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Abstract

The sliding window correlation (SWC) analysis is a straightforward and common approach for 

evaluating dynamic functional connectivity. Despite the fact that sliding window analyses have 

been long used, there are still considerable technical issues associated with the approach. A great 

effort has recently been dedicated to investigate the window setting effects on dynamic 

connectivity estimation. In this direction, tapered windows have been proposed to alleviate the 

effect of sudden changes associated with the edges of rectangular windows. Nevertheless, the 

majority of the windows exploited to estimate brain connectivity tend to suppress dynamic 

correlations, especially those with faster variations over time. Here, we introduced a window 

named modulated rectangular (mRect) to address the suppressing effect associated with the 

conventional windows. We provided a frequency domain analysis using simulated time series to 

investigate how sliding window analysis (using the regular window functions, e.g. rectangular and 

tapered windows) may lead to unwanted spectral modulations, and then we showed how this issue 

can be alleviated through the mRect window. Moreover, we created simulated dynamic network 

data with altering states over time using simulated fMRI time series, to examine the performance 

of different windows in tracking network states. We quantified the state identification rate of 

different window functions through the Jaccard index, and observed superior performance of the 

mRect window compared to the conventional window functions. Overall, the proposed window 
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function provides an approach that improves SWC estimations, and thus the subsequent inferences 

and interpretations based on the connectivity network analyses.
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1. Introduction

Functional brain network connectivity has been proven to be an informative method for 

studying brain function in different states (Allen et al., 2014; Richiardi et al., 2011; Shirer et 

al., 2012), and among different populations (Belmonte et al., 2004; Mokhtari et al., 2018b; 

Rashid et al., 2014). Brain imaging studies have long assumed that functional connectivity 

was stationary and could be quantified by measuring static temporal correlations of the 

functional magnetic resonance imaging (fMRI) time series between separate brain regions 

(Smith et al., 2011). However, this approach may be insufficient to estimate the full extent of 

the functional connectivity, as recent studies have shown that brain connectivity exhibits 

meaningful variations over time (Allen et al., 2014; Chang and Glover, 2010; Chang et al., 

2013; Handwerker et al., 2012; Hutchison et al., 2013), see (Laumann et al., 2016) for 

alternative view. Not only does brain network organization differ between and during various 

task states (Bianciardi et al., 2009; Chang et al., 2011; Sun et al., 2006), there is convincing 

evidence of highly dynamic behavior of resting state fMRI (rsfMRI) connectivity (Allen et 

al., 2014; Chang and Glover, 2010; Handwerker et al., 2012). The mind wandering that 

occurs in participants during a resting state scanning session likely produces dynamic 

alterations of functional brain connectivity (Andrews-Hanna et al., 2010; Christoff et al., 

2016; Kucyi and Davis, 2014). Additionally, the brain’s response to changing internal and 

external stimuli requires dynamic changes in connectivity networks organization over time 

(Chang and Glover, 2010; Chang et al., 2011).

Among the various statistical methodologies, including time‐frequency analyses (Allen et 

al., 2014; Chang and Glover, 2010; Thompson and Fransson, 2015) and data-driven 

modeling (Broumand et al., 2015; Broumand and Hu, 2015; Cribben et al., 2012; Lindquist 

et al., 2014), the sliding window correlation (SWC) analysis has remained the most popular 

approach to evaluate dynamic functional connectivity (Allen et al., 2014; Hutchison et al., 

2013; Mokhtari et al., 2018a; Preti et al., 2016; Rashid et al., 2014; Sakoglu et al., 2010 ). 

Analogous to a moving average function, a sliding window analysis computes a succession 

of pairwise correlation matrices using the time series from a given parcellation of brain 

regions. Despite the growing success of this methodology, the sliding window technique 

suffers from substantial challenges (Hindriks et al., 2016; Hutchison et al., 2013; Leonardi 

and Van De Ville, 2015); e.g. there are multiple parameters such as window function, length 

and step size that must be set, but the appropriate settings remain unknown due to lack of 

ground truth in resting state fMRI data.

In this direction, a great effort has recently been dedicated to investigate the sensitivity of 

SWC to different parameters using both simulated and real fMRI data (Leonardi and Van De 
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Ville, 2015; Shakil et al., 2018; Shakil et al., 2016; Wilson et al., 2015). To address the 

challenge of “no ground truth” (Shakil et al., 2016), created simulated networks with 

altering states using real fMRI time series and investigated the sensitivity of SWC measures 

to the state transitions within a wide range of varying parameters including window length, 

step size and window type (Shakil et al., 2016). Interestingly, rectangular window showed 

superior sensitivity to the state transitions compared to the tapered windows. Such an 

outcome might be due to the sharp alterations associated with the connectivity network 

transitions that could be tracked better by the rectangular window. Although a considerable 

amount of functional connectivity studies have exploited the common rectangular window 

(Leonardi and Van De Ville, 2015; Shakil et al., 2015), there is a major shortcoming 

associated with such an elementary window. In fact, all the points within this window are 

given the same weight, which increases the sensitivity of SWC to outliers. To limit this 

adverse effect (Allen et al., 2014; Handwerker et al., 2012; Rashid et al., 2014), 

recommended tapered windows to estimate the SWC connectivity.

Nevertheless, the sliding window function comes with another challenge, which to our 

knowledge has not previously been addressed in the neuroimaging literature. As explained 

above, the sliding window is simply a weighted moving average operation in time domain. 

However, the window operates as a non-uniform low-pass filter in the frequency domain 

(Leonardi and Van De Ville, 2015; Shakil et al., 2015). Ideally, the low-pass filter is 

supposed to cover a limited bandwidth, i.e.(−Ωc; Ωc) uniformly, where Ωc is the filter cut-off. 

However, for the commonly-used windows, the frequency spectrum shows a tapered shape, 

thus as the frequency of the dynamic correlation goes up, it is assigned a smaller weight by 

the low-pass filter. This unwanted spectral variation can significantly affect the interpretation 

of dynamic functional connectivity through artificial suppression of the higher frequency 

contents within the bandwidth ð (Ωc;Ωc). This effect becomes even worse when a tapered 

window function, such as Hamming or Tukey, is exploited.

In order to address the issue of a non-uniform frequency spectrum, here, we proposed a 

window named modulated rectangular (mRect) with a flattened spectrum within the 

bandwidth. The mRect window was actually generated by the superposition of a regular 

rectangular window and a second rectangular window with larger length multiplied by a 

cosine function. To achieve a better insight into the low-pass filtering effect of the window, 

we started with simulated time series fluctuating with a few given frequencies. Comparison 

between the different windows demonstrated that the mRect window outperformed the 

common window functions in retrieving the dynamic correlations. In addition to the 

temporal analysis, we also provided a frequency domain analysis to address the above-

mentioned issue. As exploited by the previous studies (Leonardi and Van De Ville, 2015; 

Shakil et al., 2018; Shakil et al., 2015; Shakil et al., 2016), the frequency-based perspective 

is particularly informative for SWC analysis of fMRI data, as fMRI time series possess 

broad spectra that may not be easily perceived using temporal analysis.

Moreover, we generated simulated networks with varying states over time, and compared 

different windows in network state identification. For each window, we ran a separate k-

means clustering to identify the network states. Interestingly, we observed that the mRect 

window significantly outperformed the conventional windows in detecting state transitions, 
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as estimated using Jaccard similarity index between the ground truth and the states detected 

by the k-means clustering. Thus, the proposed window function can improve the SWC 

estimations, yielding modified outcomes and interpretations based on the dynamic 

connectivity network analyses.

2. Methods

2.1 Window functions

The rectangular and tapered, including Hamming and Tukey, windows have been widely 

used for dynamic functional connectivity analysis in neuroimaging studies (Allen et al., 

2014; Leonardi et al., 2013; Leonardi and Van De Ville, 2015; Preti et al., 2016; Shakil et 

al., 2016). The temporal profile of these windows and the mRect window, w[t], in 

association with their amplitude spectral density |ℱ(W)[Ω]| (referred to as frequency 

spectrum in the rest of the paper) are shown in Fig. 1.

As demonstrated by the frequency spectrums, each window actually represents a low pass 

filter in the frequency domain, with a cut-off frequency, ΩC = 0.01 Hz, located where the 

frequency spectrum first meets a predefined small threshold value (for example zero) 

(Leonardi and Van De Ville, 2015; Shakil et al., 2015). In this study, we were particularly 

interested in investigating the effects of windows frequency domain characteristics on 

dynamic correlation retrieval; thus, we determined the length of different windows to 

achieve the same cut-off frequency.

The fluctuations of rsfMRI time series of the cerebral cortex are predominantly 

characterized within a low frequency range [0.01–0.1] Hz (Cordes et al., 2001). This range 

in conjunction with the fMRI time series sampling rate (known as repetition time (TR)) are 

the basic parameters that should be taken into account when determining parameters of the 

sliding window (Leonardi and Van De Ville, 2015; Shakil et al., 2015). The cutoff frequency 

of the low-pass filter corresponding with a sliding window operator is actually determined 

based on the window duration, such that increasing a window length results in decreasing 

the cut-off frequency. Decreasing the cutoff frequency (longer windows) decreases the 

sensitivity for identifying fast changes, with very long windows eventually measuring static 

connectivity. On the other hand, increasing the cutoff frequency (shorter windows) can 

increase sensitivity for detecting short transition states but at the expense of increasing the 

spurious fluctuations in the dynamic connectivity (Leonardi and Van De Ville, 2015; Shakil 

et al., 2016). Thus, it is essential to determine a window length that allows reducing spurious 

fluctuations and at the same time capturing faster dynamic correlations. Based upon this 

idea, a length, L, higher than 1/(TR·fmin) for the rectangular window was suggested by 

(Leonardi and Van De Ville, 2015), where fmin is the lowest frequency present in fMRI time 

series, i.e.∼ 0.01 Hz. Thus, the rectangular window length, L, should be over 100/TR time 

points. It was demonstrated that such window length selection results in a good balance of 

sensitivity and specificity by identifying real transitions while limiting the spurious 

fluctuations (Leonardi and Van De Ville, 2015) (also see Supplementary Materials, Fig. S. 1 

for clarification). For the rectangular window, this window length leads to cut-off frequency 

located at ΩC = 1/(L·TR). Here, the length of the different windows was determined to 

achieve a same cut-off frequency at ΩC = 1/(L·TR) ≅ 0.01 Hz (where TR = 2 sec and L = 

Mokhtari et al. Page 4

Neuroimage. Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



51), that led to a length of 101, 75 and 101 time points for the mRect, Hamming and Tukey 

windows, respectively. In general, to achieve the same cutoff frequency with a rectangular 

window of L time points, mRect, Hamming and Tukey (with the cosine-tapered length ratio 

0.5) windows require about 2L, 1.5L, and 2L time points, respectively. For further details 

regarding the length of the Hamming and Tukey windows, refer to (Oppenheim and Schafer, 

2014). Additionally, the rationale behind determining the length of the mRect window has 

been explained in the Supplementary Materials, Fig. S. 2.

It is evident from Fig. 1 that the windows frequency spectrum is not uniform within the 

bandwidth (−Ωc;Ωc), implying that these windows tend to artificially suppress the dynamic 

correlations, especially the higher frequency/faster correlations within the bandwidth. In 

other words, the SWC fluctuations could vary slower compared to the real dynamic 

relationships between the time series, which may eventually lead to higher risk of false 

negative/positive results in the statistical analysis of dynamic connectivity networks.

To address the issue of window spectral variation, we designed a window function with a 

flattened spectrum within the bandwidth of interest. We named this function modulated 

rectangular (mRect) window and defined it as follows

w[n] = rect [n/L] + α ⋅ rect[n/2L]cos πΩcn + ϕ , (1)

where n = t/TR is the index of time point, t is the discrete time variable, and α (relative 

amplitude) and ϕ (phase) are design parameters that can be empirically tuned to maximally 

flatten the window spectrum over (– Ωc; Ωc) Here, this was achieved by setting α = 0.5, and 

ϕ = 5/12π. Basically, the mRect window consists of a conventional rectangular window 

function with the length L = 1/(TR·Ωc) time points (noted by rect [n/L]), added to a second 

rectangular window with the length 2L (noted by rect[n/2L]) multiplied by a cosine function 

fluctuating at frequency Ωc/2 to flatten the window spectrum over the bandwidth(–Ωc). Fig. 1 

contrasts the temporal profile and frequency spectrum of the mRect window with other 

conventional windows, for a given cutoff frequency of Ωc = 0.01Hz. Clearly, the mRect 

spectrum is significantly flattened over the range of interest, at the cost of increased window 

length by a factor of 2 in comparison with the rectangular window. Although window length 

is increased, it is equal or comparable to the popular tapered windows such as Tukey or 

Hamming windows, as shown in Fig. 1.

Intuitively, one can consider mRect window as a combination of two distinct windows 

operating in parallel. The first window, which is a conventional rectangular window, 

represents a low-pass filter. The second window operates as a band-pass filter with central 

frequency and bandwidth of Ωc/2. Having said that, by fine tuning the design parameters, α 
and ϕ, the resulting combined window can be tailored to achieve the flattened spectrum 

within the frequency range of interest (– Ωc;Ωc). In principle, to achieve a maximally 

flattened spectrum, this idea can be generalized, with the cost of a longer window length, by 

having K –1 band-pass filters with a central frequency and bandwidth of (k– 1)Ωc/k, and 

Ωc/k, respectively, where k = 2;…, K. Equation (1) represents the fillter for K = 2.
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2.2 Simulated time series

To achieve a simple yet informative insight into the window function effect on SWC 

estimation, we started from the simulated time series fluctuating at a few known frequencies 

with given amplitudes, as used in (Leonardi and Van De Ville, 2015; Shakil et al., 2015). 

The basic idea of such analysis is that any discrete time series (such as an fMRI time series) 

can be linearly decomposed into a series of oscillating signals with known frequency and 

amplitude. Having said that, one may examine the simulated time series oscillating at a 

specific frequency, and generalize the resulting conclusions and interpretations to fMRI time 

series consisting of fluctuations within a wide frequency range. Let us consider two 

simulated time series as

x[n] = cos(2π f n)y[n] = cos 2π f + δ f 1 n + cos 2π f + δ f 2 n (2)

where f = 0.02 Hz, δf1 = 0.001 Hz and δf2 = 0.006 Hz. The static correlation of these two 

time series is very small. However, they exhibit meaningful low frequency dynamic 

correlations due to going in and out of phase with one another. The low frequency dynamic 

correlations, that are captured by the sliding window filter, occur at frequencies δf1 and δf2 

(Leonardi and Van De Ville, 2015). In other words, dynamic correlation is independent of f, 

but is dependent on the time series frequency differences (i.e. δf1 = 0.001 Hz and δf2 = 

0.006 Hz in our example data).

The frequency f = 0.02 was selected in the frequency range [fmin; fmax] ≈ (0.01, 0.1) Hz to 

be consistent with the signals found in real resting-state fMRI data (Cordes et al., 2001). As 

explained earlier, the sliding window operator is a low pass filter in the frequency domain 

with cut-off frequency ΩC, where ΩC is set to fmin = 0.01 Hz to limit spurious fluctuations 

(Leonardi and Van De Ville, 2015). Thus, we chose the dynamic correlation frequency 

values (i.e. δf1 = 0.001 Hz and δf2 = 0.006 Hz) in the frequency range of (0,fmin) = (0, 0.01) 

to be consistent with fMRI correlation connectivities.

Also, we chose slower (δf1 = 0.001 Hz) and faster (δf1 = 0.006 Hz) dynamic correlations, 

because we were able to compare different window functions in retrieving both slower and 

faster dynamic correlations. Note that we used these two specific time series for 

demonstration purposes only. We also simulated realistic resting state fMRI time series 

including multiple fluctuation frequencies in the range of (i.e. (0.01, 0.1) Hz), and 

statistically compared the performance of different windows in retrieving the realistic 

dynamic correlations.

2.3 Sliding window correlation coefficient

For simplicity of the formulas below, we assumed that the window is rectangular. The static 

correlation, rxy, between the time series x and y of length N is defined as follows
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rxy =
∑n = 1

N xnyn − ∑n = 1
N xn ∑n = 1

N yn

∑n = 1
N xn − ∑k = 1

N xk
2 ∑n = 1

N yn − ∑k = 1
N yk

2 (3)

where xn and yn denote the time point n of the time series x and y. Thus, each sample of the 

sliding window correlation coefficient can be formalized as below

rxy[m] =
∑n = m

m′ xnyn − ∑n = m
m′ xn ∑n = m

m′ yn

∑n = m
m′ xn − ∑k = m

m′ xk
2 ∑n = m

m′ yn − ∑k = m
m′ xk

2 (4)

where m∈[0,N− L+1] is the start point of the windowed time series, L is the window length 

and m’ = m+ L‒ 1. In other words, the SWC analysis is performed by computing the 

sample correlation coefficient between the points from times series x and y that are within 

the window length The window is then shifted over the time series and a new correlation 

coefficient is computed for each shift. Overall, with the time series of length N and window 

of length L,N – L + 1 sample correlation coefficients are yielded. Thus, using the sliding 

window correlation co-N and window of length L, N L + 1 sample correlation coef efficient, 

a population of correlation coefficients is created, while static correlation only produces one 

sample correlation. For other window functions, the time series of Eq. (4) are weighted with 

the window shapes. In this study, the SWC was computed using different window functions 

with the window sizes mentioned in the previous section and step size P=, the1 time point.

In Eq.(4),first term in the numerator accounts for the pointwise multiplication of the 

windowed time series. The second term in the numerator and the denominator term account 

for the windowed time series mean and standard deviation values, respectfully. An essential 

assumption in sliding window analysis is that the mean and standard deviation of the time 

series are static across the time sample (i.e. the data is statistically stationary, at least in the 

wide sense) (Akhlaghi and Dogariu, 2016, 2017; McCauley, 2009, 2013). However, this may 

not be necessarily true for every window length (Chen et al., 2016; Deco et al., 2011; Lee et 

al., 2013; Leonardi and Van De Ville, 2015). Inaccurate estimation of time series statistics 

(i.e. mean and standard deviation) due to a small sample size can cause spurious fluctuations 

in the SWC measures (see Fig. S. 1 for clarification). The rectangular window length lower 

bound limit proposed by (Leonardi and Van De Ville, 2015) provides a practically stationary 

estimation of time series statistics; thus, it can significantly reduce the spurious fluctuations. 

To define a ground-truth independent of window parameters, we determined the point-wise 

multiplication of the two time series, x.y = [x1.y1, x2.y2; …, xN.yN], as recommended by 

(Leonardi and Van De Ville, 2015). The main idea is that point-wise multiplication 

represents the temporal relationships between the time series and it is not affected by the 

spurious fluctuations (Leonardi and Van De Ville, 2015). However, two considerations 

should be taken into account when using pointwise multiplication: 1) as we were particularly 

interested in frequency domain analysis in this study, and since the sliding window 

technique operates as a low pass filter with the bandwidth of (‒Ωc, Ωc), we limited our 
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comparisons to the frequency spectrum of x.y below in the range of (‒Ωc, Ωc). Second, the 

point-wise multiplication does not provide a normalized connectivity measure, thus we can 

only compare the spectral profiles of the SWC and pointwise-multiplication series, but not 

their absolute amplitudes. Clearly, a non-normalized measure is not comparable between 

different node pairs, and cannot be used in network connectivity analyses. Thus, we 

normalized the spectrum of each SWC series to its maximum value.

2.4 Simulated network states

In order to examine how the performance of the proposed window may differ from the 

popular windows on fMRI time series that lie in a wide frequency range, we created 

simulated resting-state fMRI time series using SimTB toolbox, developed by (Erhardt et al., 

2012). Additionally, in order to compare different window functions in fMRI connectivity 

network analysis, we took advantage of the SimTB framework to simulate 10 fMRI time 

series under the model of spatiotemporal separability (Erhardt et al., 2012). The fundamental 

assumption of this model is that fMRI time series can be expressed as the product of task 

events and spatial maps. Each spatial map represents a unique connectivity state.

We defined the 4 states (i.e. spatial maps) shown in Fig. 2 (a). For a representative sample, 

the simulated fMRI time series are shown in Fig. 2 (b). We created 100 different samples 

(i.e. dynamic connectivity networks), for each of which the number of state transitions was 

in the range of ð6; 12+ and the states occurred at random orders. The resting-state networks 

showed long-term stability on the scale of minutes (Gonzalez-Castillo et al., 2014), thus 

tended to exhibit a same state for a long period (Allen et al., 2014; Shakil et al., 2016). The 

length of states was in the range of (30 TR, 90 TR) (where TR = 2 s) (Shakil et al., 2016), 

also (Allen et al., 2014) identified real fMRI connectivity states with comparable durations. 

Thus, here, a range of (30 TR, 90 TR) seconds was used for the state durations. Normal 

random noise 𝒩(0, 0.1) was also added to each sample. The length of time series was set to 

512 TR (TR = 2 s).

Following creating simulated fMRI time series, sliding window correlation matrices were 

generated by computing pairwise correlation coefficients between the windowed time series. 

Thus, in contrast to the spatial maps, correlations/anticorrelations are not necessarily perfect 

(i.e. they are different from +1 and‒1). Also, it is important to note that we assumed that 

state transitions were sharp.

2.5 Clustering network states

The SWC analysis was performed on the 100 simulated dynamic connectivity networks 

using each of the four different window functions. For each sample, the dynamic 

connectivity network, i.e. an array of size 10 ×10 ×(512 ‒l+ 1), was a series of connectivity 

matrices over time, i.e. an array of size 10 × 10, where l, the window length, was 101, 51, 

101, and 75 time points for the mRect, rectangular, Hamming and Tukey windows. To 

achieve a fair paired-sample comparison between different windows, for each sample, we 

only used the first 412 connectivity matrices resulting from the different windows.
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The k-means clustering algorithm has often been used to recognize ‘states’ in dynamic 

connectivity networks (Allen et al., 2014; Rashid et al., 2014; Shakil et al., 2016). Due to the 

symmetry of connectivity matrices at each time point and for each sample, the entries below 

the diagonal were embedded into a vector that resulted in an array of size 45 × 412 for each 

sample. Each connectivity vector (i.e. an array of size 45 × 1) at each time and for each 

sample was then considered as a data point in the clustering analysis. For each window, the 

k‒means algorithm involving 2 steps was used for clustering the data points. For the first 

step, random sub-sampling was performed to select 20 samples (equivalent to 20 times 412, 

i.e. 8240 data points) from the available 100 samples. The k-means++ approach was used to 

initialize the clustering algorithm (Arthur and Vassilvitskii, 2007). In contrast to random 

initialization that simply chooses the initial centroids randomly from among the data points, 

k‒means chooses one centroid randomly and then chooses the others so that they are as far 

apart from each other as possible. To estimate the distance between the data points, we used 

city block distance that has been suggested as a more effective distance measure compared 

to Euclidean distance for high-dimensional data (Aggarwal et al., 2001). We also repeated 

clustering in 10 iterations to avoid local minima solutions. The Silhouette index was 

computed to determine the number of clusters that best represented the data. The Silhouette 

index represents the similarity of points within the same cluster, in comparison to the points 

in other clusters. There are various metrics to determine the relevant number of clusters. 

These metrics can be categorized into direct and statistical testing methods. The direct 

methods consist of optimizing a criterion, such as the within-cluster sum of squares or the 

silhouette index. The testing methods, e.g. gap statistic method, compare the total intra-

cluster variation for different values of k with their expected values under the null 

distribution (i.e. a distribution with no obvious clustering). In contrast to the within cluster 

sum of squares score that only measures the clusters cohesion, the silhouette index 

simultaneously measures how close a data point is to its own cluster (cohesion) compared to 

other clusters (separation). Additionally, it is easier to implement and interpret than the 

statistical testing methods which incorporate more sophisticated computations (Desgraupes, 

2013).

The number of clusters, k, varied between 2 and 12. The number of clusters that resulted in 

the highest Silhouette index was chosen for further analyses. For each window, the value of 

k associated with the maximum Silhouette index and the resulting centroids were then used 

to initialize the second clustering step for the same window. The remaining 80 samples were 

partitioned to 4 subsets each including 20 samples. We randomly divided the samples to 4 

subsets, because we needed to estimate the average and standard deviation of clustering 

accuracy for statistically comparing the performance of different windows. The k-means 

algorithm (initialized using the centroids of the first clustering step) was separately 

performed for each subset. Note that to achieve comparable results, the same 20 samples and 

the same partitioning of 80 samples were used in the first and second steps of clustering 

algorithm for all the window functions. The Jaccard index was computed to evaluate the 

clustering performance. The Jaccard index was defined as the ratio of number of data points 

with correct state identifications to the total number of data points used in each sample 

subset. The clustering performance measures can be categorized into two general types: 1) 

the external measures compare the clustering outcome with an external ground truth, 2) the 
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internal measures estimate the average of inter and intra-clustering similarity (separation and 

cohesion respectively) (Desgraupes, 2013; Guerrini et al., 2007). In this study, as the true 

network states were available for simulated data, using an external ground truth measure was 

preferred. Additionally, a clustering measure was needed for discrete data that assumed no 

relationship between the clusters with nearby labels, e.g. there is not a higher similarity 

between clusters 1 and 2 compared to clusters 1 and 4. Given that the Jaccard index satisfies 

all of these requirements, it was used to evaluate the clustering models in this study. Finally, 

a repeated measures one-way analysis of variance (ANOVA) test was performed to 

statistically compare the clustering performance for different window functions.

3. Results

3.1. Simulated time series

Fig. 3 represents pointwise multiplication of the two simulated time series and SWC 

computed using different windows together with their corresponding frequency spectrum. 

As shown by the figure, the pointwise multiplication fluctuates at 2 frequencies: the slow 

fluctuation with the frequency of 0.001 Hz, and the fast fluctuation with the frequency of 

0.006 Hz. While different windows operate similarly in computing the slow dynamic 

correlation, the mRect window outperforms the regular windows in revealing the relative 

amplitude between the fast vs. slow dynamic correlations. Remember that only the temporal 

behaviors of SWC series and pointwise multiplication are directly comparable, only relative 

amplitudes can be assessed. Comparison of the frequency spectrums (the second row of the 

figure) similarly shows that the mRect window outperforms the regular windows in 

retrieving the faster fluctuation power, as compared to the pointwise multiplication 

frequency spectrum. Note that for comparing SWC frequency spectrum resulting from 

different window functions, each frequency spectrum was normalized to its maximum value. 

These outcomes actually illustrate how using rectangular and tapered windows may lead to 

suppression of the higher frequency correlations within the bandwidth of interest, as 

explained earlier. Note that the pointwise multiplication and SWC time series were all mean-

centered. Thus, the static connectivity was removed from the SWC measures, as we were 

mainly interested in comparing the windows in capturing dynamic correlations.

Note that as shown by the frequency spectrums, the SWC measures show a weak component 

around 0.004 Hz (marked with a star), added by the fluctuations of the time series’ (x[n] and 

[y]n) standard deviations in the denominator of the correlation coefficient formula. We 

observed that increasing window length can decrease the spurious fluctuation that emerged 

at 0.004 Hz; for example using L = 61 instead of L = 51 decreased the spurious fluctuation 

by half; however, on the other hand, as expected, increasing window size suppressed real 

dynamic correlations (see Fig. S. 3). Basically, the presence of spurious fluctuations is the 

byproduct of error in estimation of mean value and standard deviation of the time series. 

Increasing window length increases the estimation accuracy for the standard deviation and 

mean values, which results in weaker spurious fluctuations. Overall, to weaken the spurious 

fluctuations further, the window length (over 1/fmin) can be increased or window side lobes 

can be reduced (e.g. Tukey or Hamming). However, analyses performed with these settings 

significantly underestimate the faster dynamic correlations. Thus, the window parameters 
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should be set to achieve a reasonable balance between reducing spurious fluctuations and 

retrieving higher frequency dynamic correlations. Overall, the spurious fluctuations may be 

suppressed but they cannot be totally removed from sliding window correlation analyses.

As shown in the figure, fast-weak ripples (marked with a circle) were present in the SWC 

time series of rectangular and mRect windows. The side lobes associated with these 

windows (represented by Fig. 1) and the SWC sampling rate (i.e. 1/TR.p)) explain the 

emergence of the fastweak ripples. This issue could be addressed by increasing the step size. 

Fig. 4 represents the SWC time series and frequency spectrums computed at different step 

sizes p 2 f1; 5; 10; 20; 40; 60g. The SWC time series illustrate that increasing step size 

gradually decreased the ripples, such that at step size of 10 time points, the ripples almost 

vanished. However, it was observed that for higher step sizes, the SWC time series became 

distorted such that for p ∈ {40; 60}, the fast dynamic correlation was no longer 

distinguishable. Note that with varying step size, mRect window still best represented the 

relative amplitude of the fast vs. slow dynamic correlations. Additionally, the frequency 

spectrums did not show a significant difference for p ∈ {1; 5; 10}. However, the frequency 

domain information loss was clearly visible for p ∈ f40; 60g. As an evident example, in the 

mRect frequency spectrum, the fast dynamic correlation occurring at 0.006 has been lost for 

p ∈ {40; 60}. This frequency domain information loss is only evident for the mRect window, 

because it was able to retrieve the fast dynamic correlation, while the regular windows all 

suppressed that correlation. Note that increasing the step size by a factor of p actually 

decreases the resulting SWC bandwidth by the same factor. This is evident by the frequency 

spectrum of SWC measures obtained with p 2 {20; 40; 60}. The bandwidth of the SWC 

computed with p = 1 was 1⁄ ((2 .TR)) = 0.25 Hz. Thus, for p = 5 and p = 10, the bandwidth 

should be 0.05 and 0.025 respectively. However, as we limited the frequency axis range to 

(−0.02, 0.02), the bandwidth decrease was not visible for these values of the step size.

In addition, the Fig. S. 4 in the Supplementary Materials illustrates that increasing the step 

size, in the range of ð1; 100+ with increments of 1, did not lead to significant distortions for 

p < 20 time points. However, as this limit was passed, high frequency information started 

becoming folded into the low frequency contents due to aliasing, resulting in distorted slow 

variations. Also, refer to the Discussion section for further explanations.

3.2. Simulated fMRI data examples

For the representative sample whose time series are shown in Fig. 2 (b), two connectivities 

between the nodes {1, 5} and the nodes {2, 6} are shown in Fig. 5. For each connectivity, 

the corresponding nodes’ time series, the pointwise multiplication and SWC time series and 

their frequency spectrum are presented. Note that the comparison between the pointwise 

multiplication and SWC measures are legitimate only within the bandwidth of interest given 

the low-pass filtering effect of the sliding window function on dynamic correlations. It is 

evident by the frequency spectrums of Fig. 5 that pointwise multiplication possessed several 

components beyond the cut-off frequency (i.e. 0.01 Hz), whereas they were significantly 

suppressed by the SWC operation. Due to lack of ground truth, at the current stage, we were 

not able to distinguish which high frequency correlation components (occurring beyond the 
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cut-off) represent real dynamic correlations. However, one should be aware that SWC 

operation is intrinsically impercipient of such high frequency fluctuations.

Interestingly, for the dynamic connectivity between the nodes {1, 5}, as evident by the 

frequency spectrums, the mRect window showed superior performance in retrieving the 

relative power of slower vs. faster dynamic correlations (e.g. the relative power of the 

components at 0.0015, 0.003, 0.005 and 0.006 Hz is best represented by the mRect window 

compared to the conventional windows). For instance, Hamming and Tukey windows both 

suppressed the dynamic correlations at 0.005 and 0.006 Hz vs. the dynamic correlations 

occurring at 0.0015 and 0.003. Also, the SWC computed using the rectangular window 

shows a comparable power at 0.003 and 0.006, while the component at 0.006 should be 

stronger than the component at 0.003, as shown by the pointwise multiplication power 

spectrum. For clarification, the frequencies that we referred to were marked with a star in the 

frequency spectrum of point-wise multiplication. The similar observation can also be seen 

for the second representative connectivity between the nodes {2, 6}. In summary, the 

conventionally-used windows all suppressed the power of the fluctuations occurring over 

0.005 Hz, while the amplitude of the fluctuations occurring in this frequency range is better 

captured by the mRect window. The comparable example data for real fMRI time series are 

also shown in the Supplementary Materials (Fig. S. 5). These example data show how the 

different window functions may differ in retrieving the real dynamic correlations power. In 

the next section, we see how these differences in SWC estimation may affect connectivity 

analyses in the network scale.

3.3. Network states clustering

As expected for the simulated network data, for all the window functions, the Silhouette 

index was maximum with cluster number of k = 4. The Silhouette index measure (computed 

in the first step of clustering algorithm) versus cluster numbers is shown in Fig. 6 (a). The 

mean std. of the Jaccard index over the 4 subsampling repetitions is shown in Fig. 6 (b). The 

repeated measures one-way ANOVA test revealed significant differences (p < 0.0001) 

between the windows. Post-hoc paired sample ttests showed that mRect window 

outperformed the widely-used windows in network state identification as measured by the 

Jaccard index. The significantly different window pairs are shown in Fig. 6 (b).

Fig. 7 represents the real network states and the identified network states for three 

representative samples, sample 10 is the one whose simulated time series was shown in Fig. 

2. As evident by this figure, there is a better matching between the real state series and the 

identified state series for the mRect window. This outcome suggests that mRect window can 

more efficiently retrieve dynamic network connectivities, especially faster dynamic 

connectivities that are associated with the state transitions (Allen et al., 2014; Shakil et al., 

2016).

4. Discussion

There exists a growing interest in quantifying dynamic brain connectivity. Among the 

different statistical methodologies, the sliding window technique has gained the most 

popularity in measuring dynamic functional connectivity in different populations and tasks, 
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(Allen et al., 2014; Allen and Cohen, 2010; Hindriks et al., 2016; Rashid et al., 2014), likely 

due to simplicity and interpretability. As a consequence, a considerable amount of work has 

recently been directed at assessing sliding window technique performance in quantifying the 

dynamic functional connectivity (Hindriks et al., 2016; Leonardi and Van De Ville, 2015; 

Shakil et al., 2016). A major approach used by the previous studies has been to investigate 

the SWC sensitivity to different parameters, i.e. window function, length, and step size 

(Hindriks et al., 2016; Leonardi and Van De Ville, 2015; Shakil et al., 2016). A brief 

summary of these studies suggests that there is no so called “optimal settings” for sliding 

window parameters to achieve the optimum dynamic functional connectivity estimations. 

For example, while smaller window lengths can result in spurious fluctuations, long 

windows may lead to the suppression of fast transitions. Moreover, although tapered 

windows have been recommended to alleviate the issue of high noise sensitivity associated 

with the rectangular window, they showed lower sensitivity to network state transitions 

(Shakil et al., 2016).

While previous studies have investigated the effects of a broad range of the window settings 

on SWC measures, little attention has been dedicated to the effect that the various window 

functions have on the frequency characteristics of the dynamic connectivity. Recent studies 

have investigated the low-pass filtering effect of the sliding window technique in the 

frequency domain (Leonardi and Van De Ville, 2015; Shakil et al., 2015; Shakil et al., 2016); 

nevertheless, to our knowledge no previous study has addressed the non-uniform frequency 

spectrum of the widely-used window functions. The tapered and rectangular windows that 

are commonly used in dynamic brain connectivity studies are all characterized by a 

frequency spectrum that passes the lower frequency dynamic correlations with a higher rate 

compared to the higher frequency dynamic correlations. Here, we suggested a modulated 

rectangular window to address the issue associated with the varying frequency spectrum of 

the conventional window functions. The proposed window function was defined as a linear 

combination of a conventional rectangular window with a second rectangular window 

multiplied by a cosine function to achieve a flattened frequency spectrum. Thus, the 

resulting combined window weights the bandwidth of the SWC spectrum more evenly.

Using time series fluctuating at given frequencies, we showed that the frequency spectral 

variations of the conventional window functions lead to the suppressed high frequency 

contents. The mRect window outperformed the tapered and rectangular windows in 

retrieving the faster dynamic correlations. Moreover, we showed that the fast-weak ripples 

found in SWC series could be eliminated by increasing the step size, p, from 1 time point to 

10 time points. Having a step size of 1 is equivalent to sampling SWC with the same rate as 

the original time series, i.e. Ωs = 1/TR. As explained earlier, using a sliding window, one 

practically limits the frequency range of SWC to (−Ωc, Ωc). Thus, oversampling the SWC at 

the rate of Ωs > 2Ωc lead to unwanted high frequencies in the range of (Ωc, Ωs/2) that were 

captured by the side lobes. Having the SWC sampled at the rate Ωs, where p = 1, the 

sampling rate of the SWC for p >1 decreases to Ωs/p. Consequently, according to the 

Nyquist sampling rate, “theoretically,” one can down sample the signal without significant 

information loss if Ωs/p ≥ 2Ωc, or equivalently if p≤Ωs/2Ωc. This relation is valid irrespective 

of the window function. Nevertheless, for the rectangular window, this relation can be 

further simplified to p≤ L/2, as Ωs = 1/TR and Ωc = 1/(L.TR). Practically though, we 
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recommend a stricter step size limit to avoid dynamic correlation distortion due to the small 

number of sampling points. For example, as it is apparent in Fig. S. 4, as p approaches its 

limit, SWC becomes distorted. Additionally, Fig. 4 illustrates the SWC distortion for p = 20 

that is less than the upper bound limit (25 time points) for the simulated data. Thus, as a rule 

of thumb, we recommend limiting shift size to half of its theoretical limit, i.e. p ≤ Ωs/ 4Ωc for 

SWC analysis in real Fmri time series.

Also, we observed that mRect window led to higher network state identification rate, 

compared to the widely-used windows. It is important to reiterate that here we created 

simulated networks that remain in a single state for a long period (over 60 s), as the spatial 

maps (referred as ‘states’ in this study) of resting state brain connectivity networks have 

shown a long stability on the scale of minutes (Allen et al., 2014; Gonzalez-Castillo et al., 

2014). We postulated that the fast variations associated with the state transitions contributed 

to the outperformance of mRect window compared to the regular rectangular and tapered 

windows. We observed that there is a significant lag between the real time of state transitions 

and the transition time identified by the tapered windows (see example data shown in Fig. 

7). Using these windows, the time points are not weighted evenly, with the central point 

weighted the highest. Thus, their sensitivity to a sharp state transition is lower compared to 

the rectangular and mRect windows. Although the tapered shape of these windows can yield 

lower sensitivity to noisy observations, it can also decrease their sensitivity to the fast state 

transitions; similar outcomes have also been reported by (Shakil et al., 2016). Although the 

length of mRect window was higher throughout our analyses, we showed a statistically 

higher state identification performance for the mRect window compared to the rectangular 

window. Remember that larger window lengths can be associated with lower state 

identification rates (Shakil et al., 2016). Thus, this outcome emphasizes the importance of 

efficient fast dynamic correlations retrieval in state identification independent of the window 

length.

Of course, the current study has its own limitations. For instance, mRect requires a window 

function with larger number of time points in comparison with the conventional rectangular 

window. This could be a potential challenge especially in the studies with short Fmri time 

series. Furthermore, analyses using a longer window size may fail to detect short state 

transitions (Shakil et al., 2016). Note that although resting state networks tend to remain in 

the same state for a long period (Gonzalez-Castillo et al., 2014; Shakil et al., 2015), short 

transitions may also occur in resting state (Allen et al., 2014). A major challenge for studies 

evaluating SWC measures is the absence of ground truth. Here, we used pointwise 

multiplication of the two time series to validate the SWC series and compare them between 

different window functions. The pointwise multiplication is supposed to only represent the 

dynamic relations between the time series, and is not affected by the spurious fluctuations 

that correlation coefficient may represent. However, note that pointwise multiplication is not 

a perfect ground-truth for network connectivity analysis, as it does not provide a normalized 

connectivity measure. Finally, although we presented how the proposed window operated on 

simulated Fmri connectivity networks with sharp transitions over time and examples of real 

Fmri time series, future studies are required to reproduce and validate the findings of this 

paper using real Fmri connectivity networks. Future work should investigate how the 
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performance of different windows may differ in retrieving the real Fmri connectivity data 

which show smooth transitions over time (Allen et al., 2014).

5. Conclusions

The SWC analysis consists of essential frequency-dependent properties that can significantly 

vary the dynamic functional connectivity measures quantified by this methodology. For 

instance, a sliding window operates as a low-pass filter on the dynamic correlations. Here, 

we demonstrated that there is a non-uniform frequency spectrum associated with sliding 

window functions. We showed that the conventionally-used sliding window functions tend to 

suppress the fast dynamic correlations. We then proposed the mRect window with a 

flattened spectrum to modify the suppressing effect on the fast dynamic correlations. The 

proposed window significantly outperformed the popular windows in network state 

identification suggesting that it should be a prominent window function candidate in sliding 

window correlation analysis of functional connectivity networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Temporal profile (a) and frequency spectrum (b) of mRect (red), rectangular noted as rect 

(green), Hamming (dark purple), and Tukey with the cosinetapered length ratio 0.5 

(magenta) windows. The length of the windows is adjusted to achieve the same cutoff 

frequency at Ωc = 0.01. As it is apparent in (b), Hamming window suppresses high 

frequency ripples significantly with the cost of increasing window length and intensifying 

spectral variation within the frequency range of interest. On the other hand, the mRect 

window provides a flattened spectrum in the frequency domain with the cost of increasing 

window length, note that the side lobes are comparable to rectangular and Tukey windows. 

As shown in section 3.1, using step size greater than 1 time point, the unwanted frequency 

content captured by the side lobes can be suppressed significantly.
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Fig. 2. 
The spatial connectivity map corresponding with each state of the simulated network data 

(a); the SWC network at each time point was actually highly correlated with one of these 4 

states; the 10 simulated time series forming a dynamic connectivity network with altering 

states over time for a representative sample (b); the period of each state is highlighted with a 

specific color on the time series, state 1, 2, 3 and 4 are indicated with red, blue, purple and 

green colors, respectively. The length of the state intervals, as shown in (b), is: 80 TR, 31 

TR, 81 TR, 84 TR, 86 TR, 76 TR and 84 TR. Here, TSi, 1 ≤ i ≤ 10 represents the time series 

of node i.

Mokhtari et al. Page 19

Neuroimage. Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Pointwise multiplication and SWC time series computed using the mRect window and the 

conventionally-used rectangular and tapered windows (the first row); frequency spectrum of 

the pointwise multiplication (only low frequency components) and the SWC computed using 

different windows (the second row). As shown by the pointwise multiplication (as the 

ground truth), the two time series should show dynamic correlations oscillating at δf1 = 0.01 

Hz and δf2 = 0.006 Hz. Comparing the time series and frequency spectrum of the SWC 

measures and pointwise multiplication shows that the mRect window outperforms the 

rectangular and tapered windows in retrieving the relative amplitude/power of the fast 

dynamic correlation (occurring at δf2 = 0.006 Hz). The spurious fluctuation that emerged at 

0.004 is marked with a star on the SWC spectrums. Also, the sample of fast-weak ripples are 

marked with a circle on the SWC time series of rect and mRect windows.
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Fig. 4. 
The SWC time series and frequency spectrums obtained using different step sizes; increase 

in step size contributed to removal of the fast-weak ripples, while it did not significantly 

affect the fast dynamic correlation for p ∈ {5, 10}. However, as p further increased, the 

SWC measures underwent significant distortions due to evident by both temporal and 

frequency proinformation loss. For example, with p = {40, 60} the fast dynamic correlation 

(occurring at 0.006 Hz) was majorly distorted, and could barely be distinguished as evident 

by both temporal and frequency profiles.
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Fig. 5. 
(a) The time series of nodes 1 and 5 (the first row) following band-pass filtering in the range 

(0.01, 0.1) Hz, the pointwise multiplication and SWC time series (the second row) and the 

frequency spectrums (the third row) resulting from different window functions for the 

representative sample; (b) corresponding data for the connectivity between nodes 2 and 6. 

The stars in the frequency spectrum of point-wise multiplication marked the frequencies that 

we referred to in the main document (i.e. 0.0015, 0.003, 0.005 and 0.006 respectively). 

Again, the fast-weak ripples that were particularly evident in the SWC time series resulting 
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from mRect and rectangular windows could be eliminated through using a step size over 1 

time point (e.g. using p = 5 or p = 10 as examined earlier).
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Fig. 6. 
Silhouette index resulting from different window functions in the first step of the clustering 

algorithm (a); the mean ± std. of Jaccard index over 4 subsampling repetitions in the second 

step of the clustering algorithm (b).
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Fig. 7. 
The light blue time series in the background indicates the real states of the simulated 

networks. The thick colored lines indicate the identified network states through k-means 

clustering, the states 1, 2, 3, and 4 are shown with red, dark blue, purple and green colors, 

respectively.
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