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Abstract

pH-weighted amide proton transfer (APT) MRI is sensitive to tissue pH change during acute 

ischemia, complementing conventional perfusion and diffusion stroke imaging. However, the 

currently used pH-weighted magnetization transfer (MT) ratio asymmetry (MTRasym) analysis is 

of limited pH specificity. To overcome this, MT and relaxation normalized APT (MRAPT) 

analysis has been developed that to homogenizes the background signal, thus providing highly pH 

conspicuous measurement. Our study aimed to calibrate MRAPT MRI toward absolute tissue pH 

mapping and determine regional pH changes during acute stroke. Using middle cerebral artery 

occlusion (MCAO) rats, we performed lactate MR spectroscopy and multi-parametric MRI. 

MRAPT MRI was calibrated against a region of interest (ROI)-based pH spectroscopy 

measurement (R2=0.70, P<0.001), showing noticeably higher correlation coefficient than the 

simplistic MTRasym index. Capitalizing on this, we mapped brain tissue pH and semi-

automatically segmented pH lesion, in addition to routine perfusion and diffusion lesions. Tissue 

pH from regions of the contralateral normal, perfusion/diffusion mismatch and diffusion lesion 

was found to be 7.03±0.04, 6.84±0.10, 6.52±0.19, respectively. Most importantly, we delineated 

the heterogeneous perfusion/diffusion lesion mismatch into perfusion/pH and pH/diffusion lesion 

mismatches, with their pH being 7.01±0.04 and 6.71±0.12, respectively (P<0.05). To summarize, 

our study calibrated pH-sensitive MRAPT MRI toward absolute tissue pH mapping, semi-
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automatically segmented and determined graded tissue pH changes in ischemic tissue and 

demonstrated its feasibility for refined demarcation of heterogeneous metabolic disruption 

following acute stroke.

Introduction

pH change is associated with the altered cerebral metabolic rate of oxygen and glucose 

during the acute stroke (Astrup et al., 1981; Hossmann, 1994; Mehrabian et al., 2018; Siesjo, 

1992). In a classic set of studies in the early 1990s, investigators at the Mayo Clinic used 

optical imaging and showed that pH changes had greater power to define penumbral tissue 

than blood flow measurements (Anderson et al., 1999; Regli et al., 1995; Tomlinson et al., 

1993). However, there has been a lack of non-invasive absolute tissue pH imaging 

techniques that are suitable for stroke imaging. Although fluorescence imaging has a high 

spatiotemporal resolution, it is invasive with a limited field of view. Phosphorus MR 

spectroscopy (MRS), albeit non-invasive, has limited spatiotemporal resolution for acute 

stroke imaging (Naruse et al., 1983; Smith et al., 1990). To address this, variant chemical 

exchange saturation transfer (CEST) MRI techniques have been developed recently, 

including amide proton transfer (APT) and spin-locking MRI (Jin and Kim, 2014; Sun et al., 

2007c; Ward et al., 2000; Zhou et al., 2003; Zu et al., 2018). Specifically, APT imaging 

captures pH-dependent amide proton exchange and has been shown to be sensitive to tissue 

pH change, complementing perfusion and diffusion MRI (Jokivarsi et al., 2007; McVicar et 

al., 2014; Sun et al., 2011b; Sun et al., 2012; Sun et al., 2007c; Zhou and van Zijl, 2011). 

Although magnetization transfer ratio (MTR) is very informative, APT MRI is often 

quantified by MTR asymmetry (MTRasym) to correct the direct radio frequency (RF) 

saturation. However, this also makes MTRasym susceptible to concomitant asymmetric MT 

and nuclear overhauser enhancement (NOE) effects (Heo et al., 2017; Mehrabian et al., 

2018; Snoussi et al., 2015; Xu et al., 2016). The currently used pH-weighted APT MRI is of 

limited pH conspicuity and tissue segmentation is challenging, particularly in the acute 

stroke setting (Harston et al., 2015).

It has been shown that careful selection of RF saturation field may improve MTRasym 

conspicuity to cancerous tissue (e.g., APT MRI using a B1 of about 2μT at 3 Tesla MRI).

(Zhao et al., 2011) Although such an approach works well for tumor APT MRI, we have 

shown that pH-weighted MTRasym contrast between the ischemic and normal tissue peaks at 

0.75 μT at 4.7T (Sun et al., 2007b). Under such experimental conditions, the commonly used 

MTRasym, despite being at its peak pH sensitivity, shows notable heterogeneity even in intact 

tissue. Because the intact brain white matter and gray matter (WM and GM) have little pH 

difference (Zhu et al., 2012), the pH-sensitive APT effect shall be relatively uniform. 

Therefore, the MTRasym inhomogeneity can be largely attributed to concomitant RF 

irradiation effects such as MT variation across the brain. This suggests that although 

MTRasym is pH sensitive, its conspicuity needs to be improved. When a weak RF saturation 

pulse is used, it has been shown that MTRasym is dominated by pH-dependent amide proton 

exchange in focal ischemia and the apparent NOE (−3.5 ppm) signal is not strongly pH-

dependent (Jin et al., 2013; Wu et al., 2018; Zhang et al., 2016) and global ischemia models 

(Zhou et al., 2019). Recently, it has been demonstrated that magnetization transfer and 
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relaxation-normalized APT (MRAPT) analysis considerably minimizes confounding non-pH 

contributions, revealing mismatches among perfusion, pH-weighted and diffusion lesions 

(Guo et al., 2016). Although MRAPTR is based on MTRasym, it is of much higher pH 

conspicuity that allows semi-automatic pH lesion segmentation, which is not feasible if 

using MTRasym.

Our study aimed to further develop MRAPT imaging toward absolute brain pH mapping, 

refine ischemic tissue classification and determine regional pH changes. Because tissue 

lactate is highly correlated with pH determined from 31P MRS during the acute stroke 

(Chang et al., 1990; Hohn-Berlage et al., 1989; Katsura et al., 1992), we determined pH 

from lactate spectroscopy and calibrated MRAPT MRI in a rodent model of acute stroke, 

enabling high resolution pH imaging. We measured pH from the diffusion lesion (core) and 

perfusion/diffusion lesion mismatch, an imaging approximation of the ischemic penumbra 

(Warach, 2003). Moreover, we semi-automatically segmented ischemic tissue, and 

delineated the perfusion/diffusion lesion mismatch into perfusion/pH mismatch and pH/

diffusion mismatch that likely represent benign oligemia and metabolic penumbra, 

respectively (Kidwell et al., 2004; Sun et al., 2007c). Our results demonstrated non-invasive 

tissue pH imaging that complements routine stroke MRI for refined tissue classification.

Theory

The in vivo MTRasym can be generally described by (Zhou et al., 2004)

MTRasym =
fs ⋅ ksw(pH)

R1w
+ MTRasym′ (1)

where R1w is the bulk water longitudinal relaxation rate, MTR'asym is an intrinsic MTR 

asymmetry shift not related to pH, and fs and ksw are labile amide proton concentration 

relative to the water proton concentration and its exchange rate, respectively. During acute 

stroke, the labile proton concentration shows relatively small change and MTRasym is 

sensitive to the pH-dependent exchange rate (Zhou et al., 2003). The amide proton exchange 

rate can be described by ksw = kb ⋅ 10
pH−pHb + ka, where ka and kb are acid- and base-

catalyzed exchange rate, respectively. For in vivo APT MRI, MTRasym can be generally 

described by

MTRasym ∝ C0 ⋅ 10
C1 ⋅ pH

+ C2 (2)

where C0 and C1 are constant coefficients due to pH-dependent amide proton exchange rate 

and R1w, and C2 is non-pH related baseline shift, which can be determined from pH 

calibration. Although R1w may be sensitive to pH change during acute stroke, its magnitude 

of change is much smaller than that of pH-sensitive APT MRI. Therefore, it is reasonable to 

treat R1w as pH-independent when we quantify APT MRI (Sun et al., 2007c). Tissue pH can 

be derived from MTRasym as
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pH = log10
MTRasym − C2

C0
/C1 (3)

However, MTR'asym is heterogeneous across the brain, and pH measurement using the 

simplistic MTRasym is difficult.

Because pH difference in the intact cerebral tissue is small (Zhu et al., 2012), MTRasym 

heterogeneity is dominated by non-pH contrast (Guo et al., 2016; Wu et al., 2012). We have

R1w ⋅ MTRasym = fs ⋅ ksw(pH) + R1w ⋅ MTRasym′ (4)

The heterogeneity in the intact tissue (i.e., R2 · MTR ) can be generally described by a 

regression function F(R1w, MMTR) based on the relaxation and MT contrast. The MRAPTR 

analysis takes the difference between experimentally measured T1w-normalized MTRasym 

and the baseline estimated from the intact tissue, being

ΔMRAPTR = R1w ⋅ MTRasym − F R1w, MMTR (5)

where MMTR is the mean MTR at ±3.5 ppm. With the correction of the baseline 

heterogeneity, ΔMRAPTR is more conspicuous to pH-induced amide proton exchange rate 

change and we have

ΔMRAPTR ∝ C0 ⋅ 10
C1 ⋅ pH

+ C2 − C0 ⋅ 10
C1 ⋅ pHnorm + C2

= C0′ ⋅ 10
C1 ⋅ ΔpH

− 1

(6)

in which C0′ = C0 ⋅ 10
C1 ⋅ pHnorm, pHnorm is the normal tissue pH and ΔpH=pH-pHnorm. 

Tissue pH can be derived from ΔMRAPTR as

pH = pHnorm + log10 1 + ΔMRAPTR
C0′

/C1 (7)

Methods

Animal Stroke Model

The study has been approved by the local Institutional Animal Care and Use Committee, 

Massachusetts General Hospital. Thirty-five adult male Wistar rats (Charles River 

Laboratory, Wilmington, MA) were anesthetized initially with 5% and then maintained 

under 1.5–2.0% isoflurane/air mixture for the duration of the study. Permanent middle 
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cerebral artery occlusion (MCAO) was induced in rats with a silicone-coated 4–0 nylon 

filament, and rats underwent MRI about 1 hour after stroke induction. Rats were divided into 

two groups. Briefly, 15 acute stroke rats underwent multi-parametric MRI and lactate MRS 

for pH calibration. Two rats displayed ischemic lesion in the ipsilateral hypothalamus, not 

the middle cerebral artery (MCA) vascular territory, and they were excluded from data 

analysis. Another group of 20 acute stroke rats underwent multi-parametric MRI to 

investigate the ischemic lesion heterogeneity (without lactate MRS).

MRS and MRI

Animals were imaged using a 4.7T small-bore scanner (Bruker Biospec, Billerica, MA). 

Multi-slice MRI (5 slices, slice thickness/gap=1.8/0.2 mm, the field of view=20×20 mm2, 

image matrix=48×48) was acquired with echo planar imaging (EPI). We collected water-

suppressed single voxel point resolved spectroscopy (PRESS), relaxation, diffusion, APT 

and perfusion MRI. Specifically, lactate MRS was acquired from a cubic region of (3.5 

mm)3, positioned in the striatum region that is most susceptible to ischemic insult (repetition 

time (TR)/echo time (TE) = 2000/144 ms, averages = 512, scan time ~ 17 min). pH-

weighted MRI was acquired with fast unevenly segmented RF irradiated APT MRI (Sun et 

al., 2011a). We used a recovery time of 5000 ms, primary RF saturation duration of 4500 

ms, and secondary RF saturation duration of 500 ms for an RF irradiation amplitude of 0.75 

μT applied at ±3.5ppm. The unsaturated control scan was averaged 8 times, while the 

saturated images were averaged 32 times (scan time ~ 4 min). Diffusion MRI was obtained 

using single-shot diffusion-weighted EPI (b-values = 250/1000 s/mm2, TR/TE = 3250/54 

ms, 16 averages, scan time = 2 min) (Mori and Vanzijl, 1995). For perfusion MRI, we used 

the amplitude modulated continuous arterial spin labeling (AM-CASL) MRI (TR/TE = 

6,500/15 ms, time of saturation = 3250 ms and 32 averages, B1 = 4.7 μT, scan time ~ 7 min) 

(Utting et al., 2005). In addition, T1w MRI was acquired with inversion recovery EPI of 

seven inversion delays from 250 to 3000 ms (TR/TE = 6500/15 ms, 4 averages, scan time = 

3 min), and T2 EPI was obtained with two separate spin echo EPI images with TE of 30 and 

100 ms (TR = 3250 ms, 16 averages; scan time = 2 min).

Data Analysis

Spectroscopy data were processed with Java-based Magnetic Resonance User Interface 

(jMRUI, http://www.jmrui.eu) and images were processed in Matlab (Mathworks, Natick, 

MA). MRAPT MRI was calibrated against previously published raw data of multiparametric 

MRI and lactate MRS and then applied to determine tissue pH for MRI-defined ischemic 

regions of perfusion/pH/diffusion lesion mismatch (Guo et al., 2016; Sun et al., 2011b). T1w 

map was derived by fitting EPI signal as a function of the inversion time 

(I(i) = I0 1 − (1 − η)e
−TIi/T1 ), where η is the inversion efficiency and TIi is the ith inversion 

time. T2 and apparent diffusion coefficient (ADC) maps were obtained as 

T2 = ΔTE
ln I TE1 /I TE2

 and ADC =
ln I b1 /I b2

Δb , where TE1,2 and b1,2 are two TEs (30/100 

ms) and diffusion b values (250/1000 s/mm2), respectively, with ΔTE and Δb being their 
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differences. Cerebral blood flow (CBF) was calculated as CBF =
λ Iref − Itag

2α ⋅ Iref
⋅ e

w/T1a
T1

, where 

Itag and Iref are the label and the reference image, respectively, λ is the brain-blood partition 

coefficient for water, α is the degree of inversion with transient time correction, w is the 

post-labeling delay, and T1a is the arterial blood longitudinal relaxation time. In addition, 

MTR was calculated as MTR(±3.5ppm)=1-I(±3.5ppm)/I0, where I0 is the control image 

without RF irradiation and I(±3.5 ppm) are the label and reference images with RF 

irradiation applied at ±3.5 ppm, respectively. The mean MTR (MMTR) was calculated as the 

average of MTRs at ±3.5 ppm. pH-weighted MTRasym image was calculated as 

MTRasym=[I(−3.5ppm)-I(+3.5ppm)]/I0. In addition, ΔMRAPTR was calculated as the 

difference (i.e. ΔMRAPTR= R1w*MTRasym – MRAPTR) between the measurement and that 

estimated from regression analysis (Guo et al., 2016). Perfusion, pH, and diffusion ischemic 

lesions were segmented using a K-means clustering-based algorithm, as shown in our prior 

study (Lu et al., 2018).

Results

Fig.1 shows diffusion and pH-sensitive MRI images from a representative acute stroke rat. 

The ipsilateral ischemic lesion displayed substantial ADC decrease (Fig. 1a). Lactate MRS 

was acquired from an ROI positioned in the striatum (overlaid on the ADC image), 

coinciding with the ischemic insult. The ipsilateral ischemic ROI was mirrored to the 

contralateral normal tissue for reference. Fig. 1b shows that although pH-weighted MTRasym 

image revealed hypointensity in the ischemic region, there was noticeable heterogeneity in 

the intact brain tissue, predominantly between the white matter and grey matter (WM/GM). 

Because pH difference in the intact cerebral tissue is very small, such image heterogeneity is 

not pH related (Zhu et al., 2012). ΔMRAPTR (Fig. 1c) minimized non-pH baseline shift and 

reduced heterogeneity in the intact tissue while capturing the pH-sensitive signal change in 

the ischemic region.

We calibrated pH-sensitive MTRasym and ΔMRAPTR indices toward absolute tissue pH 

(Fig. 2). Briefly, lactate, choline, and creatine peaks were determined using jMRUI, and 

tissue pH was derived from the lactate concentration according to pH=−0.0335*[Lac]+6.83 

(Jokivarsi et al., 2007; Katsura et al., 1992). MTRasym and ΔMRAPTR were numerically fit 

with respect to pH using Eq. 3 and Eq. 6, respectively. For MTRasym, we had 

pH=log10((100*MTRasym-C2)/C0)/C1, with C0, C1 and C2 found to be 0.46, 0.19 and −13.9, 

respectively (R2=0.45, P<0.05). For ΔMRAPTR, we had pH=7.05+log10(ΔMRAPTR/ C

′0+1)/C1, with C′0 and C1 found to be 5.04 and 0.25, respectively (R2=0.70, P<0.001). It is 

helpful to point out that C1 is less than 1. This is likely because in vivo APT signal 

originates from a composite of exchangeable amide groups of slightly different base-

catalyzed relationships (Zhou et al., 2019). Therefore, it is appropriate to calibrate 

ΔMRAPTR vs pH using a generalized base-catalyzed relationship. Note that the correlation 

between ΔMRAPTR and pH is noticeably higher than that of MTRasym (0.70 vs. 0.45), 

indicating improved pH specificity. We applied the calibration curve and determined pH 

from both the contralateral normal and ipsilateral ischemic ROIs. Fig. 3 shows pH maps 

determined from MTRasym (Fig. 3a) and ΔMRAPTR (Fig. 3b), respectively. Table 1 shows 
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that pH derived from MRAPT MRI has substantially reduced standard deviation in the 

contralateral intact tissue, confirming its higher pH specificity than the routine MTRasym 

analysis.

Fig. 4 shows multi-parametric perfusion, diffusion and pH images from a representative 

acute stroke rat. There was a significant size difference between perfusion, pH and diffusion 

lesions (one-way ANOVA). Ischemic lesions were segmented based on K-means clustering 

approach and overlaid on each MRI indices. There was noticeable mismatch among 

perfusion (Fig. 4a), diffusion (Fig. 4b) and pH lesions (Fig. 4c). The relatively large 

perfusion lesion confirmed near complete MCA occlusion. Whereas the diffusion lesion core 

showed the worst pH drop, the peri-infarct perfusion/diffusion lesion mismatch appears to 

have a mild pH change. Fig. 4d shows perfusion/pH lesion mismatch (red, benign oligemia), 

pH/diffusion lesion mismatch (green, metabolic penumbra) and diffusion lesion (black, 

ischemic core). Across 35 rats, these regions represent 21±12%, 34±18% and 44±16% of the 

hypoperfusion lesion, respectively.

Fig. 5 shows multiparametric MRI indices from the diffusion lesion (black triangle), pH/

diffusion lesion mismatch (green square), perfusion/pH lesion mismatch (red circle) and 

perfusion/diffusion lesion mismatch (pink solid circle). The measurements were summarized 

in Table 2. Fig. 5a shows that although diffusion lesion has significantly reduced ADC 

(0.62±0.03 μm2/ms, P<0.05, One-way ANOVA with Bonferroni’s Multiple Comparison 

Test) from all three mismatch regions (i.e., pH/diffusion (ADC=0.81±0.04 μm2/ms), 

perfusion/pH (ADC=0.82±0.04 μm2/ms) and perfusion/diffusion (ADC=0.81±0.04 μm2/

ms)), the mismatch regions have substantially overlapped perfusion and diffusion values. 

Although all ischemic regions have significantly reduced CBF from the contralateral brain 

(CBF=1.59±0.44 ml/g·min), Fig. 5b shows that only PWI/pH mismatch has significantly 

higher perfusion level than that of diffusion lesion (0.95±0.33 vs. 0.69±0.33 ml/g·min, 

P<0.05). Fig. 5c shows that while ADC cannot differentiate perfusion/diffusion, 

perfusion/pH and pH/diffusion mismatches, their pH was different, being 6.84±0.10, 

7.01±0.04 and 6.71±0.12, respectively (P<0.05, One-way ANOVA with Bonferroni’s 

Multiple Comparison Test). Fig. 5d shows that regions of diffusion lesion, pH/diffusion 

lesion mismatch, and perfusion/pH lesion mismatch can be resolved using multi-

dimensional perfusion, pH and diffusion indices, augmenting routine perfusion and 

diffusion-based stroke imaging.

Discussion

Our study calibrated MRAPT image toward absolute pH mapping and determined 

heterogeneous pH change during acute ischemic stroke. We found that pH MRI resolves 

graded tissue metabolic injury, consistent with the hypothesis that the perfusion/diffusion 

mismatch includes not only metabolic penumbra but also benign oligemia that is not at risk 

to infarction (Kidwell et al., 2004; Sun et al., 2007c).

The MRAPT analysis assumes that the background heterogeneity can be described using 

relaxation and MT MRI. To confirm this assumption, we evaluated multi-parametric MRI 

and estimated their impact on pH accuracy. Our study used an inversion recovery sequence 
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to measure T1w map. Although T1w measurement may be susceptible to pH change, the 

effect shall be small in the absence of the amplification mechanism used by CEST and 

spinlock MRI. Notably, ischemic tissue T1w was 1.53±0.03 s to 1.65±0.05 s for the 

contralateral normal and ischemic ROI, respectively, while MMTR showed very little 

change (0.29±0.01 vs. 0.29±0.00). T1w change may cause a slight overestimation of the 

background from the regression analysis (from −2.2±0.1% to −1.8±0.1%). Note that this 

difference represents a mere 16±5% of the ‘ideal’ correction without T1w change, equivalent 

to a pH underestimation of −0.11±0.04. It is necessary to note that ΔMRAPTR and pH 

calibration was based on experimentally obtained ΔMRAPTR and T1w, which partially 

compensates for small T1w change. Therefore, the magnitude of pH error caused by T1w 

relaxation change is no more than 0.1 pH unit. In addition, the pH measurement error shall 

be even less in the penumbral tissue than that of the ischemic core due to its less T1w 

change. As such, quantitative MRAPT analysis provides reasonably accurate pH 

measurement during acute stroke with the calibration performed under the same 

experimental conditions. It is necessary to point out that the magnetic field in our study is 

reasonably homogeneous. The typical mean and standard deviation of B0 inhomogeneity is 

within 5 and 10 Hz, respectively. We used a dual RF coil setup and the B1 profile from the 

RF volume transmitter is of good homogeneity (Sun et al., 2007a). Indeed, MRAPT images 

appear homogeneous across the intact brain tissue.

It helps to briefly discuss the relationship between the commonly used perfusion and 

diffusion MRI and pH imaging. Although perfusion is sensitive to ischemia, the effect of 

hypoperfusion on tissue ischemic injury is highly variable, depending on the tissue 

susceptibility, duration of hypoperfusion and collateral flow. In addition, noninvasive ASL 

perfusion MRI is of relatively low signal to noise ratio (SNR) and may not fully resolve 

small regional perfusion difference. As such, it is difficult to rely on perfusion alone to 

further demarcate the hypoperfused ischemic tissue (Schellinger et al., 2010). Conversely, 

diffusion imaging is sensitive to severely injured ischemic tissue, and it cannot resolve 

penumbra from benign oligemia since none of these regions show diffusion abnormality. In 

comparison, tissue pH is tightly-regulated under normal physiological conditions, and pH 

shift is specific to glucose/oxygen metabolic disruption in acute stroke (Hossmann, 2006; 

Smith et al., 1990). It is helpful to compare pH MRI with results using complementary 

techniques such as radiographic imaging. Peek et al. used 14C radiographic imaging and 

reported that pH in the regions of metabolic penumbra was 6.87±0.05 while regions of 

severe acidosis with reduced glucose metabolism had a pH of 6.69±0.11 (Peek et al., 1989). 

In comparison, our study documented pH from the perfusion/diffusion lesion mismatch was 

6.84±0.10. In addition, pH from the pH/diffusion lesion mismatch area was 6.71±0.12. As 

diffusion lesion was poorly perfused with radiotracers, our results appeared in good 

agreement with those from radiographic imaging. Therefore, absolute pH map based on 

MRAPT MRI may provide a surrogate metabolic imaging biomarker to augment perfusion 

and diffusion MRI, help predict heterogeneous tissue response to recanalization, and 

ultimately, be translated and guide late recanalization in the clinical setting (Harston et al., 

2015; Leslie-Mazwi et al., 2016; Rebello et al., 2017).

Our work built on the recent MRAPT approach, calibrated it for absolute pH mapping, and 

further determined tissue pH in benign oligemia, ischemic penumbra, and infarction regions. 

Wang et al. Page 8

Neuroimage. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhou et al. first demonstrated APT MRI in acute stroke animal model, providing the initial 

evidence that it is pH sensitive (Zhou et al., 2003). Since then, persistent progress has been 

achieved in CEST MRI quantification and optimization, yet in vivo tissue pH quantification 

has been challenging (Jones et al., 2018; Kim et al., 2015; Liu et al., 2013). Most work thus 

far used pH-weighted MRI and manual lesion segmentation has been used in experimental 

stroke research and acute stroke patients, limiting its adoption (Harston et al., 2015; Sun et 

al., 2007c; Tietze et al., 2014). Recently, Jin et al. proposed to combine guanidyl- and 

amide- CEST effects for improved pH calibration at 9.4 T (Jin et al., 2017). However, pH-

dependent exchange properties of guanidyl and amide protons are very different, albeit pH 

sensitive, which may confound pH mapping (Heo et al., 2016). It has been noted that there 

are multiple saturation transfer effects that may complement each other for pH imaging 

(Desmond and Stanisz, 2012; Heo et al., 2016; Jin et al., 2013; Zaiss et al., 2014; Zhang et 

al., 2016). We have recently decoupled contributions from amide, guanidyl, and NOE 

effects, and concluded that under a moderate RF irradiation, amide exchange dominates 

guanidyl and NOE contrast during the acute stroke (Wu et al., 2018). The development of 

pH-specific MRAPT MRI minimizes non-pH concomitant effects, permitting semi-

automated segmentation of heterogeneous ischemic tissue (Guo et al., 2016). The MRAPT 

analysis only requires regression analysis without resorting to non-linear multi-parametric 

fitting and therefore is relatively straightforward to implement. Although CEST MRI 

measurement depends on the experimental conditions, in particular, the RF saturation field, 

we have chosen a B1 field previously optimized for pH-weighted MRI at 4.7 T. Admittedly, 

the optimal experimental protocol for pH imaging depends on the experimental conditions 

and field strength (Sun et al., 2013). A systematic optimization and calibration experiments 

are needed before we translate non-invasive absolute pH mapping to the clinic.

Our study chose lactate over phosphorous MRS for pH calibration because proton lactate 

spectroscopy is of higher sensitivity and easier to implement. We chose a long echo time of 

144 ms so that the lactate peak is unmistakably inverted to improve its specificity. Moreover, 

the use of lactate MRS for pH determination is supported by the observations that in 

permanent ischemia, the correlation between lactate concentration and intracellular pH 

determined from phosphorous MRS is very strong (Chang et al., 1990; Hohn-Berlage et al., 

1989). This is consistent with our observation that intracellular pH sensitized by APT MRI 

is closely correlated with lactate pH MRS. Nevertheless, our study has a few limitations. 

Although our study assumed that diffusion lesion captures the most severely injured 

ischemic core tissue, it is important to recognize that DWI lesion contains graded change of 

metabolites and neuronal markers, and DWI lesion may not synonymous with infarction 

core (Geisler et al., 2006; Guadagno et al., 2006; Nicoli et al., 2003). A number of studies 

documented DWI reversibility following recanalization, even in some cases of large DWI 

lesions (Yamada et al., 2012; Yoo et al., 2010). Recent studies have documented that kurtosis 

lesion shows poor response to hyperacute reperfusion while kurtosis/diffusion lesion 

mismatch responds favorably to reperfusion, suggesting graded tissue damage within the 

routine diffusion lesion, which shall be further investigated (Cheung et al., 2012; Lu et al., 

2018; Wang et al., 2017; Weber et al., 2015; Yin et al., 2018). In addition, although pH MRI 

values agreed well with those of Peek et al., 14C autoradiographic imaging is technically 

challenging and not readily available. We could not calibrate pH MRI with radiographic 
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imaging in our present study. Moreover, T1w MRI is needed for MRAPT analysis. 

Fortunately, T1w mapping only takes a few minutes. The scan time can be shortened using 

techniques such as fingerprinting (Anderson et al., 2018; Doerr, 2013) and look-locker MRI 

(Henderson et al., 1999; Zhang et al., 1992). Note that the current study was performed on 

rats at hyperacute stroke stage, and confounding factor such as relaxation, MT, edema have 

to be considered in order to extend pH mapping to the subacute stroke setting. Furthermore, 

our current study only investigated rodents under the normoglycemic condition, and the 

inclusion of animals with hyperglycemic preconditioning will extend the dynamic range of 

pH change. This will not only improve the accuracy of pH calibration but also is highly 

relevant to acute stroke patients who often present with comorbidities such as diabetes.

Conclusion

Our study calibrated pH-sensitive MRAPT MRI toward absolute tissue pH mapping and 

delineated ischemic tissue based on its hemodynamic, metabolic and diffusion indices. We 

documented graded tissue pH from the benign oligemia (7.01±0.04), ischemic penumbra 

(6.71±0.12) and the infarction core (6.52±0.19). Non-invasive tissue pH mapping provides a 

metabolic imaging biomarker for the identification of heterogeneous ischemic tissue injury.
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Figure 1, 
MRI images of a representative acute stroke rat. a) ADC image with the overlaid ipsilateral 

ischemic ROI (red) and the contralateral normal ROI (blue). b) pH-weighted MTRasym 

image. c) pH-specific ΔMRAPTR image. ADC=apparent diffusion coefficient, 

MTRasym=magnetization transfer ratio asymmetry, ΔMRAPTR= magnetization transfer, and 

relaxation corrected amide proton transfer ratio.
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Figure 2, 
Calibration of pH-sensitive APT MRI indices (MTRasym and ΔMRAPTR) toward absolute 

tissue pH from stroke rats with both MRI and MRS scans (N=15). a) MTRasym vs. pH, and 

b) ΔMRAPTR vs. pH. MTRasym=magnetization transfer ratio asymmetry, ΔMRAPTR= 

magnetization transfer, and relaxation corrected amide proton transfer ratio.
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Figure 3, 
pH images from a representative acute stroke rat. a) pH map from MTRasym image. b) pH 

map from ΔMRAPTR image. MTRasym=magnetization transfer ratio asymmetry, 

ΔMRAPTR= magnetization transfer, and relaxation corrected amide proton transfer ratio.
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Figure 4, 
Multi-parametric images of a representative acute stroke rat. a) perfusion image. b) diffusion 

image. c) pH map determined from ΔMRAPTR image. d) paradigm of perfusion/pH/

diffusion lesion mismatch. CBF=cerebral blood flow, ADC=apparent diffusion coefficient.
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Figure 5, 
Comparison of perfusion, pH and diffusion indices from diffusion lesion, pH/diffusion 

lesion mismatch, perfusion/pH lesion mismatch and perfusion/diffusion mismatch from all 

animals (N=35). a) ADC vs. CBF. b) pH vs. CBF. c) pH vs. ADC. d) Three-dimensional 

stratification of CBF, ADC and pH indices from diffusion lesion, pH/diffusion lesion 

mismatch, and perfusion/pH lesion mismatch. CBF=cerebral blood flow, ADC=apparent 

diffusion coefficient.
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Table 1.

Calibration of ROI-based pH-sensitive MRI (MTRasym and ΔMRAPTR) against pH determined from lactate 

MRS (N=15), using a base-catalyzed exchange rate relationship. Both ΔMRAPTR and MTRasym significantly 

correlated with pH, with ΔMRAPTR showing a noticeably higher correlation with pH than MTRasym.

Contralateral Normal ROI Ipsilateral Ischemic ROI

pH (MRI) pH (MRI) R2

MTRasym (%) 7.00 ± 0.08 6.48 ± 0.15 0.45 *

ΔMRAPTR (%/s) 7.05 ± 0.02 6.48 ± 0.13 0.70**

*
(P<0.05)

**
(P<0.001).
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Table 2.

Multi-parametric perfusion, pH and diffusion states of graded ischemic tissue injury. pH shows little acidosis 

in the PWI/pH lesion mismatch (benign oligemia) from the intact tissue. It also captured worsened acidosis 

from pH/diffusion lesion mismatch (metabolic penumbra) to diffusion lesion (core).

Contralateral Normal tissue ADC Lesion (Core) PWI/DWI lesion 
Mismatch 

(Conventional 
Penumbra)

PWI/pH lesion 
Mismatch 
(Benign 

Oligemia)

pH/ADC lesion 
mismatch 
(Metabolic 
Penumbra)

CBF (ml/g.min) 1.59±0.44 0.69±0.33 0.85±0.33 0.95±0.33 0.83±0.35

ADC (μm2/ms) 0.83±0.03 0.62±0.03 0.81±0.04 0.82±0.04 0.81±0.04

pH 7.04±0.01 6.52±0.19 6.84±0.10 7.01±0.04 6.71±0.12
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