

minima across different runs (Himberg, Hyvärinen and Esposito, 2004). This reduces the 

comparability of the ICs extracted separately at each visit. Another major drawback of the 

approach is that it ignores within-subject correlations among repeatedly measured data, 

which results in considerable loss of statistical power in testing covariate effects. The second 

ad-hoc approach is to adopt the TC-GICA framework by stacking all subjects’ repeatedly 

measured images into a single group data matrix and performing ICA decomposition to 

extract common group spatial source signals. Then, subject/visit-specific IC maps are 

reconstructed via post-ICA analysis such as the dual regression. The longitudinal effects are 

then evaluated based on the reconstructed subject/visit-specific ICs. The limitations of the 

TC-GICA approach are that it ignores the between-subject variability in the ICA 

decomposition, does not take into account the random variabilities introduced in 

reconstructing subject/visit-specific IC maps and does not account for within-subject 

correlations among repeated scans in ICA decomposition. These limitations lead to loss of 

accuracy and efficiency in estimating and testing covariate effects on brain networks in 

longitudinal studies.

In this paper, we propose a longitudinal ICA (L-ICA) model that incorporates subject-level 

random effects and the time-dependent covariate effects in ICA decomposition to investigate 

temporal changes in brain networks and their associations with subjects clinical or 

demographic covariates. The L-ICA is a hierarchical model where the first-level of L-ICA 

decomposes a subject’s fMRI data obtained at a visit into a linear mixture of subject/visit-

specific spatial source signals or ICs, and these ICs are then modeled at the second-level of 

L-ICA in terms of population-level baseline source signals, visit effects, covariate effects, 

subject-specific random effects and subject/visit-specific random variability. To the best of 

our knowledge, L-ICA is the first model-based extension of ICA for longitudinal imaging 

analysis. L-ICA is able to account for within-subject correlations among repeated scans, 

provide more accurate estimates of changes in brain functional networks on both the 

population-and individual-level, and increase statistical power in detecting covariate effects 

on networks. Furthermore, L-ICA provides model-based prediction for changes in brain 

networks related to disease progression, treatment or neurodevelopment.
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For model estimation, we proposed an exact EM algorithm which is fully traceable and 

simultaneously provides the estimation on population-level spatial maps and subject/visit-

specific ICs. Furthermore, we propose a subspace-based approximate EM algorithm to 

provide more efficient computation. Results from the simulation studies and real data 

analysis show that the approximate EM algorithm significantly reduces the computation 

time while maintaining high estimation accuracy comparable to the exact EM. Moreover, we 

develop a statistical inference procedure for testing covariate effects in L-ICA, which 

demonstrates lower type I error and higher statistical power than the existing testing method 

based on TC-GICA. We apply the L-ICA method to investigating changes in functional 

networks in ADNI2 longitudinal rs-fMRI study. Results from L-ICA showed differential 

temporal changing patterns between Alzheimer and control groups in relevant brain 

networks, which is not revealed by existing ICA methods.

This paper is organized as follows. The methodology of L-ICA is presented in the section 2 

which includes the L-ICA model specification, estimation via the exact EM algorithm and 

the approximate EM algorithm, and the inference procedure. In the section 3, results from 

the simulation study are presented. Section 4 is the real data application of ANDI2 study. 

Conclusion and discussion are in section 5.

2. Methods

This section introduces the L-ICA framework, which includes the model specification, EM 

algorithms and the inference procedure. To set the notation, suppose that in a longitudinal 

fMRI study, there are N subjects and each of them has K visits during the study. At each 

visit, a series of T fMRI scans are acquired where each scan represents a 3D brain image 

containing V voxels. Let Yi j = yi j(1), …, yi j(V)  be the T ×V fMRI data matrix for subject i (i 

= 1,...,N) at visit j (j = 1,...,K) where yi j(v) ∈ ℝT represents the centered blood-oxygen-level 

dependent (BOLD) signal series at voxel v (v = 1,...,V ). Prior to ICA, some preprocessing 

steps such as centering, dimension reduction and whitening of the observed data are usually 

performed to facilitate the subsequent ICA decomposition (Hyvärinen, Karhunen and Oja, 

2001). Following a PPCA-based preprocessing procedure similar to that used in previous 

work (Beckmann and Smith, 2004; Shi and Guo, 2016; Guo and Tang, 2013), we perform 

the dimension reduction and whitening procedure on Yi j to obtain a q × V preprocessed data 

matrix Yij for subject i at visit j, where q is the number of independent components. 

Throughout the rest of our paper, we will present the L-ICA model and methodologies based 

on the preprocessed data.

2.1. Longitudinal ICA model (L-ICA)

In this section, we propose a longitudinal ICA (L-ICA) model to jointly decompose repeated 

measured fMRI data acquired across multiple visits. The L-ICA is developed under a 

hierarchical modeling framework. We present a schematic illustration of the L-ICA in Figure 

1. The first level of L-ICA decomposes the subject/visit-specific fMRI data into a product of 

subject/visit-specific spatial source signals and temporal mixing matrix. This allows 

capturing the variabilities of the functional networks across subjects and across visits. We 
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also include a noise term in the first level ICA model to account for residual variabilities in 

the fMRI data that are not explained by the extracted ICs, which is known as probabilistic 

ICA (Beckmann and Smith, 2004). Specifically, the first level of L-ICA is as follows,

Level 1: yi j(v) = Ai jsi j(v) + ei j(v), (1)

where si j(v) = si j
(1)(v), …, si j

(q)(v) ′ is a q × 1 vector with si j
(𝓁)(v) (𝓁 = 1, …, q) representing the 

spatial source signal of the ℓth IC (i.e., brain functional network) at voxel v for subject i at 

visit j, Aij is the q × q mixing matrix for subject i at visit j, which is commonly assumed to 

be orthogonal given that yij(v) is whitened (Hyvärinen and Oja, 2000). eij(v) is a q × 1 vector 

that represents the noise in the subject’s data and eij(v) ∼ N(0,Ev) for v = 1,...,V. Prior to 

ICA, preliminary analysis such as prewhitening (Beckmann and Smith, 2004) can be 

performed to remove correlations in the noise term and to standardize the variability across 

voxels (More details about prewhitening can be found in Appendix). Therefore, following 

previous work (Hyvärinen, Karhunen and Oja, 2001; Beckmann and Smith, 2004, 2005; 

Guo and Pagnoni, 2008; Guo, 2011), we assume that the covariance for the noise term is 

isotropic across voxels, i.e. Ev = σ0
2Iq.

At the second-level of L-ICA, we further model subject/visit-specific spatial source signals 

sij(v) as a combination of the population-level source signals, subject-specific random 

effects, visit-specific covariate effects and subject/visit-specific random variations. That is,

Level 2: si j(v) = s0(v) + bi(v) + α j(v) + β j(v)′xi + γi j(v), (2)

where s0(v) = [s01(v),...,s0q(v)]′ is the population-level spatial source signals. The q elements 

of s0(v) are assumed to be independent and non-Gaussian. bi(v) is the q × 1 subject-specific 

random effects for q ICs where bi(v) ∼ N(0,D) with D = diag ν1
2, …, νq

2 . The subject-specific 

random effects help capture the within-subject correlations among the scans repeated 

acquired on the same subject at different visits, (Verbeke, 1997; Cheng et al., 2014; Gao, 

Ombao and Gillen, 2017). αj(v) is a q × 1 visit effects parameter representing the 

population-level changes in spatial source signals from baseline to the jth visit. xi = 

[xi1,...,xip]′ is the p × 1 subject-specific covariate vector which may contain a subject’s 

clinical and demographic information such as disease group, gender, age, etc. βj(v) is a p×q 
parameters matrix reflecting how subjects’ covariates xi modulate the subject/visit-specific 

brain networks. Finally, γij(v) is a q × 1 zero-mean Gaussian random vector, i.e. 

γi(v) ∼iid N 0, τ2Iq , capturing the residual random variability among subject/visit-specific 

brain networks after adjusting for the other effects in the model. In the Level 2 model, by 

including the subject-specific random effects, L-ICA is able to borrow information among 

the multiple visits within the same subject to obtain more accurate estimate of unique 

patterns in brain networks specific to the individual. L-ICA incorporates the visit-specific 

covariate effects to allow flexibly modeling time-varying covariate effects on subjects’ brain 

networks in a longitudinal study.
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2.2. Source signal distribution model

We specify mixtures of Gaussians (MoG) as our source distribution model for the 

population-level spatial source signals, s0(v). MoG has been selected as the distribution for 

independent components in quite a few ICA analysis (Attias, 2000; Guo, 2011; Guo and 

Tang, 2013; Shi and Guo, 2016) because it has several desirable properties for modeling 

fMRI signals. Within each brain functional network, only a small percentage of locations in 

the brain are activated or deactivated whereas most brain areas exhibit background 

fluctuations (Biswal and Ulmer, 1999). MoG are well suited to model such mixed patterns. 

Furthermore, MoG can capture various types of non-Gaussian signals (Xu et al., 1997; Gao, 

Shahbaba and Ombao, 2017; Kostantinos, 2000; Gao, Shen and Ombao, 2018) and also offer 

tractable likelihood-based estimation (McLachlan and Peel, 2004).

Specifically, for ℓ = 1,...,q we assume that the spatial source signal s0ℓ(v) follows a MoG 

distribution, i.e.

s0𝓁(v) ∼ MoG π𝓁, μ𝓁, σ𝓁
2 , (3)

where πℓ = [πℓ,1,...,πℓ,m]′ with ∑ j = 1
m π𝓁, j = 1 is the weight parameters in MoG, 

μ𝓁 = μ𝓁, 1, …, μ𝓁, m ′ and σ𝓁
2 = σ𝓁, 1

2 , …, σ𝓁, m
2 ′ are the mean and variance parameters of the 

Gaussian component distributions in the MoG; m is the number of Gaussian components in 

MoG. The probability density function of MoG π𝓁, μ𝓁, σ𝓁
2  is ∑ j = 1

m π𝓁, jg s0𝓁(v); μ𝓁, j, σ𝓁, j
2

where g(·) is the pdf of the Gaussian distribution. In fMRI applications, mixtures of two to 

three Gaussian components can be used to capture the distribution of fMRI spatial signals, 

with the different Gaussian components representing the background fluctuation and the 

negative or positive fMRI BOLD effects respectively (Beckmann and Smith, 2004; Guo and 

Pagnoni, 2008; Guo, 2011; Wang et al., 2013; Guo and Tang, 2013). Without loss of 

generality, we denote the first Gaussian component, i.e. j = 1, to be the background 

fluctuation state throughout the rest of the paper. To facilitate derivations with the MoG 

model, we introduce a voxel-specific latent state variable zℓ(v) which represents which 

Gaussian component in MoG that voxel v belongs to. Specifically, zℓ(v) takes a value in 

{1,...,m} with probability p[zℓ(v) = j] = πℓ,j (j = 1,..,m). When zℓ(v) = j, the vth voxel follows 

the jth Gaussian component distribution in MoG, i.e. p s0𝓁(v) z𝓁(v) = j = g s0𝓁(v); μ𝓁, j, σ𝓁, j
2 .

2.3. Maximum likelihood estimation and the EM algorithm

The parameters in L-ICA model is estimated via maximum likelihood (ML) approach. 

Based on the hierarchical models in (1) and assuming the independence among voxels, (2) 

and (3), the complete data log-likelihood for L-ICA model is,

l(Θ; 𝒴, 𝒳, 𝒮, ℬ, 𝒵) = ∑
v = 1

V
lv(Θ; 𝒴, 𝒳, 𝒮, ℬ, 𝒵), (4)
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where 𝒴 = yi j(v): i = 1, …, N; j = 1, …, K; v = 1, …, V  are the preprocessed longitudinal 

fMRI data across subjects, 𝒳 = xi: i = 1, …, N  are subjects’ covariates, 

𝒮 = s0(v), si j(v): i = 1, …, N; j = 1, …, T; v = 1, …, V  are the latent independent component 

spatial source signals, ℬ = bi(v): i = 1, …, N; v = 1, …, V  are the subject-specific random 

effects and 𝒵 = z(v):v = 1, …, V  are the latent states for MoG source distribution model; 

the parameters in L-ICA are denoted by 

Θ = α j(v) , β j(v) , Ai j , E, D, τ, π𝓁 , μ𝓁 , σ𝓁
2 : i = 1, …, N, j = 1, …, K, v = 1, …, V , 𝓁 = 1,

…, m

.

Since our likelihood function involves unobserved latent variables, we consider the 

expectation-maximization (EM) framework (Dempster, Laird and Rubin, 1977) for finding 

the maximum likelihood estimates of parameters. The EM algorithm is an iterative algorithm 

that alternates between performing an expectation step (Estep) and a maximization step (M-

step). In the E-step, we compute an expectation of the log-likelihood conditioning on the 

distribution of latent variables given the observed data 𝒴 and the current parameter estimates 

Θ(k). At the M-step, the updated maximum likelihood estimates of the parameters is 

computed by maximizing the expected log-likelihood found on the E-step. The parameter 

estimates found on the M-step are then used to begin another E-step, and the process is 

iterated until convergence, i.e. until the parameter estimates Θ(k) and Θ(k + 1) in two 

consecutive iterations are considered sufficiently close. In the following, we present two EM 

algorithms for solving the L-ICA model. The first is an exact EM method that provides exact 

evaluation of the conditional expectation in the E-step. We then propose an approximation 

EM algorithm is computationally more efficient especially with large number of ICs.

2.3.1. The exact EM algorithm—We first develop an exact EM which has an explicit 

E-step and M-step to obtain ML estimates for the parameters in L-ICA.

E-step: In the E-step, given the estimated parameter Θ(k) from the last step, we evaluate the 

conditional expectation of the complete data log-likelihood as follows,

Q(Θ |Θ(k)) = ∑
v = 1

V
E

L(v)|y(v), Θ(k)[l(Θ; 𝒴, 𝒳, 𝒮, ℬ, 𝒵)], (5)

where L(v) = [b1(v)′, …,bN(v)′, s0(v)′, s11(v)′, …, sNK(v′)′ are the latent variables in L-

ICA model which include the latent source signals on both the population and individual 

level and the subject-specific random effects. To calculate the conditional expectation, we 

need to derive the conditional distribution of L(v) given the observed data y(v), i.e. 

p(L(v) |y(v), Θ(k)). To facilitate this derivation, we take the following steps. First, we derive 

the distribution of L(v) given both the observed data y(v) and the latent states z(v), i.e. 

p(L(v) |y(v), z(v), Θ(k)), which can be shown to be a multivariate Gaussian distribution. Next, 

we derive the conditional distribution of the latent states given the observed data, i.e. 
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p[z(v) |y(v), Θ(k)], by applying the Bayes’ Theorem. Finally, we obtain the conditional 

distribution of L(v) given y(v) by integrating out z(v), i.e.

p(L(v) |y(v), Θ(k)) = ∑
z(v) ∈ ℛ

p(L(v) |y(v), z(v), Θ(k))p[z(v) |y(v); Θ(k)],

where ℛ represents the set of all possible values of z(v), i.e., ℛ = zr
r = 1
mq

 where 

zr = z1
r , …, zq

r ′ and z𝓁
r ∈ 1, …, m  for ℓ = 1,...q.

Following this procedure, we can derive explicit form for the conditional distribution for the 

latent variables and subsequently deriving the conditional expectation Q(Θ |Θ(k)) in (5).

M-step: In the M-step, the updated estimates are obtained by maximizing the expected log-

likelihood function computed in the E-step, i.e.,

Θ(k + 1) = argmax
Θ

Q(Θ |Θ(k)) . (6)

We have derived explicit solutions for all parameter updates (please see Appendix for 

details).

The steps of the exact EM algorithm is summarized in Algorithm 1. The detailed derivations 

are presented in the Appendix.

After obtaining the ML estimates Θ, we estimate the baseline population- and subject/visit-

specific source signals as well as their variability based on the mean and variance of their 

conditional distributions, i.e., s0(v) |y(v); Θ  and si j(v)|y(v); Θ]. These conditional moments 

are directly obtainable from the E-step of our algorithm upon convergence and no separate 

post-ICA steps are required. Based on the estimated covariate effects β(v) , we can 

investigate how subjects’ clinical and demographic characteristics affects their brain 

functional networks and their changes across visits. Furthermore, the L-ICA also provides 

model-based prediction of the brain functional networks for specific sub-populations at a 

given visit. For example, for a sub-population characterized by a covariates pattern ∗, the 

predicted brain functional networks at the jth visit can be derived by plugging the ML 

parameter estimates into Level 2 of L-ICA, i.e.

s j(v) = s0(v) + α j(v) + β j(v)′x*, (7)
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Algorithm 1

The Exact EM Algorithm

Initial values: Obtain an initial values Θ(0)
 based on existing group ICA software.

repeat

E-step:

1. Evaluate the conditional distribution of the latent variables p(L(v) |y(v), Θ(k)) using the proposed three-step 
approach:

1.a Evaluate the multivariate Gaussian p[L(v) |y(v), z(v), Θ(k)];

1.b Evaluate p[z(v) |y(v); Θ(k)] via Bayes’ Theorem

1.c integrate out the latent states z(v)

p(L(v) |y(v), Θ(k)) = ∑
z(v) ∈ ℛ

p(L(v) |y(v), z(v), Θ(k))p[z(v) |y(v); Θ(k)]

2. Estimate conditional expectation Q(Θ |Θ(k)) based on p(L(v) |y(v), Θ(k)).

M-step:

Update parameters estimates

Θ(k + 1) = argmax
Θ

Q(Θ |Θ(k)) .

until convergence, i.e. 
‖Θ(k + 1) − Θ(k)‖

‖Θ(k)‖
< ϵ

2.4. Subspace approximate EM algorithm

The exact EM algorithm requires 𝒪 mq  operations at each voxel which is an exponential 

increase with regard to the number of the ICs extracted in L-ICA, which will be time 

consuming when q is large. The reason for needing 𝒪 mq  operations is that, the exact EM 

evaluates the conditional distribution of the latent states z(v), i.e. p[z(v) | y(v)], across the 

whole sample space ℛ of z(v), which has a cardinality of mq. To reduce the computation 

load, we develop a subspace-based approximate EM for L-ICA model. The motivation of the 

subspace EM is based on the observation from fMRI analysis that the density of p[z(v) | 

y(v)] is mostly concentrated on a subspace ℛs = zr ∈ ℛ, s . t . ∑𝓁 I z𝓁
r ≠ 1 ≤ 1 . To help 

understand this subspace, recall that the latent state z𝓁
r  takes values in (1,...,m) with the first 

state, i.e. z𝓁
r = 1, corresponding to the background fluctuation while other states, i.e. z𝓁

r ≠ 1, 

corresponding to either positive or negative signals at a voxel. Therefore, the subspace ℛs

corresponds to that a voxel has active signals in at most one of the q ICs. This approximation 

is reasonable when the source signals are sparse across ICs, i.e. p(zℓ ≠ 1) ≈ 0 for ℓ = 1,...,q. 

Because given the statistical independence of the ICs, p z𝓁* ≠ 1| z𝓁 ≠ 1 = p z𝓁* ≠ 1 ≈ 0. 

That is given a voxel is activated in the ℓth IC, the probability for it to be also activated in 
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another IC ℓ∗ is close to zero. In Shi and Guo (2016), we have provided theoretical proof that 

the density of the conditional distribution of the latent states is mostly concentrated in the 

subspace ℛs when the source signals are sparse in each IC, which is the case with the fMRI 

spatial source signals which have been shown to be sparse across the brain for each network 

(Mckeown et al., 1998; Daubechies et al., 2009). It is noteworthy to mention that there are 

some network hubs in the brain that are active in multiple networks. The proposed subspace 

EM is still able to recover overlapping spatial signals across the ICs, hence capable of 

identifying brain regions that are involved in multiple functional networks (Shi and Guo, 

2016). The subspace approximation only results in small attenuation on the estimated source 

signals in the overlapping region.

In the subspace EM algorithm, we follow the similar steps as in the exact EM algorithm 

presented in Algorithm 1. The main difference is that when evaluating and summing across 

the latent states z(v) in the E-step and M-step, we replace the whole sample space ℛ with the 

proposed subspace ℛs which only has carnality of (m−1)q +1. This means the subspace EM 

only requires 𝒪(mq) operations at each voxel which scales linearly with the number of ICs 

and is significantly faster than the exponential growth of the exact EM algorithm.

2.5. Statistical inference for testing covariate effects in L-ICA

In this session, we propose a statistical inference procedure for testing covariate effects in L-

ICA to investigate whether the covariates have significant effects on brain functional 

networks and their changes across visits. Typically, statistical inference in maximum 

likelihood estimation is conducted by inverting the information matrix to estimate the 

variance-covariance matrix of ML estimates of the parameters. However, this standard 

approach is not feasible when modeling fMRI data with L-ICA because the high 

dimensionality of the parameter space makes extremely challenge to obtain a reliable 

inversion of information matrix. To address this issue, we develop a computational efficient 

statistical inference procedure based on the connection between the L-ICA and multivariate 

linear models. The proposed inference procedure provides an efficient approach to estimate 

the variance-covariance matrix of the time-specific covariate effects at each voxel by directly 

using the output from our EM algorithms.

Specifically, let yi(v) be the ith subjects longitudinal fMRI data which is a qK×1 vector 

obtained by stacking his/her data across visits, i.e. yi(v) = yi1(v)′, …, yiK(v)′ ′.

By collapsing the hierarchical models, we rewrite the L-ICA model in a non-hierarchical 

form which is similar to classical multivariate linear model, i.e.,

yi*(v) = Xi*C*(v) + ζi(v), (8)

where yi*(v) = Ai′yi(v) is the response vector, Xi* is the design matrix which includes the visit 

time and the covariates in L-ICA, C*(v) is the parameter matrix which includes the effects 

parameters in L-ICA such as the visit effects α and covariate effects β, ζi(v) is the zero-
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mean Gaussian random variation term which includes the subject-specific random effects 

and noise terms in L-ICA. Please see the Appendix for details.

The model in (8) can be viewed a multivariate linear model. Based on linear model theory, a 

variance estimator for parameter estimates C*(v) can be derived as follows,

Var C*(v) = ∑
i = 1

N
Xi* ′W(v)−1Xi*

−1
. (9)

where W(v) = Var(ζi(v)) and can be estimated by plugging ML estimates obtained from the 

EM algorithm.

After deriving the variance estimator for the ML estimates of the parameters in L-ICA, We 

can then conduct hypothesis testing on the covariate effects the brain networks and their 

changes across visits. Specifically, we first formulate the hypothesis in terms of linear 

combinations of the parameters in the L-ICA model, i.e. H0 : l′C∗(v) = 0 vs. H1 : l′C∗(v) = 0 
where l is a vector of constant coefficients specified based on the hypothesis that we are 

testing on. We can then construct the test statistic as,

z(v) = l′C*(v)
l′Var C*(v) l

, (10)

the test statistic z(v) will then be compared against its null distribution to derive the p-value 

for testing the significance of the covariate effects at voxel v. Standard multiple testing 

correction procedures can be applied to control for family wise error rate (FWER) or the 

false discovery rate (FDR) when testing the covariate effects across voxels, (Genovese, 

Lazar and Nichols, 2002; Chumbley and Friston, 2009; Storey, 2011; Wang, Wu and Yu, 

2017).

3. Simulation Study

We conducted three types of simulation studies to 1) evaluate the performance of the 

proposed L-ICA model as compared with the approach based on the existing TC-GICA 

framework, 2) to evaluate the performance of the proposed inference method for testing 

covariate effects on brain networks, and 3) to evaluate the performance of the proposed 

subspace-based EM algorithm as compared with the exact EM algorithm.

3.1. Simulation study I: performance of the L-ICA v.s. TC-GICA-based longitudinal 
analysis

In this simulation study, we evaluate the performance of the proposed L-ICA model versus 

the TC-GICA based approach for analyzing longitudinal fMRI. In the simulation, we 

considered three different sample sizes N = 10,20,60 and each subject has three visits: 

baseline, visit 1 and visit 2 (K = 3). The simulated fMRI data were generated from 3 
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underlying ICs or source signals, i.e., q = 3, (see Figure 2 (A)). For each IC, we generated 

the source signals {s0(v)} as a 3D spatial map with the dimension of 53 × 63 × 3, which was 

based on three selected slices from a real fMRI imaging data. The source intensity at the 

activated region in the IC maps was generated from a Gaussian distribution with the mean of 

4. The visit specific intercepts, i.e., α2(v) and α3(v), are set to be 2 and 3 respectively for the 

voxels within the activated IC regions and 0 for other voxels. We then generated a binary 

covariate for each subject as xi ∼iid Bernoulli(0.5). The covariate effects at the jth visit, βj(v), 

were specified using a 2D Gaussian process within the IC regions where the mean level of 

the covariate effects increased across the 3 visits. Additionally, we generated subject-specific 

random effects, i.e., bi(v), from a zero-mean Gaussian distribution with the covariance 

matrix of D = diag(1.02, 1.12, 1.22). For the residual subject/visit-specific variability, i.e., 

Υi(v), we considered two levels of variability: low (τ2 = 0.5) and high (τ2 = 4). The time 

series associated with each IC was generated from real fMRI time courses with the length of 

T = 200 and hence represented realistic fMRI temporal dynamics. We generated subject/

visit-specific time sources that had similar frequency features but different phase patterns 

(Guo, 2011; Shi and Guo, 2016), which mimic temporal dynamics in resting-state fMRI. 

After simulating the spatial source signal and the temporal mixing matrices for the ICs, 

Gaussian background noise with a standard deviation of 1 (i.e. E = Iq) were added to 

generate observed fMRI data.

Following previous work (Beckmann and Smith, 2005; Guo and Pagnoni, 2008; Guo, 2011), 

we evaluate the performance of each method based on the correlations between the true ICs 

and estimated ICs in both temporal and spatial domains. We report the estimation accuracy 

for both the population-level as well as the subject/visit-specific source signals. To compare 

the performance in estimating the covariate effects, we report the mean square errors 

(MSEs) of β(v) defined by 1
KV ∑ j = 1

K ∑v = 1
V β j(v) − β j(v) ℱ

2  averaged across simulation runs. 

Here || · ||ℱ is the Frobenius norm for a matrix. Since ICA recovery is permutation invariant, 

the estimated ICs were matched to the true IC with which it has the highest spatial 

correlation. We present the simulation results in Table 1. The results show that L-ICA 

provides more accurate estimates for the source signals on both the population- and subject/

visit-level, by demonstrating higher correlation with the true source signals. L-ICA also 

provides more accurate estimation of the covariate effects with smaller mean square errors 

(MSE). Moreover, compared with the TC-GICA, the L-ICA estimates of the source signals 

and covariate effects are more stable with consistently smaller standard deviations (SD) 

across simulation runs.

We also display the estimated population-level IC maps at baseline and the last visit, i.e. 

visit 2, based on both methods in Figure 2. The L-ICA shows better accuracy in recovering 

the true activation patterns in the ICs at both visits. The intensity of the source signals in the 

activated regions in each IC increases from baseline to the last visit in true IC maps. This 

increase in intensity is well captured by the L-ICA estimated IC maps but not obvious in the 

TC-GICA estimated IC maps. Furthermore, the estimated IC maps from the TC-GICA 

approach show “cross-talk” between the ICs. In Figure 2, we also present the true and 

estimated longitudinal trends of source signals for activated voxels in an IC. The L-ICA 
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shows better performance than the TC-GICA approach in recovering the temporal changing 

patterns across voxels.

3.2. Simulation study II: performance of the proposed inference procedure for testing 
covariate effects

In this simulation study, we evaluate the performance of the methods in testing covariates 

effects on ICs. We simulated fMRI datasets with two source signals (q = 2), two visits (K = 

2), one binary covariate and the sample size of N = 40. Since we need a large number of 

simulation runs to estimate the type I error and power in the test, we generated source signal 

images with the dimension of 20×20 to facilitate computation. The covariate effects at 

baseline β1(v) are set to be 0 representing no difference at baseline and visit-specific 

covariate effects β2(v) took values in {0, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1.125, 1.25} for 

the IC region and are set to 0 for background region.

We applied L-ICA method and TC-GICA method to the simulated datasets and tested for 

covariate effects using both methods. We considered two type of hypothesis tests. The first 

one aims to test whether the covariate has an effect on the network source signals at a given 

visit, where the hypotheses are H0 : β2(v) = 0 versus H1 : β2(v) ≠ 0 for the given IC. In the 

second test, we assess the whether the covariate’s effect on the network vary across visits, or 

equivalently whether the covariate affect the longitudinal changes in the network across 

visits, where the hypotheses are H0 : β1(v) = β2(v) versus H0 : β1(v) ≠ β2(v). These two type 

of tests are the most commonly conducted in longitudinal studies. For L-ICA, hypothesis 

tests were conducted using the test proposed in section 2.5. For TC-GICA based approach, 

covariate effects were tested by performing post-ICA longitudinal analysis of the dual-

regression reconstructed subject/visit-specific IC maps. We estimated the Type-I error rate 

with the empirical probabilities of not rejecting H0 at voxels where H0 is true. We estimated 

the power of the tests with the empirical probabilities of rejecting H0 at voxels where H1 is 

true.

We report the Type-I error rates and the statistical power for detecting covariate effects based 

on 1000 simulation runs in Figure 3. The panel (A) in Figure 3 presents the Type I error 

rates where the diagonal line represents the nominal level for the type I error corresponding 

to various significance levels. The proposed L-ICA test demonstrates lower type-I error rates 

which are closer to the nominal level as compared with the TC-GICA method. For the power 

analysis presented in panel (B), the L-ICA have much higher statistical power in detecting 

covariate effects than the TC-GICA method. Overall, these results indicate that L-ICA 

provides more reliable and powerful statistical tests for assessing covariate effects on the 

functional networks.

3.3. Simulation study III: performance of the subspace EM algorithm for LICA

In this section, we examined the performance of the subspace approximate EM algorithm as 

compared with the exact EM algorithm for the L-ICA model. We simulated data for ten 

subjects and considered three different number of ICs: q = 3,5,10. We summarize the results 

based on the two EM algorithms in Table 2. Results show that the accuracy of the subspace 

EM is comparable to that of the exact EM. The major advantage of the subspace EM is that 
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it was much faster than the exact EM. This advantage becomes more clear with the increase 

of the number of ICs. For q = 10, the subspace-based EM only uses about 2% computation 

time of the exact EM.

4. Application to longitudindal rs-fMRI data from ADNI2 study

4.1. Rs-fMRI acquisition and description

We applied the proposed L-ICA method to the longitudinal rsfMRI data from the 

Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2) study. One of the main purposes of 

the ADNI2 project is to examine changes in neuroimaging with the progression of mild 

cognitive impairment (MCI) and Alzheimer’s Disease (AD). Data used in our analysis were 

downloaded from ADNI website (http://www.adni.loni.usc.edu) and included longitudinal 

rs-fMRI images that were collected at baseline screening, 1 year and 2 year for four disease 

groups, i.e. Alzheimer’s Disease (AD), late mild cognition impairment (LMCI), early mild 

cognition impairment (EMCI) and control (CN). A T1-weighted high-resolution anatomical 

image (MPRAGE) and a series of resting state functional images were acquired with 3.0 

Tesla MRI scanner (Philips Systems) during longitudinal visits. The rs-fMRI scans were 

acquired with 140 volumnes, TR/TE = 3000/30 ms, flip angle of 80 and effective voxel 

resolution of 3.3×3.3×3.3 mm. More details can be found at ADNI website (http://

www.adni.loni.usc.edu). Quality control was performed on the fMRI images both by 

following the Mayo clinic quality control documentation (version 02–02-2015) and by 

visual examination. After the quality control, 51 subjects were included for the following 

ICA analysis. Among these subjects, 6 are diagnosed with AD, 17 are diagnosed with 

EMCI, 12 are diagnosed with LMCI and 16 are normal controls (CN) at baseline. For 

gender, there are 2 (33.3%) males for AD, 10 (58.8%) males for EMCI, 7 (58.3%) males for 

LMCI and 8 (50.0%) males for CN. The mean (SD) of age for each group is 80.3 (4.5) for 

AD, 72.8 (6.2) for EMCI, 70.0 (7.1) for LMCI and 74.8 (4.7) for CN. Based on F tests, there 

is no significant between-group difference in gender (p-value = 0.734) but significant 

difference in age across the groups (p-value = 0.008). We included both gender and age as 

covariates in the following L-ICA modeling to control for any potential confounding effects.

4.2. Rs-fMRI preprocessing

Skull stripping was conducted on the T1 images to remove extra-cranial material. The first 4 

volumes of the fMRI were removed to stablize the signal, leaving 136 volumes for 

subsequent prepossessing. We registered each subject’s anatomical image to the 8th volume 

of the slice-time-corrected functional image and then the subjects’ images were normalized 

to MNI standard brain space. Spatial smoothing with a 6mm FWHM Gaussian kernel and 

motion corrections were applied to the function images. A validated confound regression 

approach (Satterthwaite et al., 2014; Wang et al., 2016; Kemmer et al., 2015) was performed 

on each subject’s rs-fMRI time series data to remove the potential confounding factors 

including motion parameters, global effects, white matter (WM) and cerebrospinal fluid 

(CSF) signals. Furthermore, motion-related spike regressors were included to bound the 

observed displacement and the functional time series data were bandpass filtered to retain 

frequencies between 0.01 and 0.1 Hz which is the relevant range for rs-fMRI. Lastly, we 
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performed the prior-ICA preprocessing steps including centering, dimension reduction and 

whitening as described in section 2.

4.3. L-ICA model specification for ADNI2 study

We applied the L-ICA for modeling the preprocessed baseline, 1 year and 2 year rs-fMRI 

data from ADNI2 study to examine the longitudinal pattern in brain networks among AD, 

LMCI, EMCI and CN subjects. We decomposed data into 14 ICs. The first level of L-ICA 

decompose subjects’ longitudinal fMRI data as the product of subject/visit-specific mixing 

matrix and spatial source signals as specified in equation (1). In the second level model of 

the L-ICA, we included three binary indicators representing subjects’ membership in the 

four disease groups (with the CN as the reference group) as our primary covariates of 

interest. We also included subjects’ gender and baseline age as covariates to adjust for any 

potential confounding effects. Specifically, The second level for lth IC was specified as

si j
(l)(v) = s0

(l)(v) + bi
(l)(v) + α j

(l)(v) + β j1
(l)(v), …, β j5

(l)(v)

xi
AD

xi
LMCI

xi
EMCI

xi
Age

xi
Gender

+ γi j
(l)(v),

Where xi
AD = 1 if subject i is in the AD group and 0 otherwise, and xi

LMCI and xi
EMCI are 

defined similarly. β j1
(l)(v), β j2

(l)(v) and β j3
(l)(v) represent the contrast between AD, LMCI and 

EMCI vs. CN, respectively, at the jth visit. We estimated the parameters in the L-ICA model 

using the subspace-based EM algorithm implemented by in-house MATLAB programs. To 

ensure the validity of the results from EM, we initialized the EM algorithm with 20 different 

initial values and the results were highly consistent.

4.4. Longitudinal changes in brain networks for ADNI2 study based on L-ICA

Among the extracted ICs from L-ICA, we identified components that correspond to well-

established brain functional networks (Smith et al., 2009) such as the default mode network 

(DMN), medial visual network, occipital visual network and frontoparietal left network, 

which are visualized in Figures 4, 5, 6, 7. In Figure 4, we present the L-ICA model-based 

estimates of the DMN for the four disease groups at the three visits. The subpopulation maps 

were estimated at the mean baseline age (73.7 year old) and averaged between the two 

genders to control for confounding effects. They were thresholded based on the estimated 

intensity of the source signals. To provide better visualization of the changing patterns 

across voxels in the DMN, we also present in Figures 8 the model-based estimates of 

longitudinal trends of source signals for voxels in the two subregions of DMN, i.e. the 

posterior cingulate cortex (PCC) and the lateral parietal cortex (LPC). Figure 4 and Figure 8 

shows that the four disease groups demonstrated different temporal changing patterns in the 

DMN source signals across the visits. Results show that the AD and LMCI patients 

generally have more significant changes in the DMN network across the 3 visits as 
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compared with the EMCI and CN subjects. We also found that the longitudinal changes in 

the network may not necessarily follow a linear pattern and are different between the PCC 

and LPC regions of the DMN. Another finding from Figure 8 is that the AD group 

demonstrate larger variations across voxels within the network as compared with the other 

groups.

We also present the estimated subpopulation IC maps and the voxel-level longitudinal trends 

for other networks of interest (Figures 5, 6, 7, 9). Similar as the DMN, we found that the AD 

and LMCI patients generally have more significant changes in these networks across the 3 

visits as compared with the EMCI and CN subjects, the longitudinal changes are not 

necessarily linear across time, and that the AD group demonstrates the larger within-network 

heterogeneity as compared with the other groups.

We then applied the proposed inference procedure to formally test the between group 

differences at each visit while controlling for potential confounding effects from age and 

gender. We considered the differences between AD and CN group to demonstrate network 

changes in clinically diagnosed Alzheimer patients as compared with normal controls. We 

also considered the differences between the two MCI groups to investigate the heterogeneity 

between the early and late MCI stages. We then conducted tests to examine longitudinal 

changes from baseline to year 2 within disease group. For comparison, we applied the TC-

GICA based method to examine the group differences and longitudinal differences. We 

illustrate results for the DMN for demonstration purpose.

Figure 10 and Figure 11 present the between-group test results for AD vs. CN and LMCI vs. 

EMCI, respectively. The proposed L-ICA detected significant between-group differences at 

each visit. Furthermore, the test results from L-ICA indicate that the between-group 

differences tend to increase across time with group differences observed at increasingly 

more spatial locations in the network. In comparison, the TC-GICA based approach 

identified few differences between the groups. Figure 12 represents the differences between 

baseline and following visits based on L-ICA. It shows that AD has more longitudinal 

changes compared with other groups. Specifically, Figure 13 presents the results for testing 

the changes from baseline screening to year 2 for AD group. Results from L-ICA show that 

the AD group demonstrated noticeable longitudinal changes in DMN, which are consistent 

with findings reported in previous work (Dai et al., 2017). In comparison, the TC-GICA 

approach identified very little longitudinal changes in DMN among the AD patients. As in 

the simulation studies, the results from the real data analysis show that the L-ICA method 

has higher statistical power in detecting group differences and longitudinal changes. Based 

on a reviewer’s suggestion, we also conduct additional analyses to evaluate the robustness of 

the between-group test results based on the L-ICA. Our findings indicate the test results 

from L-ICA are fairly robust (Please refer to Appendix for details).

5. Discussion

In this paper, we proposed a longitudinal ICA model (L-ICA) to formally quantify time-

evolving patterns in brain function networks. In the L-ICA model, we incorporated subject-

specific random effects to capture the varbilities across subjects and also borrow information 
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across visits within the same subject to improve the model efficiency. Furthermore, to 

capture the possible non-linear changing effects in brain functional networks, L-ICA 

incorporates visit-specific covariate effects which can flexibly capture time-varying effects 

from subjects’ demographic, clinical and biological variables. The proposed L-ICA has 

demonstrated lower type I error and higher statistical power in detecting covariate effects on 

brain networks and their changes across time.

We developed a maximum likelihood estimation method via EM algorithms for L-ICA 

model. Based on results from the EM, L-ICA model can simultaneously estimate population 

and subject/visit-specific brain functional networks. We show that L-ICA’s model-based 

estimates of brain functional networks are more accurate on both population- and individual 

level. Furthermore, we proposed a computationally efficient subspace based EM algorithm. 

Simulation study showed that the approximate EM dramatically improves computational 

efficiency while achieving similar accuracy in model estimation. Matlab functions for 

implementing the L-ICA model will be added to an Matlab toolbox “HINT: Hierarchical 

Independent Component Analysis Toolbox” (Lukemire et al., 2018) which is publicly 

available and updated on NITRC (NeuroImaging Tools and Resources Collaboratory) and 

the website of Center for Biomedical Imaging Statistics (CBIS) at Emory University.

Some potential extensions to L-ICA is to incorporate more general model specification such 

as functional data analysis for more flexible modeling of longitudinal effects. Another 

potential extension to L-ICA is to incorporate spatial dependence in modeling the covariate 

effects in the ICA which can help improve the accuracy and efficiency in effects estimation. 

Furthermore, as a reviewer points out, given the computational cost of the MoG source 

distribution, one may consider alternative source distributions such as fixed or binary prior 

densities (Hyvärinen, Karhunen and Oja, 2001), which is worth investigating in future work.
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Appendix

1. Q-function in E step: The detailed expression for the complete data loglikelihood function 

at each voxel v is:

lv(Θ) = ∑
i = 1

N
∑

j = 1

K
logg yi j(v); Ai jsi j(v), E + logg si j(v); s0(v) + bi(v) + C j(v)xi*, τ2I

+ ∑
i = 1

N
logg bi(v); 0, D + logg s0(v); μz(v), Σz(v) + ∑

𝓁 = 1

q
logπl, zl(v)

where Cj(v) = [αj(v),βj(v)′] of dimension xi* = 1, xi′ ′ and g(x;μ,Σ) denotes the pdf of 

multivariate normal distribution for random vector x with mean μ and covariance Σ.

We derive the Q function in E step as follows,

Q(Θ |Θ(k)) = E[l(Θ; 𝒴, 𝒳, 𝒮, ℬ, 𝒵) |𝒴]

= Q1(Θ|Θ(k)) + Q2(Θ|Θ(k)) + Q3(Θ|Θ(k)) + Q4(Θ|Θ(k)) + Q5(Θ|Θ(k)),

where

Q1(Θ|Θ(k)) = − NKV
2 log | E | − 1

2 ∑
v = 1

V
∑

i = 1

N
∑

j = 1

K
tr yi j(v)yi j(v)′ − 2Ai jE[si j(v) |y(v); Θ(k)]yi j(v)′

+ Ai jE[si j(v)si j(v)′ |y(v); Θ(k)]Ai j′ E−1 ,

Q2(Θ|Θ(k)) = − NKVq
2 log|τ2| − 1

2τ2 ∑
v = 1

V
∑

i = 1

N
∑

j = 1

K
tr E si j(v)si j(v)′ + s0(v)s0(v)′ +

bi(v)bi v ′ |y(v); Θ(k)] + 2E[bi(v)s0(v)′ |y(v); Θ(k)] + 2xi* ′C j v ′E[s0(v) + bi(v)

−si j(v) |y(v); Θ(k)] + C j(v)xi*xi* ′C j(v)′ − 2E[s0(v)si j(v)′ + bi(v)si j(v)′ |y(v); Θ(k)] ,

Q3(Θ|Θ(k)) = − NV
2 log | D | − 1

2 ∑
v = 1

V
∑

i = 1

N
tr D−1E[bi(v)bi(v)′ |y(v); Θ(k)] ,

Q4(Θ|Θ(k)) = − 1
2 ∑

v = 1

V
∑

𝓁 = 1

q
∑

j = 1

m
p[z𝓁(v) = j |y(v); Θ(k)] logσ𝓁, j

2 + 1
σ𝓁, j

2 μ𝓁, j
2

+E[s0
(𝓁)(v)2 | z𝓁(v) = j; y(v), Θ(k)] − 2μ𝓁, jE[s0

(𝓁)(v) | z𝓁(v) = j, y(v); Θ(k)] ,

Q5(Θ|Θ(k)) = ∑
v = 1

V
∑

𝓁 = 1

q
∑

j = 1

m
p[z𝓁(v) = j |y(v); Θ(k)]logπ𝓁, j,
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2. Details about the E step of the exact EM algorithm. In this section, we provide the details 

about the derivation in the exact E step. By collapsing our model across N subjects and K 

visits, for v = 1,..,V,

y(v) = A U(c)μz(v) + U(c)ψ(v) + Hb(v) + C*(v)X* + γ(v) + e(v),
= AU(c)μz(v) + AC*(v)X* + ARrz(v) + e(v),

(11)

where A = blockdiag A11, …, ANK , b(v) = b1(v)′, …, bN(v)′ ′, γ(v) = γ11(v)′, …, γNK(v)′ ′,

e(v) = e11(v)′, …, eNK(v)′ ′, U(c) = 1NK ⊗ Iq, H = IN ⊗ 1K ⊗ Iq, C*(v) = IN ⊗

C1(v)′, .., CK(v)′ ′, X* = x1* ′, …, xN* ′ ′ R = H, U(c), IqNK , rz(v) = b(v)′, ψ z(v)′ , γ(v)′ ′ .

Conditioned on latent variable z(v), (11) can be represented as:

y(v) − AU(c)μz(v) − AC*(v)X* rz(v), z(v) ∼ N ARrz(v), ϒv ,
rz(v)|z(v) ∼ N 0, Γz(v)

(12)

where ϒv = INK ⊗ Ev, Γz(v) = blockdiag IN ⊗ D, Σz(v), τ2IqNK . From (12), we can derive the 

conditional distribution of [rz(v)|y(v),z(v)] through Bayes’ Theorem,

rz(v)|y(v), z(v) ∼ N μr(v) | y(v), Σr(v) | y(v) ,

μr(v) | y(v) = Σr(v) | y(v)R′A′ϒ−1 y(v) − AU(c)μz(v) − AC*(v)X* ,

Σr(v) | y(v) = Γz(v)
−1 + R′A′ϒ−1AR

−1 .

Next, we evaluate the conditional distribution of L(v). Given that L(v) = Prz(v) + Qz(v) we 

have L(v) y(v), z(v) ∼ N Pμr(v) | y(v) + Qz(v), PΣr(v) | y(v)P′ , where

P =

IqN 0 0
0 Iq 0

H U(c) IqNK

, Qz(v) =

0
μz(v)

U(c)μz(v) + C*(v)X*
.

Based on Bayes’ Theorem, we have

p[z(v) | y(v)] ∝ ∏
l = 1

q
πl, zl(v) g AU(c)μz(v) + AC*(v)X*, ARΓz(v)R′A′ + ϒv .

By integrating out p[z(v) | y(v)], we obtain the conditional distribution of L(v).

3. Details about the M step of the exact EM In this section, we only provide the M step of 

the exact EM.
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• Update the time-specific covariate effects Cj(v): for j = 1,..,K, v = 1,..,V,

C j(v)(k + 1) = ∑
i = 1

N
xi*xi* ′

−1
∑

i = 1

N
xi* E si j(v)′ − s0(v)′ − b0(v)′ |y(v); Θ(k) .

• Update the mixing matrices Aij: for i = 1,..,N, j = 1,..,K,

Ai j
(k + 1) = ∑

v = 1

V
yi j(v)E[si j(v)′ |y(v); Θ(k)] ∑

v = 1

V
E[si j(v)si j(v)′ |y(v); Θ(k)]

−1
,

and then update Ai j
(k + 1) = ℋ A

⌣
i j
(k + 1)  where ℋ( ⋅ ) is the orthogonalization 

transformation.

• Update the first level variance term Ev = σ0
2Iq with:

σ0
2(k + 1) = 1

NKVq ∑
v = 1

V
∑

i = 1

N
∑

j = 1

K
yi j(v)′yi j(v) − 2yi j(v)′Ai j

(k + 1)E[si j(v) |y(v); Θ(k)]

+tr Ai j
(k + 1)E[si j(v)si j(v)′ |y(v); Θ(k)]Ai j

(k + 1)′ .

• Update subject-specific variance term D:

D(k + 1) = 1
NV ∑

v = 1

V
∑

i = 1

N
E[bi(v)bi(v)′ |y(v); Θ(k)],

• Update second level variance term τ2Iq:

τ2(k + 1) = 1
NKVq ∑

v = 1

V
∑

i = 1

N
∑

j = 1

K
tr E[si j(v)si j(v)′ + s0(v)s0(v)′ + bi(v)bi(v)′ |y(v); Θ(k)]

+ 2E[bi(v)s0(v)′ |y(v); Θ(k)] + 2xi* ′C j v ′E[s0(v) + bi(v) − si j(v) |y(v); Θ(k)]

+C j(v)xi*xi* ′C j(v)′ − 2E[s0(v)si j(v)′ + bi(v)si j(v)′ |y(v); Θ(k)] ,

• Update πℓ,j:

π𝓁, j
(k + 1) = 1

V ∑
v = 1

V
p[z𝓁(v) = j |y(v); Θ(k)] .

• Update μℓ,j:
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μ𝓁, j
(k + 1) =

∑v = 1
V p[z𝓁(v) = j |y(v); Θ(k)]E[s0𝓁(v) | z𝓁(v) = j, y(v); Θ(k)]

Vπ𝓁, j
(k + 1) .

• Update σ𝓁, j
2  :

σ𝓁, j
2(k + 1) =

∑v = 1
V p[z𝓁(v) = j |y(v); Θ(k)]E[s0𝓁(v)2 | z𝓁(v) = j, y(v); Θ(k)]

Vπ𝓁, j
(k + 1) − [μ𝓁, j

(k + 1)]2 .

Here, E[s0ℓ(v) | zℓ(v) = j,y(v);Θ], E[s0ℓ(v)2 | zℓ(v) = j,y(v);Θ] and p[zℓ(v) = j | y(v);Θ] are the 

marginal conditional moments and probability related to the ℓth IC. They are derived by 

summing across all the possible states of the other q − 1 ICs as follows,

E[s0𝓁(v) | z𝓁(v) = j, y(v); Θ] =
∑

z(v) ∈ ℛ(𝓁, j) p[z(v) |y(v); Θ]E[s0𝓁(v) |y(v), z(v); Θ]
p[z𝓁(v) = j |y(v); Θ] ,

p[z𝓁(v) = j |y(v); Θ] = ∑
z(v) ∈ ℛ(𝓁, j)

p[z(v) |y(v); Θ] .

(13)

where ℛ(𝓁, j) is defined as zr ∈ ℛ: z𝓁
r = j  for all ℓ = 1,..,q,j = 1,...,m.

4. Statistical inference for testing covariate effects in L-ICA: In this section, we present the 

statistical inference procedure for testing covariate effects in L-ICA. We first stack the fMRI 

data from all visits of a subject to have the subject-specific fMRI data yi(v) of dimension qK 
×1 which is [yi1(v)′,...,yiK(v)′]′, and a non-hierarchical form of L-ICA is derived by 

combining equations (1),(2) and (3),

Ai′yi(v) = Uμz(v) + α(v) + Xiβ(v) + Uψ z(v) + Ubi(v) + γi(v) + Ai′ei(v), (14)

where Ai = blkdiag Ai1, …, AiK , γi(v) = [γi1(v)′, …, γiK(v)′]′, ei(v) = [ei1(v)′, …, eiK(v)′]′, α(v) = 

[α1(v)′,α2(v)′,..,αk(v)′]′, β(v) = [vec[β1(v)′]′,…,vec[βk(v)′]′]′, U = 1K ⨂ Iq and 

Xi = IK ⊗ xi′ ⊗ Iq . The model in (14) is further re-written as

yi*(v) = X0α*(v) + Xiβ(v) + ζi(v),
= Xi*C*(v) + ζi(v),

(15)
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where yi*(v) = Ai′yi(v), Xi* = [X0, Xi], X0 =
1 0K − 1′

1K − 1 IK − 1
⊗ Iq, 

α*(v) = [μz(v)′ , α2(v)′, …, αK(v)′]′, C*(v) =[α*(v)′,β(v′)]′ and 

ζi(v) = Uψ z(v) + Ubi(v) + γi(v) + Ai′ei(v) ∼ N 0, Wi(v)  is the multivariate zero-mean Gaussian 

noise term where Wi(v) = U Σz(v) + D U′ + AiEvAi′ + τ2IqK, which can be shown as 

Wi(v) = W(v) = U Σz(v) + D U′ + σ0
2 + τ2 IqNK .

5. Details about the pre-whitening prior to ICA: Following previous work (Beckmann and 

Smith, 2004), we perform preliminary analysis to prewhiten the data so that the noise 

covariance can be assumed to be isotropic across voxels in the probabilistic ICA model. 

Specifically, if the original covariance of the noise eij(v) is known as σ0
2Ev, we can use the 

Cholesky decomposition Ev = KvKv′  to rewrite model (1) as

Kv
−1yi j(v) = Kv

−1Ai jsi j(v) + Kv
−1ei j(v), (16)

and obtain a new representation,

yi j(v) = Ai jsi j(v) + ei j(v), (17)

where ei j(v) ∼ N 0, σ0
2I . Therefore, the noise covariance becomes isotropic and standardized 

across voxels.

When Ev is unknown, the prewhitening can be achieved by the following iterative 

procedure: (1) start with an initial noise covariance Ev
(0), prewhiten the data as in (16), (2) 

with voxel-wise prewhitened data, we can readily derive the ML estimates of 

Ai j, ML, si j, ML(v) and σ0, ML
2  (Beckmann and Smith, 2004), (3) re-estimate the noise 

covariance Ev based on the residuals ei j(v) from model (17), and then repeat steps (1)-(3). By 

performing the iterative procedure, we obtain the preprocessed data for the subsequent ICA 

modeling.

6. Robustness of between-group test results based on L-ICA We conduct additional analyses 

to evaluate the robustness of the between-group comparison results in the DMN for the 

ADNI2 study based on the proposed L-ICA. We obtain 51 data sets by applying the leave-

one-out procedure on the ADNI2 data, where each data set contains 50 subjects by removing 

one subject from the original data. We then run L-ICA and conduct between-group 

comparisons for each of the data sets. We evaluate the consistency of the comparison results 

for each voxels in the DMN by examining whether the significance of the test result is 

consistent or not with the original data. Specifically, for voxel v, the consistency rate is 

defined as 1
51 ∑k = 1

51 1 sigk(v) = sigorg(v) , where sigorg(v) is a binary indicator that equals 1 if 
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the voxel v showed significant between-group test result in the original data and equals 0 if 

otherwise, and sigk(v) is the corresponding binary test significance indicator under the kth 

leave-one-out dataset. Table 3 presents the results on the consistency rate across voxels for 

each of the group comparisons, including AD vs. CN at every visit, EMCI vs. LMCI at every 

visit, and longitudinal changes from baseline to year 2 for the AD group. Specifically, we 

first present the average consistent rate across all voxels in the network (1st row in Table 3) 

Then, we present the average consistency rates separately for voxels that are significant in 

the original tests (2nd row in Table 3) and voxels that are non-significant in the original tests 

(3rd row in Table 3). Results show that the group test results based on the L-ICA on average 

have a consistent rate of over 90% across the DMN and also within both significant voxels 

and non-significant voxels, indicating the between-group comparison results based on L-

ICA are fairly robust for the ADNI2 study.
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Fig 1. 
Schematic illustration of the hierarchical modeling framework of L-ICA. (A) the first level 
model of L-ICA with N subjects and K visits where each subject/visit-specific fMRI data is 
decomposed into q subject/visit-specific ICs, here q = 2 for illustration purpose. (B) the 
second level model of L-ICA for one specific IC where the subject/visit-specific ICs are 
modelled in terms of population-level source signals, subject specific random effects, visit 
effects and visit-specific covariate effects.
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Fig 2. 
Comparison between the proposed L-ICA and the TC-GICA based approach for estimating 

the population-level IC maps at baseline and the last visit (N=20, low subject/visitspecific 

random variability): (A) truth, (B) L-ICA estimates and (C) estimates from TCGICA. 

Column (i) represents the IC maps at baseline; Column (ii) represents the IC maps at last 

visit; Column (iii) represents the longitudinal trends for activated voxels (where each line 

represents a voxel) in the first IC (IC1). Results show that L-ICA provides more accurate 

estimates than TC-GICA at each visit and more precisely captures the voxel-specific 

longitudinal trend.
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Fig 3. 
Simulation results for testing covariate effects based on 1000 runs with sample size N = 40 

using the proposed L-ICA method (red) and the TC-GICA (blue) based method. We 
considered two types of hypothesis tests: testing the time-specific covariate effect at a given 
visit (the 2nd visit), i.e. H0 : β2(v) = 0 (the left column), and testing the time-varying 
longitudinal covariate effects between the 1st and 2nd visit, i.e. H0 : β1(v) = β2(v) (the right 
column). Panel (A) and (B) presents the type I error rates and the statistical power, 
respectively. The results show that the L-ICA method demonstrates lower type I error and 
higher statistical power as compared with the TC-GICA based method.
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Fig 4. 
L-ICA estimates of subpopulation spatial source signal maps for the DMN for the four 

disease group across the visits, with the mean baseline age (73.7 year old) and are averaged 

between genders. All IC maps are thresholded based on the source signal intensity level.
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Fig 5. 
L-ICA estimates of subpopulation spatial source signal maps for the medial visual network 

for the four disease group across the visits, with the mean baseline age (73.7 year old) and 

are averaged between genders. All IC maps are thresholded based on the source signal 

intensity level.
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Fig 6. 
L-ICA estimates of subpopulation spatial source signal maps for the occipital visual network 

for the four disease group across the visits, with the mean baseline age (73.7 year old) and 

are averaged between genders. All IC maps are thresholded based on the source signal 

intensity level.
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Fig 7. 
L-ICA estimates of subpopulation spatial source signal maps for the FPL for the four disease 

group across the visits, with the mean baseline age (73.7 year old) and are averaged between 

genders. All IC maps are thresholded based on the source signal intensity level.
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Fig 8. 
L-ICA estimates of longitudinal trends for voxels in the DMN network for each disease 

group in ADNI2 study. Results show that AD and late MCI (LMCI) patients generally have 

more changes across visits and that AD group has higher within-network variations than the 

other disease groups at each visit.
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Fig 9. 
L-ICA estimates of longitudinal trends for voxels in FPL and visual networks for each 

disease group in ADNI2 study. Results show that AD and LMCI patients generally have 

more changes across visits and that AD group has higher within-network variations than the 

other disease groups at each visit.
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Fig 10. 
p-values for testing group differences in DMN between AD and CN subjects at each visit. 

The first row shows the test results based on L-ICA and the second row shows the results 

from the TC-GICA based approach.
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Fig 11. 
p-values, thresholded at 0.05, for testing group differences in DMN between EMCI and 

LMCI subjects at each visit. L-ICA finds between-group differences in DMN at each visit 

while TC-GICA detects little group differences.

Wang and Guo Page 36

Neuroimage. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 12. 
Longitudinal changes from baseline and later visits in DMN within AD, LMCI, EMCI and 

CN groups. The first column shows the comparison between year 1 versus baseline and the 

second column shows the comparison between year 2 versus baseline, where the value 

represents the longitudinal differences in source signal intensity for DMN voxels, i.e. 

s j(v) − s0(v).
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Fig 13. 
p-values, thresholded at 0.05, for longitudinal changes between baseline and year 2 for the 

default mode network (DMN) among the AD group. L-ICA finds longitudinal changes in 

major regions of DMN among AD patients while TC-GICA detects little changes in DMN 

among these patients.
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Table 1

Simulation results for comparing L-ICA method against TC-GICA-based method with 100 simulation runs. 

Values presented are mean and standard deviation of correlations between the true and estimated: population-

level spatial maps, subject/visit-specific spatial maps and subject/visit-specific time courses. The mean and 

standard deviation of the MSE of the covariate effects estimates are also provided.

Subj-Visit Population-level spatial maps Subject/Vist-specific spatial maps

Var Corr.(SD) Corr.(SD)

L-ICA TC-GICA L-ICA TC-GICA

Low

N=10 0.929 (0.021) 0.853 (0.116) 0.979 (0.016) 0.942 (0.095)

N=20 0.959 (0.015) 0.889 (0.113) 0.981 (0.012) 0.937 (0.093)

N=60 0.984 (0.008) 0.940 (0.109) 0.999 (0.007) 0.951 (0.085)

High

N=10 0.886 (0.053) 0.621 (0.213) 0.960 (0.044) 0.845 (0.152)

N=20 0.899 (0.042) 0.691 (0.187) 0.962 (0.034) 0.854 (0.141)

N=60 0.958 (0.011) 0.856 (0.162) 0.991 (0.019) 0.900 (0.099)

Subj-Visit Subject/Vist-specific time courses Covariate Effects

Var Corr.(SD) Corr.(SD)

L-ICA TC-GICA L-ICA TC-GICA

Low

N=10 0.997 (0.004) 0.941 (0.076) 0.152 (0.009) 0.159 (0.068)

N=20 0.998 (0.003) 0.942 (0.075) 0.093 (0.006) 0.153 (0.063)

N=60 1.000 (0.001) 0.957 (0.063) 0.040 (0.000) 0.128 (0.039)

High

N=10 0.987 (0.019) 0.884 (0.092) 0.253 (0.015) 0.273 (0.101)

N=20 0.990 (0.014) 0.885 (0.093) 0.187 (0.011) 0.239 (0.086)

N=60 0.992 (0.007) 0.910 (0.077) 0.098 (0.004) 0.192 (0.083)
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Table 2

Simulation results for comparing subspace EM against exact EM based on 50 simulation runs.Values 

presented are mean and standard deviation of the computational/iteration time (in second), the mean and 

standard deviation of correlations between the true and estimated: baseline population-level spatial maps and 

subject/visit-specific time courses, the mean and standarddeviation of the MSE of the covariates estimates. 

The stopping criteria is based on the correlation between true and estimated subject/visit-specific spatial maps 

to reach 0.99 for q = 3,5 and 0.90 for q = 10.

Iteration time Baseline population-level spatial maps

(SD) Corr.(SD)

# of IC Exact EM Subspace EM Exact EM Subspace EM

q=3 98.77(2.53) 55.26(0.85) 0.963(0.001) 0.962(0.001)

q=5 387.08 (5.61) 89.42(4.51) 0.962(0.005) 0.961(0.004)

q=10 11254.67(9.01) 187.82(6.31) 0.913(0.010) 0.907(0.009)

Subject/Visit-specific time coureses Covariate Effects

Corr.(SD) MSE(SD)

# of IC Exact EM Subspace EM Exact EM Subspace EM

q=3 0.998(0.003) 0.998(0.003) 0.083(0.009) 0.081(0.009)

q=5 0.996(0.004) 0.995(0.003) 0.083(0.011) 0.085(0.010)

q=10 0.989(0.010) 0.986(0.007) 0.097(0.023) 0.102(0.021)
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Table 3

Consistency of the group comparisons results based on L-ICA for the ADNI2 study.

Averaged Consistency Rate AD vs CN LMCI vs EMCI Year 2 vs Baseline

Baseline Year 1 Year 2 Baseline Year 1 Year 2 for the AD group

All voxels in DMN 0.948 0.949 0.945 0.936 0.943 0.926 0.966

Voxels with differences 0.960 0.966 0.968 0.959 0.961 0.955 0.922

Voxels without differences 0.945 0.946 0.937 0.927 0.938 0.912 0.973
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